Science.gov

Sample records for alkali metal-containing catalyst

  1. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  2. Selective hydrogenation of dienic and acetylenic compounds on metal-containing catalysts

    NASA Astrophysics Data System (ADS)

    Stytsenko, V. D.; Mel'nikov, D. P.

    2016-05-01

    Studies on selective hydrogenation of dienic and acetylenic hydrocarbons and their derivatives on metal-containing catalysts are reviewed. The review covers publications over a wide period of time and concentrates on the fundamental principles of catalyst operation. The catalysts modified in the surface layer were shown to be promising for selective hydrogenation.

  3. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Reverse micelle synthesis of nanoscale metal containing catalysts

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  5. Synthesis and structural determination of alkali and alkaline earth metal containing bismuth vanadates

    NASA Astrophysics Data System (ADS)

    Bliesner, Rebecca Jean

    Exploratory synthesis plays an important role in the quest to discover new materials. There are very few structurally characterized alkali metal containing bismuth vanadates. Hybridization of the 6s and 6p orbitals of Bi 3+ and the resulting lone electron pair yields some very interesting stereochemistry and steric related properties. Some of those properties include ferroelectricity, ferroelasticity, electronic and ionic conduction, superconductivity, nonlinear optical capabilities and selective catalysis. Systematic exploration of the Na-Bi-V ternary system produced a new phase of NaBi3V2O10. This material crystallizes in the P1¯ space group and the reported oxygen ion conductivity is apparently due to the presence of interstitial oxygen rather than oxygen vacancies. Stabilization of the tetragonal scheelite phase of BiVO4 has been achieved by the substitution of a M2+ for Bi3+ . This has not been accomplished previously by a M2+ cation substitution. The compound Ca0.29Bi0.71VO 3.855 crystallizes in the P4¯ space group. An investigation of the K-Bi-V ternary system resulted in the discovery of a new potassium vanadate. K10Bi4V4O 21 crystallizes in the P6¯ space group with a equal to 10.205(2)A and c equal to 7.669(2)A. Other new compounds prepared, for which structures have not been determined are alpha-Na3BiV2O8, beta-Na3BiV 2O8, K8Bi5V5O24, Rb2BiVO5, a rubidium compound with a 3:3:2 stoichiometric ratio of Rb:Bi:V, a rubidium compound with 2:1:1, a sodium compound with 2:1:1 and a lithium compound with a 1:1:1 stoichiometric ratio of Li:Bi:V.

  6. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  7. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  8. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  9. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source. PMID:26587749

  10. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-01

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general. PMID:25941972

  11. Materials discovery by crystal growth: Lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt) from molten alkali metal hydroxides

    SciTech Connect

    Mugavero, Samuel J.; Gemmill, William R.; Roof, Irina P.; Loye, Hans-Conrad zur

    2009-07-15

    This review addresses the process of materials discovery via crystal growth, specifically of lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt). It provides a detailed overview of the use of hydroxide fluxes for crystal growth. The melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals are described. Furthermore, a general methodology for the successful crystal growth of oxides is provided, including a discussion of experimental considerations, suitable reaction vessels, reaction profiles and temperature ranges. Finally, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts, focusing on their crystal growth and crystal structures, is included. - Graphical abstract: A review that addresses the process of materials discovery via crystal growth using hydroxide fluxes. It provides a detailed overview of the use of hydroxide fluxes for crystal growth and describes the melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals. In addition, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts is included.

  12. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  13. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  16. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  17. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGESBeta

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  18. Highly Effective Pt-Based Water–Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    PubMed Central

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-01

    Herein, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240 h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5 wt %. PMID:26413174

  19. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  20. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  1. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  5. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  6. Alkali promoted molybdenum (IV) sulfide based catalysts, development and characterization for alcohol synthesis from carbon monoxide and hydrogen

    NASA Astrophysics Data System (ADS)

    Molina, Belinda Delilah

    For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.

  7. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Delichere, P.

    1996-12-01

    Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminates, obtained by sol-gel techniques, with a different amount of sodium, and R equal to 2.1 and 6.1 respectively. LEIS experiments and electron microscopy demonstrate a different location of alkali metal ions in the first two series: in the Na-Pd/SiO{sub 2} catalysts sodium is distributed in a way which is not uniform on the support and on the palladium metal, which is partly decorated with Na ions, whereas in the Pd/natural-pumice series the palladium surface is sodium-free. The results on the third series of catalysts, Pd/model pumice, are not definitive on the basis of the LEIS and TEM analyses, but by FTIR study of CO and CO{sub 2} adsorption, the decoration of palladium by sodium ions could be excluded. The results confirm the importance of the alkali metal ion location in alkali-promoted palladium catalysts and open new possibilities in the design of palladium-supported catalysts by a better control of promoter location. 18 refs., 5 figs., 2 tabs.

  8. Stereoselective Alkali-Metal Catalysts for Highly Isotactic Poly(rac-lactide) Synthesis.

    PubMed

    Sun, Yangyang; Xiong, Jiao; Dai, Zhongran; Pan, Xiaobo; Tang, Ning; Wu, Jincai

    2016-01-01

    A high degree of chain end control in the isoselective ring-opening polymerization (ROP) of rac-lactide is a challenging research goal. In this work, eight highly active sodium and potassium phenolates as highly isoselective catalysts for the ROP of rac-lactide are reported. The best isoselectivity value of Pm = 0.94 is achieved. The isoselective mechanism is chain-end control through the analysis of the stereoerrors in the microstructure of a final polymer; thus, isotactic multiblock structure polymers are obtained, and the highest melt point can reach 192.5 °C. The donating group in phenolate can clearly accelerate the ROP reaction, potassium complexes are more active than the analogous sodium complexes, and the big spacial hindrance of the ligand can decrease the activity. The high isoselectivities of these complexes mostly result from their sandwich structure constructed by the plane of the crown and the plane of the anthryl group. PMID:26684962

  9. Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Yu, Wenchao; Wu, Xiaodong; Si, Zhichun; Weng, Duan

    2013-10-01

    V2O5-WO3/TiO2 catalysts were prepared by wet and dry impregnation methods, respectively, and the deactivation effects of KCl on their NH3-SCR activities were investigated. The catalysts were characterized by powder X-ray diffraction (XRD), inductively coupled plasma (ICP), Brunauer-Emmett-Teller (BET), Raman, H2 temperature-programmed reaction (TPR), infrared spectra (IR) and NH3 oxidation. The wet-impregnated catalyst shows higher SCR activities before and after the alkali poisoning compared with the dry-impregnated one. The Raman results show that more polymeric vanadia species appear on the wet-impregnated sample, whereas the isolated form is predominant on the dry-impregnated sample. The transformation of vanadia from isolated to polymeric species increases the acidity of the catalyst and the NH3 oxidation activity. The activation of the adsorbed ammonia appears to be a determinant of the SCR reaction over V2O5-WO3/TiO2 catalysts, and is responsible for the higher activity of the wet-impregnated catalyst. Furthermore, the isolated vanadia species is more likely to combine with potassium to produce inert materials, and hereby the dry-impregnated catalyst is more severely deactivated.

  10. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  11. Interactions of hydrogen with alkali promoted Ru/SiO{sub 2} catalysts: A proton NMR study

    SciTech Connect

    Ozbay, U.D.

    1994-05-10

    Role of H spillover to the silica support was studied using chemisorption; a strongly bound component of spilled over H was found in the silica support which interfered with accurate measurements of active metal sites via volumetric strong H chemisorption. The volumetric chemisorption technique was modified so that measurement times were reduced from 12--36 h to 1 h. The active Ru surface was characterized means of changes in proton spin counts and NMR Knight shifts vs alkali loading. Na, K blocked the active surface of Ru metal, but Cs was pushed off by H chemisorption. The alkali promoters restricted H mobility on both metal surface and at the metal support interfaces; this is consistent with effects on Fischer-Tropsch synthesis. {sup 1}H NMR was used to study the effect of the active metal and promoter on support hydroxyl groups. The OH group density in the silica support decreased with metal and/or promoter loading, but not on a one-to-one basis; the exchange efficiency of the hydroxyls decreased with atomic size of the alkali metal. An additional downfield proton resonance was detected which was assigned to the alkali hydroxide species in the support.

  12. A new alkali-resistant Ni/Al2O3-MSU-1 core-shell catalyst for methane steam reforming in a direct internal reforming molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhang, Xiongfu; Liu, Weifeng; Liu, Haiou; Qiu, Jieshan; Yeung, King Lun

    2014-01-01

    An alkali-resistant catalyst for direct internal reforming molten carbonate fuel cell (DIR-MCFC) is prepared by growing a thin shell of mesoporous MSU-1 membrane on Ni/Al2O3 catalyst beads. The MSU-1 shell is obtained by first depositing a monolayer of colloidal silicalite-1 (Sil-1) on the catalyst bead as linkers and then using NaF stored in the beads to catalyze the growth of the MSU-1 layer. The resulting core-shell catalysts display excellent alkali-resistance and deliver stable methane conversion and hydrogen yield in an out-of-cell test simulating the operating conditions of an operating DIR-MCFC. Higher conversion and yield (i.e., up to over 70%) are obtained from the new core-shell catalyst with MSU-1 shell compared to the catalyst with microporous Sil-1 shell. A mathematical model of the reaction and poisoning of the core-shell catalyst is used to predict the optimum shell thickness for its reliable use in a DIR-MCFC.

  13. Process for the preparation of metal-containing nanostructured films

    NASA Technical Reports Server (NTRS)

    Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)

    2006-01-01

    Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.

  14. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  15. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  16. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  17. Covering a Crucible with Metal Containing Channels

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    In a procedure that partly resembles the lost-wax casting process, a crucible made of a brittle material (ceramic, quartz, or glass) is covered with a layer of metal containing channels. The metal cover and the channels can serve any or all of several purposes, depending upon the application: Typically, the metal would serve at least partly to reinforce the crucible. The channels could be used as passages for narrow objects that could include thermocouples and heat-transfer strips. Alternatively or in addition, channels could be used as flow paths for liquid or gaseous coolants and could be positioned and oriented for position- or direction-selective cooling. In some cases, the channels could be filled with known gases and sealed so that failure of the crucibles could be indicated by instruments that detect the gases. The process consists of three main steps. In the first step, a pattern defining the channels is formed by wrapping or depositing a material in the desired channel pattern on the outer surface of the crucible. The pattern material can be a plastic, wax, low-ash fibrous material, a soluble material, or other suitable material that can subsequently be removed easily. In a proof-of-concept demonstration (see figure), the crucible was an alumina cylinder and the mold material was plastic tie-down tape. In the second step, the patterned crucible is coated with metal. In one variation of the second step, a very thin layer containing or consisting of an electrically conductive material (e.g., gold, silver, or carbon) is painted or otherwise deposited on the mold-covered crucible, then the covering metal required for the specific application is electrodeposited on the very thin conducting layer. In another variation of the second step, the metal coat is formed by chemical vapor deposition. In the proof-of-concept demonstration, a layer of nickel 0.003 in. ( 0.08 mm) thick was electrodeposited. In the third step, the patterned material is removed. This is

  18. Hydrocracking naphthas using mildly steamed, noble metal-containing zeolite beta

    SciTech Connect

    Hickey, K.J. Jr.; Morrison, R.A.

    1989-03-14

    A method is described for hydrocracking a naphtha which comprises contacting the naphtha with a noble metal-containing zeolite beta naphtha hydrocracking catalyst at a pressure of about 0 to about 2000 psig, a temperature of about 400/sup 0/ to about 650/sup 0/F, a hydrogen or hydrocarbon molar ratio of about 0.1 to 1 to about 15 to 1 and a weight hourly space velocity of about 0.5 to about 20. Naphtha hydrocracking activity of the catalyst is enhanced by mild steaming of the zeolite beta catalyst prior to the contacting, the mild steaming being accomplished by steaming the zeolite catalyst in its fresh state under controlled conditions of temperature, time and steam partial pressure so as to initially increase the alpha activity of the catalyst and produce a steamed catalyst having a peak alpha activity, and subsequently reduce the alpha activity from the peak alpha activity to an alpha activity substantially the same as the alpha activity of the fresh catalyst and no more than 25% below the initial alpha activity of the fresh catalyst.

  19. Synthesis of highly stable metal-containing extra-large-pore molecular sieves.

    PubMed

    Martínez-Franco, Raquel; Paris, Cecilia; Moliner, Manuel; Corma, Avelino

    2016-02-28

    The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules. PMID:26755759

  20. Metal containing material processing on coater/developer system

    NASA Astrophysics Data System (ADS)

    Kawakami, Shinichiro; Mizunoura, Hiroshi; Matsunaga, Koichi; Hontake, Koichi; Nakamura, Hiroshi; Shimura, Satoru; Enomoto, Masashi

    2016-03-01

    Challenges of processing metal containing materials need to be addressed in order apply this technology to Behavior of metal containing materials on coater/developer processing including coating process, developer process and tool metal contamination is studied using CLEAN TRACKTM LITHIUS ProTM Z (Tokyo Electron Limited). Through this work, coating uniformity and coating film defectivity were studied. Metal containing material performance was comparable to conventional materials. Especially, new dispense system (NDS) demonstrated up to 80% reduction in coating defect for metal containing materials. As for processed wafer metal contamination, coated wafer metal contamination achieved less than 1.0E10 atoms/cm2 with 3 materials. After develop metal contamination also achieved less than 1.0E10 atoms/cm2 with 2 materials. Furthermore, through the metal defect study, metal residues and metal contamination were reduced by developer rinse optimization.

  1. Nontraditional methods of synthesising metal-containing polymers

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1991-07-01

    Complexes of metals with (meth)acrylates and acrylamides are used as examples for examining the application of nontraditional methods for initiating polymerisation of metal-containing monomers: graft, low-temperature, electrochemical, matrix, solid-state (under high pressure with shear deformation), frontal and spontaneous. Such approaches are demonstrated to be very effective for preparing metal-containing polymers with a wide spectrum of relative molecular masses and with different solubility and stereotacticity. The bibliography includes 39 references.

  2. Fischer Tropsch synthesis : an in-situ TPR-EXAFS/XANES investigation of the influence of Group I alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts.

    SciTech Connect

    Ribeiro, M. C.; Jacobs, G.; Davis, B. H.; Cronauer, D. C.; Kropf, A. J.; Marshall, C. L.

    2010-01-01

    The promoting impact of alkali metals (i.e., Li, Na, K, Rb, Cs) on the carburization rate of Fe in Fe/Si catalysts was investigated by X-ray absorption spectroscopy. A multisample holder was used, allowing nearly simultaneous examination of the catalysts during activation in a CO/He mixture. With the white line intensity and shape as a fingerprint for oxidation state, TPR/XANES analysis enabled us to measure the relative composition of the different compounds as a function of the carburization time, temperature, and atomic number of the group 1 promoter. At the same time, TPR/EXAFS provided information on the changes in local atomic structure that accompanied the oxidation state changes. The rate of carburization increased in the following order: unpromoted < Li < Na < K = Rb = Cs. After 10 h of treatment the samples containing K, Rb, and Cs were completely carburized, and residual quantities of iron oxides were detected in both unpromoted and Li-promoted samples. The EXAFS spectra after carburization could be fitted well by considering a model containing Hagg carbide and Fe{sub 3}O{sub 4}. After 10 h of CO/He treatment at 290 C, the main component observed was Hagg carbide. A model containing Hagg and {var_epsilon}-carbides, and Fe{sub 3}O{sub 4}, was also investigated. However, the r-factor was not significantly impacted by including {var_epsilon}-carbide in the fitting, and the resulting contribution of {var_epsilon}-carbide in each catalyst from the model was virtually negligible. Selectivity differences are thus not likely due to changes in the carbide distribution. Rather, the alkali promoter increases the CO dissociative adsorption rate, resulting in an increase in the surface coverage of dissociated CO and an inhibition in the olefin readsorption rate. This in turn results in higher olefin selectivities, in agreement with previous catalytic tests.

  3. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  4. Redox chromophore compounds and electrodes of metal containing substituted bipyridines

    DOEpatents

    Elliott, Cecil M.; Redepenning, Jody G.

    1986-01-01

    Chromophoric compounds, each having a wide range of distinct color changes in response to changes in the oxidation states thereof, are provided in the form of polymerizable monomers, and polymers thereof, of certain metal containing, and electron group substituted, 2,2'-bipyridine compounds.

  5. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  6. Metal-containing Monomers: Advances in Polymerisation and Copolymerisation

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1983-10-01

    The main advances in and problems of polymerisation, copolymerisation, as well as graft polymerisation of metal-containing monomers (MCM) are analysed. These are classified in terms of the type of bond between the metal and the organic component of the molecule into three principal groups, namely MCM with σ-, nv-, and π-bonded metal, are analysed. Attention is concentrated on the influence of the nature of the metal (both transition and non-transition) on the polymerisation process and on the properties of the products. A systematic account is given of the principal data for the polycondensation of metal-containing compounds. The applications of the metal polymer synthesised are considered. The bibliography includes 215 references.

  7. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  8. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry

    PubMed Central

    Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Kinach, Robert; Dai, Sheng; Thickett, Stuart C.; Tanner, Scott

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells. PMID:20390041

  9. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  10. Photosensitive properties of metal-containing polydisalicylidene azomethines

    SciTech Connect

    Alexandrova, E. L.; Ivanov, A. G. Heller, N. M.; Nadezhdina, L. B.; Shamanin, V. V.

    2008-11-15

    Photosensitive properties of new metal-containing polydisalicylidene azomethines were studied. It was shown that polymer properties are controlled by the nature of the metal atom (its electron affinity energy A{sub a} and ionic radius r{sub i}) included in 'nonclassical' polyconjugation. The photosensitivity S{sub 0.1} of studied polymers is {approx}10{sup 5}cm{sup 2}/J, and the quantum yield of free-carrier photogeneration is {eta} {approx} 0.10-0.15, which corresponds to the level of organometallic complexes that have found application in optoelectronics.

  11. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  12. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  13. New thermal and microbial resistant metal-containing epoxy polymers.

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1 : 2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  14. New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

    PubMed Central

    Ahamad, Tansir; Alshehri, Saad M.

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  15. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.

  16. Toxic metals contained in cosmetics: a status report.

    PubMed

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic. PMID:24530804

  17. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  18. Metal-containing polyacrylonitriles: ESR studies and conductivity

    SciTech Connect

    Bronstein, L.M.; ERemin, V.S.; Solodovnikov, S.P.

    1995-12-01

    Metal-containing polyacrylonitriles (PAN) synthesized by the complexation of VI B group metal hexacarbonyls with PAN nitrile groups were studied during thermolysis in air at 220{degrees}C to find conditions for preparation of conductive polymeric films. It was shown that increase of W content in polymer leads to significant decrease of {gamma}{sub v} to magnitude about 10{sup -16} {Omega}/cm as compared with conductivity of thermolized initial PAN ({gamma}{sub v} = 10{sup -11} {Omega}/cm). In contrast, PAN-Cr samples heated under the same temperature-time conditions in an external field 40-50 kV/cm show the increase of conductivity: at a chromium content of 3.1 wt.% {gamma}{sub v} reaches a value of 10{sup -5} {Omega}/cm. According to ESR study, the thermolized PAN-Cr contains Cr{sub 2}O{sub 3} particles (a broad ESR signal at H=65 Oe); in so doing rough estimate of Cr{sub 2}O{sub 3} dispersity gives a value about 3 nm. Upon thermolysis of PAN-Mo in external field the enhancement of conductivity also occurs. The values of the temperature resistance factors for PAN-Cr and PAN-Mo in the temperature range 20-200{degrees}C reaches a value 1-9 x 10{sup -4} K{sup -1}.

  19. Development of metal-containing polymers for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Chan, Wai Kin; Hou, Sijian; Ng, Po K.; Wong, Chi T.; Yu, Sze C.

    1999-11-01

    Most of the work in organic electroluminescent polymers has been focused on organic conjugated polymers. However, polymers attached with transition metal complex have received relatively less attention. We have synthesized and studied the light emitting properties of some metal containing polymers based on the polypyridine complexes of rhenium and ruthenium. These complexes exhibit long-lived excited states caused by the metal to ligand charge transfer transitions. By varying the structure of the ligand and/or the transition metal, we are able to fine-tune the electronic properties of the resulting metal complexes. We have synthesized a series of poly(phenylenevinylene) (PPV) derivatives which are functionalized with ruthenium polypyridine complexes at the polymer mainchain or side chain. These complexes are able to act as photosensitizers which enhance the photoconductivity of these polymers at longer wavelength. Both the conjugated backbone and the metal complex can emit light upon excitation. As a result, it is possible to tune the color by loading different amount of ruthenium complex to the polymer. Luminescence studies showed that the ruthenium complex could quench the emission of the conjugated backbone in some polymers, which suggests an energy transfer process between the backbone and the metal complexes. It was also found that the presence of metal complexes could enhance the charge carrier mobilities of the polymers, as the metal and/or ligands can act as extra charge carriers in the charge transport process.

  20. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  1. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  2. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  3. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Plant number to be embossed on metal... Plant number to be embossed on metal containers. The official number assigned to an inspected plant under § 355.8 shall be embossed on all sealed metal containers of certified products filled in...

  4. Fabrication of transition metal-containing nanostructures via polymer templates for a multitude of applications

    NASA Astrophysics Data System (ADS)

    Lu, Jennifer Qing

    Nanostructures such as carbon nanotubes and semiconducting nanowires offer great technological promise due to their remarkable properties. The lack of a rational synthesis method prevents fabricating these nanostructures with desirable and consistent properties at predefined locations for device applications. In this thesis, employing polymer templates, a variety of highly ordered catalytically active transition metal nanostructures, ranging from single metallic nanoparticles of Fe, Co, Ni, Au and bimetallic nanoparticles of Ni/Fe and Co/Mo to Fe-rich silicon oxide nanodomains with uniform and tunable size and spacing have been successfully synthesized. These nanostructures have been demonstrated to be excellent catalyst systems for the synthesis of carbon nanotube and silicon nanowire. High quality, small diameter carbon nanotubes and nanowires with narrow size distribution have been successfully attained. Because these catalytically active nanostructures are uniformly distributed and do not agglomerate at the growth temperatures, uniform, high density and high quality carbon nanotube mats have been obtained. Since this polymer template approach is fully compatible with conventional top-down photolithography, lithographically selective growth of carbon nanotubes on a surface or suspended carbon nanotubes across trenches have been produced by using existing semiconductor processing. We have also shown the feasibility of producing carbon nanotubes and silicon nanowires at predefined locations on a wafer format and established a wafer-level carbon nanotube based device fabrication process. The ability of the polymer template approach to control catalyst systems at the nano-, micro- and macro-scales paves a pathway for commercialization of these 1D nanostructure-enabled devices. Beside producing well-defined, highly ordered discrete catalytically active metal-containing nanostructures by the polymer template approach, Au and Ag nanotextured surfaces have also been

  5. Shaped ceramics with tunable magnetic properties from metal-containing polymers

    PubMed

    MacLachlan; Ginzburg; Coombs; Coyle; Raju; Greedan; Ozin; Manners

    2000-02-25

    A shaped, magnetic ceramic was obtained from a metal-containing polymer network, which was synthesized by thermal polymerization of a metal-containing organosilicon monomer. Pyrolysis of a cylinder, shape, or film of the metal-containing polymer precursor produced a low-density magnetic ceramic replica in high yield. The magnetic properties of the shaped ceramic could be tuned between a superparamagnetic and ferromagnetic state by controlling the pyrolysis conditions, with the particular state dependent on the size of iron nanoclusters homogeneously dispersed throughout the carbosilane-graphitic-silicon nitride matrix. These results indicate that cross-linked metal-containing polymers may be useful precursors to ceramic monoliths with tailorable magnetic properties. PMID:10688788

  6. Shaped Ceramics with Tunable Magnetic Properties from Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    MacLachlan, Mark J.; Ginzburg, Madlen; Coombs, Neil; Coyle, Thomas W.; Raju, Nandyala P.; Greedan, John E.; Ozin, Geoffrey A.; Manners, Ian

    2000-02-01

    A shaped, magnetic ceramic was obtained from a metal-containing polymer network, which was synthesized by thermal polymerization of a metal-containing organosilicon monomer. Pyrolysis of a cylinder, shape, or film of the metal-containing polymer precursor produced a low-density magnetic ceramic replica in high yield. The magnetic properties of the shaped ceramic could be tuned between a superparamagnetic and ferromagnetic state by controlling the pyrolysis conditions, with the particular state dependent on the size of iron nanoclusters homogeneously dispersed throughout the carbosilane-graphitic-silicon nitride matrix. These results indicate that cross-linked metal-containing polymers may be useful precursors to ceramic monoliths with tailorable magnetic properties.

  7. Improved catalysts and method

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.

    1990-12-31

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride. 8 figs., 3 tabs.

  8. Resin catalysts and method of preparation

    DOEpatents

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  9. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  10. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  11. Method for producing catalysts from coal

    DOEpatents

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  12. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    NASA Astrophysics Data System (ADS)

    Hoenig, C. L.

    1990-06-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800 C and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  13. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  14. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  15. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1994-08-09

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  16. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1994-01-01

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.

  17. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  18. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  19. The surface chemistry of iron Fischer-Tropsch catalysts

    SciTech Connect

    Dwyer, D.J.; Hardenburgh, J.H.

    1986-04-01

    The indirect conversion of coal to liquid hydrocarbons via steam gasification followed by synthesis gas (CO/H/sub 2/) chemistry has been the subject of intensive study for a number of decades. A key technological challenge facing researchers in this area is control over the product distribution during the hydrocarbon synthesis step. In the case of iron Fischer-Tropsch catalysts, it has been known that the addition of alkali to the metal catalyst has a significant impact on the product distribution. Iron catalysts treated with alkali produce less methane more alkenes and higher molecular weight products. In spite of numerous investigations, the details of this promotional effect are not understood on a molecular level. To explore the role of alkali in the surface chemistry of iron catalysts, the authors have carried out a combined surface science and catalytic kinetic study of a model iron catalyst with and without surface alkali.

  20. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1992-06-01

    During this quarter, the high pressure (up to 100 atm), high temperature (up to 350{degrees}C) catalyst testing system was rebuilt with clean tubing, etc. A new preparation of MoS{sub 2} catalyst was carried out, and this catalyst will be doped with alkali and tested during the next quarter of research.

  1. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND...

  2. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  3. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26940747

  4. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  5. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  6. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  7. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  8. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  9. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  10. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  11. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  12. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    SciTech Connect

    Hoenig, C.L.

    1990-12-31

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a cansister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800{degrees}C and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  13. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  14. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment. PMID:21963338

  15. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer.

    PubMed

    Choi, Jung-Suk; Maity, Ayan; Gray, Thomas; Berdis, Anthony J

    2015-04-10

    Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer. PMID:25713072

  16. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container.

    PubMed

    Marques, Lis S; Bos-Mikich, Adriana; Godoy, Leandro C; Silva, Laura A; Maschio, Daniel; Zhang, Tiantian; Streit, Danilo P

    2015-12-01

    Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared. PMID:26408854

  17. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  18. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  19. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.

  20. Adsorption on Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Urzua Duran, Gilberto Antonio

    1995-01-01

    Using a variety of interionic potentials, I have computed the configurations of adsorbed alkali halides monomers on the (001) surface of selected alkali halides crystals. In the majority of cases studied it is found that the monomer adsorbs perpendicular to the surface with the cation sitting nearly on top of the surface anion. In about ten percent of the cases though the monomer adsorbs tilted from the vertical. In these cases the ion that is closer to the surface can be the cation or the anion. The effect of polarization forces is found to be important. In order to discuss the effects of surface retaxation with adsorbates, I have evaluated the surface relaxation of the alkali halide crystals, using a shell model for the interionic forces. It is found that surface relaxation and rumpling are generally small, especially when the van der Waals forces are included. A theory of the effect of substrate vibrations on the binding of an adsorbed atom is developed. At T = 0 the binding energy is D_0-E, where D_0 is the surface well depth (classical binding energy) and E is the quantum correction. For several simple models, it is found that E is surprisingly model-independent. We compare D _0-E with the binding energies to a rigid substrate, D_0-E_{rs}, and to a vibrationally averaged substrate, D _0-E_{va}. We prove that E_{va}>=q E>=q E_ {rs} and that similar relations hold at finite temperature for the free energy of binding. In most cases E_{rs} is better than E_{va} as an approximation to E.

  1. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect

    Shah, V.N.; Sinha, U.P.; Smith, S.K.

    1994-03-01

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  2. Metal-containing polymers: building blocks for functional (nano)materials.

    PubMed

    Wang, Xiaosong; McHale, Ronan

    2010-02-16

    The incorporation of metallic units into polymer chains has emerged as a promising route towards functional metal-containing (nano)materials. The resulting polymers possess rich functions derived from their metallic elements, such as redox, optical, catalytic and magnetic properties. In addition, the directional and dynamic nature of metal coordination interactions provides further variables for the exploration of novel materials with designed nanostructures. These types of polymers can be synthesized through direct metal-ligand coordination or chain polymerization of metal containing monomers. Depending on the polymerization techniques and starting components, the resulting polymers, akin to their organic counterparts, can be produced in the form of insoluble networks, processible chain structures, gels or colloids. Research into this rising multidisciplinary subject has benefited from recent progress in several related areas such as supramolecular chemistry, colloidal chemistry etc., with the combination of the relative merits of each ensuring further developments in each individual discipline. For example, as a result of studies into organometallic block copolymers self-assembly behavior, living supramolecular polymerization has been unprecedentedly realized for the architectural design of micelles (see image on the right). Nevertheless, the field is still in a developmental stage and offers ample opportunities for fundamental research, as well as material exploration. In this Feature Article, we intend to overview the field with a brief survey of recent literature. PMID:21590911

  3. The development and characterization of methanol decomposition catalysts

    SciTech Connect

    Logsdon, B.W.

    1989-01-01

    The effect of catalyst doping was investigated using 2% and 3% palladium catalysts. The dopant was found to have a significant effect on the activity, selectivity, and thermal stability of the catalysts. The lithium, sodium, and barium-doped catalysts deactivated when exposed to a thermal cycle, whereas, the rubidium, cesium, and lanthanum-doped catalysts did not. Catalyst doping generally resulted in a decrease in the initial catalyst activity. This varied from a small decrease for the lanthana-doped catalyst to a large decrease for the alkali-doped catalysts. Selectivity for CO and H{sub 2} was increased by doping due to the neutralization of acid sites on the alumina. To avoid the use of large quantities of rare materials in the catalysts, two approaches were taken: (1) Development of a catalyst using 0.5% Pd, and (2) development of a base metal catalyst. Lowering the palladium content of the catalysts resulted in severe deactivation of all catalysts. The base metal catalyst development showed iron, cobalt and copper catalysts to be unacceptable due to severe deactivation. Nickel catalysts operating under the proper conditions were found to be adequate methanol decomposition catalysts. A final study demonstrated the feasibility of developing a high temperature methanol decomposition catalysts for use in hypersonic aircraft. The second phase of the study was the characterization of the palladium catalysts. Chemisorption results indicated that the palladium dispersion was affected by the dopant. The dispersion of the palladium, however, cannot account for the variation in the initial catalyst activity. CO{sub 2} thermal desorption results indicated that the alkali metal dopants effectively neutralized the acidic sites on the alumina support and produced a basic surface.

  4. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  5. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  6. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  7. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  8. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  9. Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units.

    PubMed

    Tu, Binbin; Pang, Qingqing; Ning, Erlong; Yan, Wenqing; Qi, Yi; Wu, Doufeng; Li, Qiaowei

    2015-10-28

    Materials built from multiple constituents have revealed emerging properties that are beyond linear integration of those from single components. We report a mesoporous metal-organic framework made from three geometrically distinct metal-containing secondary building units (SBUs) as a result of topological induction. The combinations of the Cu-based triangular, Zn-based octahedral, and Zn-based square pyramidal SBUs have created four types of cages in the network, despite that only one organic linker pyrazolecarboxylate was used. The longest distance for molecules maneuvering inside the largest cage is 5.2 nm. Furthermore, the complex and diversified pore environments allow the installation of various new functionalities in the framework as well as the expedited Ag nanoparticle formation in the pores. As presented in the molecule movement diagram, the crystal has provided specific arrangements of cages and apertures with distinct chemical features for guests transporting between the pores. PMID:26335899

  10. METAL-CONTAINING CONJUGATED POLYMERS AS FLUORESCENT CHEMOSENSORS IN THE DETECTION OF TOXICANTS.

    PubMed

    Fegley, Megan E A; Pinnock, Sherryllene S; Malele, Catherine N; Jones, Wayne E

    2012-02-15

    Fluorescent conjugated polymers have received a great deal of recent interest due to their ability to act as chemosensors to detect various chemical species in both environmental and biological systems with sensitivity and selectivity. Examples from the literature include polymer chemosensors that operate on either fluorescence "turn-on" or "turn-off" as mechanisms of sensor response. These responses can be related to either photoinduced electron transfer or electronic energy transfer mechanisms. Recently, a series of metal-containing polymers or metallopolymers have been explored by various research groups for their use as chemosensors. In many cases, these metallopolymers have been shown to be more sensitive and selective for specific chemical species. This review focuses on fluorescent conjugated polymers as chemosensors, with a specific concentration on recent advances in metallopolymer chemosensors. PMID:22711916

  11. METAL-CONTAINING CONJUGATED POLYMERS AS FLUORESCENT CHEMOSENSORS IN THE DETECTION OF TOXICANTS

    PubMed Central

    Fegley, Megan E. A.; Pinnock, Sherryllene S.; Malele, Catherine N.; Jones, Wayne E.

    2012-01-01

    Fluorescent conjugated polymers have received a great deal of recent interest due to their ability to act as chemosensors to detect various chemical species in both environmental and biological systems with sensitivity and selectivity. Examples from the literature include polymer chemosensors that operate on either fluorescence “turn-on” or “turn-off” as mechanisms of sensor response. These responses can be related to either photoinduced electron transfer or electronic energy transfer mechanisms. Recently, a series of metal-containing polymers or metallopolymers have been explored by various research groups for their use as chemosensors. In many cases, these metallopolymers have been shown to be more sensitive and selective for specific chemical species. This review focuses on fluorescent conjugated polymers as chemosensors, with a specific concentration on recent advances in metallopolymer chemosensors. PMID:22711916

  12. Estimation of the atmospheric corrosion on metal containers in industrial waste disposal.

    PubMed

    Baklouti, M; Midoux, N; Mazaudier, F; Feron, D

    2001-08-17

    Solid industrial waste are often stored in metal containers filled with concrete, and placed in well-aerated warehouses. Depending on meteorological conditions, atmospheric corrosion can induce severe material damages to the metal casing, and this damage has to be predicted to achieve safe storage. This work provides a first estimation of the corrosivity of the local atmosphere adjacent to the walls of the container through a realistic modeling of heat transfer phenomena which was developed for this purpose. Subsequent simulations of condensation/evaporation of the water vapor in the atmosphere were carried out. Atmospheric corrosion rates and material losses are easily deduced. For handling realistic data and comparison, two different meteorological contexts were chosen: (1) an oceanic and damp atmosphere and (2) a drier storage location. Some conclusions were also made for the storage configuration in order to reduce the extent of corrosion phenomena. PMID:11489528

  13. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  14. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  15. Process for polymerizing olefins in the presence of a catalyst prepared from organomagenesium compound, epihalohydrin reducing halide source and transition metal compound

    SciTech Connect

    Lund, G.K.

    1986-08-12

    This patent describes a process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable ..cap alpha..-olefins under Ziegler polymerization conditions wherein the polymerization is conducted in the presence of a transition metal-containing catalyst. The improvement comprises employing as the transition metal-containing catalyst a catalytic product resulting from admixing in an inert hydrocarbon diluent and in an atmosphere which excludes moisture and oxygen.

  16. Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly(amidoxime) grafted starch.

    PubMed

    El-Hamshary, Hany; El-Newehy, Mohamed H; Al-Deyab, Salem S

    2011-01-01

    Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN) grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN) were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H(2)O(2) as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H(2)O(2) system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts. PMID:22127293

  17. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  18. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  19. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties

    SciTech Connect

    Chen, W.-L.; Chen, B.-W.; Tan, H.-Q.; Li Yangguang; Wang Yonghui; Wang Enbo

    2010-02-15

    Employing the ionothermal synthesis approach, three new transition-metal-containing polyoxotungstate hybrids: [Dmim]{sub 2}Na{sub 3}[SiW{sub 11}O{sub 39}Fe(H{sub 2}O)].H{sub 2}O (Dmim=1,3-Dimethylimidazole) (1), [Emim]{sub 9}Na{sub 8}[(SiW{sub 9}O{sub 34}){sub 3}{l_brace}Fe{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(WO{sub 4})].0.5H{sub 2}O (Emim=1-Ethyl-3-meth-ylimidazole) (2) and [Dmim]2[HMim]Na{sub 6}[(AsW{sub 9}O{sub 33}){sub 2}{l_brace}Mn{sup III}(H{sub 2}O){r_brace}{sub 3}].3H{sub 2}O (Dmim=1,3-Dimethylimidazole; Mim=1-Methylimidazole) (3) have been synthesized in 1-ethyl-3-methyl imidazolium bromide ([Emim]Br) ionic liquids (ILs). Compound 1 possesses a 3-D open framework constructed from the mono-iron{sup III}-substituted alpha-Keggin-type anion and the organic cations [Dmim]+ through the hydrogen bond interactions. Compound 2 contains a [{l_brace}Fe{sup III}{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(mu{sub 4}-WO{sub 4})] cluster surrounded by three [SiW{sub 9}O{sub 34}]{sup 10-} ligands, eight sodium cations and nine dissociative [Emim]{sup +} cations around the polyoxoanion. The polyoxoanion of 3 consists of a high-valent trinuclear-manganese (III)-substituted sandwiching polyoxoanion based on the [alpha-AsW{sub 9}O{sub 33}]{sup 9-} units. All the compounds are characterized by elemental analyses, IR, UV-vis spectra, TG-DTA and XRD analyses. The XPS and EPR spectra of Mn{sup III} in 3 were studied. The photocatalytic and electrocatalytic properties, as well as the stabilities of 1-3 were also investigated. - Graphical abstract: Three new transition-metal-containing polyoxotungstate hybrids were synthesized successfully under the ionothermal condition, which proves that the ionothermal synthesis is a suitable synthetic method for different kinds of polyoxometalates.

  20. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons. PMID:22705959

  1. Fischer-Tropsch cobalt catalyst development

    SciTech Connect

    Oukaci, R.; Goodwin, J.G. Jr.; Marcelin, G.; Singleton, A.

    1994-12-31

    Based on the information provided in patents assigned to Gulf, Shell, Exxon, and Statoil, a series of catalysts has been prepared consisting of 12-20 wt% cobalt, a second metal promoter (Ru or Re), and an oxide promoter such as lanthana, zirconia, or alkali oxide, the support being alumina, silica, or titania. All catalysts have been extensively characterized by different methods. The catalysts have been evaluated in terms of their activity, selectivity both in a fixed bed reactor and in a slurry bubble column reactor, and the results correlated with their physico-chemical properties.

  2. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  3. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-01

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics. PMID:24428791

  4. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  5. A general mechanism for intracellular toxicity of metal-containing nanoparticles.

    PubMed

    Sabella, Stefania; Carney, Randy P; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M; Bakr, Osman M; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-06-21

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment--where particles are abundantly internalized--is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a "lysosome-enhanced Trojan horse effect" since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. PMID:24842463

  6. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    PubMed

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. PMID:26478486

  7. Process Controlled Multiscale Morphologies in Metal-containing Block Copolymer Thin Films

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Darling, Seth B.

    2014-01-01

    Poly(styrene-block-ferrocenyldimethylsilane) (PS-b-PFS) is a metal-containing block copolymer that exhibits certain advantages as a mask for lithographic applications. These advantages include compatibility with a wide range of substrates, ease of control over domain morphologies and robust stability to etch plasma, which aid in the development of high-aspect-ratio patterns. An asymmetric cylinder-forming PS-b-PFS copolymer is subjected to different processing to manipulate the morphology of the phase-separated domains. Control of film structure and domain morphology is achieved by adjusting the film thickness, mode of annealing, and/or annealing time. Changing the process from thermal or solvent annealing to hybrid annealing (thermal and then solvent annealing in sequence) leads to the formation of mesoscale spherulitic and dendritic morphologies. In this communication, we show that reversing the order of the hybrid annealing (solvent annealing first and then thermal annealing) of relatively thick films (>100 nm) on homogeneously thick substrates develops disordered lamellar structure. Furthermore, the same processing applied on a substrate with a thin, mechanically flexible window in the center leads to the formation of sub-micron scale concentric ring patterns. Enhanced material mobility in the thick film during hybrid annealing along with dynamic rippling effects that may arise from the vibration of the thin window during spin casting are likely causes for these morphologies.

  8. Shear-alignment of metal-containing block copolymer thin films for nanofabrication

    NASA Astrophysics Data System (ADS)

    Kim, So Youn; Register, Richard; Gwyther, Jessica; Manners, Ian; Chaikin, Paul

    2013-03-01

    Cylinder-forming block copolymers can be used as etch masks for the fabrication of nanowire grids, with both fine resolution and scalability. However, achieving a high aspect ratio in these nanostructures, where reactive ion etching is employed for pattern transfer, requires strong etch contrast between two blocks of the copolymer. We achieve this strong contrast by using metal-containing block copolymers: materials which either contain metal as synthesized, or which can be selectively metallized after deposition as thin films. In the first case, iron-containing polystyrene-b-poly(ferrocenylisopropylmethylsilane) (PS-PFS) forming PFS cylinders was employed, and a spin-coated film was aligned by shearing with a polydimethylsiloxane pad. In the second case, polystyrene-b-poly-2-vinylpyridine (PS-P2VP) was deposited as a film, shear-aligned, and then platinum was selectively sequestered within the P2VP cylinders by brief soaking in an aqueous solution of a Pt salt. In both cases, shear stress produced alignment over centimeter-scale areas; this alignment was retained for PS-P2VP during the selective metallization. The line pattern in these aligned block copolymer thin films is then transferred via reactive ion etching into amorphous silicon deposited onto a quartz wafer to fabricate silicon nanowire grid polarizers which can operate at deep ultraviolet wavelengths.

  9. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1992-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  10. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1991-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  11. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  12. Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide

    NASA Astrophysics Data System (ADS)

    Burya, A. I.; Safonova, A. M.; Rula, I. V.

    2012-07-01

    The influence of metal-containing carbon fibers on the thermal properties of carbon-filled phenylone-based plastics has been investigated. It has been shown that carbometallic fibers containing in their composition 20- 30 mass % of a finely dispersed metal (Co, Cu) are promising fillers of phenylone C-2 for making carbonfilled plastics working in frictional units of various machines and mechanisms.

  13. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  14. Catalyst for producing lower alcohols

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  15. Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules.

    PubMed

    Doblhoff-Dier, Katharina; Meyer, Jörg; Hoggan, Philip E; Kroes, Geert-Jan; Wagner, Lucas K

    2016-06-14

    Transition metals and transition metal compounds are important to catalysis, photochemistry, and many superconducting systems. We study the performance of diffusion Monte Carlo (DMC) applied to transition metal containing dimers (TMCDs) using single-determinant Slater-Jastrow trial wavefunctions and investigate the possible influence of the locality and pseudopotential errors. We find that the locality approximation can introduce nonsystematic errors of up to several tens of kilocalories per mole in the absolute energy of Cu and CuH if Ar or Mg core pseudopotentials (PPs) are used for the 3d transition metal atoms. Even for energy differences such as binding energies, errors due to the locality approximation can be problematic if chemical accuracy is sought. The use of the Ne core PPs developed by Burkatzki et al. (J. Chem. Phys. 2008, 129, 164115), the use of linear energy minimization rather than unreweighted variance minimization for the optimization of the Jastrow function, and the use of large Jastrow parametrizations reduce the locality errors. In the second section of this article, we study the general performance of DMC for 3d TMCDs using a database of binding energies of 20 TMCDs, for which comparatively accurate experimental data is available. Comparing our DMC results to these data for our results that compare best with experiment, we find a mean unsigned error (MUE) of 4.5 kcal/mol. This compares well with the achievable accuracy in CCSDT(2)Q (MUE = 4.6 kcal/mol) and the best all-electron DFT results (MUE = 4.5 kcal/mol) for the same set of systems (Truhlar et al. J. Chem. Theory Comput. 2015, 11, 2036-2052). The mean errors in DMC depend less on the exchange-correlation functionals used to generate the trial wavefunction than the corresponding mean errors in the underlying DFT calculations. Furthermore, the QMC results obtained for each molecule individually vary less with the functionals used. These observations are relevant for systems such as

  16. Alkoxylation using modified calcium-containing bimetallic or polymetallic catalysts

    SciTech Connect

    King, S.W.

    1992-05-19

    This patent describes a method for providing an alkoxylation catalyst. It comprises reacting or solubilizing, at least partially, calcium metal or a calcium-containing compound, by mixing with an activator or solubilizing thereby forming a calcium-containing reacting a divalent or polyvalent metal or a divalent or polyvalent metal-containing compound wherein the divalent or polyvalent metal is selected from the group consisting of beryllium, magnesium, strontium, barium, lanthanum, titanium, zirconium, hafnium, niobium, tantalum, molybdenum, tungsten, iron, cobalt, nickel, copper, zinc, boron, gallium, silicon, germanium tin, phosphorus, antimony, sulfur, selenium, tellurium, cerium and thorium with an organic compound having at least one active hydrogen to produce a divalent or polyvalent metal-containing composition: reacting the calcium-containing composition with the divalent or polyvalent metal-containing composition under effective reaction conditions to produce a catalyst precursor composition; and reacting the catalyst precursor composition with a divalent or polyvalent oxyacid or a divalent or polyvalent metal salt of an oxyacid or mixtures thereof under effective reaction conditions to produce the alkoxylation catalyst.

  17. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  18. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  19. The calcium-alkali syndrome.

    PubMed

    Arroyo, Mariangeli; Fenves, Andrew Z; Emmett, Michael

    2013-04-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused by the ingestion of large amounts of calcium carbonate salts to prevent or treat osteoporosis and dyspepsia. We describe a 78-year-old woman who presented with weakness, malaise, and confusion. She was found to have hypercalcemia, acute renal failure, and metabolic alkalosis. Upon further questioning, she reported use of large amounts of calcium carbonate tablets to treat recent heartburn symptoms. Calcium supplements were discontinued, and she was treated with intravenous normal saline. After 5 days, the calcium and bicarbonate levels normalized and renal function returned to baseline. In this article, we review the pathogenesis of the calcium-alkali syndrome as well as the differences between the traditional and modern syndromes. PMID:23543983

  20. The development of coil short circuits when transformer windings become contaminated with metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Bondareva, V. N.; Komarov, V. B.; L'vov, Yu. N.

    2012-01-15

    The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may serve as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.

  1. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    NASA Astrophysics Data System (ADS)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  2. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... hollow metal containers and structures not covered by § 1915.12. The provisions of this section shall... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  3. Point defects and defect-related transport of matter in transition metal-containing orthosilicates

    NASA Astrophysics Data System (ADS)

    Tang, Qi

    Point defects and defect-related transport properties of transition metal-containing orthosilicates with the olivine structure are interesting topics but are not yet well understood. At high temperatures, the transport properties of sufficiently pure olivines are governed by point defects. To improve the currently limited understanding of the defect structure and defect-related transport properties of olivine group compounds, the transport of matter in orthosilicates of the type Me2SiO4, with Me = Co and Mn, was experimentally investigated. The cation tracer diffusion of cobalt and manganese in cobalt and manganese orthosilicates, respectively, was studied as a function of crystal orientation, oxygen activity and temperature using high purity, synthetic cobalt and manganese orthosilicate single crystals grown by the floating zone method. Modeling of the observed oxygen activity dependancies of the cation tracer diffusion coefficients and of point defect concentrations was performed based on data obtained from this study in conjunction with other defect-related data reported in literature. The oxygen activity dependence of the diffusion of cobalt in Co 2SiO4 along the three principle orientations at 1300 °C at high oxygen activities is compatible with cobalt vacancies and holes as majority defects. At lower oxygen activities, the oxygen activity dependence of the cobalt tracer diffusion coefficients becomes smaller than at higher oxygen activities, which is most likely related to an increase in concentrations of cobalt interstitials. When using the space group Pbnm for assigning crystal orientations, the ratio found for the cobalt tracer diffusion coefficients at aO2 = 1 is approximately D*Co001 :D*Co010 :D*Co100 = 30:3:1. The oxygen activity dependence of the diffusion of manganese in Mn 2SiO4 along the three principle orientations at 1200 °C is, at high oxygen activities, compatible with manganese vacancies and holes as majority defects. The observed oxygen

  4. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, N.E.

    1992-04-07

    A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  5. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  6. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  7. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  8. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  9. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  10. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  11. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  12. Alkali metal sources for OLED devices

    NASA Astrophysics Data System (ADS)

    Cattaneo, Lorena; Longoni, Giorgio; Bonucci, Antonio; Tominetti, Stefano

    2005-07-01

    In OLED organic layers electron injection is improved by using alkali metals as cathodes, to lower work function or, as dopants of organic layer at cathode interface. The creation of an alkali metal layer can be accomplished through conventional physical vapor deposition from a heated dispenser. However alkali metals are very reactive and must be handled in inert atmosphere all through the entire process. If a contamination takes place, it reduces the lithium deposition rate and also the lithium total yield in a not controlled way. An innovative alkali metal dispensing technology has been developed to overcome these problems and ensure OLED alkali metal cathode reliability. The alkali Metal dispenser, called Alkamax, will be able to release up to a few grams of alkali metals (in particular Li and Cs) throughout the adoption of a very stable form of the alkali metal. Lithium, for example, can be evaporated "on demand": the evaporation could be stopped and re-activated without losing alkali metal yield because the metal not yet consumed remains in its stable form. A full characterization of dispensing material, dispenser configuration and dispensing process has been carried out in order to optimize the evaporation and deposition dynamics of alkali metals layers. The study has been performed applying also inside developed simulations tools.

  13. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  14. Iron-catalysed propylene epoxidation by nitrous oxide: dramatic shift of allylic oxidation to epoxidation by the modification with alkali metal salts.

    PubMed

    Wang, Xiaoxing; Zhang, Qinghong; Guo, Qian; Lou, Yinchuan; Yang, Lujuan; Wang, Ye

    2004-06-21

    A dramatic shift of allylic oxidation to epoxidation has been observed during the oxidation of propylene by N(2)O when the FeO(x)/SBA-15 catalyst is modified with alkali metal salts, and the roles of alkali metal salts are to suppress the reactivity of lattice oxygen and to induce an iron coordination structure effective for epoxidation with N(2)O. PMID:15179482

  15. Specific features of electrical conduction of the poly-[NiSalen] metal-containing polymer thin-film structure

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Puchkov, M. Yu.

    2008-11-01

    The charge transfer in the oxidized and reduced forms of poly-[NiSalen] metal-containing polymer films is investigated. It is established that the voltage dependence of the differential conductivity for the polymer in the oxidized form exhibits a nonlinear behavior, which indicates a high electrical activity of this state. The microscopic parameters characterizing the charge transfer are calculated within the space-charge-limited current theory. Differences in the surface morphology of two forms of the poly-[NiSalen] films are revealed using atomic-force microscopy.

  16. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  17. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  18. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  19. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  20. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1987-05-12

    A process is described for polymerizing at least one alpha olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst system which comprises: a supported catalyst prepared under anhydrous conditions by the sequential steps of: preparing a slurry of inert particulate support material; adding to the slurry a solution of an organomagnesium compound; adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; adding to the slurry and reacting a halogenator; adding to the slurry and reacting a tetravalent titanium halide compound; and recovering solid catalyst.

  1. Polymerization catalyst

    SciTech Connect

    Graves, V.

    1986-10-21

    A process is described for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization wherein the polymerization is conducted in the presence of a catalyst comprising: a supported catalyst prepared under anhydrous conditions by the steps of: (1) sequentially; (a) preparing a slurry of inert particulate support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of zirconium compound; and (2) thereafter; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium compound; (f) recovering solid catalyst; and an organoaluminum compound.

  2. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate.

    PubMed

    Aydın, Ahmet Alper; Aydın, Adnan

    2014-04-15

    Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900°C and fritted at three different temperatures of 850°C, 900°C and 950°C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass-ceramics. PMID:24530878

  3. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  4. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  5. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  6. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  7. Cellulose aerogels from aqueous alkali hydroxide-urea solution.

    PubMed

    Cai, Jie; Kimura, Satoshi; Wada, Masahisa; Kuga, Shigenori; Zhang, Lina

    2008-01-01

    Highly porous and strong cellulose aerogels were prepared by gelation of cellulose from aqueous alkali hydroxide/urea solution, followed by drying with supercritical CO2. Their morphology, pore structure, and physical properties were characterized by scanning and transmission electron microscopy, X-ray diffraction, nitrogen adsorption measurements, UV/Vis spectrometry, and tensile tests. The cellulose hydrogel was composed of interconnected about 20 nm wide. By using supercritical CO2 drying, the network structure in the hydrogel was well preserved in the aerogel. The results are preliminary but demonstrate the ability of this method to give cellulose aerogels of large surface areas (400-500 m2 g(-1)) which may be useful as adsorbents, heat/sound insulators, filters, catalyst supports, or carbon aerogel precursors. PMID:18605678

  8. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  11. Effects of process conditions on the synthesis and microstructure of nano-scale metal-containing amorphous carbon thin films.

    PubMed

    Wu, Wan-Yu; Ting, Jyh-Ming

    2008-05-01

    Thin films of metal-containing amorphous carbon (a-C:Me) were deposited on a number of substrates, including silicon, Pt coated silicon, carbon coated silicon, polymer, and glass. The deposition was performed in a dc reactive sputter deposition system equipped with one single magnetron gun. The gases used were various mixtures of CH4 + Ar. The gas mixture was admitted to the deposition chamber at constant flow rate and ratio. Self-assembled alternating layer structure was observed under certain deposition conditions. Correlation between the self-assembled alternating layer structure and deposition parameters is presented and discussed. The role of carbon energy in the segregation of metal and carbon to form the layer structure is addressed. PMID:18572695

  12. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F.; Lyut'ko, E. O.; L'vov, Yu. N.; Ershov, B. G.

    2011-05-15

    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

  13. Metal-containing fluoropolymer films produced by simultaneous plasma etching and polymerization: Effects of hydrogen or oxygen

    NASA Astrophysics Data System (ADS)

    Kay, E.; Dilks, A.; Seybold, D.

    1980-11-01

    The formation of metal-containing fluoropolymer films by simultaneous plasma etching and polymerization in a radiofrequency diode reactor configuration is investigated as a function of additive scavenger gases. The addition of oxygen to plasmas excited in tetrafluoroethylene or perfluoropropane is found to enhance the etching rate at the excitation metal electrode and diminish the polymer film deposition rate at the grounded electrode. The overall effect is to increase the metal content of the films. The addition of hydrogen to plasmas excited in tetrafluoromethane or perfluoropropane has the opposite effect. X-ray photoelectron spectroscopy is employed to determine the composition and structure of the films, and this coupled with mass spectrometric analysis of the plasma gas phase chemistry has allowed the identification of the likely precursors to plasma polymerization for the systems studied.

  14. Migration insertion polymerization (MIP) of cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP): a new concept for main chain metal-containing polymers (MCPs).

    PubMed

    Wang, Xiaosong; Cao, Kai; Liu, Yibo; Tsang, Brian; Liew, Sean

    2013-03-01

    We report a conceptually new polymerization technique termed migration insertion polymerization (MIP) for main chain metal-containing polymer (MCP) synthesis. Cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP) is synthesized and polymerized via MIP, resulting in air stable poly(cyclopentadienylcarbonyldiphenylphosphinobutanoyliron) (PFpP) displaying narrow molecular weight distribution. The backbone of PFpP contains asymmetric iron units connected by both phosphine coordination and Fe-acyl bonds, which is representative of a new type of polymer. Furthermore, PFpP is tested to be soluble in a wide range of organic solvents and shown to possess reactive Fp end groups. PFpP amphiphiles have therefore been prepared via an end group migration insertion reaction in the presence of oligoethylene phosphine. PMID:23425192

  15. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport.

    PubMed

    Liu, Wenjun; Huang, Weijie; Pink, Maren; Lee, Dongwhan

    2010-09-01

    Metal-templated [2 + 3]-type cocondensation of a pi-extended boronic acid and nioxime furnished a series of cage molecules, which were electropolymerized to prepare metal-containing conducting polymers (MCPs). Despite sharing essentially isostructural organic scaffolds, these materials display metal-dependent electrochemical properties as evidenced by different redox windows observed for M = Co, Fe, Ru. Consecutive electropolymerization using two different monomers furnished bilayer MCPs having different metals in each layer. In addition to functioning as heavy atom markers in cross-sectional analysis by FIB and EDX, redox-active metal centers participate in voltage-dependent interlayer electron transport to give rise to cyclic voltammograms that are distinctively different from those of each layer alone or random copolymers. A simple electrochemical technique can thus be used as a straightforward diagnostic tool to investigate the structural ordering of electrically conductive layered materials. PMID:20690667

  16. Environmentally benign production of biodiesel using heterogeneous catalysts.

    PubMed

    Hara, Michikazu

    2009-01-01

    Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes. PMID:19180600

  17. Alkali burns from wet cement.

    PubMed Central

    Peters, W. J.

    1984-01-01

    When water is added to the dry materials of Portland cement calcium hydroxide is formed; the wet cement is caustic (with a pH as high as 12.9) and can produce third-degree alkali burns after 2 hours of contact. Unlike professional cement workers, amateurs are usually not aware of any danger and may stand or kneel in the cement for long periods. As illustrated in a case report, general physicians may recognize neither the seriousness of the injury in its early stages nor the significance of a history of prolonged contact with wet cement. All people working with cement should be warned about its dangers and advised to immediately wash and dry the skin if contact does occur. Images Fig. 1 PMID:6561052

  18. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. PMID:21482464

  19. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  20. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  1. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  2. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  3. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  4. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  5. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  6. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  7. Facile Growth of Suspended SWNTs by Wet Catalyst Method

    NASA Astrophysics Data System (ADS)

    Jeong, G.-H.; Yamazaki, A.; Takagi, D.; Okuda, M.; Suzuki, S.; Yoshimura, H.; Kobayashi, Y.; Homma, Y.

    2005-03-01

    Nanosized wet catalysts have recently employed for the single-walled carbon nanotubes (SWNTs) growth with a uniform diameter, which is a key factor governing electronic properties of the SWNTs. Suspended SWNTs are useful for clarification of the physical/optical properties due to their interaction-free feature between substrate. For this reason, we tried to grow the diameter-controlled suspended SWNTs using pillar substrates and catalytic-metal containing organic molecules, which have refined catalyst size. Ferritin consisting of protein shell and encaging iron particles in its inner space and Co-filled apoferritin are utilized as a wet catalyst. By controlled experiments, SWNTs are successfully synthesized not only on flat substrates but also on Si-substrates with nanopillars. Low concentration of the ferritin gives the narrow diameter distribution of the SWNTs, which is confirmed by Raman spectroscopy. In addition, suspended SWNTs with narrow tube-diameter ranges are for the first time achieved using Co-filled aopferritins.

  8. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  9. Alkali-metal intercalation in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  10. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  11. Alkali metal intercalates of molybdenum disulfide.

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1973-01-01

    Study of some of the physicochemical properties of compounds obtained by subjecting natural molybdenite and single crystals of molybdenum disulfide grown by chemical vapor transport to intercalation with the alkali group of metals (Li, Na, K, Rb, and Cs) by means of the liquid ammonia technique. Reported data and results include: (1) the intercalation of the entire alkali metal group, (2) stoichiometries and X-ray data on all of the compounds, and (3) superconductivity data for all the intercalation compounds.

  12. Superconductivity in alkali-doped C60

    NASA Astrophysics Data System (ADS)

    Ramirez, Arthur P.

    2015-07-01

    Superconductivity in alkali-doped C60 (A3C60, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (Tc) up to 33 K in single-phase material. The good understanding of pairing in A3C60 offers a paradigm for the development of new superconducting materials.

  13. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  14. Catalyst suppliers consolidate further, offer more catalysts

    SciTech Connect

    Rhodes, A.K.

    1995-10-02

    The list of suppliers of catalysts to the petroleum refining industry has decreased by five since Oil and Gas Journal`s survey of refining catalysts and catalytic additives was last published. Despite the consolidation, the list of catalyst designations has grown to about 950 in this latest survey, compared to 820 listed in 1993. The table divides the catalysts by use and gives data on their primary differentiating characteristics, feedstock, products, form, bulk density,catalyst support, active agents, availability, and manufactures.

  15. Alkali metal crystalline polymer electrolytes.

    PubMed

    Zhang, Chuhong; Gamble, Stephen; Ainsworth, David; Slawin, Alexandra M Z; Andreev, Yuri G; Bruce, Peter G

    2009-07-01

    Polymer electrolytes have been studied extensively because uniquely they combine ionic conductivity with solid yet flexible mechanical properties, rendering them important for all-solid-state devices including batteries, electrochromic displays and smart windows. For some 30 years, ionic conductivity in polymers was considered to occur only in the amorphous state above Tg. Crystalline polymers were believed to be insulators. This changed with the discovery of Li(+) conductivity in crystalline poly(ethylene oxide)(6):LiAsF(6). However, new crystalline polymer electrolytes have proved elusive, questioning whether the 6:1 complex has particular structural features making it a unique exception to the rule that only amorphous polymers conduct. Here, we demonstrate that ionic conductivity in crystalline polymers is not unique to the 6:1 complex by reporting several new crystalline polymer electrolytes containing different alkali metal salts (Na(+), K(+) and Rb(+)), including the best conductor poly(ethylene oxide)(8):NaAsF(6) discovered so far, with a conductivity 1.5 orders of magnitude higher than poly(ethylene oxide)(6):LiAsF(6). These are the first crystalline polymer electrolytes with a different composition and structures to that of the 6:1 Li(+) complex. PMID:19543313

  16. Hydrocracking catalyst

    SciTech Connect

    Hilfman, L.; O'Hara, M.

    1980-07-01

    A description is given of a process for the conversion of heavy hydrocarbon oil boiling above about 650/sup 0/F into lower boiling hydrocarbons, which comprises hydrocracking the heavy oil in admixture with hydrogen and in contact with a catalyst with comprising a ra re earth exchange metal component and a platinum group metal component supported on a mixture of ziegler alumina and a zeolite.

  17. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.

    PubMed

    Sushkevich, Vitaly L; Ivanova, Irina I; Ordomsky, Vitaly V; Taarning, Esben

    2014-09-01

    The synthesis of buta-1,3-diene from ethanol has been studied over metal-containing (M=Ag, Cu, Ni) oxide catalysts (MO(x)=MgO, ZrO2, Nb2O5, TiO2, Al2O3) supported on silica. Kinetic study of a wide range of ethanol conversions (2-90%) allowed the main reaction pathways leading to butadiene and byproducts to be determined. The key reaction steps of butadiene synthesis were found to involve ethanol dehydrogenation, acetaldehyde condensation, and the reduction of crotonaldehyde with ethanol into crotyl alcohol. Catalyst design included the selection of active components for each key reaction step and merging of these components into multifunctional catalysts and adjusting the catalyst functions to achieve the highest selectivity. The best catalytic performance was achieved over the Ag/ZrO2/SiO2 catalyst, which showed the highest selectivity towards butadiene (74 mol%). PMID:25123990

  18. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location

    NASA Astrophysics Data System (ADS)

    Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej

    2014-05-01

    The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.

  19. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  20. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  1. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  2. TECHNOLOGY DEVELOPMENT FOR IRON AND CONBALT FISCHER-TROPSCH CATALYSTS

    SciTech Connect

    Burtron H. Davis

    2000-10-01

    The use of alkali promoters has been widely practiced. However, data to compare various promoters is limited for the iron-based catalysts and much of the available data were obtained at low pressure or under a variety of reaction conditions. The importance of the alkali promoter in determining catalytic activity, stability and selectivity merits a comparison of the promoters under suitable reaction conditions. The present study utilizes medium pressure synthesis conditions to compare the alkali promoters under the same reaction conditions and over a wide range of conversion levels. Iron-based Fischer-Tropsch (FT) catalysts undergo a series of phase transformations during activation and use. Activation with carbon monoxide or syngas typically results in the conversion of Fe{sub 2}O{sub 3} to Fe{sub 3}O{sub 4} and ultimately to one or more carbides. During FT synthesis, iron carbides can be oxidized to Fe{sub 3}O{sub 4} if the H{sub 2}O/H{sub 2} or CO{sub 2}/CO ratios are high enough. There has been considerable debate about the active phase of the FT synthesis. Some studies have indicated an active oxide species while most have supported a carbide species. Moessbauer spectroscopy has proven to be an effective technique for the analysis of iron-based FT catalysts. In situ Moessbauer studies have been reported; however, these studies have been performed at low pressure and low conversions. Studies performed at industrially relevant conditions have generally involved removing the catalyst from the reactor followed by passivation which, if not performed properly, will oxidize the catalyst. Herein are reported the Moessbauer results obtained on an unpromoted precipitated iron catalyst that was activated and reacted in a slurry phase, continuous stirred tank reactor at high conversion and under industrially relevant conditions.

  3. [Catalyst research]. Final Report

    SciTech Connect

    Ian P Rothwell; David R McMillin

    2005-03-14

    Research results are the areas of catalyst precursor synthesis, catalyst fluxionality, catalyst stability, polymerization of {alpha}-olefins as well as the chemistry of Group IV and Group V metal centers with aryloxide and arylsulfide ligands.

  4. Catalysts for converting syngas into liquid hydrocarbons and methods thereof

    DOEpatents

    Yu, Fei; Yan, Qiangu; Batchelor, William

    2016-03-15

    The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.

  5. Alkali metal adsorption on Al(111)

    NASA Astrophysics Data System (ADS)

    Andersen, J. N.; Lundgren, E.; Nyholm, R.; Qvarford, M.

    1993-06-01

    The submonolayer adsorption of Na, K, Rb, and Cs on the Al(111) surface at 100 K and at room temperature is investigated by high resolution core level spectroscopy and low energy electron diffraction. It is found that the first alkali atoms on the surface adsorb at surface defects. At higher coverages, up to approximately one third of the maximum submonolayer coverage, alkali atoms adsorbed at defects coexist with a dispersed phase. At higher coverages island formation is found to occur for the majority of the systems. It is argued that all of the ordered structures formed at room temperature involve a disruption of the Al(111) surface in contrast to the situation at 100 K where the alkali atoms adsorb as adatoms.

  6. SAFE Alkali Metal Heat Pipe Reliability

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2003-01-01

    Alkali metal heat pipes are among the best understood and tested of components for first generation space fission reactors. A flight reactor will require production of a hundred or more heat pipes with assured reliability over a number of years. To date, alkali metal heat pipes have been built mostly in low budget development environments with little formal quality assurance. Despite this, heat pipe test samples suggest that high reliability can be achieved with the care justified for space flight qualification. Fabrication procedures have been established that, if consistently applied, ensure long-term trouble-free heat pipe operation. Alkali metal heat pipes have been successfully flight tested in micro gravity and also have been shown capable of multi-year operation with no evidence of sensitivity to fast neutron fluence up to 1023 n/cm2. This represents 50 times the fluence of the proposed Safe Affordable Fission Engine (SAFE-100) heat pipe reactor core.

  7. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles.

    PubMed

    Pergantis, Spiros A; Jones-Lepp, Tammy L; Heithmar, Edward M

    2012-08-01

    Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1

  8. Diode pumped alkali lasers (DPALs): an overview

    NASA Astrophysics Data System (ADS)

    Krupke, William F.

    2008-05-01

    The concept of power-scalable, high beam-quality diode pumped alkali lasers was introduced in 2003 [Krupke, US Patent No. 6,643,311; Opt. Letters, 28, 2336 (2003)]. Since then several laboratory DPAL devices have been reported on, confirming many of the spectroscopic, kinetic, and laser characteristics projected from literature data. This talk will present an overview of the DPAL concept, summarize key relevant properties of the cesium, rubidium, and potassium alkali vapor gain media so-far examined, outline power scaling considerations, and highlight results of published DPAL laboratory experiments.

  9. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  10. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  11. Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance

    SciTech Connect

    Kennedy, J.V.; Jossens, L.W.

    1991-01-29

    This patent describes a dual component catalyst composition for the catalytic cracking of metal-containing hydrocarbonaceous feedstock. It comprises: a first component comprising an active cracking catalyst; and a second component, as a separate and distinct entity. The second component comprises: a calcium and magnesium containing material selected from the group consisting of dolomite, substantially amorphous calcium magnesium silicate, calcium magnesium oxide, calcium magnesium acetate, calcium magnesium carbonate, and calcium magnesium subcarbonate; a magnesium containing material comprising a hydrous magnesium silicate, and a binder selected from the group consisting of kaolin, bentonite, montmorillonite, saponite, hectorite, alumina, silica, titania, zirconia, silica-alumina, and combinations thereof.

  12. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  13. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  14. Faraday rotation density measurements of optically thick alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Vliegen, E.; Kadlecek, S.; Anderson, L. W.; Walker, T. G.; Erickson, C. J.; Happer, William

    2001-03-01

    We investigate the measurement of alkali number densities using the Faraday rotation of linearly polarized light. We find that the alkali number density may be reliably extracted even in regimes of very high buffer gas pressure, and very high alkali number density. We have directly verified our results in potassium using absorption spectroscopy on the second resonance (4 2S→5 2P).

  15. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  16. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  17. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  18. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  19. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  20. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  1. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  2. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  3. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  4. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  5. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  6. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  7. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  8. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  9. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGESBeta

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  12. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  13. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  14. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  15. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  16. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  17. Intermetallic Competition in the Fragmentation of Trimetallic Au-Zn-Alkali Complexes.

    PubMed

    Lang, Johannes; Cayir, Merve; Walg, Simon P; Di Martino-Fumo, Patrick; Thiel, Werner R; Niedner-Schatteburg, Gereon

    2016-02-12

    Cationization is a valuable tool to enable mass spectrometric studies on neutral transition-metal complexes (e.g., homogenous catalysts). However, knowledge of potential impacts on the molecular structure and catalytic reactivity induced by the cationization is indispensable to extract information about the neutral complex. In this study, we cationize a bimetallic complex [AuZnCl3 ] with alkali metal ions (M(+) ) and investigate the charged adducts [AuZnCl3 M](+) by electrospray ionization mass spectrometry (ESI-MS). Infrared multiple photon dissociation (IR-MPD) in combination with density functional theory (DFT) calculations reveal a μ(3) binding motif of all alkali ions to the three chlorido ligands. The cationization induces a reorientation of the organic backbone. Collision-induced dissociation (CID) studies reveal switches of fragmentation channels by the alkali ion and by the CID amplitude. The Li(+) and Na(+) adducts prefer the sole loss of ZnCl2 , whereas the K(+) , Rb(+) , and Cs(+) adducts preferably split off MCl2 ZnCl. Calculated energetics along the fragmentation coordinate profiles allow us to interpret the experimental findings to a level of subtle details. The Zn(2+) cation wins the competition for the nitrogen coordination sites against K(+) , Rb(+) , and Cs(+) , but it loses against Li(+) and Na(+) in a remarkable deviation from a naive hard and soft acids and bases (HSAB) concept. The computations indicate expulsion of MCl2 ZnCl rather than of MCl and ZnCl2 . PMID:26785330

  18. Hyaline membrane disease, alkali, and intraventricular haemorrhage.

    PubMed Central

    Wigglesworth, J S; Keith, I H; Girling, D J; Slade, S A

    1976-01-01

    The relation between intraventricular haemorrhage (IVH) and hyaline membrane disease (HMD) was studied in singletons that came to necropsy at Hammersmith Hospital over the years 1966-73. The incidence of IVH in singleton live births was 3-22/1000 and of HMD 4-44/1000. Although the high figures were partily due to the large number of low birthweight infants born at this hospital, the incidence of IVH in babies weighing 1001-1500 g was three times as great as that reported in the 1658 British Perinatal Mortality Survey. Most IVH deaths were in babies with HMD, but the higher frequency of IVH was not associated with any prolongation of survival time of babies who died with HMD as compared with the 1958 survey. IVH was seen frequently at gestations of up to 36 weeks in babies with HMD but was rare above 30 weeks' gestation in babies without HMD. This indicated that factors associated with HMD must cause most cases of IVH seen at gestations above 30 weeks. Comparison of clinical details in infants with HMD who died with or without IVH (at gestations of 30-37 weeks) showed no significant differences between the groups other than a high incidence of fits and greater use of alkali therapy in the babies with IVH. During the 12 hours when most alkali therapy was given, babies dying with IVD received a mean total alkali dosage of 10-21 mmol/kg and those dying without IVH 6-34 mmol/kg (P less than 0-001).There was no difference in severity of hypoxia or of metabolic acidosis between the 2 groups. Babies who died with HMD and germinal layer haemorrhage (GLH) without IVH had received significantly more alkali than those who died with HMD alone, whereas survivors of severe respiratory distress syndrome had received lower alkali doses than other groups. It is suggested that the greatly increased death rate from IVH in babies with HMD indicates some alteration of management of HMD (since 1958) as a causative factor. Liberal use of hypertonic alkali solutions is the common factor

  19. Long-Life Catalyst

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STC Catalysts, Inc. (SCi) manufactures a noble metal reducible oxide catalyst consisting primarily of platinum and tin dioxide deposited on a ceramic substrate. It is an ambient temperature oxidation catalyst that was developed primarily for Carbon Dioxide Lasers.The catalyst was developed by the NASA Langley Research Center for the Laser Atmospheric Wind Sounder Program (LAWS) which was intended to measure wind velocity on a global basis. There are a number of NASA owned patents covering various aspects of the catalyst.

  20. Structural and electronic properties of alkali-doped single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nemes, Norbert Marcel

    -T resistivity in terms of the barrier height modulation model of Derycke. The oxygen modulates the tunneling barriers within the bulk sample. Alkali doped SWNT show the hallmark feature of metals, conduction electron spin resonance. We study this with in situ electrochemical doping. The spin susceptibility and conductivity increase with K concentration as the Fermi-level shifts to higher density of states regions due to charge transfer. However, the spin relaxation rate and g-factor are independent of K-concentration, indicating a microscopically inhomogeneous doping process, where fully doped regions grow at the expense of undoped ones. We develop a method of determining the microwave conductivity in situ, based on changes in the skin depth, utilizing the ferromagnetic resonance of the catalyst impurities.

  1. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta. PMID:25605624

  2. Physics and chemistry of alkali-silica reactions

    SciTech Connect

    Diamond, S.; Barneyback, R.S. Jr.; Struble, L.J.

    1981-01-01

    The philosophy underlying recent research on alkali-silica reactions is reviewed and illustrations of recent results are provided. It has been possible to follow the kinetics of the chemical reaction between dissolved alkalis and opal in mortars by monitoring the rate at which alkalis are removed from the pore solutions of reacting mortars. Studies of the expansion behavior of synthetic alkali silica gels under controlled conditions were carried out and show no obvious correlation to chemical composition. The alkali reaction in mortars was found to produce changes in the appearance of opal grains documentable by the use of a scanning electron microscope.

  3. Calcium-Alkali Syndrome in the Modern Era

    PubMed Central

    Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley

    2013-01-01

    The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027

  4. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  5. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  6. ''KN'' series cracking catalysts

    SciTech Connect

    Klapstov, V.F.; Khlebrikova, M.A.; Maslova, A.A.; Nefedov, B.K.

    1986-09-01

    The basic directions in improving high-activity zeolitic cracking catalysts at the present stage are improvements in the resistance to attrition and increases in the bulk density of the catalysts, along with a changeover to relatively waste-free catalyst manufacturing technology. Catalysts of the ''KN'' series have been synthesized recently with improved quality characteristics. Low-waste technology is used in manufacturing them. Data are presented which show that the KN catalysts are better than the other Soviet catalysts. The starting materials and reagents in preparing the KN catalysts are technical alumina, rare-earth element nitrates, a natural component (such as clay conforming to specification TU-21-25-146-75), sodium hydroxide, and granulated sodium silicate. The preparation of the KN catalysts is described and no silica gel is used in manufacturing the KN series catalyst, in contrast to the RSG-6Ts catalyst. The use of KN series catalysts in place of KMTsR in catalytic cracking units will result in an increase in the naphtha yield by at least 20% by weight, as well as a reduction of the catalyst consumption by a factor of 2-3. A changeover to the commerical production of this catalyst will make it possible to reduce saline waste by a factor of 8-10 and reduce the catalyst cost by a factor of 1.5-2.

  7. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    PubMed

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. PMID:25124120

  8. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    PubMed Central

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  9. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  10. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. PMID:26496216

  11. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  12. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  13. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  14. Quantum magnetism of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Malinovskaya, Svetlana; Liu, Gengyuan

    2016-05-01

    We discuss a method to control dynamics in many-body spin states of 87Rb Rydberg atoms. The method permits excitation of cold gases and form ordered structures of alkali atoms. It makes use of a two-photon excitation scheme with circularly polarized and linearly chirped pulses. The method aims for controlled quantum state preparation in large ensembles. It is actual for experiments studding the spin hopping dynamics and realization of quantum random walks.

  15. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  16. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, J.L.; Yuan, W.W.

    1980-09-16

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium are described. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  17. Alkali metal protective garment and composite material

    SciTech Connect

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  18. Study of superconducting state parameters of alkali alkali binary alloys by a pseudopotential

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2006-12-01

    A detailed study of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N OV of ten alkali-alkali binary alloys i.e. Li 1- xNa x, Li 1- xK x, Li 1- xRb x, Li 1- xCs x, Na 1- xK x, Na 1- xRb x, Na 1- xCs x, K 1- xRb x, K 1- xCs x and Rb 1- xCs x are made within the framework of the model potential formalism and employing the pseudo-alloy-atom (PAA) model for the first time. We use the Ashcroft’s empty core (EMC) model potential for evaluating the superconducting properties of alkali alloys. Five different forms of local field correction functions viz. Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used to incorporate the exchange and correlation effects. A considerable influence of various exchange and correlation functions on λ and μ∗ is found from the present study. Reasonable agreement with the theoretical values of the SSP of pure components is found (corresponding to the concentration x = 0 or 1). It is also concluded that nature of the SSP strongly depends on the value of the atomic volume Ω0 of alkali-alkali binary alloys.

  19. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  20. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  1. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  2. Transport properties of alkali metal doped fullerides

    NASA Astrophysics Data System (ADS)

    Yadav, Daluram; Yadav, Nishchhal

    2015-07-01

    We have studied the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, Tc, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported Tc (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  3. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  4. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  5. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  6. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices

    NASA Astrophysics Data System (ADS)

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed.

  7. Lewis Base Catalysts 6: Carbene Catalysts

    PubMed Central

    Moore, Jennifer L.

    2013-01-01

    The use of N-heterocyclic carbenes as catalysts for organic transformations has received increased attention in the past 10 years. A discussion of catalyst development and nucleophilic characteristics precedes a description of recent advancements and new reactions using N-heterocyclic carbenes in catalysis. PMID:21494949

  8. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Heuer, Andreas

    2005-12-01

    The mixed-alkali effect in the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed-alkali slow down longer residence times and an increased probability of correlated backjumps are identified. The slow down is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.

  9. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  10. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  11. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  12. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  13. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  14. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  15. System for reactivating catalysts

    SciTech Connect

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  16. Thermal Processing Techniques to Improve Metal Sulfide Mixed Alcohol Catalyst Performance

    SciTech Connect

    Hensley, J.; Menart, M.; Costelow, K.; Thibodeaux, J.; Yung, M.

    2011-01-01

    Research over several decades by several institutions has shown that alkali-promoted metal sulfide catalysts are capable of producing mixed alcohols from syngas with high selectivity and yield. Unfortunately, process models suggest that syngas to mixed alcohol processes, and especially thermochemical biomass to mixed alcohol processes, require improvements to sulfide catalyst activity and/or selectivity for acceptable economics. These improvements, if incremental, cannot result in increased process complexity, capital expenditure, or catalyst costs. It is well accepted among catalyst researchers that thermal processing techniques like calcining and reduction can have profound effects on the properties and performance of finished catalysts, and that small variations in thermal processing do not usually affect the overall cost of the catalyst. Metal sulfide catalysts are no exception but surprisingly, little attention has been given to the effects of thermal treatment on bulk metal sulfide mixed alcohol catalysts. This presentation will discuss how parameters like temperature, dwell time, metal ratios, and purge gas affect the performance and physical properties of K-Co/Mo catalysts.

  17. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  18. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  19. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  20. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  1. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  2. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  3. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  4. SIMS image processing methods for petroleum cracking catalyst characterization

    SciTech Connect

    Leta, D.P.; Lamberti, W.A.; Disko, M.M.; Kugler, E.L.; Varady, W.A. )

    1990-08-01

    The technique of Imaging Secondary Ion Mass Spectrometry (SIMS) has proven to be very well suited to the characterization of fluidized petroleum cracking catalysts (FCC). The ability to view elemental distributions with 0.5 micron spatial resolution at concentrations in the ppm range mates well with the submicron phases and low concentration contaminants present in commercial multi-component FCC particles. The use of ultra-low light level imaging systems with the intrinsically sensitive SIMS technique makes real time viewing of many of the elements important in FCC catalysts possible. Aluminum, silicon and the rare earth elements serve to define the major phases present within each catalyst particle, while the transition row elements and all of the alkali and alkaline elements may be seen at trace concentrations. Of particular importance is the use of the technique to study the distributions of nickel and vanadium which are the most deleterious of the contaminant metals. Modern image processing computers and software now allow the rapid quantitative analysis of SIMS elemental images in order to more clearly reveal the locations of the catalyst phases and the quantitative distributions of the contaminant metals on those phases. Although the analysis techniques discussed in this study may be applied to any of the contaminant elements, for simplicity the authors will limit their examples to the major catalyst elements, and the nickel and vanadium contaminants.

  5. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  6. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  7. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  8. Unconventional Superconductivity of Alkali-doped Fullerenes

    NASA Astrophysics Data System (ADS)

    Potocnik, Anton; Krajnc, Andraz; Jeglic, Peter; Prassides, Kosmas; Rosseinsky, Matthew J.; Arcon, Denis

    2014-03-01

    The superconductivity of the alkali-doped fullerenes (A3C60, A = alkali metal) has been so far discussed within the standard theory of superconductivity developed by Bardeen, Cooper and Shrieffer (BCS), even thought, they exhibit relatively high critical temperatures (up to Tc = 32 K). However, after our recent high-pressure measurements on Cs3C60 such description became questionable. We have shown that the superconducting phase of A3C60, in fact, borders the antiferromagnetic insulating phase (AFI), commonly observed for high-temperature superconductors like cuprates or pnictides. In addition, we also increased the maximal Tc to 38 K. To investigate this peculiar superconductivity close to the border with AFI state we employed nuclear magnetic resonance technique on Cs3-xRbxC60 and on Cs3C60 at various high pressures. Our results could not be correctly explained either by the standard BCS or the extended BCS that includes electron-electron repulsion interaction - the Migdal-Eliashberg theory. Far better agreement is obtained by the Dynamical Mean Field Theory. Due to similarity with other unconventional superconductors these results could also be relevant to other unconventional high-temperature superconductors.

  9. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  10. Dynamics of reactive ultracold alkali polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John; Petrov, Alexander; Kotochigova, Svetlana

    2011-05-01

    Recently, ultracold polar molecules of KRb have been created. These molecules are chemically reactive and their lifetime in a trap is limited. However, their lifetime increases when they are loaded into a 1D optical lattice in the presence of an electric field. These results naturally raise the question of manipulating ultracold collisions of other species of alkali dimer molecules, with an eye toward both novel stereochemistry, as well as suppressing unwanted reactions, to enable condensed matter applications. In this talk, we report on a comparative study between the bi-alkali polar molecules of LiNa, LiK, LiRb, LiCs which have been predicted to be reactive. We compute the isotropic C6 coefficients of these systems and we predict the elastic and reactive rate coefficients when an electric field is applied in a 1D optical lattice. We will discuss the efficacy of evaporative cooling for each species. This work was supported by a MURI-AFOSR grant.

  11. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical..., chemical destruction and carbon adsorption. (iv) Release to water. Requirements as specified in § 721.90...

  12. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  13. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  14. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  15. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  16. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  17. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  18. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl...

  1. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes

    NASA Astrophysics Data System (ADS)

    Modestov, A. D.; Tarasevich, M. R.; Leykin, A. Yu.; Filimonov, V. Ya.

    This paper reports on the fabrication of MEA for alkaline direct ethanol fuel cell (ADEFC). The MEA was fabricated using non-platinum electrocatalysts and a membrane of alkali doped polybenzimidazole (PBI). The employed oxygen reduction catalyst was prepared by pyrolysis of 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) supported on XC72 carbon. This catalyst is tolerant to ethanol. Electrocatalyst at the anode was RuV alloy supported on XC72 carbon. It was synthesized by reduction of respective salts at elevated temperature. Single cell power density of 100 mW cm -2 at U = 0.4 V was achieved at 80 °C using air at ambient pressure and 3 M KOH + 2 M EtOH anode feed. The developed MEA is considered viable for use in emergency power supply units and in power sources for portable electronic equipment.

  2. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  3. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  4. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    PubMed Central

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-01-01

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. PMID:26999112

  5. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties.

    PubMed

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-01-01

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. PMID:26999112

  6. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  7. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  8. Intercalation of heavy alkali metals (K, Rb and Cs) in the bundles of single wall nanotubes

    NASA Astrophysics Data System (ADS)

    Duclaux, L.; Méténier, K.; Lauginie, P.; Salvetat, J. P.; Bonnamy, S.; Beguin, F.

    2000-11-01

    The electric-arc discharge carbon deposits (collaret) containing Single Wall Carbon Nanotubes (SWNTs) were heat treated at 1600 °C during 2 days under N2 flow in order to eliminate the Ni catalyst by sublimation, without modifications of the SWNTs ropes. Sorting this deposit by gravity enabled to obtain in the coarsest particles higher amount of SWNTs ropes than in other particle sizes. The coarser particles of the carbon deposits were reacted with the alkali metals vapor giving intercalated samples with a MC8 composition. The intercalation led to an expansion of the 2D lattice of the SWNTs so that the alkali metals were intercalated in between the tubes within the bundles. Disordered lattices were observed after intercalation of Rb and Cs. The simulations of the X-ray diffractograms of SWNTs reacted with K, gave the best fit for three K ions occupying the inter-tubes triangular cavities. The investigations by EPR, and 13C NMR, showed that doped carbon deposits are metallic.

  9. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  10. Catalyst enhances Claus operations

    SciTech Connect

    Dupin, T.; Voizin, R.

    1982-11-01

    An improved Claus catalyst offers superior activity that emphasizes hydrolysis of CS/sub 2/ in the first converter. The catalyst is insensitive to oxygen action at concentrations generally found in Claus gas feeds. It also has an excellent resistance to hydrothermal shocks that may occur during shutdown of the sulfur line. Collectively, these properties make this catalyst the most active formula now available for optimum Claus yields and COS/CS/sub 2/ hydrolysis conversion.

  11. METHOD OF PURIFYING CATALYSTS

    DOEpatents

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  12. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  13. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W.

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  14. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli▿

    PubMed Central

    Sawatari, Yuki; Yokota, Atsushi

    2007-01-01

    We determined the maximum pH that allows growth (pHmax) for 34 strains of lactobacilli. High alkali tolerance was exhibited by strains of Lactobacillus casei, L. paracasei subsp. tolerans, L. paracasei subsp. paracasei, L. curvatus, L. pentosus, and L. plantarum that originated from plant material, with pHmax values between 8.5 and 8.9. Among these, L. casei NRIC 1917 and L. paracasei subsp. tolerans NRIC 1940 showed the highest pHmax, at 8.9. Digestive tract isolates of L. gasseri, L. johnsonii, L. reuteri, L. salivarius subsp. salicinius, and L. salivarius subsp. salivarius exhibited moderate alkali tolerance, with pHmax values between 8.1 and 8.5. Dairy isolates of L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and L. helveticus exhibited no alkali tolerance, with pHmax values between 6.7 and 7.1. Measurement of the internal pH of representative strains revealed the formation of transmembrane proton gradients (ΔpH) in a reversed direction (i.e., acidic interior) at alkaline external-pH ranges, regardless of their degrees of alkali tolerance. Thus, the reversed ΔpH did not determine alkali tolerance diversity. However, the ΔpH contributed to alkali tolerance, as the pHmax values of several strains decreased with the addition of nigericin, which dissipates ΔpH. Although neutral external-pH values resulted in the highest glycolysis activity in the presence of nigericin regardless of alkali tolerance, substantial glucose utilization was still detected in the alkali-tolerant strains, even in a pH range of between 8.0 and 8.5, at which the remaining strains lost most activity. Therefore, the alkali tolerance of glycolysis reactions contributes greatly to the determination of alkali tolerance diversity. PMID:17449704

  15. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  16. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  17. Solvent-averaged potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hess, Berk; van der Vegt, Nico F. A.

    2007-12-01

    We derive effective, solvent-free ion-ion potentials for alkali-, earth alkali-, and alkylammonium halide aqueous solutions. The implicit solvent potentials are parametrized to reproduce experimental osmotic coefficients. The modeling approach minimizes the amount of input required from atomistic (force field) models, which usually predict large variations in the effective ion-ion potentials at short distances. For the smaller ion species, the reported potentials are composed of a Coulomb and a Weeks-Chandler-Andersen term. For larger ions, we find that an additional, attractive potential is required at the contact minimum, which is related to solvent degrees of freedom that are usually not accounted for in standard electrostatics models. The reported potentials provide a simple and accurate force field for use in molecular dynamics and Monte Carlo simulations of (poly-)electrolyte systems.

  18. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  19. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    PubMed

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity. PMID:26323336

  20. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  1. Alkali differentiation in LL-chondrites

    NASA Astrophysics Data System (ADS)

    Wlotzka, F.; Palme, H.; Spettel, B.; Wanke, H.; Fredriksson, K.; Noonan, A. F.

    1983-04-01

    The Kraehenberg and Bhola LL-group chondrites are heterogeneous agglomerates which contain a variety of lithic fragments and chondrules as well as crystal fragments. Both meteorites contain large, cm-sized fragments with high K enrichments. The K-rich inclusions are fragments of larger rock bodies which crystallized from melts of chondritic parent material that had previously been enriched in K and in heavier alkalies,while also being depleted in Na and metal. It is suggested that the K enrichment occurred as an exchange for Na in feldspars via a vapor phase, whose presence on the chondrite parent body (or bodies) is supported by the recent finding of fluid inclusions in chondritic silicates. Cooling rate considerations indicate that the K-rich rock units could not have been very large, implying that the K-rich materials were locally molten by, for example, impact.

  2. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  3. Comparative alkali washing of simulated radioactive sludge

    SciTech Connect

    Fugate, G.A.; Ensor, D.D.; Egan, B.Z.

    1996-10-01

    The treatment of large volumes of radioactive sludge generated from uranium and plutonium recovery processes is a pressing problem in the environmental restoration currently planned at various U.S. Department of Energy sites. This sludge, commonly stored in underground tanks, is mainly in the form of metal oxides or precipitated metal hydroxides and the bulk of this material is nonradioactive. One method being developed to pretreat this waste takes advantage of the amphoteric character of aluminum and other nonradioactive elements. Previous studies have reported on the dissolution of eleven elements from simulated sludge using NaOH solutions up to 6M. This work provides a comparative study using KOH. The effectiveness of the alkali washing as a treatment method to reduce the bulk of radioactive sludge requiring long term isolation will be discussed.

  4. Solid state cell with alkali metal halo-alkali thiocyanate electrolyte

    SciTech Connect

    Rao, B. M.; Silbernagel, B. G.

    1980-02-26

    A novel electrochemical cell is disclosed utilizing: (A) an anode which contains an alkali metal as an anode-active material; (B) a cathode and (C) an electrolyte comprising an electrolytically effective amount of one or more compounds having the formula: (Ax)ma'scn wherein a is an alkali metal, X is a halogen, a' is an alkali metal and 0.1 < or = N < or = 10. Preferred systems include lithium-containing anodes, lithium-containing electrolytes and cathodes which contain cathode-active material selected from the group consisting of cathode-active sulfurs, halogens, halides, chromates, phosphates, oxides and chalcogenides, especially those chalcogenides of the empirical formula mzm wherein M is one or more metals selected from the group consisting of iron, titanium, zirconium, hafnium, niobium, tantalum and vanadium, Z is one or more chalcogens selected from the group consisting of oxygen, sulfur, selenium and tellurium, and M is a numerical value between about 1.8 and about 3.2.

  5. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  6. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  7. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  8. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  9. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  10. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  11. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  12. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  13. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  14. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  15. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  16. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  17. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  18. Neutron imaging of alkali metal heat pipes

    SciTech Connect

    Kihm, Ken; Kirchoff, Eric; Golden, Matt; Rosenfeld, J.; Rawal, S.; Pratt, D.; Bilheux, Hassina Z; Walker, Lakeisha MH; Voisin, Sophie; Hussey, Dan

    2013-01-01

    High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had

  19. Neutron Imaging of Alkali Metal Heat Pipes

    NASA Astrophysics Data System (ADS)

    Kihm, K.; Kirchoff, E.; Golden, M.; Rosenfeld, J.; Rawal, S.; Pratt, D.; Swanson, A.; Bilheux, H.; Walker, L.; Voisin, S.; Hussey, D. S.; Jacobson, D. L.

    High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 °C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had

  20. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Technical progress report, June 1993--August 1993

    SciTech Connect

    Klier, K.; Herman, R.G.; Deemer, M.; Carr, T.

    1993-09-01

    Various preparation methods of synthesizing molybdenum disulfide and various alkali doping procedures were studied to determine if various preparation paramenters affected catalyst activity. Testing was performed on an undoped molybdenum disulfide sample with H{sub 2}/CO = 1 synthesis gas at 8.1 MPa and at temperatures of 245, 255, 265, 275, 280, 300, 320, and 295C, and only hydrocarbons were formed. A methanol injection experiment with undoped catalyst showed that homologation of methanol did not occur over the undoped MOS{sub 2}. Catalytic testing on a cesium formate doped molybdenum disulfide catalyst corresponding to 9 wt% Cs/MoS{sub 2} at 8.1 MPa and temperatures of 245, 255, 265, 275, 285, and 295C, mostly linear alcohols. The CS/MOS{sub 2} sample was protected from air exposure during preparation and testiag. As with the other recently tested alkali-promoted MOS{sub 2} catalysts, this cataylst was not as active as previous CS/MOS{sub 2} catalysts [1], and some deactivation during these systematic studies was observed. X-Ray powder diffraction and BET surface area measurements are being used to characterize the catalysts, and electron microscopy analyses are being carried out.

  1. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  2. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  3. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  4. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  5. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  6. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  7. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  8. Microwave Spectra and Structure of {H_2-CuF}: Overview of the Complexes of Hydrogen with Metal-Containing Diatomics

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, Ii; Frohman, Daniel J.; Yu, Zhenhong; Novick, Stewart E.

    2013-06-01

    We present here the FTMW spectra of the various isotopologues of the intermediate strength bound complex of dihydrogen with copper fluoride. The bond between the two moieties is surprisingly strong, the H-H forming the cross of the T with the Cu closest to H_2 in the C_{{2v}} structure. Laser ablation was used to produce both copper isotopologues of p-H_2-CuF, o-D_2-CuF, and HD-CuF whose J = 1 - 0 transitions were observed. Significant changes in the nuclear quadrupole coupling constants for the copper nucleus in H_2-CuF compared to that in uncomplexed CuF suggests bonding greater than that typical of van der Waals interactions. This talk will serve as the introduction to presentations at this meeting of other H_2 metal containing diatomics. D. J. Frohman, {G. S. Grubbs II}, Z. Yu, S. E. Novick, Inorg. Chem., 52, 816-822 (2013).

  9. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  10. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  11. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-01

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas. PMID:17747570

  12. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  13. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGESBeta

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  14. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  15. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  16. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  17. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  18. Alkali-metal azides interacting with metal-organic frameworks.

    PubMed

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored. PMID:23161861

  19. Small diatomic alkali molecules at ultracold temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Tout Taotao

    This thesis describes experimental work done with two of the smallest diatomic alkali molecules, 6Li2 and 23Na 6Li, each formed out of its constituent atoms at ultracold temperatures. The 23Na6Li molecule was formed for the first time at ultracold temperatures, after previous attempts failed due to an incorrect assignment of Feshbach resonances in the 6Li+23Na system. The experiment represents successful molecule formation around the most difficult Feshbach resonance ever used, and opens up the possibility of transferring NaLi to its spin-triplet ground state, which has both magnetic and electric dipole moments and is expected to be long-lived. For 6Li2, the experimental efforts in this thesis have solved a long-standing puzzle of apparently long lifetimes of closed-channel fermion pairs around a narrow Feshbach resonance, finding that the lifetime is in fact short, as expected in the absence of Pauli suppression of collisions. Moreover, measurements of collisions of Li2 with free Li atoms demonstrates a striking first example of collisions involving molecules at ultracold temperatures described by physics beyond universal long-range van der Waals interactions.

  20. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  1. The timing of alkali metasomatism in paleosols

    NASA Technical Reports Server (NTRS)

    MacFarlane, A. W.; Holland, H. D.

    1991-01-01

    We have measured the concentrations of rubidium and strontium and 87Sr/86Sr values of whole-rock samples from three paleosols of different ages. The oldest of the three weathering horizons, the 2,760 Ma Mt. Roe #1 paleosol in the Fortescue Group of Western Australia, experienced addition of Rb, and probably Sr, at 2,168 +/- 10 Ma. The intermediate paleosol, developed on the Hekpoort Basalt in South Africa, is estimated to have formed at 2,200 Ma, and yields a Rb-Sr isochron age of 1,925 +/- 32 Ma. The youngest of the three paleosols, developed on the Ongeluk basalt in Griqualand West, South Africa ca. 1,900 Ma, yielded a Rb-Sr age of 1,257 +/- 11 Ma. The Rb-Sr systematics of all three paleosols were reset during post-weathering metasomatism related to local or regional thermal disturbances. The Rb-Sr systematics of the paleosols were not subsequently disturbed. The near-complete removal of the alkali and alkaline earth elements from these paleosols during weathering made them particularly susceptible to resetting of their Rb-Sr systematics. Paleosols of this type are therefore sensitive indicators of the timing of thermal disturbances.

  2. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  3. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun’ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  4. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  5. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  6. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  7. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  8. Polymerization catalyst system

    SciTech Connect

    Graves, V.

    1986-03-25

    This patent describes a catalyst system for polymerizing at least one alpha-olefin under conditions characteristic of Ziegler polymerization. This system consists of: 1. a supported polymerization catalyst or mixture of polymerization catalysts prepared under anhydrous conditions by the sequential steps of: (a) preparing a slurry of inert particulate porous support material; (b) adding to the slurry a solution of an organomagnesium compound; (c) adding to the slurry and reacting a solution of a zirconium halide compound, hafnium compound or mixtures thereof; (d) adding to the slurry and reacting a halogenator; (e) adding to the slurry and reacting a tetravalent titanium halide compound; and (f) recovering solid catalyst component; 2. an organoaluminum compound; and 3. a promotor of chlorinated hydrocarbons having one to 20 carbon atoms.

  9. Hydrocracking catalysts and processes

    SciTech Connect

    Dolbear, G.E.

    1995-12-31

    Hydrocracking processes convert aromatic gas oils into high quality gasoline, diesel, and turbine stocks. They operate at high hydrogen pressures, typically greater than 1500 psig. Operating temperatures range from 600-700{degrees}F (315-382{degrees}C). Commercial catalysts vary in activity and selectivity, allowing process designers to emphasize middle distillates, naphtha, or both. Catalysts are quite stable in use, with two year unit run lengths typical. A pretreatment step to remove nitrogen compounds is usually part of the same process unit. These HDN units operate integrally with the hydrocracking. The hydrogenation reactions are strongly exothermic, while the cracking is roughly thermal neutral. This combination can lead to temperature runaways. To avoid this, cold hydrogen is injected at several points in hydrocracking reactors. The mechanics of mixing this hydrogen with the oil and redistributing the mixture over the catalyst bed are very important in controlling process operation and ensuring long catalyst life.

  10. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  11. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  12. Catalytic reforming catalyst

    SciTech Connect

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  13. Crystalline titanate catalyst supports

    SciTech Connect

    Anthony, R.G.; Dosch, R.G.

    1991-12-31

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  14. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  15. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  16. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  17. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  18. Comprehensive catalyst management

    SciTech Connect

    Pritchard, S.

    2007-05-15

    From January 2009, as SCR season expands from five months to year-round to meet new US Clean Air Interstate Rule standards, new catalyst strategies are increasingly important. Power plants will need a comprehensive management strategy that accounts for a wide range of old and new issues to achieve peak performance. An optimum plan is necessary for catalyst replacement or addition. SCR systems should be inspected and evaluated at least once a year. Levels of deactivation agents, most often arsenic and calcium oxide, need to match the particular coals used. Tools such as Cormetech's FIELD Guide are available to quantify the effect on catalyst life under various fuel-firing scenarios. Tests should be conducted to evaluate the NH{sub 3}/NOx distribution over time to maximise catalyst performance. The article gives a case study of catalyst management at the Tennessee Valley Authority Allen plant. Recent changes have created new variables to be considered in a catalyst management process, notably the expansion of the operating temperature range, mercury oxidation and SO{sub 3} emission limits. Cormetech has researched these areas. 5 figs., 2 photos.

  19. Novel ebullated bed catalyst regeneration technology improves regenerated catalyst quality

    SciTech Connect

    Neuman, D.J.

    1995-09-01

    Regeneration of spent hydroprocessing catalysts has long been practiced by the refining industry. With increased pressures on refiners to reduce catalyst expenditures and waste generation, refiners are more frequently reusing spent hydroprocessing catalysts after ex-situ regeneration to restore catalytic activity. By reusing regenerated catalyst for at least two cycles, the refiner reduces catalyst waste by at least one-half. As environmental laws become more restrictive, spent hydroprocessing catalyst is more likely to be classified as hazardous waste. Disposal of spent catalyst, which was previously accomplished by landfilling, now requires more expensive reclamation techniques. TRICAT has introduced the TRICAT Regeneration Process (TRP), a novel ebullated bed regeneration plant, to improve the catalyst regeneration process. The ebullated bed design allows for better control of heat release during the regeneration process. As a result, the regeneration can be accomplished in a single-pass, with improved catalyst activity retention. Catalyst losses are also minimized due to reduced catalyst handling. Commercial results from the TRP have demonstrated successful scale-up of the technology from pilot scale. The plant has achieved complete recovery of the available catalyst activity with little or no losses in catalyst yield or extrudate length. The flexibility of the TRP to process a variety of catalysts is also discussed.

  20. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  1. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  2. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    NASA Astrophysics Data System (ADS)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  3. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  4. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, H.

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  5. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  6. Microwave and millimeter wave astrochemistry: Laboratory studies of transition metal-containing free radicals and spectroscopic observations of molecular interstellar environments

    NASA Astrophysics Data System (ADS)

    Adande, Gilles Rapotchombo

    Progress in our understanding of the chemical composition of the interstellar medium leans both on laboratory analyses of high resolution rotational spectra from molecules that may be present in these regions, and on radio astronomical observations of molecular tracers to constrain astrochemical models. Due to the thermodynamic conditions in outer space, some molecules likely to be found in interstellar regions in relevant abundances are open shell radicals. In a series of laboratory studies, the pure rotational spectra of the transition metal containing radicals sulfur species ScS, YS, VS and ZnSH were obtained for the first time. In addition to accurate and precise rest frequencies for these species, bonding characteristics were determined from fine and hyperfine molecular parameters. It was found that these sulfides have a higher degree of covalent bonding than their mostly ionic oxide counterparts. Isomers and isotope ratios are excellent diagnostic tools for a variety of astrochemical models. From radio observations of isotopes of nitrile species, the galactic gradient of 14N/15N was accurately established. A further study of this ratio in carbon rich asymptotic giant branch stars provided observational evidence for an unknown process in J type carbon stars, and highlighted the need to update stellar nucleosynthesis models. Proper radiative transfer modeling of the emission spectra of interstellar molecules can yield a wealth of information about the abundance and distribution of these species within the observed sources. To model the asymmetric emission of SO and SO2 in oxygen-rich supergiants, an in-house code was developed, and successfully applied to gain insight into circumstellar sulfur chemistry of VY Canis Majoris. It was concluded that current astrochemistry kinetic models, based on spherical symmetry assumptions, need to be revisited.

  7. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  8. Theory of Magnetotransport Anomalies in Alkali Metals

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong

    The galvanomagnetic properties of alkali metals, especially those of potassium, are studied taking into account the existence of an incommensurate change-density wave (CDW) structure. Occurrence of the CDW broken symmetry truncates the Fermi surface with a large number of energy gaps. Furthermore, any macroscopic crystal is likely divided into CDW (')Q-domains. An orientational (')Q-texture leads to a preferred direction in the crystal. For such an exotic system the effective magnetoresistivity tensor is anomalous and is derived for various magnetic fields. The residual (zero-field) resistance is also anisotropic. For fields 0.5 - 3T, Hall coefficients are found to be anisotropic, and a longitudinal-transverse mixing effect is discovered. The diagonal elements of the magnetoresistivity tensor are found to have a linear magnetoresistance. When the field is increased above 4T sharp open-orbit magnetoresistance spectrum develops. From the theoretical magnetoresistivity tensor, the induced-torque amplitude and phase patterns for potassium spheres are calculated. The theory quantitatively explains all of the induced-torque anomalies found experimentally in the last fourteen years. An interacting electron system, which is free of the CDW instabilities, is also studied by considering its spin response to a weak sinusoidal magnetic field. The many-body correction G(,-)((')q,(omega)) caused by exchange and correlation is introduced to describe the correct wave -vector- and frequency-dependent spin susceptibility. The exact behavior of G(,-)((')q,(omega)) in the large-q limit is shown to be related to the pair distribution function g((')r) at r = 0. G(,-)((')q,(omega)) (--->) 4g(0)-1 /3, as q (--->) (INFIN).At metallic densities this value is negative, opposite in sign to the limit at small wave vectors. Thus the spin susceptibility for large wave vectors is suppressed, rather than enhanced, by many-body effects.

  9. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  10. A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst.

    PubMed

    Baroutian, Saeid; Aroua, Mohamed K; Raman, Abdul Aziz A; Sulaiman, Nik M N

    2011-01-01

    In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor. PMID:20888219

  11. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  12. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2006-08-22

    The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  13. Deactivator for olefin polymerization catalyst

    SciTech Connect

    Rekers, L.J.; Speca, A.N.; Mayhew, H.W.

    1987-03-10

    A method is described comprising deactivating an olefin polymerization catalyst selected from the group consisting of Ziegler-Natta transition element catalysts and catalysts based on transition metal oxides by contacting the catalyst with a copolymer. The copolymer consists of an alpha-olefin having from 2 to about 12 carbon atoms and an unsaturated ester of a carboxylic acid. The deactivating copolymer is present in an amount such that the molar ratio of the unsaturated ester thereof to the sum of the transition element component of the polymerization catalyst and a cocatalyst for the transition element catalyst is in the range of between about 0.1 and about 6.

  14. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  15. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst.

    PubMed

    Li, Ji; Fu, Yu-Jie; Qu, Xue-Jin; Wang, Wei; Luo, Meng; Zhao, Chun-Jian; Zu, Yuan-Gang

    2012-03-01

    In this study, biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst was investigated. After illustration of the mechanisms of transesterification reactions catalyzed by typical ion exchange resins, the factors affecting microwave-assisted transesterification process were studied. A high conversion yield of about 96% was achieved under optimal conditions using high alkaline anion exchange resins as catalyst. Analyzing the FAMEs composition by GC-MS and main physical-chemical properties demonstrated that the biodiesel product prepared from yellow horn seed oil was of high quality. Compared with conventional alkali catalyst, the outstanding characteristics of reusability and operational stability made the resin catalyst more predominant for biodiesel production. In addition, a comprehensive kinetic model was established for analyzing the reaction. The results of present research showed that microwave-assisted transesterification process catalyzed by high alkaline anion exchange resin was a green, effective and economic technology for biodiesel industry. PMID:22284757

  16. Optical properties and electronic structure of alkali doped SWNT

    NASA Astrophysics Data System (ADS)

    Nemes, Norbert M.; Fischer, John E.; Kamarás, Katalin; Borondics, Ferenc; Tanner, David B.; Rinzler, Andrew G.

    2003-03-01

    Alkali doped SWNT exhibit colors similar to alkali doped graphite (GIC). We study their electronic structure with IR reflectivity; the alkali dopants donate their valence electron to the SWNT host, so the free carrier concentration increases, shifting the Drude-edge into the visible spectral range. This is accompanied by a large shift of the Fermi-level, so the characteristic transitions between the 1D van Hove singularities of the undoped SWNT diminish. The presence of the alkali ions around the SWNT breaks the translational symmetry and increases coupling between parallel tubes within ropes. The momentum relaxation time shortens as the ropes become more three dimensional; alkali disorder contributes to the scattering. In p-type, HNO3 doped SWNT, the charge transfer is smaller; only the first subband of the semiconducting tubes gets depleted, shown by the disappearance of the first van Hove transition. This indicates a Fermi-level shift of ˜0.3 eV. The reflectivity has structure at low energy, which moves the Drude-peak to a sharp, intense peak at 0.1 eV in the optical conductivity, reminiscent of quasi-1D TTF-TCNQ.

  17. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  18. Quality assurance for purchased catalysts

    SciTech Connect

    Puls, F.H. )

    1988-09-01

    Petrochemical industries require many different types of catalysts in process operations. A significantly portion of these requirements is being met through purchases from merchant catalyst suppliers. The importance of catalysts and of catalyst quality to these industries cannot be overstated. It is not surprising that in the quest for quality which has affected much of US industry in the last few years, catalysts were among the first products which were singled out for development of quality assurance. Currently, catalyst supplier auditing and certification procedures are being implemented. Primary emphasis is on the implementation of statistical process control procedures in the manufacture of commercially available catalyst. Thus, a trend exists to move from quality assurance (QA) and quality control (QC) for purchased catalysts to statistical process control (SPC). This development is being supported by audits of the suppliers' manufacturing quality control systems. The keystone of quality management is the concept of customer and supplier working together for their mutual advantage. The focus in this presentation will be on two topics. (1) Fixed bed catalysts: The recognition of lot-to-lot variations led to purchase specifications which then led to quality control procedures for purchased catalysts. (2) Catalyst suppliers: the limitations of quality control for catalysts will be discussed, and the efforts of catalyst suppliers to apply SPC will be mentioned.

  19. Supported organoiridium catalysts for alkane dehydrogenation

    DOEpatents

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  20. The poisoning effect of potassium ions doped on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Cui, Suping; Guo, Hongxia; Ma, Xiaoyu; Luo, Xiaogen

    2015-11-01

    The poisoning of alkali metal on MnOx/TiO2 catalysts used for selective catalytic reduction (SCR) of NOx by NH3 was investigated. KNO3, KCl and K2SO4 were doped on MnOx/TiO2 catalysts by sol-gel method, respectively. The SCR activity of each catalyst was measured for the removal of NOx with NH3 in the temperature range 90-330 °C. The experimental results showed that catalyst with KNO3 have a stronger deactivation effect than other catalysts. The properties of the catalysts were characterized by XRD, BET, SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS analyses. The characterized results indicated that KNO3, KCl and K2SO4 caused the similar decrease of specific surface area and pore volume, but the quantity of acid sites for KNO3-MnOx/TiO2 catalyst reduced sharply. The main reason for catalyst deactivation is attributed to two aspects: one was physical influences for the decrease of surface area and pore volume, another was chemical influences that the K+ ions decomposed by KNO3 neutralized Brønsted acid sites of catalyst and reduced their reducibility. The chemical influence played a leading role on the deactivation of catalysts.

  1. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  2. TOPICAL REVIEW: Nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.

    2009-12-01

    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several technological processes including H2 production and storage as well as antibacterial effect, gas sensors and fuel cells is discussed. The mechanism of H2 production from catalytic photoelectrochemical and photocatalytic degradation reactions of some organic dyes is discussed. Finally, the future outlook of NP catalysts in various disciplines is presented.

  3. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  4. Catalyst, method of making, and reactions using the catalyst

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  5. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  6. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    SciTech Connect

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  7. Effect of lithium carbonate on nickel catalysts for direct internal reforming MCFC

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Suk; Yun, Jung-Sook; Kwon, Heock-Hoi; Lim, Tae-Hoon; Hong, Seong-Ahn; Lee, Ho-In

    Despite many advantages of the direct internal reforming molten carbonate fuel cell (DIR-MCFC) in producing electricity, there are many problems to solve before practical use. The deactivation of reforming catalyst by alkali like lithium is one of the major obstacles to overcome. A promising method is addition of TiO 2 into the Ni/MgO reforming catalyst, which resulted in the increased resistance to lithium poisoning as we previously reported. To understand how added titania worked, it is necessary to elucidate the deactivation mechanism of the catalysts supported on metal oxides such as MgO and MgO-TiO 2 composite oxide. Several supported nickel catalysts deactivated by lithium carbonate were prepared, characterized and evaluated. The Ni/MgO catalyst turned out to be most vulnerable to lithium deactivation among the employed catalysts. The activity of the Ni/MgO gradually decreased to zero with increasing amount of lithium addition. Deactivation by lithium addition resulted from the decrease of active site due to sintering of nickel particles as well as the formation of the Li yNi xMg 1- x- yO ternary solid solution. These were evidenced by H 2 chemisorption, temperature programmed reduction, and XRD analyses. As an effort to minimize Li-poisoning, titanium was introduced to MgO support. This resulted in the formation of Ni/Mg 2TiO 4, which seemed to increase resistance against Li-poisoning.

  8. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  9. Thermodynamics of Liquid Alkali Metals and Their Binary Alloys

    NASA Astrophysics Data System (ADS)

    Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.

    2009-07-01

    The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.

  10. Orbital Feshbach Resonance in Alkali-Earth Atoms.

    PubMed

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-25

    For a mixture of alkali-earth atomic gas in the long-lived excited state ^{3}P_{0} and the ground state ^{1}S_{0}, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the ^{173}Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system. PMID:26451561

  11. Orbital Feshbach Resonance in Alkali-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Cheng, Yanting; Zhai, Hui; Zhang, Peng

    2015-09-01

    For a mixture of alkali-earth atomic gas in the long-lived excited state 3P0 and the ground state 1S0, in addition to nuclear spin, another "orbital" index is introduced to distinguish these two internal states. In this Letter we propose a mechanism to induce Feshbach resonance between two atoms with different orbital and nuclear spin quantum numbers. Two essential ingredients are the interorbital spin-exchange process and orbital dependence of the Landé g factors. Here the orbital degrees of freedom plays a similar role as the electron spin degree of freedom in magnetic Feshbach resonance in alkali-metal atoms. This resonance is particularly accessible for the 173Yb system. The BCS-BEC crossover in this system requires two fermion pairing order parameters, and displays a significant difference compared to that in an alkali-metal system.

  12. Release and sorption of alkali metals in coal conversion

    SciTech Connect

    Witthohn, A.; Oeltjen, L.; Hilpert, K.

    1998-07-01

    Released as gaseous species during coal combustion and gasification, alkali metal compounds cause high temperature corrosion especially at the gas turbine blading of coal-fired combined cycle power plants. Experimental and theoretical basic investigations are presented, which contribute to the understanding of the release and sorption of these contaminants. Knudsen effusion mass spectrometry was used to study the vaporization of coal ashes and slags at temperatures between 200 and 1,800 C and to determine the released alkali species and their partial pressures. The data base system FACT and the modified quasi-chemical model for non-ideal solutions were applied to model the thermodynamic behavior of coal slags and to determine material compositions of maximum alkali sorption capacity.

  13. The alkali-labile linkage between keratan sulphate and protein

    PubMed Central

    Hopwood, John J.; Robinson, H. Clem

    1974-01-01

    Keratan sulphate was isolated from adult intervertebral disc in 90% yield by sequential digestion of the whole tissue with papain, Pronase and Proteus vulgaris chondroitin sulphate lyase. Treatment of this preparation with alkali cleaved a glycosidic bond between N-acetylgalactosamine and threonine and produced, by an alkali-catalysed `peeling' reaction, an unsaturated derivative of N-acetylgalactosamine which reacted as a chromogen in the Morgan–Elson reaction, but remained covalently bonded to the keratan sulphate chain. This derivative was reduced and labelled by alkaline NaB3H4. The substituent at position 3 of N-acetylgalactosamine in the keratan sulphate–protein linkage was identified as a disaccharide, N-acetylneuraminylgalactose, which was isolated from the reaction mixture after alkali treatment. PMID:4281652

  14. Neuropsychiatric manifestations of alkali metal deficiency and excess.

    PubMed

    Yung, C Y

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study. PMID:6395136

  15. Neuropsychiatric manifestations of alkali metal deficiency and excess

    SciTech Connect

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  16. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  17. Superconductivity above 30 K in alkali-metal-doped hydrocarbon

    PubMed Central

    Xue, Mianqi; Cao, Tingbing; Wang, Duming; Wu, Yue; Yang, Huaixin; Dong, Xiaoli; He, Junbao; Li, Fengwang; Chen, G. F.

    2012-01-01

    The recent discovery of superconductivity with a transition temperature (Tc) at 18 K in Kxpicene has extended the possibility of high-Tc superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-Tc superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C30H18). To our best knowledge, it is higher than any Tc reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration. PMID:22548129

  18. Secret Lives of Catalysts Revealed

    SciTech Connect

    Salmeron, Miquel; Somorjai, Gabor

    2008-01-01

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-releases/2008/10/21/catalysts/

  19. Engelhard expands oxidation catalysts portfolio

    SciTech Connect

    Rotman, D.

    1997-02-26

    Engelhard says its agreement earlier this month to market Amoco Chemical`s proprietary maleic anhydride catalyst reflects an effort to expand its speciality catalysts business (CW, Feb. 19, p.5). In particular, the company says it is looking for additional alliances to bolster its oxidation catalysts portfolio. {open_quotes}There are some areas of oxidation catalysis that are reasonably attractive,{close_quotes} says Paul Lamb, marketing director/chemical catalysts. He says that while Engelhard is not interested in commodity oxidation catalysts, such as those used to make sulfuric acid, it does want to boost offerings for higher-value oxidation catalysts. Engelhard is collaborating with Geon to offer oxychlorination catalysts for making ethylene dichloride. It also markets oxidation catalysts for vinyl acetate production.

  20. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  1. Process of making supported catalyst

    SciTech Connect

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  2. Interaction of alkali-metal overlayers with oxygen

    SciTech Connect

    Hrbek, J.; Xu, G.; Sham, T.K.; Shek, M.L.

    1989-05-01

    The interaction of oxygen with alkali metals (Li, Na, K, and Cs) was studied with valence and core-level photoemission (PE) using synchrotron radiation and by multiple mass thermal desorption (TDS). During a stepwise coadsorption of oxygen at 80 K, an increase in the emission intensity, a linewidth broadening, and a negative binding-energy shift of alkali-metal core levels is observed. Two stages of oxygen adsorption are identified in PE and TDS. In the low O/sub 2/ exposure range, an oxide species is formed; at higher exposures, peroxide and superoxide species are observed in Na, K, and Cs. The potassium--oxygen interaction is discussed in detail.

  3. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  4. Synergistic capture mechanisms for alkali and sulfur species from combustion

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun.

    1992-01-10

    Due to the generation of a wide variety of pollutants during coal combustion, research on the development of a multifunction sorbent for adsorbing SO{sub 2} and alkali compounds simultaneously is ongoing at the University of Arizona. The current work focuses on the thermodynamic behavior of the reacting system for alkali adsorption especially in gas phase. The temperature and pressure effects on sodium species and on the system are intensively investigated under the simulated flue gas composition condition. The interaction of sulfur dioxide with sodium chloride vapor and some other system elements is also explored.

  5. Interfacial tension in immiscible mixtures of alkali halides.

    PubMed

    Lockett, Vera; Rukavishnikova, Irina V; Stepanov, Victor P; Tkachev, Nikolai K

    2010-02-01

    The interfacial tension of the liquid-phase interface in seven immiscible reciprocal ternary mixtures of lithium fluoride with the following alkali halides: CsCl, KBr, RbBr, CsBr, KI, RbI, and CsI was measured using the cylinder weighing method over a wide temperature range. It was shown that for all mixtures the interfacial tension gradually decreases with growing temperature. The interfacial tension of the reciprocal ternary mixtures at a given temperature increases both with the alkali cation radius (K(+) < Rb(+) < Cs(+)) and with the radius of the halogen anion (Cl(-) < Br(-) < I(-)). PMID:20094678

  6. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  7. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  8. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111).

    PubMed

    Xin, Hongliang; Linic, Suljo

    2016-06-21

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system. PMID:27334187

  9. Extraction of metals from spent hydrotreating catalysts: physico-mechanical pre-treatments and leaching stage.

    PubMed

    Ferella, Francesco; Ognyanova, Albena; De Michelis, Ida; Taglieri, Giuliana; Vegliò, Francesco

    2011-08-15

    The present paper is focused on physico-mechanical pre-treatments of spent hydrotreating catalysts aimed at concentration of at least one of the valuable metals contained in such secondary raw material. In particular, dry Ni-Mo and Co-Mo as well as wet Ni-Mo catalysts were used. Flotation, grain size separation and attrition processes were tested. After that, a rods vibrating mill and a ball mill were used to ground the catalysts in order to understand the best mechanical pre-treatment before leaching extraction. The results showed that flotation is not able to concentrate any metals due to the presence of coke or other depressant compounds. The particle size separation produces two fractions enriched in Mo and Co when dry Co-Mo catalyst is used, whereas attrition is not suitable as metals are uniformely distributed in rings' volume. Roasting at 550°C and vibrating grinding are the most suitable pre-treatments able to produce fractions easily leached by NaOH and H(2)SO(4) after grain size separation. PMID:21621914

  10. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    SciTech Connect

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.; Sturgeon, M.; Katahira, R.; Beckham, G. T.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCD of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.

  11. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOEpatents

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  12. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  13. Catalyst increases COS conversion

    SciTech Connect

    Goodboy, K.P.

    1985-02-18

    Increasingly stringent air quality legislation is placing greater emphasis on conversion of COS and CS/sub 2/ in Claus plants for the maximum sulfur recovery. Overall sulfur recovery goals are dependent upon outstanding service from the Claus catalyst in each reactor because catalyst activity is a major factor influencing plant performance. Today's catalyst are much improved over those used 10 years ago for the Claus (H/sub 2/S/SO/sub 2/) reaction. Recent technical efforts have focused on the conversion of COS and CS/sub 2/. These carbon-sulfur compounds can account for as much as 50% of the sulfur going to the incinerator, which essentially converts all remaining sulfur species to SO/sub 2/ for atmospheric dispersion. Previously, the mechanism of Claus COS conversion, i.e., hydrolysis or oxidation by SO/sub 2/, was studied and the conclusion was that oxidation by SO/sub 2/ appears to be the predominate mode of COS conversion on sulfated alumina catalysts.

  14. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  15. Catalyst, 2000-01.

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2001-01-01

    "Catalyst" is a publication designed to assist higher education in developing alcohol and other drug prevention polices and programs that will foster students' academic and social development and promote campus and community safety. Issue 1 of volume 6 introduces a series of "Presidential Profiles" in which university presidents describe their…

  16. Tight bifunctional hierarchical catalyst.

    PubMed

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  17. Salesperson, Catalyst, Manager, Leader.

    ERIC Educational Resources Information Center

    Worth, Michael J.; Asp, James W., II

    1996-01-01

    This article examines four roles of the college or university development officer: salesperson (when direct solicitation is seen as the officer's primary role); catalyst (or sales manager, adviser, expert, facilitator); manager (stressing the importance of the overall office functioning); and leader (who exerts a leadership role in the…

  18. Sabatier Catalyst Poisoning Investigation

    NASA Technical Reports Server (NTRS)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  19. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  20. Sulfur condensation in Claus catalyst

    SciTech Connect

    Schoffs, G.R.

    1985-02-01

    The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

  1. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  2. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  3. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  5. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  7. The magnetic moments of vanadium impurities in alkali hosts and induced spin current in alkali films

    NASA Astrophysics Data System (ADS)

    Song, Funing

    Thin quench-condensed films of Na, K, Rb, and Cs are covered with 1/100 of a monolayer of Vanadium. Then the V impurities are covered with several atomic layers of the host. The magnetization of the sandwiches is measured by means of the anomalous Hall effect. For V impurities on the surface of Na and K, a magnetic moment of 7 Bohr magnetons is observed. After coverage with the host, the V moment became 6.5muB for the Na host. These results contradict the favored atomic model (predicting 0.6muB) and the resonance model. The V moment on the surface and in the bulk of Rb and Cs is about 4muB and considerably smaller than the measured moments of V in Na. Furthermore, the sign of the anomalous Hall resistance changes from negative for the Na host to positive for the Cs host. This indicates a change of the electronic structure of the impurity (plus host environment) when going from Na to Cs hosts. Sandwiches of FeK and FeCs are prepared at helium temperature and under ultra-high vacuum. The mean free path within these sandwiches can exceed the film thickness by a factor of five. This implies almost perfect specular reflection of the electrons at the interfaces. Therefore, the mean free path of the film is strongly dependent on the degree of the specular reflection. Furthermore, the experiments suggest that the specular reflections for spin-up and spin-down electrons are different at the Fe interface, resulting in a spin current in the alkali films. In order to detect this current, dilute Pb impurities are condensed on top of the free surface of the alkali films. Strong spin-orbit scatterers, such as Pb, introduce an anomalous Hall effect in the presence of a spin current, which can be detected through straightforward Hall measurements. The results of the AHE experiments clearly indicate the existence of a local spin current.

  8. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  9. PVC waterproofing membranes and alkali-aggregated reaction in dams

    SciTech Connect

    Scuero, A.M.

    1995-12-31

    A waterproofing polyvinylchloride (PVC) based geocomposite was installed on two dams subject to alkali-aggregate reaction, to eliminate water intrusion and to protect the facing from further deterioration. The installation system allows drainage of the infiltrated water, thus accomplishing dehydration of the dam body. On one dam, the membrane also provided protection for future slot cutting.

  10. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  11. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  12. DUAL ALKALI TEST AND EVALUATION PROGRAM. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    Volume I of the report is an executive summary of the results of a three-task program to investigate, characterize, and evaluate the basic process chemistry and the various operating modes of sodium-based dual alkali scrubbing processes. The tasks were: I, laboratory studies at b...

  13. Structural models for alkali-metal complexes of polyacetylene

    NASA Astrophysics Data System (ADS)

    Murthy, N. S.; Shacklette, L. W.; Baughman, R. H.

    1990-02-01

    Structural models for a stage-2 complex are proposed for polyacetylene doped with less than about 0.1 potassium or rubidium atoms per carbon. These structures utilize as a basic motif an alkali-metal column surrounded by four planar-zig-zag polyacetylene chains, a structure found at the highest dopant levels. In the new stage-2 structures, each polyacetylene chain neighbors only one alkali-metal column, so the phase contains four polymer chains per alkali-metal column. Basic structural aspects for stage-1 and stage-2 structures are now established for both potassium- and rubidium-doped polyacetylene. X-ray-diffraction and electrochemical data show that undoped and doped phases coexist at low dopant concentrations (<0.06 K atom per C). X-ray-diffraction data, down to a Bragg spacing of 1.3 Å, for polyacetylene heavily doped with potassium (0.125-0.167 K atom per C) is fully consistent with our previously proposed stage-1 tetragonal unit cell containing two polyacetylene chains per alkali-metal column. There is no evidence for our samples requiring a distortion to a monoclinic unit cell as reported by others for heavily doped samples. The nature of structural transformations and the relationship between structure and electronic properties are discussed for potassium-doped polyacetylene.

  14. Modeling of alkali aggregate reaction effects in concrete dams

    SciTech Connect

    Capra, B.; Bournazel, J.P.; Bourdarot, E.

    1995-12-31

    Alkali Aggregate Reactions (AAR) are difficult to model due to the random distribution of the reactive sites and the imperfect knowledge of these chemical reactions. A new approach, using fracture mechanics and probabilities, capable to describe the anisotropic swelling of a structure is presented.

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted halogenated pyridinol, alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  16. LABORATORY STUDY OF LIMESTONE REGENERATION IN DUAL ALKALI SYSTEMS

    EPA Science Inventory

    The report describes a series of open- and closed-loop laboratory bench scale experiments which were carried out to study parameters which affect the reaction of limestone with dual alkali flue gas desulfurization system process liquors. It gives details of several sets of operat...

  17. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  18. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  19. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  20. ALKALI-ACTIVATED SLAG CEMENTS AS A SUSTAINABLE BUILDING MATERIAL

    EPA Science Inventory

    The overall goal of this project is to develop and characterize alkali-activated slag cements with minimal carbon footprints, as well as to answer scientific questions that have yet to be satisfactorily addressed by prior research. These questions include the final disposition...

  1. Electro-optic contribution to Raman scattering from alkali halides

    SciTech Connect

    Mahan, G.D.; Subbaswamy, K.R.

    1986-06-15

    The electro-optic contributions to second-order Raman scattering and field-induced first-order scattering from alkali halides are calculated explicitly in terms of the ionic hyperpolarizability coefficients. The relevant local-field corrections are evaluated. Illustrative numerical results are presented.

  2. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  3. Methanol-reforming reaction over copper-containing catalysts: the effects of anions and copper loading in the preparation of the catalysts by kneading method

    SciTech Connect

    Kobayashi, H.; Takezawa, N.; Minochi, C.

    1981-06-01

    Methanol-reforming reaction CH/sub 3/OH + H/sub 2/O = 3H/sub 2/ + CO/sub 2/ was carried out over copper-containing catalysts which were prepared from hydroxides of copper or from the hydroxide kneaded with various metal oxides. The specific activity (activity per weight of copper used) either of supported or support-free catalyst was markedly increased when the hydroxide was prepared from alkali solution with addition of copper salt solution at higher pH or when the weight percentage of copper on the support was decreased. However, other kinetic parameters such as activation energy and selectivity of the reaction were unaffected by the preparation of the catalyst unless copper chloride was employed as a starting material of the hydroxide preparation at lower pH. DTA, ir, XPS, AES and other chemical analyses of the catalysts revealed that hydroxide ion in the hydroxide precipitate prepared at lower pH exchanged in part with the anionic group of its starting material during the course of the preparation. The anion or its fragment was found to be strongly held on the surface and inhibited the reaction to a great extent. On the other hand, the anion held was markedly decreased when the catalyst was prepared at higher pH. This catalyst was found to be highly active for the title reaction. The surface areas of metallic copper were considerably increased when copper was kneaded with the support. This gave rise to the increase in the specific activity of the catalyst.

  4. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  5. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.

    PubMed

    Gärtner, Christian A; van Veen, André C; Lercher, Johannes A

    2014-09-10

    Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl(-) species acting as active sites are catalytically formed by oxidation of Cl(-) at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl(-) at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl(-). Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity. PMID:25118821

  6. Interactions and low-energy collisions between an alkali ion and an alkali atom of a different nucleus

    NASA Astrophysics Data System (ADS)

    Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu

    2016-05-01

    We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.

  7. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  8. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  9. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  10. FCC catalyst selection

    SciTech Connect

    Carter, G.D.L. ); McElhiney, G. )

    1989-09-01

    This paper discusses a commonly used technique for comparing FCC catalytic selectivities based on the ASTM microactivity test (MAT) procedure, ASTM D-3907-80. In its original form the ASTM test provides only very limited information on selectivity. However, extension of the ASTM MAT procedure by using additional product analyses gives a microselectivity test capable of providing detailed yield structure information. This modified MAT procedure thus provides a cost-effective and rapid means of comparing many catalysts.

  11. Steam reforming catalyst

    DOEpatents

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  12. Hydrotreating catalyst selection

    SciTech Connect

    Kellett, T.F.; Trevino, C.A.; Sartor, A.F.

    1980-01-01

    Hydrotreating catalyst selection can be correctly made in most cases by using a decision tree developed for choosing between the commonly used cobalt/molybdenum and nickel/molybdenum. The decision suggests the use of Co/Mo for desulfurizing straight-run feeds (except naphtha) and Ni/Mo for hydrogen uptake (saturating aromatics, treating fluid catalytic-cracking (FCC) feedstocks, improving color or thermal stability, and increasing the octane number) with any feed, and for denitrogenation of cracked feeds or mixed feeds with greater than or equal to 20% cracked materials. For desulfurization of cracked or mixed feeds and for desulfurization or denitrogenation of naphtha, the selection depends on the reaction conditions. Pilot-plant studies with the second-generation commercial Shell 344 (Co/Mo) and Shell 324 (Ni/Mo) catalysts used in hydrotreating vacuum gas oils, flashed distillate, or heavy catalytically cracked gas oil supported the predictions made with the decision tree, but the better performance of the Ni/Mo catalyst in desulfurizing a 20% coker/80% straight-run naphtha at low partial pressures of hydrogen was an unexpected result.

  13. A review of metal recovery from spent petroleum catalysts and ash.

    PubMed

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. PMID:26188611

  14. [Measurement of Mole Ratio for Alkali Metal Mixture by Using Spectral Absorption Method].

    PubMed

    Zou, Sheng; Zhang, Hong; Chen, Yao; Chen, Xi-yuan

    2015-08-01

    The ratio of alkali metal mixture is one of the most important parameters in gauge head belonging to the ultra-sensitivity inertial measurement equipment, which is required to detect precisely. According to the feature that ratio of alkali metal is related to alkali metal vapor density, the theory of optical depth is used to detect the ratio of alkali metal in the present article. The result shows that the data got by the theory of optical depth compared with empirical formula differs at three orders of magnitude, which can't ensure the accuracy. By changing the data processing method, model between spectral absorption rate and temperature in cell is established. The temperature in alkali metal cell is calibrated by spectral absorption rate. The ratio of alkali metal atoms in the cell is analyzed by calculating the alkali density with empirical formula. The computational error is less than 10%. PMID:26672309

  15. Diphenylbutylbenzyl- and diphenyldibenzylphosphonium chlorides are interfacial catalysts in cross-linking of fluorine-containing copolymers

    SciTech Connect

    Lavrova, L.N.; Bondarenko, N.A.; Tsvetkov, E.N.; Nudel'man, Z.N.

    1988-09-10

    Vulcanization in a two-phase system with an interfacial transfer catalyst (ITC) is widely used for obtaining highly thermostable rubbers from fluorine-containing rubbers, copolymers of vinylidene fluoride with hexafluoropropylene. A simple method of synthesis of tertiary diphenylalkylphosphines by alkylation of diphenylphosphine with alkyl halides in the presence of an aqueous alkali and aprotic bipolar solvents (dimethyl sulfide, dimethylformamide, and hexamethanol) has now been developed. They synthesized diphenylbutyl- and diphenylbenzylphosphines by this method, and they were subsequently transformed into the corresponding phosphonium salts by treatment with an excess of benzyl chloride. The prepared diphenylbutylbenzyl- and diphenyldibenzyl- phosphonium chlorides were tested as ITC in vulcanization of SKF-26 fluorine-containing rubber.

  16. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Catalysts for emerging energy applications

    SciTech Connect

    Bruce C. Gates; George W. Huber; Christopher L. Marshall; Phillip N. Ross; Jeffrey Siirola; Yong Wang

    2008-04-15

    Catalysis is the essential technology for chemical transformation, including production of fuels from the fossil resources petroleum, natural gas, and coal. Typical catalysts for these conversions are robust porous solids incorporating metals, metal oxides, and/or metal sulfides. As efforts are stepping up to replace fossil fuels with biomass, new catalysts for the conversion of the components of biomass will be needed. Although the catalysts for biomass conversion might be substantially different from those used in the conversion of fossil feedstocks, the latter catalysts are a starting point in today's research. Major challenges lie ahead in the discovery of efficient biomass conversion catalysts, as well as in the discovery of catalysts for conversion of CO{sub 2} and possibly water into liquid fuels. 16 refs., 6 figs., 1 tab.

  19. Oxygen-reducing catalyst layer

    DOEpatents

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  20. Development of GREET Catalyst Module

    SciTech Connect

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  1. Results of catalyst testing using iron-based catalysts

    SciTech Connect

    Linehan, J.C.; Darab, J.G.; Matson, D.W.

    1993-03-01

    As coal liquefaction catalysts, iron-based products are generally inferior to the more expensive molybdenum, cobalt, or nickel-based materials. However, the lower costs of production and recovery (or in the case of some iron catalysts, non-recovery) give the iron-based materials a potential economic advantage over the more efficient precious and semi-precious metal catalysts for this application. Recent research has shown that a number of different iron-containing materials can be successfully utilized as coal liquefaction catalysts or as catalyst. Pyrrhotite (Fe{sub 1-x}S) or a similar iron-sulfide phase is commonly believed to be the active catalyst in coal liquefaction and model compound pyrolysis reactions, although no specific phase has been yet been isolated as the actual catalyst species. The active iron-containing catalyst is usually generated in situ from an iron-oxide precursor and an elemental sulfur source under reducing conditions in the reactor vessel. Most research has concentrated on the use of common iron-oxide phases such as hematite or goethite (and their derivatives) as the iron-bearing precursor, or on non-specific iron materials produced by the reaction of various iron salts and compounds in the coal or liquefaction reactor. To our knowledge there has been no systematic effort to determine the optimum iron-containing precursor phase for producing active coal liquefaction catalysts, despite the fact that there are over ten iron-(hydroxy)oxide phases which can be easily synthesized in the laboratory. We have undertaken a systematic study to identify the most active iron-oxide catalyst precursor phases, the co-catalysts, and the coal pretreatments which will provide optimum yields in coal liquefaction processes.

  2. Results of catalyst testing using iron-based catalysts

    SciTech Connect

    Linehan, J.C.; Darab, J.G.; Matson, D.W.

    1993-03-01

    As coal liquefaction catalysts, iron-based products are generally inferior to the more expensive molybdenum, cobalt, or nickel-based materials. However, the lower costs of production and recovery (or in the case of some iron catalysts, non-recovery) give the iron-based materials a potential economic advantage over the more efficient precious and semi-precious metal catalysts for this application. Recent research has shown that a number of different iron-containing materials can be successfully utilized as coal liquefaction catalysts or as catalyst. Pyrrhotite (Fe[sub 1-x]S) or a similar iron-sulfide phase is commonly believed to be the active catalyst in coal liquefaction and model compound pyrolysis reactions, although no specific phase has been yet been isolated as the actual catalyst species. The active iron-containing catalyst is usually generated in situ from an iron-oxide precursor and an elemental sulfur source under reducing conditions in the reactor vessel. Most research has concentrated on the use of common iron-oxide phases such as hematite or goethite (and their derivatives) as the iron-bearing precursor, or on non-specific iron materials produced by the reaction of various iron salts and compounds in the coal or liquefaction reactor. To our knowledge there has been no systematic effort to determine the optimum iron-containing precursor phase for producing active coal liquefaction catalysts, despite the fact that there are over ten iron-(hydroxy)oxide phases which can be easily synthesized in the laboratory. We have undertaken a systematic study to identify the most active iron-oxide catalyst precursor phases, the co-catalysts, and the coal pretreatments which will provide optimum yields in coal liquefaction processes.

  3. Mixed Alcohol Synthesis Catalyst Screening

    SciTech Connect

    Gerber, Mark A.; White, James F.; Stevens, Don J.

    2007-09-03

    National Renewable Energy Laboratory (NREL) and Pacific Northwest National Laboratory (PNNL) are conducting research to investigate the feasibility of producing mixed alcohols from biomass-derived synthesis gas (syngas). PNNL is tasked with obtaining commercially available or preparing promising mixed-alcohol catalysts and screening them in a laboratory-scale reactor system. Commercially available catalysts and the most promising experimental catalysts are provided to NREL for testing using a slipstream from a pilot-scale biomass gasifier. From the standpoint of producing C2+ alcohols as the major product, it appears that the rhodium catalyst is the best choice in terms of both selectivity and space-time yield (STY). However, unless the rhodium catalyst can be improved to provide minimally acceptable STYs for commercial operation, mixed alcohol synthesis will involve significant production of other liquid coproducts. The modified Fischer-Tropsch catalyst shows the most promise for providing both an acceptable selectivity to C2+ alcohols and total liquid STY. However, further optimization of the Fischer-Tropsch catalysts to improve selectivity to higher alcohols is highly desired. Selection of a preferred catalyst will likely entail a decision on the preferred coproduct slate. No other catalysts tested appear amenable to the significant improvements needed for acceptable STYs.

  4. Hydrodesulfurization and hydrogenation reactions on noble metal catalysts. 1. Elucidation of the behavior of sulfur on alumina-supported platinum and palladium using the {sub 35}S radioisotope tracer method

    SciTech Connect

    Kabe, Toshiaki; Qian, Weihua; Hirai, Yosiki; Li, Li; Ishihara, Atsushi

    2000-02-15

    Hydrodesulfurization (HDS) reactions of {sup 35}S-radioisotope-labeled dibensothiophene (DBT) were carried out over a series of {gamma}-Al{sub 2}O{sub 3}-supported noble-metal-containing catalysts at 5.00 MPa and at 260 and 280 C. The amount of sulfur (S{sub TOTAL}) accommodated on the catalyst and the amount of labile sulfur (S{sub 0}) participating in the reaction were determined using a direct method, the {sup 35}S radioisotope pulse tracer method, which has recently been developed by the authors. It was observed that both S{sub TOTAL} and S{sub 0} increased linearly with an increase in active metal loading. At the same time, it was found that the sulfided test noble metal catalysts corresponded to a S/Pt (Pd) ratio of 0.25 and that almost all the labile sulfur on these catalysts was mobile in the HDS reaction. Further, the activities of both HDS and hydrogenation reactions over the bimetallic catalyst (Pt-Pd) were higher than those of the monometallic catalysts tested together, whereas the synergetic effects observed on the Pt-Pd catalyst were not as significant as in typical Co-Mo catalyst cases.

  5. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975

    NASA Technical Reports Server (NTRS)

    James, Odette B.; Flohr, Marta K.; Lindstrom, Marilyn M.

    1987-01-01

    Detailed results of petrologic and compositional studies of three clasts found in thin sections of the Apollo 16 lunar breccia 67975 and of four clasts extracted from the breccia (for instrumental neutron activation analysis) prior to thin sectioning are reported. The alkali gabbronorites of the breccia form two distinct subgroups, magnesian and ferroan. The magnesian gabbronorites are composed of bytownitic plagioclase, hypersthene, augite, a silica mineral, and trace Ba-rich K-feldspar. The ferroan gabbronorites are composed of ternary plagioclase, pigeonite, augite, Ba-rich K-feldspar, and a silica mineral. Trace minerals in both subgroups are apatite, REE-rich whitlockite, and zircon. The magnesian and ferroan alkali gabbronorites appear to have formed by progressive differentiation of the same, or closely related, parent REE-rich magmas.

  6. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  7. Wetting Transitions of Inert Gases on Alkali Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Bojan, M. J.; McDonald, I. A.; Cole, M. W.; Steele, W. A.

    1996-03-01

    Theoretical and experimental discoveries have been made recently of wetting and prewetting transitions of helium and hydrogen films on alkali metal surfaces [1,2]. New experiments show anomalous nonwetting behavior of Ne on Rb and Cs [3]. Building on earlier work [4], we have done and will describe results from the first Monte Carlo simulations showing wetting transitions for classical gases on alkali metal surfaces. * Research supported by an NSF Materials Research Group grant. 1. R. B.Hallock, J. Low Temp. Phys. 101, 31, 1995 2. M. W. Cole, J. Low Temp. Phys. 101, 25, 1995. 3. G. B. Hess, M. Sabatini, and M. H. W. Chan, unpublished 4. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402, 1989.

  8. Properties and Performance of Alkali-Activated Concrete

    NASA Astrophysics Data System (ADS)

    Thomas, Robert J.

    Alkali-activated concrete (AAC) made with industrial byproducts as the sole binder is rapidly emerging as a sustainable alternative to ordinary portland cement concrete (PCC). Despite its exemplary mechanical performance and durability, there remain several barriers to widespread commercialization of AAC. This dissertation addresses several of these barriers. Mathematical models are proposed which efficiently and accurately predict the compressive strength of AAC as a function of activator composition, binder type, and curing condition. The relationships between compressive strength and other mechanical properties (i.e., tensile strength and modulus of elasticity) are discussed, as are stress-strain relationships. Several aspects related to the durability of AAC are also discussed, including dimensional stability under drying conditions, alkali-silica reactivity, and chloride permeability. The results of these experimental investigations are disseminated in the context of real-world applicability.

  9. Alkali halide microstructured optical fiber for X-ray detection

    SciTech Connect

    DeHaven, S. L. E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A. E-mail: russel.a.wincheski@nasa.gov; Albin, S.

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  10. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  11. Coherent coupling of alkali atoms by random collisions.

    PubMed

    Katz, Or; Peleg, Or; Firstenberg, Ofer

    2015-09-11

    Random spin-exchange collisions in warm alkali vapor cause rapid decoherence and act to equilibrate the spin state of the atoms in the vapor. In contrast, here we demonstrate experimentally and theoretically a coherent coupling of one alkali species to another species, mediated by these random collisions. We show that the minor species (potassium) inherits the magnetic properties of the dominant species (rubidium), including its lifetime (T_{1}), coherence time (T_{2}), gyromagnetic ratio, and spin-exchange relaxation-free magnetic-field threshold. We further show that this coupling can be completely controlled by varying the strength of the magnetic field. Finally, we explain these phenomena analytically by mode mixing of the two species via spin-exchange collisions. PMID:26406827

  12. Renal tubular acidosis due to the milk-alkali syndrome.

    PubMed

    Rochman, J; Better, O S; Winaver, J; Chaimowitz, C; Barzilai, A; Jacobs, R

    1977-06-01

    A 60-year-old man with a history of excessive ingestion of calcium carbonate presented with azotemia, hypercalcemia and hyperphosphatemia. His acid-base status was initially normal. Following the cessation of calcium carbonate treatment, the hypercalcemia and azotemia disappeared, and the patient was found to be in metabolic acidosis with blunted acid excretion and a urine pH of 6.1. Kidney biopsy showed focal tubular calcification; the tubular damage was apparently caused by hypercalcemia and had resulted in renal tubular acidosis. During the three months of observation since that time there has been a tendecy for spontaneous remission of the renal tubular acidosis. Impaired renal hydrogen ion excretion prevented the development of metabolic alkalosis despite ingestion of alkali initially, and was later responsible for the metabolic acidosis. Renal tubular acidosis occurring as a sequel to the milk-alkali syndrome may aggravate the danger of nephrocalcinosis in this syndrome. PMID:885714

  13. Operation and performance of a double-alkali scrubber

    SciTech Connect

    Sachtschale, J.R.; Dydo, J.F.

    1982-11-01

    Santa Fe Energy Co. (SFEC) installed a double-alkali sulfur dioxide absorber at its Kern River field near Bakersfield, CA. The flue gas desulfurization (FGD) system is designed to remove 95% of the sulfur dioxide from the exhaust of eight oil-fired steam generators when 1.5 wt% sulfur fuel oil is burned. The chemistry of the double-alkali process and the results of compliance and performance emissions testing are presented. Sulfur dioxide emission results are analyzed. Performance tests showed that total outlet sulfur dioxide emissions were 28.7 lbm/hr (0.00363 kg/s). If offset emissions are included, the net sulfur dioxide emissions were 0.22 lbm/hr (0.00003 kg/s).

  14. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. PMID:24534439

  15. Synthesis and studies on microhardness of alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Subhashini, Bhattacharya, Soumalya; Shashikala, H. D.; Udayashankar, N. K.

    2014-04-01

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi2O+yNa2O+80B2O3 (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li2O and Na2O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO4/2)- into (BO3/2)-. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  16. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  17. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  18. Precision optical metrology with alkali-atom isoclinic points

    NASA Astrophysics Data System (ADS)

    Wells, Nathan; Driskell, Travis; Camparo, James

    2016-06-01

    Vapour-phase spectroscopy rarely involves transitions between well-isolated atomic states. Routinely, the spectra comprise overlapped Doppler/pressure-broadened resonances, which leads to a “pulling” of the spectral peaks from their true atomic resonance frequencies. This pulling gives the absorption resonances a temperature sensitivity, which limits their utility for precision spectroscopy when sub-Doppler techniques are not viable. Here, we discuss the use of alkali isoclinic points as a solution to this problem.

  19. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  20. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.