Science.gov

Sample records for alkali metal-containing catalyst

  1. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  2. Metal containing polymers as fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Reed, James L.

    1987-06-01

    Several aspects of the fuel cell problem were addressed in this investigation. The objective of this work was the development of a fuel cell electrode-catalyst for use in a carbon monoxide fuel cell, which would utilize polymer bound metal complexes as the catalytic species. Several commercially available polymers were examined to be used as backbones in the development of an electrode-catalyst. Polystyrene was chosen for more extensive study. The polymer was activated by complete or partial monochloromethylation of the pendant phenyls. Several schemes for binding cyclic tetradentate and bidentate ligands to the activated polymers were not obtained. The transition metals cobalt and nickel were incorporated into the polymers, and these new materials were examined. In addition, the electrochemical behavior of several metal complexes which hold potential as catalytic species was examined.

  3. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOEpatents

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Reverse micelle synthesis of nanoscale metal containing catalysts

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  5. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  6. Ring Opening of Naphthenic Molecules Over Metal Containing Mesoporous Y Zeolite Catalyst.

    PubMed

    Lee, You-Jin; Kim, Eun Sang; Kim, Tae-Wan; Kim, Chul-Ung; Jeong, Kwang-Eun; Lee, Chang-Ha; Jeong, Soon-Yong

    2015-07-01

    Mesoporous Y zeolite (Meso-Y) with a uniform mesopore was synthesized via pseudomorphic syn- thesis. The Meso-Y supported Ni-W catalyst (NiW/Meso-Y) was introduced as a catalyst for the selective ring opening of naphthenic rings. The catalytic test for the ring opening of naphthalene as a model compound of multi-ring aromatics was performed using a batch-type reaction system with both sulfided 20 wt% NiW/Meso-Y and NiW/Y catalysts under different reaction conditions. The catalytic results reveal that the Meso-Y supported NiW catalyst experiences a naphthalene conversion similar to the NiW/Y catalyst, but the NiW/Meso-Y catalyst has higher product yields for BTEX (benzene, toluene, ethyl benzene, and xylene) and the middle distillate than those of the NiW/Y catalyst at a low reaction temperature. These results suggest that the mesoporosity of the NiW/Meso-Y catalyst is more advantageous for the ring opening reaction of multi-ring aromatics due to the easier access for the bulky molecules compared to the NiW/Y catalyst.

  7. Supported catalyst of increased resistance to poisons useful for hydrotreating metal containing oil fractions

    SciTech Connect

    Toulhoat, H.; Dupin, T.; Jacquin, Y.

    1985-02-12

    A catalyst for use in the hydrotreatment of hydrocarbons comprises a carrier and at least one catalytic metal selected from vanadium, molybdenum, tungsten, nickel, cobalt and/or iron; this catalyst is in the form of a plurality of juxtaposed agglomerates of acicular platelets, oriented radially to each other. It is prepared from agglomerates of activated alumina subjected to reaction with an acid and a compound providing an anion able to combine with aluminum ions in solution.

  8. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  9. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  10. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  11. Design strategies for development of SCR catalyst: improvement of alkali poisoning resistance and novel regeneration method.

    PubMed

    Peng, Yue; Li, Junhua; Shi, Wenbo; Xu, Jiayu; Hao, Jiming

    2012-11-20

    Based on the ideas of the additives modification and regeneration method update, two different strategies were designed to deal with the traditional SCR catalyst poisoned by alkali metals. First, ceria doping on the V(2)O(5)-WO(3)/TiO(2) catalyst could promote the SCR performance even reducing the V loading, which resulted in the enhancement of the catalyst's alkali poisoning resistance. Then, a novel method, electrophoresis treatment, was employed to regenerate the alkali poisoned V(2)O(5)-WO(3)/TiO(2) catalyst. This novel technique could dramatically enhance the SCR activities of the alkali poisoned catalysts by removing approximately 95% K or Na ions from the catalyst and showed less hazardous to the environment. Finally, the deactivation mechanisms by the alkali metals were extensively studied by employing both the experimental and DFT theoretical approaches. Alkali atom mainly influences the active site V species rather than W oxides. The decrease of catalyst surface acidity might directly reduce the catalytic activity, while the reducibility of catalysts could be another important factor.

  12. Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.

    PubMed

    Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu

    2015-12-15

    The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.

  13. Materials discovery by crystal growth: Lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt) from molten alkali metal hydroxides

    SciTech Connect

    Mugavero, Samuel J.; Gemmill, William R.; Roof, Irina P.; Loye, Hans-Conrad zur

    2009-07-15

    This review addresses the process of materials discovery via crystal growth, specifically of lanthanide metal containing oxides of the platinum group metals (Ru, Os, Ir, Rh, Pd, Pt). It provides a detailed overview of the use of hydroxide fluxes for crystal growth. The melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals are described. Furthermore, a general methodology for the successful crystal growth of oxides is provided, including a discussion of experimental considerations, suitable reaction vessels, reaction profiles and temperature ranges. Finally, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts, focusing on their crystal growth and crystal structures, is included. - Graphical abstract: A review that addresses the process of materials discovery via crystal growth using hydroxide fluxes. It provides a detailed overview of the use of hydroxide fluxes for crystal growth and describes the melt chemistry of hydroxide fluxes, specifically, the extensive acid base chemistry, the metal cation solubility, and the ability of hydroxide melts to oxidize metals. In addition, a compilation of complex platinum group metal oxides recently synthesized using hydroxide melts is included.

  14. NO reduction by propene or CO over alkali-promoted Pd/YSZ catalysts.

    PubMed

    Konsolakis, M; Yentekakis, I V

    2007-11-19

    The catalytic activity and selectivity of Pd dispersed on 8mol% yttria stabilized zirconia (YSZ) support for the reduction of NO by propene or CO is strongly promoted by alkalis in a wide temperature range 200-500 degrees C. Rate increases by up to one order of magnitude are achievable, accompanied with significant improvement in N(2)-selectivity for the alkali promoted catalysts. The promoting effect of alkalis on both the activity and selectivity can be understood in terms of the effect of alkali promoter on the relative adsorption strengths of reactant species. These achievements could be very useful for the formulation of modern lower cost automotive catalytic converters, capable of controlling automotive emissions more efficiently.

  15. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  16. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  17. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  18. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases

    SciTech Connect

    Morris D. Argyle

    2005-12-31

    A series of cobalt oxide catalysts supported on alumina ({gamma}-Al{sub 2}O{sub 3}) were synthesized with varying contents of cobalt and of added alkali metals, including lithium, sodium, potassium, rubidium, and cesium. Unsupported cobalt oxide catalysts and several cobalt oxide catalysts supported ceria (CeO{sub 2}) with varying contents of cobalt with added potassium were also prepared. The catalysts were characterized with UV-visible spectroscopy and were examined for NO{sub x} decomposition activity. The CoO{sub x}/Al{sub 2}O{sub 3} catalysts and particularly the CoO{sub x}/CeO{sub 2} catalysts show N{sub 2}O decomposition activity, but none of the catalysts (unsupported Co{sub 3}O{sub 4} or those supported on ceria or alumina) displayed significant, sustained NO decomposition activity. For the Al{sub 2}O{sub 3}-supported catalysts, N{sub 2}O decomposition activity was observed over a range of reaction temperatures beginning about 723 K, but significant (>50%) conversions of N{sub 2}O were observed only for reaction temperatures >900 K, which are too high for practical commercial use. However, the CeO{sub 2}-supported catalysts display N{sub 2}O decomposition rates similar to the Al{sub 2}O{sub 3}-supported catalysts at much lower reaction temperatures, with activity beginning at {approx}573 K. Conversions of >90% were achieved at 773 K for the best catalysts. Catalytic rates per cobalt atom increased with decreasing cobalt content, which corresponds to increasing edge energies obtained from the UV-visible spectra. The decrease in edge energies suggests that the size and dimensionality of the cobalt oxide surface domains increase with increasing cobalt oxide content. The rate data normalized per mass of catalyst that shows the activity of the CeO{sub 2}-supported catalysts increases with increasing cobalt oxide content. The combination of these data suggest that supported cobalt oxide species similar to bulk Co{sub 3}O{sub 4} are inherently more active than

  19. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  20. Highly Effective Pt-Based Water–Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    PubMed Central

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-01

    Herein, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240 h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5 wt %. PMID:26413174

  1. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  2. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE PAGES

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  3. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  4. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  7. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study.

    PubMed

    Peng, Yue; Li, Junhua; Chen, Liang; Chen, Jinghuan; Han, Jian; Zhang, He; Han, Wei

    2012-03-01

    The alkali metal-induced deactivation of a novel CeO(2)-WO(3) (CeW) catalyst used for selective catalytic reduction (SCR) was investigated. The CeW catalyst could resist greater amounts of alkali metals than V(2)O(5)-WO(3)/TiO(2). At the same molar concentration, the K-poisoned catalyst exhibited a greater loss in activity compared with the Na-poisoned catalyst below 200 °C. A combination of experimental and theoretical methods, including NH(3)-TPD, DRIFTS, H(2)-TPR, and density functional theory (DFT) calculations, were used to elucidate the mechanism of the alkali metal deactivation of the CeW catalyst in SCR reaction. Experiments results indicated that decreases in the reduction activity and the quantity of Brønsted acid sites rather than the acid strength were responsible for the catalyst deactivation. The DFT calculations revealed that Na and K could easily adsorb on the CeW (110) surface and that the surface oxygen could migrate to cover the active tungsten, and then inhibit the SCR of NO(x) with ammonia. Hot water washing is a convenient and effective method to regenerate alkali metal-poisoned CeW catalysts, and the catalytic activity could be recovered 90% of the fresh catalyst.

  8. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  9. X-ray-absorption spectroscopic investigation of alkali and alkaline earth catalysts in coal gasification. Final report, January 1987-September 1989

    SciTech Connect

    Huggins, F.E.; Shah, N.; Huffman, G.P.

    1990-04-01

    The structures of alkali and alkaline-earth metal catalyst species in lignite and polymer chars and during pyrolysis pretreatment and char gasification have been investigated using ambient and newly-developed, in situ XAFS spectroscopic techniques. The XAFS data, which were obtained at the Stanford Synchrotron Radiation Laboratory, were supplemented by char characterization and reactivity measurements made at the Pennsylvania State University. The findings of the investigation are as follows: (i) the catalytic species, as introduced to the char or lignite, is an atomically-dispersed, metal-ion-oxygen-anion complex, and remains a metal-oxygen complex throughout pyrolysis and gasification; (ii) the catalyst species transforms to a bulk oxide species during pyrolysis pretreatment; (iii) during gasification, the catalyst species rapidly transforms to bulk alkali carbonate in the case of the alkali-metal species and slowly to calcium oxide in the case of the calcium species; (iv) higher catalyst loadings results in an increased number of catalytic sites, rather than any structural variation of the catalyst site due to concentration effects; and (v) reaction of alkali with aluminosilicates (from clays) or silica is the major catalyst poisoning reaction, unless the coal is demineralized in which case the alkali may react with residual halide from HCl or HF used to clean the coal. Such poisoning reactions were not demonstrated for calcium-oxygen species.

  10. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOEpatents

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  11. Alkali promoted molybdenum (IV) sulfide based catalysts, development and characterization for alcohol synthesis from carbon monoxide and hydrogen

    NASA Astrophysics Data System (ADS)

    Molina, Belinda Delilah

    For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and hydrocarbons from CO/H2 using a metal catalyst. This research focuses on the development of alkali promoted MoS2-based catalysts to investigate an optimal synthesis for their assistance in the production of long chain alcohols (via FTS) for their use as synthetic transportation liquid fuels. Properties of catalytic material are strongly affected by every step of the preparation together with the quality of the raw materials. The choice of a laboratory method for preparing a given catalyst depends on the physical and chemical characteristics desired in the final composition. Characterization methods of K0.3/Cs0.3-MoS2 and K0.3 /Cs0.3-Co0.5MoS2 catalysts have been carried out through Scanning Electron Microscopy (SEM), BET porosity and surface analysis, Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). Various characterization methods have been deployed to correlate FTS products versus crystal and morphological properties of these heterogeneous catalysts. A lab scale gas to liquid system has been developed to evaluate its efficiency in testing FT catalysts for their production of alcohols.

  12. Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Delichere, P.

    1996-12-01

    Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminates, obtained by sol-gel techniques, with a different amount of sodium, and R equal to 2.1 and 6.1 respectively. LEIS experiments and electron microscopy demonstrate a different location of alkali metal ions in the first two series: in the Na-Pd/SiO{sub 2} catalysts sodium is distributed in a way which is not uniform on the support and on the palladium metal, which is partly decorated with Na ions, whereas in the Pd/natural-pumice series the palladium surface is sodium-free. The results on the third series of catalysts, Pd/model pumice, are not definitive on the basis of the LEIS and TEM analyses, but by FTIR study of CO and CO{sub 2} adsorption, the decoration of palladium by sodium ions could be excluded. The results confirm the importance of the alkali metal ion location in alkali-promoted palladium catalysts and open new possibilities in the design of palladium-supported catalysts by a better control of promoter location. 18 refs., 5 figs., 2 tabs.

  13. Stereoselective Alkali-Metal Catalysts for Highly Isotactic Poly(rac-lactide) Synthesis.

    PubMed

    Sun, Yangyang; Xiong, Jiao; Dai, Zhongran; Pan, Xiaobo; Tang, Ning; Wu, Jincai

    2016-01-01

    A high degree of chain end control in the isoselective ring-opening polymerization (ROP) of rac-lactide is a challenging research goal. In this work, eight highly active sodium and potassium phenolates as highly isoselective catalysts for the ROP of rac-lactide are reported. The best isoselectivity value of Pm = 0.94 is achieved. The isoselective mechanism is chain-end control through the analysis of the stereoerrors in the microstructure of a final polymer; thus, isotactic multiblock structure polymers are obtained, and the highest melt point can reach 192.5 °C. The donating group in phenolate can clearly accelerate the ROP reaction, potassium complexes are more active than the analogous sodium complexes, and the big spacial hindrance of the ligand can decrease the activity. The high isoselectivities of these complexes mostly result from their sandwich structure constructed by the plane of the crown and the plane of the anthryl group. PMID:26684962

  14. UV-vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide

    SciTech Connect

    Doskocil, E.J.; Bordawekar, S.V.; Kaye, B.G.; Davis, R.J.

    1999-07-29

    The basicity of alkali-metal-exchange (Na, K, Cs) zeolites X and Y was probed by UV-vis diffuse reflectance spectroscopy of adsorbed iodine. The observed blue shift in the visible absorption spectrum of adsorbed iodine, compared to gaseous iodine, correlated well with the negative charge on the framework oxygen atoms calculated from the Sanderson electronegativity equalization principle. The blue shifts associated with iodine adsorbed on classical catalytic supports like silica, alumina, and magnesia suggest that the iodine adsorption technique for probing basicity is applicable to a wide variety of solids. Iodine was also adsorbed on X and Y zeolites containing occluded cesium oxide formed by decomposition of impregnated cesium acetate. However, the iodine appeared to irreversibly react on these strongly basic samples, possibly forming an adsorbed triiodide ions. As a complement to the adsorption studies, the activity of alkali-metal-containing zeolites for the base-catalyzed formation of ethylene carbonate from ethylene oxide and carbon dioxide was investigated. Among the ion-exchanged zeolites, the cesium form of zeolite X exhibited the highest activity for ethylene carbonate formation. The catalytic activity of a zeolite containing occluded cesium was even higher than that of a cesium-exchanged zeolite. The presence of water adsorbed in zeolite pores promoted the rate of ethylene carbonate formation for both cesium-exchanged and cesium-impregnated zeolite X.

  15. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  16. Reminder: radiopacities from metal-containing substances.

    PubMed

    Madan, Sanjeev; Mohaideen, Ahamed; Lehman, Wallace B; Welber, Adam

    2005-10-01

    A 17-month-old boy with a toed-out left lower extremity was presented for evaluation. Before coming to the doctor, the mother had applied a zinc oxide lotion to treat a simple diaper rash in the groin. The radiologist did not remove the boy's diaper for the radiographic examination and so did not notice the lotion. The first radiograph showed what looked like multiple soft-tissue calcifications in the groin, but the radiopacities had been produced by the zinc oxide. This case serves as a reminder to be aware that metal-containing substances both on and in the body can produce radiopacities.

  17. Process for the preparation of metal-containing nanostructured films

    NASA Technical Reports Server (NTRS)

    Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)

    2006-01-01

    Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.

  18. Metal-containing and related polymers for biomedical applications.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Ren, Lixia; Tang, Chuanbing

    2016-10-01

    A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.

  19. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  20. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  1. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  2. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-25

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  3. Covering a Crucible with Metal Containing Channels

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    In a procedure that partly resembles the lost-wax casting process, a crucible made of a brittle material (ceramic, quartz, or glass) is covered with a layer of metal containing channels. The metal cover and the channels can serve any or all of several purposes, depending upon the application: Typically, the metal would serve at least partly to reinforce the crucible. The channels could be used as passages for narrow objects that could include thermocouples and heat-transfer strips. Alternatively or in addition, channels could be used as flow paths for liquid or gaseous coolants and could be positioned and oriented for position- or direction-selective cooling. In some cases, the channels could be filled with known gases and sealed so that failure of the crucibles could be indicated by instruments that detect the gases. The process consists of three main steps. In the first step, a pattern defining the channels is formed by wrapping or depositing a material in the desired channel pattern on the outer surface of the crucible. The pattern material can be a plastic, wax, low-ash fibrous material, a soluble material, or other suitable material that can subsequently be removed easily. In a proof-of-concept demonstration (see figure), the crucible was an alumina cylinder and the mold material was plastic tie-down tape. In the second step, the patterned crucible is coated with metal. In one variation of the second step, a very thin layer containing or consisting of an electrically conductive material (e.g., gold, silver, or carbon) is painted or otherwise deposited on the mold-covered crucible, then the covering metal required for the specific application is electrodeposited on the very thin conducting layer. In another variation of the second step, the metal coat is formed by chemical vapor deposition. In the proof-of-concept demonstration, a layer of nickel 0.003 in. ( 0.08 mm) thick was electrodeposited. In the third step, the patterned material is removed. This is

  4. Alkali-support interactions on rubidium base catalysts determined by XANES, EXAFS, CO{sub 2} adsorption, and IR spectroscopy

    SciTech Connect

    Doskocil, E.J.; Bordawekar, S.V.; Davis, R.J.

    1997-07-01

    Rubidium was supported on a variety of catalyst supports, including magnesia, titania, alumina, carbon, and silica. Except for Rb/MgO, none of the oxide-based samples contained surface carbonates as detected by IR spectroscopy after pretreatment at 773 K. The XANES and EXAFS associated with the Rb K edge indicated that the local structure around Rb was highly dependent on the support composition. Results from CO{sub 2} stepwise TPD showed that Rb/MgO possessed strongly basic sites that were not present on pure MgO. The basic sites formed by Rb addition to the other supports were weaker than those on Rb/MgO. Decomposition of 2-propanol at 593 K was used to relate catalytic activity to surface basicity. 40 refs., 16 figs., 4 tabs.

  5. Metal-containing radiation-sensitive polymers

    SciTech Connect

    Lee, A.Y.

    1986-01-01

    The copolymers of methyl methacrylate with alkali metal salts (Na, K, and Cs) of methacrylic acid have been prepared by saponification K, and Cs) of methylacrylic acid have been prepared by saponification of the homopolymer poly(methyl methacrylate), PMMA. Low degrees of hydrolysis have been achieved by a heterogeneous system, and from the infrared spectra it has been confirmed that the ester groups of the methyl methacrylates are directly converted to the metal salts of methacrylic acid. These ionomers exhibit pseudo high molecular weights in gel permeation chromatogram, but no appreciable increase in intrinsic viscosities is observed in comparison to PMMA. The coordinated inorganic polymers poly((dithio-2,2'-diacetato)bis(dimethylsulfoxide)dioxouranium(VI)) and poly()methylenebis(thio)-2,2'-bis(acetato))bis(dimethylsulfoxide)dioxouranium(VI))have been synthesized in dimethyl sulfoxide solution with about 90% yield. The degree of polymerization and the number of average molecular weights of these polymers have been assessed by high resolution nuclear magnetic resonance, with which the acetato end group to the bridging ligand group ratios have been determined. The polymers bridging ligand group ratios have been determined. The polymers have been characterized by employing various techniques: infrared spectra, thermal gravimetric analysis, /sup 13/C solid state nuclear magnetic resonance, and gel permeation chromatography. The prepared polymer samples have been subjected to various doses of /sup 137/Cs gamma radiation under which the polymers predominantly undergo chain scission. The radiation sensitivities of the polymers are assessed by G values which are obtained from gel permeation chromatograms. These uranyl polymers exhibit unusually high G values.

  6. Photodissociation Studies of Metal-Containing Clusters and Complexes

    NASA Astrophysics Data System (ADS)

    Pilgrim, Jeffrey Scott

    1995-01-01

    There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met

  7. Metal containing material processing on coater/developer system

    NASA Astrophysics Data System (ADS)

    Kawakami, Shinichiro; Mizunoura, Hiroshi; Matsunaga, Koichi; Hontake, Koichi; Nakamura, Hiroshi; Shimura, Satoru; Enomoto, Masashi

    2016-03-01

    Challenges of processing metal containing materials need to be addressed in order apply this technology to Behavior of metal containing materials on coater/developer processing including coating process, developer process and tool metal contamination is studied using CLEAN TRACKTM LITHIUS ProTM Z (Tokyo Electron Limited). Through this work, coating uniformity and coating film defectivity were studied. Metal containing material performance was comparable to conventional materials. Especially, new dispense system (NDS) demonstrated up to 80% reduction in coating defect for metal containing materials. As for processed wafer metal contamination, coated wafer metal contamination achieved less than 1.0E10 atoms/cm2 with 3 materials. After develop metal contamination also achieved less than 1.0E10 atoms/cm2 with 2 materials. Furthermore, through the metal defect study, metal residues and metal contamination were reduced by developer rinse optimization.

  8. Nontraditional methods of synthesising metal-containing polymers

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1991-07-01

    Complexes of metals with (meth)acrylates and acrylamides are used as examples for examining the application of nontraditional methods for initiating polymerisation of metal-containing monomers: graft, low-temperature, electrochemical, matrix, solid-state (under high pressure with shear deformation), frontal and spontaneous. Such approaches are demonstrated to be very effective for preparing metal-containing polymers with a wide spectrum of relative molecular masses and with different solubility and stereotacticity. The bibliography includes 39 references.

  9. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  10. Redox chromophore compounds and electrodes of metal containing substituted bipyridines

    DOEpatents

    Elliott, Cecil M.; Redepenning, Jody G.

    1986-01-01

    Chromophoric compounds, each having a wide range of distinct color changes in response to changes in the oxidation states thereof, are provided in the form of polymerizable monomers, and polymers thereof, of certain metal containing, and electron group substituted, 2,2'-bipyridine compounds.

  11. Metal-containing Monomers: Advances in Polymerisation and Copolymerisation

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.; Savost'yanov, V. S.

    1983-10-01

    The main advances in and problems of polymerisation, copolymerisation, as well as graft polymerisation of metal-containing monomers (MCM) are analysed. These are classified in terms of the type of bond between the metal and the organic component of the molecule into three principal groups, namely MCM with σ-, nv-, and π-bonded metal, are analysed. Attention is concentrated on the influence of the nature of the metal (both transition and non-transition) on the polymerisation process and on the properties of the products. A systematic account is given of the principal data for the polycondensation of metal-containing compounds. The applications of the metal polymer synthesised are considered. The bibliography includes 215 references.

  12. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry

    PubMed Central

    Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Kinach, Robert; Dai, Sheng; Thickett, Stuart C.; Tanner, Scott

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells. PMID:20390041

  13. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  14. Metal-containing residues from industry and in the environment: geobiotechnological urban mining.

    PubMed

    Glombitza, Franz; Reichel, Susan

    2014-01-01

    This chapter explains the manifold geobiotechnological possibilities to separate industrial valuable metals from various industrial residues and stored waste products of the past. In addition to an overview of the different microbially catalyzed chemical reactions applicable for a separation of metals and details of published studies, results of many individual investigations from various research projects are described. These concern the separation of rare earth elements from phosphorous production slags, the attempts of tin leaching from mining flotation residues, the separation of metals from spent catalysts, or the treatment of ashes as valuable metal-containing material. The residues of environmental technologies are integrated into this overview as well. The description of the different known microbial processes offers starting points for suitable and new technologies. In addition to the application of chemolithoautotrophic microorganisms the use of heterotrophic microorganisms is explained.

  15. Oxyhydrochlorination catalyst

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1992-01-01

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  16. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  17. New thermal and microbial resistant metal-containing epoxy polymers.

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1 : 2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  18. New Thermal and Microbial Resistant Metal-Containing Epoxy Polymers

    PubMed Central

    Ahamad, Tansir; Alshehri, Saad M.

    2010-01-01

    A series of metal-containing epoxy polymers have been synthesized by the condensation of epichlorohydrin (1-chloro-2,3-epoxy propane) with Schiff base metal complexes in alkaline medium. Schiff base was initially prepared by the reaction of 2,6 dihydroxy 1-napthaldehyde and o-phenylenediamine in 1  :  2 molar ratio and then with metal acetate. All the synthesized compounds were characterized by elemental, spectral, and thermal analysis. The physicochemical properties, viz., epoxy value, hydroxyl content, and chlorine content [mol/100 g] were measured by standard procedures. The antimicrobial activities of these metal-containing epoxy polymers were carried out by using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods against S. aureus, B. subtilis (Gram-positive bacteria), and E. coli, P. aeruginosa (Gram-negative bacteria). It was found that the ECu(II) showed higher antibacterial activity than other metal-chelated epoxy resin while EMn(II) exhibited reduced antibacterial activity against all bacteria. PMID:20689716

  19. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  20. Separation of metal-containing compounds by supercritical fluid chromatography

    SciTech Connect

    Ashraf-Khorassani, M.; Hellgeth, J.W.; Taylor, L.T.

    1987-09-01

    Supercritical fluid chromatography using packed, analytical-scale chromatographic columns was applied to gain separations of several metal-containing systems. Mixtures of substituted ferrocenes and metal ..beta..-diketonates were separated by using methanol-modified CO/sub 2/ under moderate temperatures (50-100/sup 0/C) and pressures (2000-5000 psi) as the mobile phase. Two different types of chromatographic behaviors were observed which were found to be dependent on whether the separated metallic species was either substitutionally inert or substitutionally labile. For inert species, proper chromatographic behavior indicative of a reversible adsorption mechanism was found. For labile species, retention time variation with injected amount, appearance of broad component peaks, and observation of multiple species for a single injection gave indication of irreversible adsorptive mechanism.

  1. Alkali/TX[sub 2] catalysts for CO/H[sub 2] conversion to C[sub 1]-C[sub 4] alcohols

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H[sub 2]/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS[sub 2], RuS[sub 2], TaS[sub 2], and NbS[sub 2]. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS[sub 2], RuS[sub 2], and NbS[sub 2] were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS[sub 2] theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS[sub 2] led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS[sub 2] were used to obtain the NbS[sub 2] and RuS[sub 2] theoretical valence bands.

  2. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  3. Development of metal-containing polymers for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Chan, Wai Kin; Hou, Sijian; Ng, Po K.; Wong, Chi T.; Yu, Sze C.

    1999-11-01

    Most of the work in organic electroluminescent polymers has been focused on organic conjugated polymers. However, polymers attached with transition metal complex have received relatively less attention. We have synthesized and studied the light emitting properties of some metal containing polymers based on the polypyridine complexes of rhenium and ruthenium. These complexes exhibit long-lived excited states caused by the metal to ligand charge transfer transitions. By varying the structure of the ligand and/or the transition metal, we are able to fine-tune the electronic properties of the resulting metal complexes. We have synthesized a series of poly(phenylenevinylene) (PPV) derivatives which are functionalized with ruthenium polypyridine complexes at the polymer mainchain or side chain. These complexes are able to act as photosensitizers which enhance the photoconductivity of these polymers at longer wavelength. Both the conjugated backbone and the metal complex can emit light upon excitation. As a result, it is possible to tune the color by loading different amount of ruthenium complex to the polymer. Luminescence studies showed that the ruthenium complex could quench the emission of the conjugated backbone in some polymers, which suggests an energy transfer process between the backbone and the metal complexes. It was also found that the presence of metal complexes could enhance the charge carrier mobilities of the polymers, as the metal and/or ligands can act as extra charge carriers in the charge transport process.

  4. Toxic metals contained in cosmetics: a status report.

    PubMed

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic.

  5. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  6. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  7. Optical and Microwave Spectroscopy of Transient Metal-Containing Molecules

    NASA Astrophysics Data System (ADS)

    Steimle, Timothy

    2016-06-01

    Small metal containing molecules are ideal venues for testing Fundamental Physics, investigating relativistic effects, and modelling spin-orbit induced unimolecular dynamics. Electronic spectroscopy is an effective method for probing these phenomena because such spectra are readily recorded at the natural linewidth limited resolution and accuracy of 0.0001 wn. The information garnered includes fine and hyperfine interactions, magnetic and electric dipoles, and dynamics. With this in mind, three examples from our recent (unpublished) studies will be highlighted. SiHD: Long ago Duxbury et al. developed a semi-quantitative model invoking Renner-Teller and spin-orbit coupling of the tilde{a}3B{1}, tilde{X}1A1, and tilde{A}1B1, states to explain the observed local perturbations and anomalous radiative lifetimes in the visible spectrum. More recently, the tilde{a}3B1 to tilde{A}1B1 intersystem crossing has been modeled using both semi-classical transition state theory and quantum trajectory surface hopping dynamics. Here we investigate the effects of the reduced symmetry of SiHD on the spectroscopy and dynamics using 2D spectroscopy. Rotationally resolved lines in the origin tilde{X}1A'→ tilde{A}1A" band are assigned to both c-type transitions and additional axis-switching induced transitions. AuO and AuS: The observed markedly different bonding of thiols and alcohols to gold clusters should be traceable to the difference in Au-O and Au-S bonding. To investigate this difference we have used optical Stark and Zeeman spectroscopy to determine the permanent electric dipole moments and magnetic g-factors. The results are rationalized using simple m.o. correlation diagrams and compared to ab initio predictions. TaN: TaN is the best candidate to search for a T,P- violating nuclear magnetic quadrupole moment. Here we report on the optical 2D, Stark, and Zeeman spectra, and our efforts to record the pure rotational spectrum using the separated field pump/probe microwave

  8. Generation, Detection and characterization of Gas-Phase Transition Metal containing Molecules

    SciTech Connect

    Steimle, Timothy

    2015-12-15

    The objective of this project was to generate, detect, and characterize small, gas-phase, metal containing molecules. In addition to being relevant to high temperature chemical environments (e.g. plasmas and combustion), gas-phase experiments on metal containing molecules serve as the most direct link to a molecular-level theoretical model for catalysis. Catalysis (i.e. the addition of a small about of recoverable material to control the rate and direction of a chemical reaction) is critical to the petroleum and pharmaceutical industries as well as environmental remediation. Currently, the majority of catalytic materials are based on very expensive metals such as platinum (Pt), palladium (Pd), iridium (Ir,) rhenium (Re), and rhodium (Rh). For example, the catalyst used for converting linear hydrocarbon molecules (e.g. hexane) to cyclic molecules (e.g. cyclohexane) is a mixture of Pt and Re suspended on alumina. It enables straight chain alkanes to be converted into branched-chain alkanes, cyclohexanes and aromatic hydrocarbons which are used, amongst other things, to enhance the octane number of petrol. A second example is the heterogeneous catalysis used in automobile exhaust systems to: a) decrease nitrogen oxide; b) reduce carbon monoxide; and c) oxidize unburned hydrocarbons. The exhaust is vented through a high-surface area chamber lined with Pt, Pd, and Rh. For example, the carbon monoxide is catalytically converted to carbon dioxide by reaction with oxygen. The research results from this work have been published in readily accessible journals1-28. The ground and excited electronic state properties of small metal containing molecules that we determine were: a) electronic state distributions and lifetimes, b) vibrational frequencies, c) bond lengths and angles, d) hyperfine interactions, e) permanent electric dipole moments, mel, and f) magnetic dipoles, μm. In general terms, μel, gives insight into the charge distribution and mm into

  9. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Plant number to be embossed on metal... Plant number to be embossed on metal containers. The official number assigned to an inspected plant under § 355.8 shall be embossed on all sealed metal containers of certified products filled in...

  10. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials.

    PubMed

    Fan, Fengtao; Feng, Zhaochi; Li, Can

    2010-03-16

    Microporous and mesoporous materials are widely used as catalysts and catalyst supports. Although the incorporation of transition metal ions into the framework of these materials (by isomorphous substitution of Al and Si) is an effective means of creating novel catalytic activity, the characterization of the transition metal species within these materials is difficult. Both the low concentration of the highly dispersed transition metal and the coexistence of extraframework transition metal species present clear challenges. Moreover, the synthetic mechanisms that operate under the highly inhomogeneous conditions of hydrothermal synthesis are far from well understood. A useful technique for addressing these challenges is UV Raman spectroscopy, which is a powerful technique for catalyst characterization and particularly for transition metal-containing microporous and mesoporous materials. Conventional Raman spectroscopy, using visible and IR wavelengths, often fails to provide the information needed for proper characterization as a result of fluorescence interference. But shifting the excitation source to the UV range addresses this difficulty: interference from fluorescence (which typically occurs at 300-700 nm or greater) is greatly diminished. Moreover, signal intensity is enhanced because Raman intensity is proportional to the fourth power of the scattered light frequency. In this Account, we review recent advances in UV Raman spectroscopic characterization of (i) highly dispersed transition metal oxides on supports, (ii) transition metal ions in the framework of microporous and mesoporous materials, and (iii) the synthetic mechanisms involved in making microporous materials. By taking advantage of the strong UV resonance Raman effect, researchers have made tremendous progress in the identification of isolated transition metal ions incorporated in the framework of microporous and mesoporous materials such as TS-1, Ti-MCM-41, Fe-ZSM-5, and Fe-SBA-15. The synthetic

  11. Fabrication of transition metal-containing nanostructures via polymer templates for a multitude of applications

    NASA Astrophysics Data System (ADS)

    Lu, Jennifer Qing

    Nanostructures such as carbon nanotubes and semiconducting nanowires offer great technological promise due to their remarkable properties. The lack of a rational synthesis method prevents fabricating these nanostructures with desirable and consistent properties at predefined locations for device applications. In this thesis, employing polymer templates, a variety of highly ordered catalytically active transition metal nanostructures, ranging from single metallic nanoparticles of Fe, Co, Ni, Au and bimetallic nanoparticles of Ni/Fe and Co/Mo to Fe-rich silicon oxide nanodomains with uniform and tunable size and spacing have been successfully synthesized. These nanostructures have been demonstrated to be excellent catalyst systems for the synthesis of carbon nanotube and silicon nanowire. High quality, small diameter carbon nanotubes and nanowires with narrow size distribution have been successfully attained. Because these catalytically active nanostructures are uniformly distributed and do not agglomerate at the growth temperatures, uniform, high density and high quality carbon nanotube mats have been obtained. Since this polymer template approach is fully compatible with conventional top-down photolithography, lithographically selective growth of carbon nanotubes on a surface or suspended carbon nanotubes across trenches have been produced by using existing semiconductor processing. We have also shown the feasibility of producing carbon nanotubes and silicon nanowires at predefined locations on a wafer format and established a wafer-level carbon nanotube based device fabrication process. The ability of the polymer template approach to control catalyst systems at the nano-, micro- and macro-scales paves a pathway for commercialization of these 1D nanostructure-enabled devices. Beside producing well-defined, highly ordered discrete catalytically active metal-containing nanostructures by the polymer template approach, Au and Ag nanotextured surfaces have also been

  12. Aerogel derived catalysts

    SciTech Connect

    Reynolds, J. G., LLNL

    1996-12-11

    Aerogels area class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO{sub 2} aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO{sub 2} aerogels as catalysts are briefly reviewed in this paper--NO{sub x} reduction, volatile organic compound destruction, and partial oxidation of methane.

  13. Shaped ceramics with tunable magnetic properties from metal-containing polymers

    PubMed

    MacLachlan; Ginzburg; Coombs; Coyle; Raju; Greedan; Ozin; Manners

    2000-02-25

    A shaped, magnetic ceramic was obtained from a metal-containing polymer network, which was synthesized by thermal polymerization of a metal-containing organosilicon monomer. Pyrolysis of a cylinder, shape, or film of the metal-containing polymer precursor produced a low-density magnetic ceramic replica in high yield. The magnetic properties of the shaped ceramic could be tuned between a superparamagnetic and ferromagnetic state by controlling the pyrolysis conditions, with the particular state dependent on the size of iron nanoclusters homogeneously dispersed throughout the carbosilane-graphitic-silicon nitride matrix. These results indicate that cross-linked metal-containing polymers may be useful precursors to ceramic monoliths with tailorable magnetic properties. PMID:10688788

  14. Shaped Ceramics with Tunable Magnetic Properties from Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    MacLachlan, Mark J.; Ginzburg, Madlen; Coombs, Neil; Coyle, Thomas W.; Raju, Nandyala P.; Greedan, John E.; Ozin, Geoffrey A.; Manners, Ian

    2000-02-01

    A shaped, magnetic ceramic was obtained from a metal-containing polymer network, which was synthesized by thermal polymerization of a metal-containing organosilicon monomer. Pyrolysis of a cylinder, shape, or film of the metal-containing polymer precursor produced a low-density magnetic ceramic replica in high yield. The magnetic properties of the shaped ceramic could be tuned between a superparamagnetic and ferromagnetic state by controlling the pyrolysis conditions, with the particular state dependent on the size of iron nanoclusters homogeneously dispersed throughout the carbosilane-graphitic-silicon nitride matrix. These results indicate that cross-linked metal-containing polymers may be useful precursors to ceramic monoliths with tailorable magnetic properties.

  15. Steam gasification of carbon: Catalyst properties

    SciTech Connect

    Falconer, J.L.

    1991-12-13

    This research uses several techniques to measure the concentration of catalyst sites and determine their stoichiometry for the catalyzed gasification of carbon. Both alkali and alkaline earth oxides are effective catalysts for accelerating the gasification rate of coal chars, but only a fraction of the catalyst appears to be in a form that is effective for gasification, and the composition of that catalyst is not established. Transient techniques with {sup 13}C labeling, are being used to study the surface processes, to measure the concentration of active sites, and to determine the specific reaction rates. We have used secondary ion mass spectrometry (SIMS) for both high surface area samples of carbon/alkali carbonate mixtures and for model carbon surfaces with deposited alkali atoms. SIMS provides a direct measure of surface composition. The combination of these results can provide knowledge of catalyst dispersion and composition, and thus indicate the way to optimally utilize carbon gasification catalysts.

  16. Improved catalysts and method

    SciTech Connect

    Taylor, C.E.; Noceti, R.P.

    1990-12-31

    An improved catalyst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HCl and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride. 8 figs., 3 tabs.

  17. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. Resin catalysts and method of preparation

    SciTech Connect

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  19. Resin catalysts and method of preparation

    DOEpatents

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  20. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1993-01-01

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  1. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1994-01-01

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.

  2. High density crystalline boron prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1993-08-31

    Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.

  3. High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, C.L.

    1994-08-09

    Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.

  4. Method for producing catalysts from coal

    DOEpatents

    Farcasiu, M.; Derbyshire, F.; Kaufman, P.B.; Jagtoyen, M.

    1998-02-24

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere. 1 fig.

  5. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  6. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  7. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER...

  8. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER...

  9. 9 CFR 355.33 - Plant number to be embossed on metal containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Plant number to be embossed on metal containers. 355.33 Section 355.33 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFIED PRODUCTS FOR DOGS, CATS, AND OTHER...

  10. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26940747

  11. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    PubMed

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

  12. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  13. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  14. Catalysts and method

    DOEpatents

    Taylor, Charles E.; Noceti, Richard P.

    1991-01-01

    An improved catlayst and method for the oxyhydrochlorination of methane is disclosed. The catalyst includes a pyrogenic porous support on which is layered as active material, cobalt chloride in major proportion, and minor proportions of an alkali metal chloride and of a rare earth chloride. On contact of the catalyst with a gas flow of methane, HC1 and oxygen, more than 60% of the methane is converted and of that converted more than 40% occurs as monochloromethane. Advantageously, the monochloromethane can be used to produce gasoline boiling range hydrocarbons with the recycle of HCl for further reaction. This catalyst is also of value for the production of formic acid as are analogous catalysts with lead, silver or nickel chlorides substituted for the cobalt chloride.

  15. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.

    1992-06-01

    During this quarter, the high pressure (up to 100 atm), high temperature (up to 350{degrees}C) catalyst testing system was rebuilt with clean tubing, etc. A new preparation of MoS{sub 2} catalyst was carried out, and this catalyst will be doped with alkali and tested during the next quarter of research.

  16. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  17. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  18. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, K.D.

    1991-06-25

    Perovskites of the structure A[sub 2]B[sub 2]C[sub 3]O[sub 10] are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  19. Perovskite catalysts for oxidative coupling

    DOEpatents

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  20. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  1. High density hexagonal boron nitride prepared by hot isostatic pressing in refractory metal containers

    DOEpatents

    Hoenig, Clarence L.

    1992-01-01

    Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.

  2. Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol

    SciTech Connect

    Chang-Graham, Alexandra L.; Profeta, Luisa T. M.; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Finally, further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  3. Viability of zebrafish (Danio rerio) ovarian follicles after vitrification in a metal container.

    PubMed

    Marques, Lis S; Bos-Mikich, Adriana; Godoy, Leandro C; Silva, Laura A; Maschio, Daniel; Zhang, Tiantian; Streit, Danilo P

    2015-12-01

    Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.

  4. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.

  5. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  6. Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains.

    PubMed

    Fomina, Marina; Ritz, Karl; Gadd, Geoffrey M

    2003-07-01

    Metal-contaminated soils often contain a spatially heterogeneous distribution of metal concentrations, and the ability of fungi to colonize such metal-contaminated domains will be influenced by the nutritional resources available. An experimental system based upon tessellated agar tiles was used to study the influence of nutrients upon the ability of soil fungi Trichoderma virens and Clonostachys rosea to colonize spatially discrete toxic metal (copper and cadmium) containing domains. The growth parameters recorded demonstrated a decrease in apparent metal toxicity with increasing concentration of available carbon source. It was shown that maximum hyphal extension rates and the efficacy of carbon substrate utilization of both species decreased with increasing concentration of toxic metals. It was also observed that in the gap between metal-free and metal-containing tiles, the presence of toxic metals led to negative chemotropic reactions and cessation of growth, swelling and lysis of some hyphal tips. Penetration of the hyphae into the metal-containing domain was often followed by the formation of very dense mycelia or mycelial 'bushes' representing an associative (constraining, exploitative or 'phalanx') growth strategy of the mycelial system. After the fungi entered the toxic metal-containing domains, they often produced long sparsely-branched or branchless explorative hyphae representing a dissociative (expansive, explorative or 'guerrilla') growth strategy. Our data therefore demonstrate that fungi efficiently use both 'phalanx' and 'guerrilla' states of the mycelial system as well as shifts in these growth strategies as a response to toxic metal stress combined with nutritionally-poor conditions. PMID:12967214

  7. Eutectic-based ionic liquids with metal-containing anions and cations.

    PubMed

    Abbott, Andrew P; Barron, John C; Ryder, Karl S; Wilson, David

    2007-01-01

    Eutectic mixtures of zinc chloride and donor molecules such as urea and acetamide are described and it is proposed that these constitute a new class of ionic liquids. FAB-MS analysis shows that the liquids are made up of metal-containing anions and cations in which the donor is coordinated to the cation. Data on the viscosity, conductivity, density, phase behaviour and surface tension are presented and these are shown to be significantly different to other related ionic liquids that incorporate quaternary ammonium salts. The conductivity and viscosity are comparable with other ionic liquids and the data fit well to the Hole theory model recently proposed. PMID:17477454

  8. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    SciTech Connect

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.

  9. Cation effects in the oxidative coupling of methane on silica-supported binary alkali and alkaline earths

    SciTech Connect

    Voyatzis, R.; Moffat, J.B. )

    1993-07-01

    The oxidative coupling of methane has been investigated with a series of silica-supported binary oxide catalysts containing alkali or alkaline earths or combinations of the former and latter. The conversion of methane and the stability of the silica-supported binary alkali metal oxides were found to increase with decreasing cation mobility, while the selectivities and conversions observed with the binary alkaline earths increase with cation size. The selectivities and conversions of binary alkali/alkaline earths appear to depend upon the size of the alkali and alkaline earth cations, respectively. With small quantities of TCM (CCl[sub 4]) added continuously to the feedstream, catalysts containing small alkali and large alkaline earth cations produced the largest selectivities and conversions. 23 refs., 14 figs., 2 tabs.

  10. Insights for aging management of light water reactor components: Metal containments. Volume 5

    SciTech Connect

    Shah, V.N.; Sinha, U.P.; Smith, S.K.

    1994-03-01

    This report evaluates the available technical information and field experience related to management of aging damage to light water reactor metal containments. A generic aging management approach is suggested for the effective and comprehensive aging management of metal containments to ensure their safe operation. The major concern is corrosion of the embedded portion of the containment vessel and detection of this damage. The electromagnetic acoustic transducer and half-cell potential measurement are potential techniques to detect corrosion damage in the embedded portion of the containment vessel. Other corrosion-related concerns include inspection of corrosion damage on the inaccessible side of BWR Mark I and Mark II containment vessels and corrosion of the BWR Mark I torus and emergency core cooling system piping that penetrates the torus, and transgranular stress corrosion cracking of the penetration bellows. Fatigue-related concerns include reduction in the fatigue life (a) of a vessel caused by roughness of the corroded vessel surface and (b) of bellows because of any physical damage. Maintenance of surface coatings and sealant at the metal-concrete interface is the best protection against corrosion of the vessel.

  11. Metal-containing polymers: building blocks for functional (nano)materials.

    PubMed

    Wang, Xiaosong; McHale, Ronan

    2010-02-16

    The incorporation of metallic units into polymer chains has emerged as a promising route towards functional metal-containing (nano)materials. The resulting polymers possess rich functions derived from their metallic elements, such as redox, optical, catalytic and magnetic properties. In addition, the directional and dynamic nature of metal coordination interactions provides further variables for the exploration of novel materials with designed nanostructures. These types of polymers can be synthesized through direct metal-ligand coordination or chain polymerization of metal containing monomers. Depending on the polymerization techniques and starting components, the resulting polymers, akin to their organic counterparts, can be produced in the form of insoluble networks, processible chain structures, gels or colloids. Research into this rising multidisciplinary subject has benefited from recent progress in several related areas such as supramolecular chemistry, colloidal chemistry etc., with the combination of the relative merits of each ensuring further developments in each individual discipline. For example, as a result of studies into organometallic block copolymers self-assembly behavior, living supramolecular polymerization has been unprecedentedly realized for the architectural design of micelles (see image on the right). Nevertheless, the field is still in a developmental stage and offers ample opportunities for fundamental research, as well as material exploration. In this Feature Article, we intend to overview the field with a brief survey of recent literature. PMID:21590911

  12. Catalytic hydrogenation and gas permeation properties of metal-containing poly(phenylene oxide) and polysulfone

    SciTech Connect

    Hanrong Gao; Yun Xu; Shijian Liao; Ren Liu; Daorong Yu . Dalian Inst. of Chemical Physics)

    1993-11-10

    Metal-containing polymers, PPL-DPP-Pd, PPO-CPA-Pd, PSF-DPP-Pd, PSF-CPA-Pd (PDD = diphenylphosphinyl, CPA = o-carboxy phenyl amino), PPO-M (M = Pd,Cu,Co,Ni), and PSF-Pd, were prepared by incorporating metal chloride with either modified or unmodified poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polysulfone (PSF). The Pd-containing polymers exhibit catalytic activity in the hydrogenation of cyclopentadiene under mild conditions both in alcohol solution and in the gas phase. The selectivity in the hydrogenation of diene to monoene in the gas phase can be controlled by adjusting the hydrogen partial pressure. The metal-containing polymers, PPL-M and PSF-Pd, can be cast easily into the membranes. The H[sub 2]/N[sub 2] permselectivity for PPO-M is higher than that for unmodified PPO, whereas the permeability of H[sub 2] changes slightly. The H[sub 2] permeability and H[sub 2]/N[sub 2] permselectivity for the PPO-Pd membrane are up to 67.5 barrers and 135, respectively.

  13. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  14. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  15. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  16. Estimation of the atmospheric corrosion on metal containers in industrial waste disposal.

    PubMed

    Baklouti, M; Midoux, N; Mazaudier, F; Feron, D

    2001-08-17

    Solid industrial waste are often stored in metal containers filled with concrete, and placed in well-aerated warehouses. Depending on meteorological conditions, atmospheric corrosion can induce severe material damages to the metal casing, and this damage has to be predicted to achieve safe storage. This work provides a first estimation of the corrosivity of the local atmosphere adjacent to the walls of the container through a realistic modeling of heat transfer phenomena which was developed for this purpose. Subsequent simulations of condensation/evaporation of the water vapor in the atmosphere were carried out. Atmospheric corrosion rates and material losses are easily deduced. For handling realistic data and comparison, two different meteorological contexts were chosen: (1) an oceanic and damp atmosphere and (2) a drier storage location. Some conclusions were also made for the storage configuration in order to reduce the extent of corrosion phenomena.

  17. METAL-CONTAINING CONJUGATED POLYMERS AS FLUORESCENT CHEMOSENSORS IN THE DETECTION OF TOXICANTS.

    PubMed

    Fegley, Megan E A; Pinnock, Sherryllene S; Malele, Catherine N; Jones, Wayne E

    2012-02-15

    Fluorescent conjugated polymers have received a great deal of recent interest due to their ability to act as chemosensors to detect various chemical species in both environmental and biological systems with sensitivity and selectivity. Examples from the literature include polymer chemosensors that operate on either fluorescence "turn-on" or "turn-off" as mechanisms of sensor response. These responses can be related to either photoinduced electron transfer or electronic energy transfer mechanisms. Recently, a series of metal-containing polymers or metallopolymers have been explored by various research groups for their use as chemosensors. In many cases, these metallopolymers have been shown to be more sensitive and selective for specific chemical species. This review focuses on fluorescent conjugated polymers as chemosensors, with a specific concentration on recent advances in metallopolymer chemosensors. PMID:22711916

  18. METAL-CONTAINING CONJUGATED POLYMERS AS FLUORESCENT CHEMOSENSORS IN THE DETECTION OF TOXICANTS

    PubMed Central

    Fegley, Megan E. A.; Pinnock, Sherryllene S.; Malele, Catherine N.; Jones, Wayne E.

    2012-01-01

    Fluorescent conjugated polymers have received a great deal of recent interest due to their ability to act as chemosensors to detect various chemical species in both environmental and biological systems with sensitivity and selectivity. Examples from the literature include polymer chemosensors that operate on either fluorescence “turn-on” or “turn-off” as mechanisms of sensor response. These responses can be related to either photoinduced electron transfer or electronic energy transfer mechanisms. Recently, a series of metal-containing polymers or metallopolymers have been explored by various research groups for their use as chemosensors. In many cases, these metallopolymers have been shown to be more sensitive and selective for specific chemical species. This review focuses on fluorescent conjugated polymers as chemosensors, with a specific concentration on recent advances in metallopolymer chemosensors. PMID:22711916

  19. Ab Initio Calculations of Spin-Orbit Coupling for Heavy-Metal Containing Radicals

    NASA Astrophysics Data System (ADS)

    Cheng, Lan

    2016-06-01

    The perturbative treatment of spin-orbit coupling (SOC) on top of scalar-relativistic calculations is a cost-effective alternative to rigorous fully relativistic calculations. In this work the applicability of the perturbative scheme in the framework of spin-free exact two-component theory is demonstrated with calculations of SO splittings and SOC contributions to molecular properties in small heavy-metal containing radicals, including AuO, AuS, and ThO^+. The equation of motion coupled cluster techniques have been used to accurately account for the electron-correlation effects in these radicals, and basis-set effects are carefully analyzed. The computed results are compared with experimental measurements for SO splittings and dipole moments when available.

  20. Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units.

    PubMed

    Tu, Binbin; Pang, Qingqing; Ning, Erlong; Yan, Wenqing; Qi, Yi; Wu, Doufeng; Li, Qiaowei

    2015-10-28

    Materials built from multiple constituents have revealed emerging properties that are beyond linear integration of those from single components. We report a mesoporous metal-organic framework made from three geometrically distinct metal-containing secondary building units (SBUs) as a result of topological induction. The combinations of the Cu-based triangular, Zn-based octahedral, and Zn-based square pyramidal SBUs have created four types of cages in the network, despite that only one organic linker pyrazolecarboxylate was used. The longest distance for molecules maneuvering inside the largest cage is 5.2 nm. Furthermore, the complex and diversified pore environments allow the installation of various new functionalities in the framework as well as the expedited Ag nanoparticle formation in the pores. As presented in the molecule movement diagram, the crystal has provided specific arrangements of cages and apertures with distinct chemical features for guests transporting between the pores. PMID:26335899

  1. Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units.

    PubMed

    Tu, Binbin; Pang, Qingqing; Ning, Erlong; Yan, Wenqing; Qi, Yi; Wu, Doufeng; Li, Qiaowei

    2015-10-28

    Materials built from multiple constituents have revealed emerging properties that are beyond linear integration of those from single components. We report a mesoporous metal-organic framework made from three geometrically distinct metal-containing secondary building units (SBUs) as a result of topological induction. The combinations of the Cu-based triangular, Zn-based octahedral, and Zn-based square pyramidal SBUs have created four types of cages in the network, despite that only one organic linker pyrazolecarboxylate was used. The longest distance for molecules maneuvering inside the largest cage is 5.2 nm. Furthermore, the complex and diversified pore environments allow the installation of various new functionalities in the framework as well as the expedited Ag nanoparticle formation in the pores. As presented in the molecule movement diagram, the crystal has provided specific arrangements of cages and apertures with distinct chemical features for guests transporting between the pores.

  2. Application of fuel cell for pyrite and heavy metal containing mining waste

    NASA Astrophysics Data System (ADS)

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  3. Sonochemically-Produced Metal-Containing Polydopamine Nanoparticles and Their Antibacterial and Antibiofilm Activity.

    PubMed

    Yeroslavsky, Gil; Lavi, Ronit; Alishaev, Abraham; Rahimipour, Shai

    2016-05-24

    A facile one-pot sonochemical synthesis of Cu-, Ag-, and hybrid Cu/Ag-based polydopamine nanoparticles (Cu-, Ag-, and Cu/Ag-PDA-NPs) and the mechanisms by which they exert antibacterial and antibiofilm activities are reported. We showed that the nanoparticles are spherical with a core-shell structure. Whereas Cu is chelated to the shell of Cu-PDA-NPs in oxidation states of +1/+2, the core of Ag-PDA-NPs is filled with elemental Ag°. Sonochemical irradiation of dopamine in the presence of both Cu(2+) and Ag(+) generates hybrid Cu/Ag-PDA-NPs, whose shells are composed of Cu-chelated PDA with Ag° in the core. The redox potential of the metals was found to be the main determinant of the location and oxidation state of the metals. Leaching studies under physiological conditions reveal a relatively fast release of Cu ions from the shell, whereas Ag leaches very slowly from the core. The metal-containing PDA-NPs are highly microbicidal and exhibit potent antibiofilm activity. The combination of both metals in Cu/Ag-PDA-NPs is especially effective against bacteria and robust biofilms, owing to the dual bactericidal mechanisms of the metals. Most importantly, both Ag- and Cu/Ag-PDA-NPs proved to be significantly more antibacterial than commercial Ag-NPs while exhibiting lower toxicity toward NIH 3T3 mouse embryonic fibroblasts. Mechanistically, the metal-containing PDA-NPs generate stable PDA-semiquinone and reactive oxygen species under physiological conditions, which contribute at least partly to the antimicrobial activity. We also demonstrated that simple treatment of surfaces with Ag-PDA-NPs converts them to antibacterial, the activity of which was preserved even after prolonged storage under ambient conditions. PMID:27133213

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Oxidation catalyst

    DOEpatents

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  6. Alkali hydrolysis of trinitrotoluene.

    PubMed

    Karasch, Christian; Popovic, Milan; Qasim, Mohamed; Bajpai, Rakesh K

    2002-01-01

    Data for alkali hydrolysis of 2,4,6-trinitrotoluene (TNT) in aqueous solution at pH 12.0 under static (pH-controlled) as well as dynamic (pH-uncontrolled) conditions are reported. The experiments were conducted at two different molar ratios of TNT to hydroxyl ions at room temperature. The TNT disappeared rapidly from the solution as a first-order reaction. The complete disappearance of aromatic structure from the aqueous solution within 24 h was confirmed by the ultraviolet-visible (UV-VIS) spectra of the samples. Cuvet experiments in a UV-VIS spectrophotometer demonstrated the formation of Meisenheimer complex, which slowly disappeared via formation of aromatic compounds with fewer nitro groups. The known metabolites of TNT were found to accumulate only in very small quantities in the liquid phase.

  7. Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly(amidoxime) grafted starch.

    PubMed

    El-Hamshary, Hany; El-Newehy, Mohamed H; Al-Deyab, Salem S

    2011-01-01

    Polyamidoxime chelating resin was obtained from polyacrylonitrile (PAN) grafted starch. The nitrile groups of the starch-grafted polyacrylonitrile (St-g-PAN) were converted into amidoximes by reaction with hydroxylamine under basic conditions. The synthesized graft copolymer and polyamidoxime were characterized by FTIR, TGA and elemental microanalysis. Metal chelation of the polyamidoxime resin with iron, copper and zinc has been studied. The produced metal-polyamidoxime polymer complexes were used as catalysts for the oxidation of phenol using H(2)O(2) as oxidizing agent. The oxidation of phenol depends on the central metal ion present in the polyamidoxime complex. Reuse of M-polyamidoxime catalyst/H(2)O(2) system showed a slight decrease in catalytic activities for all M-polyamidoxime catalysts. PMID:22127293

  8. Mixed alkali effect in nonconventional alkali gallotitanate glasses

    SciTech Connect

    Miyaji, Fumiaki; Hasegawa, Shinya; Yoko, Toshinobu; Sakka, Sumio . Inst. for Chemical Research)

    1993-02-01

    The mixed alkali effect on electrical conductivity, that is, the reduction of conductivity due to alkali mixing, was observed in Na[sub 2]O-K[sub 2]O-Ga[sub 2]O[sub 3]-TiO[sub 2] glasses, which are nonconventional in the sense that glass-forming oxides defined by Zachariasen are not involved. The magnitude of the reduction in conductivity of the present glasses due to alkali mixing was similar to that of corresponding mixed alkali silicate and phosphate glasses. The activation energy for electrical conduction showed a maximum around the composition Na/(Na + K) = 0.5, where the conductivity was at a minimum.

  9. Ionothermal syntheses of three transition-metal-containing polyoxotungstate hybrids exhibiting the photocatalytic and electrocatalytic properties

    SciTech Connect

    Chen, W.-L.; Chen, B.-W.; Tan, H.-Q.; Li Yangguang; Wang Yonghui; Wang Enbo

    2010-02-15

    Employing the ionothermal synthesis approach, three new transition-metal-containing polyoxotungstate hybrids: [Dmim]{sub 2}Na{sub 3}[SiW{sub 11}O{sub 39}Fe(H{sub 2}O)].H{sub 2}O (Dmim=1,3-Dimethylimidazole) (1), [Emim]{sub 9}Na{sub 8}[(SiW{sub 9}O{sub 34}){sub 3}{l_brace}Fe{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(WO{sub 4})].0.5H{sub 2}O (Emim=1-Ethyl-3-meth-ylimidazole) (2) and [Dmim]2[HMim]Na{sub 6}[(AsW{sub 9}O{sub 33}){sub 2}{l_brace}Mn{sup III}(H{sub 2}O){r_brace}{sub 3}].3H{sub 2}O (Dmim=1,3-Dimethylimidazole; Mim=1-Methylimidazole) (3) have been synthesized in 1-ethyl-3-methyl imidazolium bromide ([Emim]Br) ionic liquids (ILs). Compound 1 possesses a 3-D open framework constructed from the mono-iron{sup III}-substituted alpha-Keggin-type anion and the organic cations [Dmim]+ through the hydrogen bond interactions. Compound 2 contains a [{l_brace}Fe{sup III}{sub 3}(mu{sub 2}-OH){sub 2}(mu{sub 3}-O){r_brace}{sub 3}(mu{sub 4}-WO{sub 4})] cluster surrounded by three [SiW{sub 9}O{sub 34}]{sup 10-} ligands, eight sodium cations and nine dissociative [Emim]{sup +} cations around the polyoxoanion. The polyoxoanion of 3 consists of a high-valent trinuclear-manganese (III)-substituted sandwiching polyoxoanion based on the [alpha-AsW{sub 9}O{sub 33}]{sup 9-} units. All the compounds are characterized by elemental analyses, IR, UV-vis spectra, TG-DTA and XRD analyses. The XPS and EPR spectra of Mn{sup III} in 3 were studied. The photocatalytic and electrocatalytic properties, as well as the stabilities of 1-3 were also investigated. - Graphical abstract: Three new transition-metal-containing polyoxotungstate hybrids were synthesized successfully under the ionothermal condition, which proves that the ionothermal synthesis is a suitable synthetic method for different kinds of polyoxometalates.

  10. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  11. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  12. Enhanced catalyst stability for cyclic co methanation operations

    DOEpatents

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  13. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons. PMID:22705959

  14. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons.

  15. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  16. A correction method for dual energy liquid CT image reconstruction with metallic containers.

    PubMed

    Xue, Hui; Zhang, Li; Chen, Zhiqiang; Li, Liang

    2012-01-01

    With its capability of material discrimination, dual energy computed tomography (DECT) is widely used in security inspection for the purpose of detecting contraband. DECT provides effective atomic number image and electron density image in addition to traditional attenuation images. In dual energy liquid inspection system, the presence of metallic containers will cause partial volume effect (PVE) that leads to severe deviation in effective atomic number image. Usually, the deviation is too large for a reliable material discrimination and may cause false results. In this paper, a projection splitting method is proposed to combat the PVE. This method is based on the assumption that a prior projection of the empty container is available and photoelectric and Compton coefficient integrals can be calculated via dual energy decomposition. Each integral is split into two parts by subtracting the integral of the empty container from the total integral. The subtraction removes the integral part contributed by the container, thus discarding the error source created by PVE that appears on the boundary of the sinogram. Images are reconstructed in which only the interior liquid area remains. Experiments are performed in a real liquid inspection system to demonstrate the effectiveness of this method. Accuracy of the reconstructed effective atomic number is greatly improved with this method, which helps a lot in determining the type of the object.

  17. Shear-alignment of metal-containing block copolymer thin films for nanofabrication

    NASA Astrophysics Data System (ADS)

    Kim, So Youn; Register, Richard; Gwyther, Jessica; Manners, Ian; Chaikin, Paul

    2013-03-01

    Cylinder-forming block copolymers can be used as etch masks for the fabrication of nanowire grids, with both fine resolution and scalability. However, achieving a high aspect ratio in these nanostructures, where reactive ion etching is employed for pattern transfer, requires strong etch contrast between two blocks of the copolymer. We achieve this strong contrast by using metal-containing block copolymers: materials which either contain metal as synthesized, or which can be selectively metallized after deposition as thin films. In the first case, iron-containing polystyrene-b-poly(ferrocenylisopropylmethylsilane) (PS-PFS) forming PFS cylinders was employed, and a spin-coated film was aligned by shearing with a polydimethylsiloxane pad. In the second case, polystyrene-b-poly-2-vinylpyridine (PS-P2VP) was deposited as a film, shear-aligned, and then platinum was selectively sequestered within the P2VP cylinders by brief soaking in an aqueous solution of a Pt salt. In both cases, shear stress produced alignment over centimeter-scale areas; this alignment was retained for PS-P2VP during the selective metallization. The line pattern in these aligned block copolymer thin films is then transferred via reactive ion etching into amorphous silicon deposited onto a quartz wafer to fabricate silicon nanowire grid polarizers which can operate at deep ultraviolet wavelengths.

  18. Mathematical Simulation of the Gas-Particles Reaction Flows in Incineration of Metal-Containing Waste

    SciTech Connect

    Ojovan, M. I.; Klimov, V. L.; Karlina, O. K.

    2002-02-26

    A ''quasi-equilibrium'' approach for thermodynamic calculation of chemical composition and properties of metal-containing fuel combustion products has been developed and used as a part of the mathematical model of heterogeneous reacting flow which carry burning and/or evaporating particles. By using of this approach, the applicable mathematical model has been devised, which allows defining the change in chemical composition and thermal characteristics of combustion products along the incineration chamber. As an example, the simulation results of the reacting flow of magnesium-sodium nitrate-organic mixture are presented. The simulation results on the gas phase temperature in the flow of combustion products are in good agreement with those obtained experimentally. The proposed method of ''quasi-equilibrium'' thermodynamic calculation and mathematical model provide a real possibility for performing of numerical experiments on the basis of mathematical simulation of nonequilibrium flows of combustion products. Numerical experiments help correctly to estimate the work characteristics in the process of treatment devices design saving time and costs.

  19. Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations

    NASA Astrophysics Data System (ADS)

    Fujita, Hagino; Ishibashi, Kazuhisa

    In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.

  20. Process Controlled Multiscale Morphologies in Metal-containing Block Copolymer Thin Films

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Darling, Seth B.

    2014-01-01

    Poly(styrene-block-ferrocenyldimethylsilane) (PS-b-PFS) is a metal-containing block copolymer that exhibits certain advantages as a mask for lithographic applications. These advantages include compatibility with a wide range of substrates, ease of control over domain morphologies and robust stability to etch plasma, which aid in the development of high-aspect-ratio patterns. An asymmetric cylinder-forming PS-b-PFS copolymer is subjected to different processing to manipulate the morphology of the phase-separated domains. Control of film structure and domain morphology is achieved by adjusting the film thickness, mode of annealing, and/or annealing time. Changing the process from thermal or solvent annealing to hybrid annealing (thermal and then solvent annealing in sequence) leads to the formation of mesoscale spherulitic and dendritic morphologies. In this communication, we show that reversing the order of the hybrid annealing (solvent annealing first and then thermal annealing) of relatively thick films (>100 nm) on homogeneously thick substrates develops disordered lamellar structure. Furthermore, the same processing applied on a substrate with a thin, mechanically flexible window in the center leads to the formation of sub-micron scale concentric ring patterns. Enhanced material mobility in the thick film during hybrid annealing along with dynamic rippling effects that may arise from the vibration of the thin window during spin casting are likely causes for these morphologies.

  1. Steam gasification of carbon: Catalyst properties. Reporting period, September 15, 1991--December 14, 1991

    SciTech Connect

    Falconer, J.L.

    1991-12-13

    This research uses several techniques to measure the concentration of catalyst sites and determine their stoichiometry for the catalyzed gasification of carbon. Both alkali and alkaline earth oxides are effective catalysts for accelerating the gasification rate of coal chars, but only a fraction of the catalyst appears to be in a form that is effective for gasification, and the composition of that catalyst is not established. Transient techniques with {sup 13}C labeling, are being used to study the surface processes, to measure the concentration of active sites, and to determine the specific reaction rates. We have used secondary ion mass spectrometry (SIMS) for both high surface area samples of carbon/alkali carbonate mixtures and for model carbon surfaces with deposited alkali atoms. SIMS provides a direct measure of surface composition. The combination of these results can provide knowledge of catalyst dispersion and composition, and thus indicate the way to optimally utilize carbon gasification catalysts.

  2. Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide

    NASA Astrophysics Data System (ADS)

    Burya, A. I.; Safonova, A. M.; Rula, I. V.

    2012-07-01

    The influence of metal-containing carbon fibers on the thermal properties of carbon-filled phenylone-based plastics has been investigated. It has been shown that carbometallic fibers containing in their composition 20- 30 mass % of a finely dispersed metal (Co, Cu) are promising fillers of phenylone C-2 for making carbonfilled plastics working in frictional units of various machines and mechanisms.

  3. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where

  4. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1992-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  5. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, Nancy E.

    1991-01-01

    A catalyst useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols consisting essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  6. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  7. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts. PMID:25968561

  8. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    SciTech Connect

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  9. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  10. Alkali and transition metal phospholides

    NASA Astrophysics Data System (ADS)

    Bezkishko, I. A.; Zagidullin, A. A.; Milyukov, V. A.; Sinyashin, O. G.

    2014-06-01

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references.

  11. The development of coil short circuits when transformer windings become contaminated with metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Bondareva, V. N.; Komarov, V. B.; L'vov, Yu. N.

    2012-01-15

    The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may serve as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.

  12. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    NASA Astrophysics Data System (ADS)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  13. Catalyst for producing lower alcohols

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.

    1987-01-01

    A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.

  14. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  15. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  16. Tantalum-containing catalyst useful for producing alcohols from synthesis gas

    DOEpatents

    Kinkade, N.E.

    1992-04-07

    A catalyst is described which is useful for selectively converting a mixture of carbon monoxide and hydrogen to a mixture of lower alkanols. The catalyst consists essentially of a mixture of molybdenum sulfide, an alkali metal compound and a tantalum compound.

  17. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  18. Specific features of electrical conduction of the poly-[NiSalen] metal-containing polymer thin-film structure

    NASA Astrophysics Data System (ADS)

    Avanesyan, V. T.; Puchkov, M. Yu.

    2008-11-01

    The charge transfer in the oxidized and reduced forms of poly-[NiSalen] metal-containing polymer films is investigated. It is established that the voltage dependence of the differential conductivity for the polymer in the oxidized form exhibits a nonlinear behavior, which indicates a high electrical activity of this state. The microscopic parameters characterizing the charge transfer are calculated within the space-charge-limited current theory. Differences in the surface morphology of two forms of the poly-[NiSalen] films are revealed using atomic-force microscopy.

  19. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  20. Chemiluminescence from excited c 2- -alkali cation complexes formed in alkali atom-halocarbon flames

    NASA Astrophysics Data System (ADS)

    Lin, K. K.; Balling, L. C.; Wright, J. J.

    1987-01-01

    Vapor phase reactions between alkali atoms and several halocarbon molecules containing C-C bonds have been observed to produce chemiluminescence which appears to originate from C 2-- (alkali) + complexes.

  1. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  2. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  3. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  4. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate.

    PubMed

    Aydın, Ahmet Alper; Aydın, Adnan

    2014-04-15

    Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900°C and fritted at three different temperatures of 850°C, 900°C and 950°C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass-ceramics. PMID:24530878

  5. Development of an immobilization process for heavy metal containing galvanic solid wastes by use of sodium silicate and sodium tetraborate.

    PubMed

    Aydın, Ahmet Alper; Aydın, Adnan

    2014-04-15

    Heavy metal containing sludges from wastewater treatment plants of electroplating industries are designated as hazardous waste since their improper disposal pose high risks to environment. In this research, heavy metal containing sludges of electroplating industries in an organized industrial zone of Istanbul/Turkey were used as real-sample model for development of an immobilization process with sodium tetraborate and sodium silicate as additives. The washed sludges have been precalcined in a rotary furnace at 900°C and fritted at three different temperatures of 850°C, 900°C and 950°C. The amounts of additives were adjusted to provide different acidic and basic oxide ratios in the precalcined sludge-additive mixtures. Leaching tests were conducted according to the toxicity characteristic leaching procedure Method 1311 of US-EPA. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope-energy dispersive spectrometer (SEM-EDS) and flame atomic absorption spectroscopy (FAAS) have been used to determine the physical and chemical changes in the products. Calculated oxide molar ratios in the precalcined sludge-additive mixtures and their leaching results have been used to optimize the stabilization process and to determine the intervals of the required oxide ratios which provide end-products resistant to leaching procedure of US-EPA. The developed immobilization-process provides lower energy consumption than sintering-vitrification processes of glass-ceramics.

  6. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  7. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  8. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  9. Renewable Feedstocks: The Problem of Catalyst Deactivation and its Mitigation.

    PubMed

    Lange, Jean-Paul

    2015-11-01

    Much research has been carried out in the last decade to convert bio-based feedstock into fuels and chemicals. Most of the research focuses on developing active and selective catalysts, with much less attention devoted to their long-term stability. This Review considers the main challenges in long-term catalyst stability, discusses some fundamentals, and presents options for their mitigation. Three main challenges are discussed: catalyst fouling, catalyst poisoning, and catalyst destruction. Fouling is generally related to the deposition of insoluble components present in the feed or formed by degradation of the feed or intermediates. Poisoning is related to the deposition of electropositive contaminants (e.g. alkali and alkaline earth metals) on acid sites or of electronegative contaminants (e.g. N and S) at hydrogenation sites. Catalyst destruction results from the thermodynamic instability of most oxidic supports, solid acids/bases, and hydrogenation functions under hydrothermal conditions. PMID:26457585

  10. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides!

  11. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  12. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  13. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  14. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  15. Cellulose aerogels from aqueous alkali hydroxide-urea solution.

    PubMed

    Cai, Jie; Kimura, Satoshi; Wada, Masahisa; Kuga, Shigenori; Zhang, Lina

    2008-01-01

    Highly porous and strong cellulose aerogels were prepared by gelation of cellulose from aqueous alkali hydroxide/urea solution, followed by drying with supercritical CO2. Their morphology, pore structure, and physical properties were characterized by scanning and transmission electron microscopy, X-ray diffraction, nitrogen adsorption measurements, UV/Vis spectrometry, and tensile tests. The cellulose hydrogel was composed of interconnected about 20 nm wide. By using supercritical CO2 drying, the network structure in the hydrogel was well preserved in the aerogel. The results are preliminary but demonstrate the ability of this method to give cellulose aerogels of large surface areas (400-500 m2 g(-1)) which may be useful as adsorbents, heat/sound insulators, filters, catalyst supports, or carbon aerogel precursors. PMID:18605678

  16. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  17. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  18. Metal-containing fluoropolymer films produced by simultaneous plasma etching and polymerization: Effects of hydrogen or oxygen

    NASA Astrophysics Data System (ADS)

    Kay, E.; Dilks, A.; Seybold, D.

    1980-11-01

    The formation of metal-containing fluoropolymer films by simultaneous plasma etching and polymerization in a radiofrequency diode reactor configuration is investigated as a function of additive scavenger gases. The addition of oxygen to plasmas excited in tetrafluoroethylene or perfluoropropane is found to enhance the etching rate at the excitation metal electrode and diminish the polymer film deposition rate at the grounded electrode. The overall effect is to increase the metal content of the films. The addition of hydrogen to plasmas excited in tetrafluoromethane or perfluoropropane has the opposite effect. X-ray photoelectron spectroscopy is employed to determine the composition and structure of the films, and this coupled with mass spectrometric analysis of the plasma gas phase chemistry has allowed the identification of the likely precursors to plasma polymerization for the systems studied.

  19. Migration insertion polymerization (MIP) of cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP): a new concept for main chain metal-containing polymers (MCPs).

    PubMed

    Wang, Xiaosong; Cao, Kai; Liu, Yibo; Tsang, Brian; Liew, Sean

    2013-03-01

    We report a conceptually new polymerization technique termed migration insertion polymerization (MIP) for main chain metal-containing polymer (MCP) synthesis. Cyclopentadienyldicarbonyldiphenylphosphinopropyliron (FpP) is synthesized and polymerized via MIP, resulting in air stable poly(cyclopentadienylcarbonyldiphenylphosphinobutanoyliron) (PFpP) displaying narrow molecular weight distribution. The backbone of PFpP contains asymmetric iron units connected by both phosphine coordination and Fe-acyl bonds, which is representative of a new type of polymer. Furthermore, PFpP is tested to be soluble in a wide range of organic solvents and shown to possess reactive Fp end groups. PFpP amphiphiles have therefore been prepared via an end group migration insertion reaction in the presence of oligoethylene phosphine. PMID:23425192

  20. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport.

    PubMed

    Liu, Wenjun; Huang, Weijie; Pink, Maren; Lee, Dongwhan

    2010-09-01

    Metal-templated [2 + 3]-type cocondensation of a pi-extended boronic acid and nioxime furnished a series of cage molecules, which were electropolymerized to prepare metal-containing conducting polymers (MCPs). Despite sharing essentially isostructural organic scaffolds, these materials display metal-dependent electrochemical properties as evidenced by different redox windows observed for M = Co, Fe, Ru. Consecutive electropolymerization using two different monomers furnished bilayer MCPs having different metals in each layer. In addition to functioning as heavy atom markers in cross-sectional analysis by FIB and EDX, redox-active metal centers participate in voltage-dependent interlayer electron transport to give rise to cyclic voltammograms that are distinctively different from those of each layer alone or random copolymers. A simple electrochemical technique can thus be used as a straightforward diagnostic tool to investigate the structural ordering of electrically conductive layered materials. PMID:20690667

  1. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F.; Lyut'ko, E. O.; L'vov, Yu. N.; Ershov, B. G.

    2011-05-15

    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

  2. Photo-oxidation catalysts

    DOEpatents

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  3. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  4. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  5. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. PMID:21482464

  6. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  9. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  10. Highly active and highly selective aromatization catalyst

    SciTech Connect

    Santilli, D.S.; Long, J.J.; Lewis, R.T.

    1987-10-06

    This patent describes a reforming catalyst comprising an L zeolite containing platinum metal and at least one promoter metal selected from the group consisting of iron, cobalt, titanium, and rare earth metal. The catalyst has a platinum to promoter metal mole ratio of less than 10:1. The patent also includes a method of preparing the reforming catalyst of claim 1, comprising steps of: (a) forming an aqueous solution of alkali hydroxide, aluminum hydroxide, and ferric salt; (b) combining the solution with an aqueous solution of silica to form a thickening gel in a mother liquor; (c) heating the thickening gel to form an L zeolite; (d) cooling the gel containing the L zeolite; (e) decanting the mother liquor from the gel; (f) filtering the L zeolite from the gel; (g) washing the filtered L zeolite; (h) drying the washed L zeolite; (i) adding platinum to the dried L zeolite to form a catalyst; (j) drying the catalyst; and (k) calcining the dried catalyst.

  11. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  12. Accurate spin-orbit and spin-other-orbit contributions to the g-tensor for transition metal containing systems.

    PubMed

    Van Yperen-De Deyne, A; Pauwels, E; Van Speybroeck, V; Waroquier, M

    2012-08-14

    In this paper an overview is presented of several approximations within Density Functional Theory (DFT) to calculate g-tensors in transition metal containing systems and a new accurate description of the spin-other-orbit contribution for high spin systems is suggested. Various implementations in a broad variety of software packages (ORCA, ADF, Gaussian, CP2K, GIPAW and BAND) are critically assessed on various aspects including (i) non-relativistic versus relativistic Hamiltonians, (ii) spin-orbit coupling contributions and (iii) the gauge. Particular attention is given to the level of accuracy that can be achieved for codes that allow g-tensor calculations under periodic boundary conditions, as these are ideally suited to efficiently describe extended condensed-phase systems containing transition metals. In periodic codes like CP2K and GIPAW, the g-tensor calculation schemes currently suffer from an incorrect treatment of the exchange spin-orbit interaction and a deficient description of the spin-other-orbit term. In this paper a protocol is proposed, making the predictions of the exchange part to the g-tensor shift more plausible. Focus is also put on the influence of the spin-other-orbit interaction which becomes of higher importance for high-spin systems. In a revisited derivation of the various terms arising from the two-electron spin-orbit and spin-other-orbit interaction (SOO), new insight has been obtained revealing amongst other issues new terms for the SOO contribution. The periodic CP2K code has been adapted in view of this new development. One of the objectives of this study is indeed a serious enhancement of the performance of periodic codes in predicting g-tensors in transition metal containing systems at the same level of accuracy as the most advanced but time consuming spin-orbit mean-field approach. The methods are first applied on rhodium carbide but afterwards extended to a broad test set of molecules containing transition metals from the fourth

  13. Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.

    PubMed

    Goswami, Mandavi; Meena, S; Navatha, S; Prasanna Rani, K N; Pandey, Ashok; Sukumaran, Rajeev Kumar; Prasad, R B N; Prabhavathi Devi, B L A

    2015-01-01

    Solid acid catalysts can hydrolyze cellulose with lower reaction times and are easy to recover and reuse. A glycerol based carbon acid catalyst developed at CSIR-IICT performed well in acid catalysis reactions and hence this study was undertaken to evaluate the catalyst for hydrolysis of biomass (alkali pretreated or native rice straw). The catalyst could release 262 mg/g total reducing sugars (TRS) in 4h at 140 °C from alkali pretreated rice straw, and more importantly it released 147 mg/g TRS from native biomass. Reusability of the catalyst was also demonstrated. Catalytic hydrolysate was used as sugar source for fermentation to produce ethanol. Results indicate the solid acid catalyst as an interesting option for biomass hydrolysis.

  14. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  15. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  16. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  17. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  18. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  19. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  20. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  1. Catalyst activator

    DOEpatents

    McAdon, Mark H.; Nickias, Peter N.; Marks, Tobin J.; Schwartz, David J.

    2001-01-01

    A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

  2. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  3. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  4. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  5. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  6. 29 CFR 1915.54 - Welding, cutting and heating of hollow metal containers and structures not covered by § 1915.12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Welding, cutting and heating of hollow metal containers and... STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.54 Welding, cutting and heating of... which have contained flammable substances shall, before welding, cutting, or heating is undertaken...

  7. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.

    PubMed

    Sushkevich, Vitaly L; Ivanova, Irina I; Ordomsky, Vitaly V; Taarning, Esben

    2014-09-01

    The synthesis of buta-1,3-diene from ethanol has been studied over metal-containing (M=Ag, Cu, Ni) oxide catalysts (MO(x)=MgO, ZrO2, Nb2O5, TiO2, Al2O3) supported on silica. Kinetic study of a wide range of ethanol conversions (2-90%) allowed the main reaction pathways leading to butadiene and byproducts to be determined. The key reaction steps of butadiene synthesis were found to involve ethanol dehydrogenation, acetaldehyde condensation, and the reduction of crotonaldehyde with ethanol into crotyl alcohol. Catalyst design included the selection of active components for each key reaction step and merging of these components into multifunctional catalysts and adjusting the catalyst functions to achieve the highest selectivity. The best catalytic performance was achieved over the Ag/ZrO2/SiO2 catalyst, which showed the highest selectivity towards butadiene (74 mol%). PMID:25123990

  8. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.

    PubMed

    Sushkevich, Vitaly L; Ivanova, Irina I; Ordomsky, Vitaly V; Taarning, Esben

    2014-09-01

    The synthesis of buta-1,3-diene from ethanol has been studied over metal-containing (M=Ag, Cu, Ni) oxide catalysts (MO(x)=MgO, ZrO2, Nb2O5, TiO2, Al2O3) supported on silica. Kinetic study of a wide range of ethanol conversions (2-90%) allowed the main reaction pathways leading to butadiene and byproducts to be determined. The key reaction steps of butadiene synthesis were found to involve ethanol dehydrogenation, acetaldehyde condensation, and the reduction of crotonaldehyde with ethanol into crotyl alcohol. Catalyst design included the selection of active components for each key reaction step and merging of these components into multifunctional catalysts and adjusting the catalyst functions to achieve the highest selectivity. The best catalytic performance was achieved over the Ag/ZrO2/SiO2 catalyst, which showed the highest selectivity towards butadiene (74 mol%).

  9. Metal-containing carbon clusters. Structures, isomerization, and formation of NbC{sub n}{sup +} clusters

    SciTech Connect

    Clemmer, D.E.; Jarrold, M.E.

    1995-08-30

    Injected ion drift tube techniques, including ion mobility measurements and annealing and fragmentation studies, have been used to examine the isomers present for NbC{sub n}{sup +} (n = 15-50) clusters. Isomers attributed to niobium-containing monocyclic and bicyclic rings, graphitic sheets, and metallofullerenes have been identified. Monocyclic rings, where the niobium atom appears to be either inserted into or bound to the outside of the ring, dominate for NbC{sub n}{sup +} with n < 22. Isomers assigned to bicyclic rings are first observed and become dominant around NbC{sub 22}{sup +}. They probably consist of two rings joined together by a niobium atom. An isomer attributed to NbC{sub n}{sup +} graphitic sheets is present for n > 22 and becomes important for clusters with around 30 carbon atoms. Metallofullerenes are first observed for NbC{sub 28}{sup +} and become a major isomer for clusters with n > 31. Both endohedral metallofullerenes and networked metallofullerenes (where the metal atom is part of the cage) have been identified. For clusters with more than around 30 carbon atoms the NbC{sub n}{sup +} bicyclic rings can be annealed into metallofullerenes and, for the smaller ones, metal-containing graphitic sheets. The isomers observed for NbC{sub n}{sup +} are similar to those found for pure C{sub n}{sup +} and LaC{sub n}{sup +}, but the niobium atom has a substantial effect on the properties and the abundances of the different isomers. 47 refs., 11 figs., 1 tab.

  10. Catalyst suppliers consolidate further, offer more catalysts

    SciTech Connect

    Rhodes, A.K.

    1995-10-02

    The list of suppliers of catalysts to the petroleum refining industry has decreased by five since Oil and Gas Journal`s survey of refining catalysts and catalytic additives was last published. Despite the consolidation, the list of catalyst designations has grown to about 950 in this latest survey, compared to 820 listed in 1993. The table divides the catalysts by use and gives data on their primary differentiating characteristics, feedstock, products, form, bulk density,catalyst support, active agents, availability, and manufactures.

  11. DIET of alkali atoms from mineral surfaces

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-03-01

    To investigate mechanisms for the origin of alkalis in the atmosphere of the Moon, we are studying the electron- and photon-stimulated desorption (ESD and PSD) of K atoms from model mineral surfaces (SiO 2 films), and ESD and PSD of Na atoms from a lunar basalt sample. X-ray photoelectron spectroscopy demonstrates the existence of traces of Na in the lunar sample. To obtain an increased signal for detailed measurements of desorption parameters (appearance thresholds, yields), a fractional monolayer of Na is deposited onto the lunar sample surface. An alkali atom detector based on surface ionization and a time-of-flight technique are used for DIET measurements, together with a pulsed electron gun, and a mechanically chopped and filtered mercury arc light source. We find that bombardment of the alkali covered surfaces by UV photons or by electrons with energies E>4 eV causes desorption of "hot" alkali atoms. The results are consistent with the model based on charge transfer from the substrate to adsorbate which was developed to explain our previous measurements of sodium desorption from a silica surface and desorption of K atoms from water ice. The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  12. Catalyst for propylene ammoxidation to acrylonitrile

    SciTech Connect

    Paparizos, C.; Shaw, W.G.

    1992-07-28

    This patent describes a catalyst composition. It comprises: a complex of the catalytic oxides of molybdenum, bismuth, iron, cobalt, nickel, chromium, one or more of phosphorus and antimony, one or more of the group comprising alkali metals, and optionally one or more of an alkaline earth metal, a rare earth metal, niobium, thallium, arsenic, magnesium, zinc, cadmium, vanadium, boron, calcium, tin, germanium, manganese, tungsten, and/or tellurium having he formula: Mo[sub a]Bi[sub b]Fe[sub c]Co[sub d]Ni[sub e]Cr[sub f]X[sub g]Z[sub j]O[sub x].

  13. Refractories for high-alkali environments

    SciTech Connect

    Rau, A.W.; Cloer, F.

    1996-01-01

    There are two reliable and cost-effective tests for evaluating refractory materials. They are used to determine which refractory products allow greater variance in fuel type with respect to alkali environment for coal-fired applications. Preselection of a particular refractory is important because of down-time cost for premature failure. One test is a variation of the standard alkali cup test. The second involves reacting test specimens with the contaminant, followed by physical properties testing to determine degree of degradation and properties affected. The alkali cup test rates products using a relative numerical scale based upon visual appearance. This test indicates the presence and relative degree of chemical attack to the refractory. The physical properties test determines the specific properties affected by the given contaminant.

  14. Synthesis, structures, and properties of crystalline salts with radical anions of metal-containing and metal-free phthalocyanines.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-01-12

    Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10.

  15. Synthesis, structures, and properties of crystalline salts with radical anions of metal-containing and metal-free phthalocyanines.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-01-12

    Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10. PMID:25388432

  16. Catalysts for converting syngas into liquid hydrocarbons and methods thereof

    DOEpatents

    Yu, Fei; Yan, Qiangu; Batchelor, William

    2016-03-15

    The presently-disclosed subject matter includes methods for producing liquid hydrocarbons from syngas. In some embodiments the syngas is obtained from biomass and/or comprises a relatively high amount of nitrogen and/or carbon dioxide. In some embodiments the present methods can convert syngas into liquid hydrocarbons through a one-stage process. Also provided are catalysts for producing liquid hydrocarbons from syngas, wherein the catalysts include a base material, a transition metal, and a promoter. In some embodiments the base material includes a zeolite-iron material or a cobalt-molybdenum carbide material. In still further embodiments the promoter can include an alkali metal.

  17. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  18. [Catalyst research]. Final Report

    SciTech Connect

    Ian P Rothwell; David R McMillin

    2005-03-14

    Research results are the areas of catalyst precursor synthesis, catalyst fluxionality, catalyst stability, polymerization of {alpha}-olefins as well as the chemistry of Group IV and Group V metal centers with aryloxide and arylsulfide ligands.

  19. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  5. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  9. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  12. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  13. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  17. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  18. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  19. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    SciTech Connect

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  20. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  1. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered. PMID:8433244

  2. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  3. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  4. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  5. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  6. Dual component cracking catalyst with vanadium passivation and improved sulfur tolerance

    SciTech Connect

    Kennedy, J.V.; Jossens, L.W.

    1991-01-29

    This patent describes a dual component catalyst composition for the catalytic cracking of metal-containing hydrocarbonaceous feedstock. It comprises: a first component comprising an active cracking catalyst; and a second component, as a separate and distinct entity. The second component comprises: a calcium and magnesium containing material selected from the group consisting of dolomite, substantially amorphous calcium magnesium silicate, calcium magnesium oxide, calcium magnesium acetate, calcium magnesium carbonate, and calcium magnesium subcarbonate; a magnesium containing material comprising a hydrous magnesium silicate, and a binder selected from the group consisting of kaolin, bentonite, montmorillonite, saponite, hectorite, alumina, silica, titania, zirconia, silica-alumina, and combinations thereof.

  7. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  8. Structures and thermodynamics of the mixed alkali alanates

    NASA Astrophysics Data System (ADS)

    Graetz, J.; Lee, Y.; Reilly, J. J.; Park, S.; Vogt, T.

    2005-05-01

    The thermodynamics and structural properties of the hexahydride alanates (M2M'AlH6) with the elpasolite structure have been investigated. A series of mixed alkali alanates ( Na2LiAlH6, K2LiAlH6 , and K2NaAlH6 ) were synthesized and found to reversibly absorb and desorb hydrogen without the need for a catalyst. Pressure-composition isotherms were measured to investigate the thermodynamics of the absorption and desorption reactions with hydrogen. Isotherms for catalyzed (4 mol% TiCl3 ) and uncatalyzed Na2LiAlH6 exhibited an increase in kinetics, but no change in the bulk thermodynamics with the addition of a dopant. A structural analysis using synchrotron x-ray diffraction showed that these compounds favor the Fm3¯m space group with the smaller ion (M') occupying an octahedral site. These results demonstrate that appropriate cation substitutions can be used to stabilize or destabilize the material and may provide an avenue to improving the unfavorable thermodynamics of a number of materials with promising gravimetric hydrogen densities.

  9. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta. PMID:25605624

  10. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta.

  11. Electrochemical catalyst recovery method

    DOEpatents

    Silva, Laura J.; Bray, Lane A.

    1995-01-01

    A method of recovering catalyst material from latent catalyst material solids includes: a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications.

  12. Electrochemical catalyst recovery method

    DOEpatents

    Silva, L.J.; Bray, L.A.

    1995-05-30

    A method of recovering catalyst material from latent catalyst material solids includes: (a) combining latent catalyst material solids with a liquid acid anolyte solution and a redox material which is soluble in the acid anolyte solution to form a mixture; (b) electrochemically oxidizing the redox material within the mixture into a dissolved oxidant, the oxidant having a potential for oxidation which is effectively higher than that of the latent catalyst material; (c) reacting the oxidant with the latent catalyst material to oxidize the latent catalyst material into at least one oxidized catalyst species which is soluble within the mixture and to reduce the oxidant back into dissolved redox material; and (d) recovering catalyst material from the oxidized catalyst species of the mixture. The invention is expected to be particularly useful in recovering spent catalyst material from petroleum hydroprocessing reaction waste products having adhered sulfides, carbon, hydrocarbons, and undesired metals, and as well as in other industrial applications. 3 figs.

  13. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition. PMID:19235995

  14. Fabrication and catalytic tests of MCM-22/silicon carbide structured catalysts.

    PubMed

    Gu, Lijun; Ma, Ding; Hu, Gang; Wu, Jingjing; Wang, Hongxia; Sun, Changyong; Yao, Songdong; Shen, Wenjie; Bao, Xinhe

    2010-10-28

    The structured catalyst of zeolite MCM-22/silicon carbide (SiC) was prepared for the first time through the in situ hydrothermal synthesis approach. The zeolite loading of the structured catalyst could be tuned by changing the synthesis time and applying alkali pre-treatment of SiC substrate. An additional silica layer formed on SiC substrate after the precalcination treatment facilitated the crystallization of MCM-22 zeolite on the SiC substrate. The MCM-22/SiC structured catalyst thus prepared exhibited good catalytic performance in the methane dehydroaromatization reaction.

  15. Long-Life Catalyst

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STC Catalysts, Inc. (SCi) manufactures a noble metal reducible oxide catalyst consisting primarily of platinum and tin dioxide deposited on a ceramic substrate. It is an ambient temperature oxidation catalyst that was developed primarily for Carbon Dioxide Lasers.The catalyst was developed by the NASA Langley Research Center for the Laser Atmospheric Wind Sounder Program (LAWS) which was intended to measure wind velocity on a global basis. There are a number of NASA owned patents covering various aspects of the catalyst.

  16. Infrared spectra of FHF - in alkali halides

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  17. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  18. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  19. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  20. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  1. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  2. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  3. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  4. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    PubMed Central

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  5. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    PubMed

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%.

  6. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices

    NASA Astrophysics Data System (ADS)

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed.

  7. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  8. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  9. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  10. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  11. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  12. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  13. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  14. Solvation at nanoscale: Alkali-halides in water clusters

    SciTech Connect

    Partanen, Leena; Mikkelae, Mikko-Heikki; Huttula, Marko; Tchaplyguine, Maxim; Zhang Chaofan; Andersson, Tomas; Bjoerneholm, Olle

    2013-01-28

    The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

  15. Bench-scale studies on gasification of biomass in the presence of catalysts

    SciTech Connect

    Mudge, L.K.; Baker, E.G.; Brown, M.D.; Wilcox, W.A.

    1987-11-01

    This report summarizes the results of bench-scale studies on the development of catalysts for conversion of biomass to specific gas products. The primary objective of these studies was to define operating conditions that allow long lifetimes for secondary catalysts used in biomass gasification. Nickel-based catalysts that were found to be active for conversion of wood to synthesis gases in previous studies were evaluated. These catalysts remained active indefinitely in laboratory studies but lost activity rapidly when evaluated in a process research unit. Bench-scale equipment was designed and installed to resolve the differences between laboratory and PRU results. Primary catalysts (alkali carbonates) were also evaluated for their effectiveness in improving conversion yields from biomass gasification. 21 refs., 27 figs., 19 tabs.

  16. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    DOEpatents

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  17. Deactivation mechanism of potassium on the V₂O₅/CeO₂ catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx.

    PubMed

    Peng, Yue; Li, Junhua; Huang, Xu; Li, Xiang; Su, Wenkang; Sun, Xiaoxu; Wang, Dezhi; Hao, Jiming

    2014-04-15

    A series of V2O5/CeO2 catalysts with different potassium loadings were prepared to investigate alkali deactivations for selective catalytic reduction of NOx with NH3. An alkali poisoning mechanism could be attributed to surface acidity, reducibility, and NOx adsorption/desorption behaviors. The detailed factors are as follows: (1) decrease of surface acidity suppresses NH3 adsorption by strong bonding of alkali to vanadia (major factor); (2) low reducibility prohibits NH3 activation and NO oxidation by formation bonding of alkali to vanadia and ceria (important factor); (3) active NOx(-) species at low temperature diminish because of coverage of alkali on the surfaces (minor factor); and (4) stable, inactive nitrate species at high temperature increase by generating new basic sites (important factor).

  18. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-05-27

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  19. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1991-11-30

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this program is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  20. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-08-29

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  1. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  2. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  3. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  4. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  5. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  6. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  7. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  8. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  9. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  10. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  11. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  12. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  13. Packing transition in alkali metallic clusters

    NASA Astrophysics Data System (ADS)

    Kawai, R.; Sung, Ming Wen; Weare, John H.

    1996-03-01

    Small metallic clusters form a local geometric configuration quite different from the bulk crystals. As the cluster size increases, several transitions in the local coordination take place before the bulk structure appears. These transitions involve change in the nature of chemical bonds. We have systematically investigated the structural transition of various alkali metal clusters including binary compounds using an ab initio molecular dynamics simulation. Among them, Li clusters exhibit unusual transition in their packing pattern. Small lithium clusters (N <= 21) form open structures based on a ``solvation shell''.(M. Sung, R. Kawai, and J. Weare, Phys. Rev. Lett. 73) (1994) 3552., which is quite different from other alkali metal clusters. The bonding of these small clusters is partially ionic. Above N=25, a close-packed structure is established. However, the local configuration still differ from that of the bulk crystal. As the size further increases, the ionic nature decreases and the system reaches another close-packed structure based on the Mackay icosahedron, which is similar to the bulk crystal structure.

  14. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  15. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  16. Catalyst by Design

    SciTech Connect

    Narula, Chaitanya Kumar; DeBusk, Melanie Moses

    2014-01-01

    The development of new catalytic materials is still dominated by trial and error methods. Although it has been successful, the empirical development of catalytic materials is time consuming and expensive with no guarantee of success. In our laboratories, we are developing a comprehensive catalysts by design that involves state-of-the-art first principle density functional theory calculations, experimental design of catalyst sites, and sub- ngstr m resolution imaging with an aberration-corrected electron microscope to characterize the microstructure. In this chapter, we focus on supported platinum cluster catalyst systems which are one of the most important industrial catalysts and attempt to demonstrate the feasibility of the catalyst by design concept.

  17. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  18. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  20. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  1. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  2. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  3. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  4. System for reactivating catalysts

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Anderson, Raymond P.

    2010-03-02

    A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

  5. Thermal Processing Techniques to Improve Metal Sulfide Mixed Alcohol Catalyst Performance

    SciTech Connect

    Hensley, J.; Menart, M.; Costelow, K.; Thibodeaux, J.; Yung, M.

    2011-01-01

    Research over several decades by several institutions has shown that alkali-promoted metal sulfide catalysts are capable of producing mixed alcohols from syngas with high selectivity and yield. Unfortunately, process models suggest that syngas to mixed alcohol processes, and especially thermochemical biomass to mixed alcohol processes, require improvements to sulfide catalyst activity and/or selectivity for acceptable economics. These improvements, if incremental, cannot result in increased process complexity, capital expenditure, or catalyst costs. It is well accepted among catalyst researchers that thermal processing techniques like calcining and reduction can have profound effects on the properties and performance of finished catalysts, and that small variations in thermal processing do not usually affect the overall cost of the catalyst. Metal sulfide catalysts are no exception but surprisingly, little attention has been given to the effects of thermal treatment on bulk metal sulfide mixed alcohol catalysts. This presentation will discuss how parameters like temperature, dwell time, metal ratios, and purge gas affect the performance and physical properties of K-Co/Mo catalysts.

  6. Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties

    PubMed Central

    Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas

    2016-01-01

    Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. PMID:26999112

  7. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  8. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  9. Steam gasification of carbon: Catalyst properties

    SciTech Connect

    Falconer, J.L.

    1993-01-10

    Coal gasification by steam is of critical importance in converting coal to gaseous products (CO, H[sub 2], CO[sub 2], CH[sub 4]) that can then be further converted to synthetic natural gas and higher hydrocarbon fuels. Alkali and alkaline earth metals (present as oxides) catalyze coal gasification reactions and cause them to occur at significantly lower temperatures. A more fundamental understanding of the mechanism of the steam gasification reaction and catalyst utilization may well lead to better production techniques, increased gasification rates, greater yields, and less waste. We are studying the gasification of carbon by steam in the presence of alkali and alkaline earth oxides, using carbonates as the starting materials. Carbon dioxide gasification (CO[sub 2] + C --> 2CO) has been studied in some detail recently, but much less has been done on the actual steam gasification reaction, which is the main thrust of our work. In particular, the form of the active catalyst compound during reaction is still questioned and the dependence of the concentration of active sites on reaction parameters is not known. Until recently, no measurements of active site concentrations during reaction had been made. We have recently used transient isotope tracing to determine active site concentration during CO[sub 2] gasification. We are investigating the mechanism and the concentration of active sites for steam gasification with transient isotopic tracing. For this technique, the reactant feed is switched from H[sub 2]0 to isotopically-labeled water at the same concentration and tow rate. We can then directly measure, at reaction the concentration of active catalytic sites, their kinetic rate constants, and the presence of more than one rate constant. This procedure allows us to obtain transient kinetic data without perturbing the steady-state surface reactions.

  10. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  11. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  12. Textured catalysts and methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2007-03-06

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. Mild hydrotreating of heavy oils with modified alumina based catalysts

    SciTech Connect

    Dai, E.P.; Campbell, C.N.

    1994-12-31

    The decreasing demand for heavy fuels oils requires that refiners find ways for converting heavy hydrocarbon feedstocks to higher value mid-distillate products. To increase mid-distillate production, the refiner can choose from several processing options such as hydrocracking, fluid catalytic cracking, and coking. All of these options, however, require heavy capital investments. Because of these high investment costs, refiners are continually searching for conversion processes which may be utilized in existing units. One such process is mild hydrocracking (MHC). The general objective of this work is to identify an MHC catalyst which gives a higher conversion level for heavy hydrocarbon feedstocks, especially that fraction of the feedstock that boils above 1,000 F (538 C), while maintaining the same amount of sediment production. The conventional hydrocracking catalysts that consist of acidic cracking components such as Y zeolite, though exhibiting conversion improvements over alumina based catalysts, were not suitable for processing of heavy oils in the mild hydrocracking mode because of high sediment formation. In contrast, alumina catalysts containing basic oxides (alkali metal and alkaline earth metal) not only improve heavy oil conversion but, also maintain the sediment make at the same level as alumina based catalysts. The sediment make generally decreased with increasing macroporosity.

  14. SIMS image processing methods for petroleum cracking catalyst characterization

    SciTech Connect

    Leta, D.P.; Lamberti, W.A.; Disko, M.M.; Kugler, E.L.; Varady, W.A. )

    1990-08-01

    The technique of Imaging Secondary Ion Mass Spectrometry (SIMS) has proven to be very well suited to the characterization of fluidized petroleum cracking catalysts (FCC). The ability to view elemental distributions with 0.5 micron spatial resolution at concentrations in the ppm range mates well with the submicron phases and low concentration contaminants present in commercial multi-component FCC particles. The use of ultra-low light level imaging systems with the intrinsically sensitive SIMS technique makes real time viewing of many of the elements important in FCC catalysts possible. Aluminum, silicon and the rare earth elements serve to define the major phases present within each catalyst particle, while the transition row elements and all of the alkali and alkaline elements may be seen at trace concentrations. Of particular importance is the use of the technique to study the distributions of nickel and vanadium which are the most deleterious of the contaminant metals. Modern image processing computers and software now allow the rapid quantitative analysis of SIMS elemental images in order to more clearly reveal the locations of the catalyst phases and the quantitative distributions of the contaminant metals on those phases. Although the analysis techniques discussed in this study may be applied to any of the contaminant elements, for simplicity the authors will limit their examples to the major catalyst elements, and the nickel and vanadium contaminants.

  15. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  16. Heat pipes containing alkali metal working fluid

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1981-01-01

    A technique for improving high temperature evaporation-condensation heat-transfer devices which have important and unique advantage in terrestrial and space energy processing is described. The device is in the form of a heat pipe comprising a sealed container or envelope which contains a capillary wick. The temperature of one end of the heat pipe is raised by the input of heat from an external heat source which is extremely hot and corrosive. A working fluid of a corrosive alkali metal, such as lithium, sodium, or potassium transfers this heat to a heat receiver remote from the heat source. The container and wick are fabricated from a superalloy containing a small percentage of a corrosion inhibiting or gettering element. Lanthanum, scandium, yttrium, thorium, and hafnium are utilized as the alloying metal.

  17. Volcanic Origin of Alkali Halides on Io

    NASA Technical Reports Server (NTRS)

    Schaefer, L.; Fegley, B., Jr.

    2003-01-01

    The recent observation of NaCl (gas) on Io confirms our earlier prediction that NaCl is produced volcanically. Here we extend our calculations by modeling thermochemical equilibrium of O, S, Li, Na, K, Rb, Cs, F, Cl, Br, and I as a function of temperature and pressure in a Pele-like volcanic gas with O/S/Na/Cl/K = 1.518/1/0.05/0.04/0.005 and CI chondritic ratios of the other (as yet unobserved) alkalis and halogens. For reference, the nominal temperature and pressure for Pele is 1760 plus or minus 210 K and 0.01 bars based on Galileo data and modeling.

  18. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  19. Methods of making textured catalysts

    DOEpatents

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  20. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  1. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  2. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  3. Controlled in-situ dissolution of an alkali metal

    DOEpatents

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  4. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  5. Catalyst enhances Claus operations

    SciTech Connect

    Dupin, T.; Voizin, R.

    1982-11-01

    An improved Claus catalyst offers superior activity that emphasizes hydrolysis of CS/sub 2/ in the first converter. The catalyst is insensitive to oxygen action at concentrations generally found in Claus gas feeds. It also has an excellent resistance to hydrothermal shocks that may occur during shutdown of the sulfur line. Collectively, these properties make this catalyst the most active formula now available for optimum Claus yields and COS/CS/sub 2/ hydrolysis conversion.

  6. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  7. Polyolefin catalyst manufacturing

    SciTech Connect

    Inkrott, K.E.; Scinta, J.; Smith, P.D. )

    1989-10-16

    Statistical process control (SPC) procedures are absolutely essential for making new-generation polyolefin catalysts with the consistent high quality required by modern polyolefin processes. Stringent quality assurance is critical to the production of today's high-performance catalysts. Research and development efforts during the last 20 years have led to major technological improvements in the polyolefin industry. New generation catalysts, which once were laboratory curiosities, must now be produced commercially on a regular and consistent basis to meet the increasing requirements of the plastics manufacturing industry. To illustrate the more stringent requirements for producing the new generation polyolefin catalysts, the authors compare the relatively simple, first-generation polypropylene catalyst production requirements with some of the basic requirements of manufacturing a more complex new-generation catalyst, such as Catalyst Resources Inc.'s LYNX 900. The principles which hold true for the new-generation catalysts such as LYNX 900 are shown to apply equally to the scale-up of other advanced technology polyolefin catalysts.

  8. METHOD OF PURIFYING CATALYSTS

    DOEpatents

    Joris, G.G.

    1958-09-01

    It has been fuund that the presence of chlorine as an impurity adversely affects the performance of finely divided platinum catalysts such as are used in the isotopic exchange process for the production of beavy water. This chlorine impurity may be removed from these catalysts by treating the catalyst at an elevated temperature with dry hydrogen and then with wet hydrogen, having a hydrogen-water vapor volume of about 8: 1. This alternate treatment by dry hydrogen and wet hydrogen is continued until the chlorine is largely removed from the catalyst.

  9. Liquefaction with microencapsulated catalysts

    DOEpatents

    Weller, Sol W.

    1985-01-01

    A method of dispersing a liquefaction catalyst within coal or other carbonaceous solids involves providing a suspension in oil of microcapsules containing the catalyst. An aqueous solution of a catalytic metal salt is emulsified in the water-immiscible oil and the resulting minute droplets microencapsulated in polymeric shells by interfacial polycondensation. The catalyst is subsequently blended and dispersed throughout the powdered carbonaceous material to be liquefied. At liquefaction temperatures the polymeric microcapsules are destroyed and the catalyst converted to minute crystallites in intimate contact with the carbonaceous material.

  10. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production

    PubMed Central

    2014-01-01

    Background Transesterification catalyzed by solid base catalyst is a brilliant technology for the noble process featuring the fast reaction under mild reacting condition in biodiesel production. Heterogeneous base catalysts are generally more reactive than solid acid catalysts which require extreme operating condition for high conversion and biodiesel yield. In the present study, synthesis of biodiesel was studied by using edible (palm) or non-edible (Jatropha) feedstock catalyzed by heterogeneous base catalysts such as supported alkali metal (NaOH/Al2O3), alkaline-earth metal oxide (MgO, CaO and SrO) and mixed metal oxides catalysts (CaMgO and CaZnO). Results The chemical characteristic, textural properties, basicity profile and leaching test of synthesized catalysts were studied by using X-ray diffraction, BET measurement, TPD-CO2 and ICP-AES analysis, respectively. Transesterification activity of solid base catalysts showed that > 90% of palm biodiesel and > 80% of Jatropha biodiesel yield under 3 wt.% of catalyst, 3 h reaction time, methanol to oil ratio of 15:1 under 65°C. This indicated that other than physicochemical characteristic of catalysts; different types of natural oil greatly influence the catalytic reaction due to the presence of free fatty acids (FFAs). Conclusions Among the solid base catalysts, calcium based mixed metal oxides catalysts with binary metal system (CaMgO and CaZnO) showed capability to maintain the transesterification activity for 3 continuous runs at ~ 80% yield. These catalysts render high durability characteristic in transesterification with low active metal leaching for several cycles. PMID:24812574

  11. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  12. Bilayer resist system utilizing alkali-developable organosilicon positive photoresist

    NASA Astrophysics Data System (ADS)

    Nate, Kazuo; Mizushima, Akiko; Sugiyama, Hisashi

    1991-06-01

    A bi-layer resist system utilizing an alkali-developable organosilicon positive photoresist (OSPR) has been developed. The composite prepared from an alkali-soluble organosilicon polymer, poly(p- hydroxybenzylsilsesquioxane) and naphthoquinone diazide becomes a alkali-developable positive photoresist which is sensitive to UV (i line - g line) region, and exhibited high oxygen reactive ion etching (O2 RIE) resistance. The sensitivity and the resolution of OSPR are almost the same as those of conventional novolac-based positive photoresists. The bi-layer resist system utilizing OSPR as the top imaging layer gave fine patterns of underlayers with high aspect ratio easily.

  13. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-02-24

    The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.

  14. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  15. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    PubMed

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity.

  16. Neutron imaging of alkali metal heat pipes

    SciTech Connect

    Kihm, Ken; Kirchoff, Eric; Golden, Matt; Rosenfeld, J.; Rawal, S.; Pratt, D.; Bilheux, Hassina Z; Walker, Lakeisha MH; Voisin, Sophie; Hussey, Dan

    2013-01-01

    High-temperature heat pipes are two-phase, capillary driven heat transfer devices capable of passively providing high thermal fluxes. Such a device using a liquid-metal coolant can be used as a solution for successful thermal management on hypersonic flight vehicles. Imaging of the liquid-metal coolant inside will provide valuable information in characterizing the detailed heat and mass transport. Neutron imaging possesses an inherent advantage from the fact that neutrons penetrate the heat pipe metal walls with very little attenuation, but are significantly attenuated by the liquid metal contained inside. Using the BT-2 beam line at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, preliminary efforts have been conducted on a nickel-sodium heat pipe. The contrast between the attenuated beam and the background is calculated to be approximately 3%. This low contrast requires sacrifice in spatial or temporal resolution so efforts have since been concentrated on lithium (Li) which has a substantially larger neutron attenuation cross section. Using the CG-1D beam line at the High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, the first neutron images of high-temperature molybdenum (Mo)-Li heat pipes have been achieved. The relatively high neutron cross section of Li allows for the visualization of the Li working fluid inside the heat pipes. The evaporator region of a gravity assisted cylindrical heat pipe prototype 25 cm long was imaged from start-up to steady state operation up to approximately 900 C. In each corner of the square bore inside, the capillary action raises the Li meniscus above the bulk Li pool in the evaporator region. As the operational temperature changes, the meniscus shapes and the bulk meniscus height also changes. Furthermore, a three-dimensional tomographic image is also reconstructed from the total of 128 projection images taken 1.4o apart in which the Li had

  17. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  18. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  19. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  20. Alkali activation of halloysite for adsorption and release of ofloxacin

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Zhang, Junping; Wang, Aiqin

    2013-12-01

    Halloysite nanotubes are promising vehicles for the controlled release of drug molecules. Here, we systematically investigated the effects of alkali activation on the physicochemical properties, structure and morphology of halloysite nanotubes by XRD, FTIR, SEM and TEM, etc. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that alkali activation dissolves amorphous aluminosilicate, free silica and alumina, which results in the increase in pore volume and pore size. OFL is adsorbed onto halloysite via electrostatic interaction and complexation. Alkali activation could increase the adsorption capacity of halloysite for OFL and prolong release of the adsorbed OFL compared with the natural halloysite. Thus, alkali activation of halloysite is an effective protocol to improve the adsorption and prolong release for cationic drug molecules.

  1. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  2. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  3. The 4843 Alkali Metal Storage Facility Closure Plan

    SciTech Connect

    Not Available

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

  4. Method for intercalating alkali metal ions into carbon electrodes

    DOEpatents

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  5. Fischer-Tropsch Catalysts

    NASA Technical Reports Server (NTRS)

    White, James H. (Inventor); Taylor, Jesse W. (Inventor)

    2008-01-01

    Catalyst compositions and methods for F-T synthesis which exhibit high CO conversion with minor levels (preferably less than 35% and more preferably less than 5%) or no measurable carbon dioxide generation. F-T active catalysts are prepared by reduction of certain oxygen deficient mixed metal oxides.

  6. Reducible oxide based catalysts

    DOEpatents

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  7. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  8. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  9. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  10. Microwave Spectra and Structure of {H_2-CuF}: Overview of the Complexes of Hydrogen with Metal-Containing Diatomics

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S. Grubbs, Ii; Frohman, Daniel J.; Yu, Zhenhong; Novick, Stewart E.

    2013-06-01

    We present here the FTMW spectra of the various isotopologues of the intermediate strength bound complex of dihydrogen with copper fluoride. The bond between the two moieties is surprisingly strong, the H-H forming the cross of the T with the Cu closest to H_2 in the C_{{2v}} structure. Laser ablation was used to produce both copper isotopologues of p-H_2-CuF, o-D_2-CuF, and HD-CuF whose J = 1 - 0 transitions were observed. Significant changes in the nuclear quadrupole coupling constants for the copper nucleus in H_2-CuF compared to that in uncomplexed CuF suggests bonding greater than that typical of van der Waals interactions. This talk will serve as the introduction to presentations at this meeting of other H_2 metal containing diatomics. D. J. Frohman, {G. S. Grubbs II}, Z. Yu, S. E. Novick, Inorg. Chem., 52, 816-822 (2013).

  11. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  12. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  13. Bismuth - modified supported catalysts

    SciTech Connect

    Nadirov, N.K.; Lykova, L.F.; Petrosyan, L.S.

    1985-09-01

    Bismuth was used as an additive to three-component catalysts prepared through modification of an aluminoplatinorhenium catalyst by III and IV nontransition and iron subgroup elements. Since there is conflicting information on bismuth additions, the role of bismuth in polycomponent catalysts and whether it promotes aromatization catalysts was considered. The effect of temperature on the yield of n-hexane conversion products in the presence of Pt-Re-Co-Bi/gamma-A1/sub 2/O/sub 3/ is shown. Conclusive results establish that the addition of 0.5% nickel to a 0.3 Pt-0.3 Re/gamma-A1/sub 2/O/sub 3/ catalyst (in wt.%) increased the yield of benzene from n-hexane by 5.7%. It was also shown that 0.1 to 0.25 wt.% bismuth poisons two- and three-component samples containing 0.25 to 0.3 wt.% platinum.

  14. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGES

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  15. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  16. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  17. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  18. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  19. Superconductivity in alkali-doped fullerene nanowhiskers.

    PubMed

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  20. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  1. Superconductivity in alkali-doped fullerene nanowhiskers

    NASA Astrophysics Data System (ADS)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  2. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  3. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  4. Combining the effects of pulping severity and alkali concentration to optimize the lignocellulose-based AlkaPolP biorefinery concept.

    PubMed

    Hundt, Martin; Engel, Norman; Schnitzlein, Klaus; Schnitzlein, Michael G

    2014-08-01

    Within the framework of the development of a novel lignocellulose biorefinery concept alkaline polyol pulping (AlkaPolP) of Pinus sylvestris was performed at different alkali concentrations. The obtained experimental data were used to develop simple mathematical models that allow the prediction of product yields and properties in dependence on a single parameter combining the effects of time, temperature and catalyst concentration. For this purpose the usual approach expressing the pulping severity R0 had to be complemented by the alkali concentration resulting in a modified severity factor R₀('). The found regression models in the form of functions f(R₀(')) can be used as a tool for the identification of those pulping conditions giving the desired product characteristics. Because the yields of the biorefinery products reach their maxima at different pulping conditions the optimization of the whole process turned out to be a multi-objective optimization problem.

  5. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  6. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  7. Increasing FCC regenerator catalyst level

    SciTech Connect

    Wong, R.F. )

    1993-11-01

    A Peruvian FCC unit's operations were improved by increasing the regenerator's catalyst level. This increase resulted in lower stack losses, an improved temperature profile, increased catalyst activity and a lower catalyst consumption rate. A more stable operation saved this Peruvian refiner over $131,000 per year in catalyst alone. These concepts and data may be suitable for your FCC unit as well.

  8. Intercalated clay catalysts

    SciTech Connect

    Pinnavaia, T.J.

    1983-04-22

    Recent advances in the intercalation of metal complex cations in smectite clay minerals are leading to the development of new classes of selective heterogeneous catalysts. The selectivity of both metal-catalyzed and proton-catalyzed chemical conversions in clay intercalates can often be regulated by controlling surface chemical equilibria, interlamellar swelling, or reactant pair proximity in the interlayer regions. Also, the intercalation of polynuclear hydroxy metal cations and metal cluster cations in smectites affords new pillared clay catalysts with pore sizes that can be made larger than those of conventional zeolite catalysts.

  9. Intercalated Clay Catalysts

    NASA Astrophysics Data System (ADS)

    Pinnavaia, Thomas J.

    1983-04-01

    Recent advances in the intercalation of metal complex cations in smectite clay minerals are leading to the development of new classes of selective heterogeneous catalysts. The selectivity of both metal-catalyzed and proton-catalyzed chemical conversions in clay intercalates can often be regulated by controlling surface chemical equilibria, interlamellar swelling, or reactant pair proximity in the interlayer regions. Also, the intercalation of polynuclear hydroxy metal cations and metal cluster cations in smectites affords new pillared clay catalysts with pore sizes that can be made larger than those of conventional zeolite catalysts.

  10. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  11. Alkali content of alpine ultramafic rocks

    USGS Publications Warehouse

    Hamilton, W.; Mountjoy, W.

    1965-01-01

    The lower limit of abundance of sodium and potassium in ultramafic rocks is less than the threshold amount detectable by conventional analytical methods. By a dilutionaddition modification of the flame-spectrophotometric method, sodium and potassium have been determined in 40 specimens of alpine ultramafic rocks. Samples represent six regions in the United States and one in Australia, and include dunite, peridotite, pyroxenite, and their variably serpentinized and metamorphosed derivatives. The median value found for Na2O is 0.004 per cent, and the range of Na2O is 0.001-0.19. The median value for K2O is 0.0034 per cent and the range is 0.001-0.031 per cent. Alkali concentrations are below 0.01 per cent Na2O in 28 samples and below 0.01 per cent K2O in 35. Derivation of basalt magma from upper-mantle material similar to such ultramafic rocks, as has been postulated, is precluded by the relative amounts of sodium and potassium, which are from 200 to 600 times more abundant in basalt than in the ultramafic rocks. Similar factors apply to a number of other elements. No reasonable process could produce such concentrations in, for example, tens of thousands of cubic miles of uniform tholeiitic basalt. The ultramafic rocks might have originated either as magmatic crystal precipitates or as mantle residues left after fusion and removal of basaltic magma. Injection of ultramafic rocks to exposed positions is tectonic rather than magmatic. ?? 1965.

  12. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  13. Catalyst for microelectromechanical systems microreactors

    DOEpatents

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  14. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  15. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2004-09-21

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  16. Plasmatron-catalyst system

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander; Alexeev, Nikolai

    2007-10-09

    A plasmatron-catalyst system. The system generates hydrogen-rich gas and comprises a plasmatron and at least one catalyst for receiving an output from the plasmatron to produce hydrogen-rich gas. In a preferred embodiment, the plasmatron receives as an input air, fuel and water/steam for use in the reforming process. The system increases the hydrogen yield and decreases the amount of carbon monoxide.

  17. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, Rayford G.; Dosch, Robert G.

    1993-01-01

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  18. Crystalline titanate catalyst supports

    DOEpatents

    Anthony, R.G.; Dosch, R.G.

    1993-01-05

    A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

  19. Synthesis and characterization of metal oxide promoted alumina catalyst for biofuel production

    NASA Astrophysics Data System (ADS)

    Anisuzzaman, S. M.; Krishnaiah, D.; Bono, A.; Abang, S.; Sundang, M.; Suali, E.; Lahin, F. A.; Shaik Alawodeen, A.

    2016-06-01

    Alumina has been widely used as a support in catalysis process which owing to its extremely thermal and mechanical stability, high surface area, large pore size and pore volume. The aim of this study was to synthesize calcium oxide-supported basic alumina catalysts (CaO/Al2O3) by impregnation method and to characterize the properties of the catalyst based on its surface area and porosity, functional group, surface morphology and particle size. Impregnation method was chosen for the synthesization of catalyst which involved contacting the support with the impregnating solution for a particular period of time, drying the support to remove the imbibed liquid and calcination process. In the preparation of catalyst, catalytic performance of CaO/Al2O3 catalyst was measured at different calcined temperatures (650°C, 750°C and 800°C). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Mercury intrusion porosimetry (MIP), and particle size analyzer (Zetasizer) was used to characterize the catalyst. The highest total specific area and the total porosity of the catalyst was obtained at 750oC. FTIR analysis basically studied on the functional groups present in each catalyst synthesized, while SEM analysis was observed to have pores on its surface. Moreover, CaO/Al2O3 catalysts at 650°C produced the smallest particle size (396.1 mn), while at 750°C produced the largest particle size (712.4 mn). Thus it can be concluded that CaO/Al2O3 catalysts has great potential coimnercialization since CaO has attracted many attentions compared to other alkali earth metal oxides especially on the transesterification reaction.

  20. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, Robert J.; Gao, Hanrong

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilation, olefin oxidation, isomerization, hydrocyanation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical.

  1. Catalyst system comprising a first catalyst system tethered to a supported catalyst

    DOEpatents

    Angelici, R.J.; Gao, H.

    1998-08-04

    The present invention provides new catalyst formats which comprise a supported catalyst tethered to a second and different catalyst by a suitable tethering ligand. A preferred system comprises a heterogeneous supported metal catalyst tethered to a homogeneous catalyst. This combination of homogeneous and heterogeneous catalysts has a sufficient lifetime and unusually high catalytic activity in arene hydrogenations, and potentially many other reactions as well, including, but not limited to hydroformylation, hydrosilication, olefin oxidation, isomerization, hydrocyanidation, olefin metathesis, olefin polymerization, carbonylation, enantioselective catalysis and photoduplication. These catalysts are easily separated from the products, and can be reused repeatedly, making these systems very economical. 2 figs.

  2. Infrared Laser-Induced Breakdown Spectroscopy of Alkali Metal Halides

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2008-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. LIBS is a relatively simple technique and has been successfully employed in applications such as environmental monitoring, materials analysis, medical diagnostics, industrial process control, and homeland security. Most LIBS applications are limited to emission features in the ultraviolet-visible-near infrared (UV-VIS-NIR) region arising from atoms and simple molecular fragments. In the present work, we report on the observation of mid- infrared emission lines from alkali metal halides due to laser-induced breakdown processes. The studied alkali metal halides included LiCl, NaCl, NaBr, KCl, KBr, KF, RbCl, and RbBr. The laser-induced plasma was produced by focusing a 16 mJ pulsed Nd:YAG laser (1064 nm) on the target. The LIBS infrared emission from alkali halides showed intense and narrow bands located in the region from 2-8 μm. The observed emission features were assigned to atomic transitions between higher-lying Rydberg states of neutral alkali atoms. More detailed results of the performed IR LIBS studies on alkali metal halides will be discussed at the conference.

  3. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  4. Supported Oxide Catalysts from Chelating Precursors

    NASA Astrophysics Data System (ADS)

    Prieto-Centurion, Dario

    Supported Fe catalysts and, in particular, Fe and substituted MFI zeolites have attracted industrial and academic attention due to their ability to promote selective catalytic reduction of NOx and selective partial oxidation of hydrocarbons. It is generally accepted that some form of highly dispersed, binuclear or atomically-isolated metal species are involved in the selective processes catalyzed these materials. Several studies have sought to reproduce the structures and reactivity of these substituted zeolites on dierent supports. Given that specialized reagents or preparation conditions that are required in some of these preparation methods, and that multiple surface structures are often formed, this dissertation aimed to develop a route to highly dispersed supported transition metals using commonly available reactants and synthesis routes. Described here is a straightforward and effective procedure to control dispersion and surface speciation of Fe on SiO2 and CeO2 through incipient wetness impregnation (IWI) of the support with aqueous, anionic complexes of Fe3+ and ethylenediaminetetraacetic acid (EDTA) followed by oxidative heat-treatment. On SiO2, this method preferentially creates isolated surface structures up to loading of 0.9 Fe nm-2 if using alkali counter-cations. This isolated species display classic 'single-site' behavior|constant turn over frequency (TOF) with increasing Fe surface density|in the oxidation of adamantane with H 2O2, indicating active sites are equally accessible and equally active within this range of surface density. Additionally, TOF increases linearly with electronegativity of the alkali counter-cation, suggesting electronic promotion. Conversely, IWI of unprotected Fe3+ produces agglomerates less active in this reaction. On CeO2, the sterics and negative charge imparted on Fe 3+ by EDTA4- inhibits incorporation of Fe into surface vacancies. Instead, formation of two-dimensional oligomeric structures which can undergo Fe3+-Fe2

  5. Comprehensive catalyst management

    SciTech Connect

    Pritchard, S.

    2007-05-15

    From January 2009, as SCR season expands from five months to year-round to meet new US Clean Air Interstate Rule standards, new catalyst strategies are increasingly important. Power plants will need a comprehensive management strategy that accounts for a wide range of old and new issues to achieve peak performance. An optimum plan is necessary for catalyst replacement or addition. SCR systems should be inspected and evaluated at least once a year. Levels of deactivation agents, most often arsenic and calcium oxide, need to match the particular coals used. Tools such as Cormetech's FIELD Guide are available to quantify the effect on catalyst life under various fuel-firing scenarios. Tests should be conducted to evaluate the NH{sub 3}/NOx distribution over time to maximise catalyst performance. The article gives a case study of catalyst management at the Tennessee Valley Authority Allen plant. Recent changes have created new variables to be considered in a catalyst management process, notably the expansion of the operating temperature range, mercury oxidation and SO{sub 3} emission limits. Cormetech has researched these areas. 5 figs., 2 photos.

  6. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. PMID:25984984

  7. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.

  8. Alkali concentration-dependent tailoring of highly controllable titanate nanostructures: From yolk-shell, hollow 3D nanospheres to 1D nanowires

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Luan, Yi; Yang, Mu; Wang, Ge; Tan, Li; Li, Jie

    2014-02-01

    We demonstrate a facile strategy to access 0D nanoparticles to 3D hierarchical structures through a hydrothermal process. The morphology of the products is alkali concentration-dependent, which was systematically investigated. As the NaOH concentration rising, morphology transformations from yolk-shell, hollow hierarchical 3D nanospheres to 1D nanowires are achieved. The crystal phase, the transformation relationship, and the formation mechanisms were studied as well. Furthermore, TiO2 with diversified morphologies was evaluated as styrene oxidation catalyst and showed excellent catalytic activities and chemical stability.

  9. Neuropsychiatric manifestations of alkali metal deficiency and excess.

    PubMed

    Yung, C Y

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study. PMID:6395136

  10. C-CAMP, A closed cycle alkali metal power system

    SciTech Connect

    Wichner, R.P.; Hoffman, H.W.

    1988-01-01

    A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

  11. Alkali-induced enhancement of surface electronic polarizibility.

    PubMed

    Stolbov, Sergey; Rahman, Talat S

    2006-05-12

    From results of ab initio electronic structure calculations based on density functional theory for a set of prototype systems, we find alkali adsorbates to cause a dramatic enhancement of the electronic polarizability of the metal surface extending it several angstroms into the vacuum. This phenomenon is traceable to an unusual feature induced in the surface potential on alkali adsorption. The effect appears to be general, as we find it to be present on metals as varied as Pd and Cu, and helps explain the observed substantial decrease in the vibrational frequency of molecules when coadsorbed with alkalis on metal surfaces. Specifically, for two dissimilar molecules CO and O(2), we trace the softening of the frequencies of their stretching mode when coadsorbed with K on Pd(111) to the enhanced electronic polarizability.

  12. Neuropsychiatric manifestations of alkali metal deficiency and excess

    SciTech Connect

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  13. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  14. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  15. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2006-08-22

    The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  16. Magnetic and dendritic catalysts.

    PubMed

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  17. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    SciTech Connect

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosing the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).

  18. Hydrothermal chemistry, structures, and luminescence studies of alkali hafnium fluorides.

    PubMed

    Underwood, Christopher C; McMillen, Colin D; Chen, Hongyu; Anker, Jeffery N; Kolis, Joseph W

    2013-01-01

    This paper describes the hydrothermal chemistry of alkali hafnium fluorides, including the synthesis and structural characterization of five new alkali hafnium fluorides. Two ternary alkali hafnium fluorides are described: Li(2)HfF(6) in space group P31m with a = 4.9748(7) Å and c = 4.6449(9) Å and Na(5)Hf(2)F(13) in space group C2/m with a = 11.627(2) Å, b = 5.5159(11) Å, and c = 8.4317(17) Å. Three new alkali hafnium oxyfluorides are also described: two fluoroelpasolites, K(3)HfOF(5) and (NH(4))(3)HfOF(5), in space group Fm3m with a = 8.9766(10) and 9.4144(11) Å, respectively, and K(2)Hf(3)OF(12) in space group R3m with a = 7.6486(11) Å and c = 28.802(6) Å. Infrared (IR) spectra were obtained for the title solids to confirm the structure solutions. Comparison of these materials was made based on their structures and synthesis conditions. The formation of these species in hydrothermal fluids appears to be dependent upon both the concentration of the alkali fluoride mineralizer solution and the reaction temperature. Both X-ray and visible fluorescence studies were conducted on compounds synthesized in this study and showed that fluorescence was affected by a variety of factors, such as alkali metal size, the presence/absence of oxygen in the compound, and the coordination environment of Hf(4+).

  19. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  20. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  1. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  2. Metal induced gap states at alkali halide/metal interface

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-10-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide.

  3. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  4. Interfacial tension in immiscible mixtures of alkali halides.

    PubMed

    Lockett, Vera; Rukavishnikova, Irina V; Stepanov, Victor P; Tkachev, Nikolai K

    2010-02-01

    The interfacial tension of the liquid-phase interface in seven immiscible reciprocal ternary mixtures of lithium fluoride with the following alkali halides: CsCl, KBr, RbBr, CsBr, KI, RbI, and CsI was measured using the cylinder weighing method over a wide temperature range. It was shown that for all mixtures the interfacial tension gradually decreases with growing temperature. The interfacial tension of the reciprocal ternary mixtures at a given temperature increases both with the alkali cation radius (K(+) < Rb(+) < Cs(+)) and with the radius of the halogen anion (Cl(-) < Br(-) < I(-)). PMID:20094678

  5. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  6. Low Temperature Oxidation Catalyst

    NASA Technical Reports Server (NTRS)

    1995-01-01

    One day soon homeowners everywhere may be protected from deadly carbon monoxide fumes, thanks to a device invented at NASA Langley Research Center in Hampton, Va. It uses a new class of low-temperature oxidation catalysts to convert carbon monoxide to non-toxic carbon dioxide at room temperature. It can also remove formaldehyde from the air. The catalysts initially were developed for research involving carbon dioxide lasers. Industry already has shown an interest. Rochester Gas and Electric Co., of Rochester, N.Y., has an agreement with NASA Langley to develop a product for habitable spaces such as homes, cars and aircraft. The Mantic Corp., of Salt Lake City, Utah, plans to use them in breathing apparatus, such as firefighter masks. The catalysts also have applications as trace-gas detectors, and in cold-engine emission control. To work, the catalysts - tin oxide and platinum - are applied to a surface. Air passing over the surface reacts with the catalysts, transforming carbon monoxide and formaldehyde. The device requires no energy for operation, doesn't need to be plugged in, has no moving parts and lasts a long time.

  7. Reforming using erionite catalysts

    SciTech Connect

    Liers, J.; Meusinger, J.; Moesch, A. ); Reschetilowski, W. )

    1993-08-01

    The advantage of reforming on erionite catalysts is a product with high octane numbers and low amounts of aromatics. This advantage seems to be slight at reaction pressures lower than 25 bar. But it is possible to compensate for the influence of pressure by varying the erionite content within the catalyst and the reaction temperature. When reforming on Pt/Al[sub 2]O[sub 3] catalysts, the following reactions take place: dehydrocyclization of paraffins to naphthenes, dehydrogenation of naphthenes to aromatics, isomerication of normal paraffins remains in the product, lowering its octane number. By using a Ni/H-erionite catalyst, the octane rating can be increased by 3 to 7 numbers through selective hydrocracking of n-alkanes in the reformate. Erionite catalysts favor shape-selective hydrocracking of normal paraffins and the formation of cyclopentane derivatives lowering the content of aromatics during reforming reactions. Reducing the reaction pressure decreases hydrocracking activity and cyclopentane formation. These results can be interpreted in terms of thermodynamic restrictions and deactivation.

  8. The poisoning effect of potassium ions doped on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjing; Cui, Suping; Guo, Hongxia; Ma, Xiaoyu; Luo, Xiaogen

    2015-11-01

    The poisoning of alkali metal on MnOx/TiO2 catalysts used for selective catalytic reduction (SCR) of NOx by NH3 was investigated. KNO3, KCl and K2SO4 were doped on MnOx/TiO2 catalysts by sol-gel method, respectively. The SCR activity of each catalyst was measured for the removal of NOx with NH3 in the temperature range 90-330 °C. The experimental results showed that catalyst with KNO3 have a stronger deactivation effect than other catalysts. The properties of the catalysts were characterized by XRD, BET, SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS analyses. The characterized results indicated that KNO3, KCl and K2SO4 caused the similar decrease of specific surface area and pore volume, but the quantity of acid sites for KNO3-MnOx/TiO2 catalyst reduced sharply. The main reason for catalyst deactivation is attributed to two aspects: one was physical influences for the decrease of surface area and pore volume, another was chemical influences that the K+ ions decomposed by KNO3 neutralized Brønsted acid sites of catalyst and reduced their reducibility. The chemical influence played a leading role on the deactivation of catalysts.

  9. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    NASA Astrophysics Data System (ADS)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  10. Quality assurance for purchased catalysts

    SciTech Connect

    Puls, F.H. )

    1988-09-01

    Petrochemical industries require many different types of catalysts in process operations. A significantly portion of these requirements is being met through purchases from merchant catalyst suppliers. The importance of catalysts and of catalyst quality to these industries cannot be overstated. It is not surprising that in the quest for quality which has affected much of US industry in the last few years, catalysts were among the first products which were singled out for development of quality assurance. Currently, catalyst supplier auditing and certification procedures are being implemented. Primary emphasis is on the implementation of statistical process control procedures in the manufacture of commercially available catalyst. Thus, a trend exists to move from quality assurance (QA) and quality control (QC) for purchased catalysts to statistical process control (SPC). This development is being supported by audits of the suppliers' manufacturing quality control systems. The keystone of quality management is the concept of customer and supplier working together for their mutual advantage. The focus in this presentation will be on two topics. (1) Fixed bed catalysts: The recognition of lot-to-lot variations led to purchase specifications which then led to quality control procedures for purchased catalysts. (2) Catalyst suppliers: the limitations of quality control for catalysts will be discussed, and the efforts of catalyst suppliers to apply SPC will be mentioned.

  11. Supported organoiridium catalysts for alkane dehydrogenation

    SciTech Connect

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  12. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    NASA Astrophysics Data System (ADS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  13. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  14. Oxide Nanocrystal Model Catalysts.

    PubMed

    Huang, Weixin

    2016-03-15

    Model catalysts with uniform and well-defined surface structures have been extensively employed to explore structure-property relationships of powder catalysts. Traditional oxide model catalysts are based on oxide single crystals and single crystal thin films, and the surface chemistry and catalysis are studied under ultrahigh-vacuum conditions. However, the acquired fundamental understandings often suffer from the "materials gap" and "pressure gap" when they are extended to the real world of powder catalysts working at atmospheric or higher pressures. Recent advances in colloidal synthesis have realized controlled synthesis of catalytic oxide nanocrystals with uniform and well-defined morphologies. These oxide nanocrystals consist of a novel type of oxide model catalyst whose surface chemistry and catalysis can be studied under the same conditions as working oxide catalysts. In this Account, the emerging concept of oxide nanocrystal model catalysts is demonstrated using our investigations of surface chemistry and catalysis of uniform and well-defined cuprous oxide nanocrystals and ceria nanocrystals. Cu2O cubes enclosed with the {100} crystal planes, Cu2O octahedra enclosed with the {111} crystal planes, and Cu2O rhombic dodecahedra enclosed with the {110} crystal planes exhibit distinct morphology-dependent surface reactivities and catalytic properties that can be well correlated with the surface compositions and structures of exposed crystal planes. Among these types of Cu2O nanocrystals, the octahedra are most reactive and catalytically active due to the presence of coordination-unsaturated (1-fold-coordinated) Cu on the exposed {111} crystal planes. The crystal-plane-controlled surface restructuring and catalytic activity of Cu2O nanocrystals were observed in CO oxidation with excess oxygen. In the propylene oxidation reaction with O2, 1-fold-coordinated Cu on Cu2O(111), 3-fold-coordinated O on Cu2O(110), and 2-fold-coordinated O on Cu2O(100) were identified

  15. Partial oxidation catalyst

    DOEpatents

    Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv

    2000-01-01

    A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

  16. Catalyst, method of making, and reactions using the catalyst

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2002-08-27

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  17. Catalyst, Method Of Making, And Reactions Using The Catalyst

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Gao, Yufei

    2004-07-13

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  18. Catalyst, method of making, and reactions using the catalyst

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Gao, Yufei [Kennewick, WA

    2009-03-03

    The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.

  19. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  20. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  1. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  2. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  3. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  5. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  7. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  8. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting...

  9. Secret Lives of Catalysts Revealed

    SciTech Connect

    Salmeron, Miquel; Somorjai, Gabor

    2008-01-01

    Miquel Salmeron and Gabor Somorjai of Berkeley Lab's Materials Sciences Division discuss the first-ever glimpse of nanoscale catalysts in action. More information: http://newscenter.lbl.gov/press-releases/2008/10/21/catalysts/

  10. Engelhard expands oxidation catalysts portfolio

    SciTech Connect

    Rotman, D.

    1997-02-26

    Engelhard says its agreement earlier this month to market Amoco Chemical`s proprietary maleic anhydride catalyst reflects an effort to expand its speciality catalysts business (CW, Feb. 19, p.5). In particular, the company says it is looking for additional alliances to bolster its oxidation catalysts portfolio. {open_quotes}There are some areas of oxidation catalysis that are reasonably attractive,{close_quotes} says Paul Lamb, marketing director/chemical catalysts. He says that while Engelhard is not interested in commodity oxidation catalysts, such as those used to make sulfuric acid, it does want to boost offerings for higher-value oxidation catalysts. Engelhard is collaborating with Geon to offer oxychlorination catalysts for making ethylene dichloride. It also markets oxidation catalysts for vinyl acetate production.

  11. Passivating metals on cracking catalysts

    SciTech Connect

    Mckay, D.L.

    1980-01-15

    Metals such as nickel, vanadium and iron contaminating a cracking catalyst are passivated by contacting the cracking catalyst under elevated temperature conditions with antimony selenide, antimony sulfide, antimony sulfate, bismuth selenide, bismuth sulfide, or bismuth phosphate.

  12. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  13. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  14. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified...

  16. Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.

    1995-01-01

    Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.

  17. Factors associated with alkali production from arginine in dental biofilms.

    PubMed

    Huang, X; Exterkate, R A M; ten Cate, J M

    2012-12-01

    Alkali production by oral bacteria in the oral cavity has been linked to protection against dental caries. The current study assessed various parameters associated with ammonium produced during arginine catabolism in dental biofilms. Polymicrobial biofilms were formed with saliva as the inoculum. The NH(3) level and the pH of the spent medium were used to monitor and quantitate the bacterial reactions. The presence of sucrose, a low buffer capacity, and a low pH (≤ pH 4.5) were found to hamper alkali production from arginine. The rate of alkali production exhibited an optimum around pH 5.5. Biofilms were found to produce NH(3) also from polypeptides and proteins in the medium. The biofilm age affected these processes. The experimental model proved valuable for the assessment of the collective bacterial reactions determining the overall pH outcome. This experimental approach could bridge the gap in our knowledge between pH-rise phenomena and caries susceptibility from clinical observations and studies performed on alkali-producing bacteria in well- controlled, though simplified, in vitro models. Analysis of our data supports the hypothesis that the initiation and progression of dental caries may be influenced by the relative rates of acid and base formation, which critically depend on the aforementioned parameters. PMID:23010718

  18. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  19. High capacity nickel battery material doped with alkali metal cations

    DOEpatents

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  20. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  1. Method of assembling and sealing an alkali metal battery

    DOEpatents

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  2. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    SciTech Connect

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.; Sturgeon, M.; Katahira, R.; Beckham, G. T.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCD of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.

  3. Process of making supported catalyst

    DOEpatents

    Schwarz, James A.; Subramanian, Somasundaram

    1992-01-01

    Oxide supported metal catalysts have an additional metal present in intimate association with the metal catalyst to enhance catalytic activity. In a preferred mode, iridium or another Group VIII metal catalyst is supported on a titania, alumina, tungsten oxide, silica, or composite oxide support. Aluminum ions are readsorbed onto the support and catalyst, and reduced during calcination. The aluminum can be added as aluminum nitrate to the iridium impregnate solution, e.g. chloroiridic acid.

  4. Facile nucleophilic fluorination reactions using tert-alcohols as a reaction medium: significantly enhanced reactivity of alkali metal fluorides and improved selectivity.

    PubMed

    Kim, Dong Wook; Jeong, Hwan-Jeong; Lim, Seok Tae; Sohn, Myung-Hee; Katzenellenbogen, John A; Chi, Dae Yoon

    2008-02-01

    Although protic solvents are generally not preferred for nucleophilic displacement reactions because of their partial positive charge and hydrogen-bonding capacity that solvate the nucleophile and reduce its reactivity, we recently reported a remarkably beneficial effect of using tertiary alcohols as a reaction media for nucleophilic fluorination with alkali metal fluorides, as well as fluorine-18 radiolabeling with [18F]fluoride ion for the preparation of PET radiopharmaceuticals. In this work, we investigate further the influence of the tert-alcohol reaction medium for nucleophilic fluorination with alkali metal fluorides by studying various interactions among tert-alcohols, the alkali metal fluoride (CsF), and the sulfonyloxy substrate. Factors such as hydrogen bonding between CsF and the tert-alcohol solvent, the formation of a tert-alcohol solvated fluoride, and hydrogen bonding between the sulfonate leaving group and the tert-alcohol appear to contribute to the dramatic increase in the rate of the nucleophilic fluorination reaction in the absence of any kind of catalyst. We found that fluorination of 1-(2-mesyloxyethyl)naphthalene (5) and N-5-bromopentanoyl-3,4-dimethoxyaniline (8) with Bu(4)N(+)F(-) in a tert-alcohol afforded the corresponding fluoro products in much higher yield than obtained by the conventional methods using dipolar aprotic solvents. The protic medium also suppresses formation of byproducts, such as alkenes, ethers, and cyclic adducts.

  5. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  6. Catalyst increases COS conversion

    SciTech Connect

    Goodboy, K.P.

    1985-02-18

    Increasingly stringent air quality legislation is placing greater emphasis on conversion of COS and CS/sub 2/ in Claus plants for the maximum sulfur recovery. Overall sulfur recovery goals are dependent upon outstanding service from the Claus catalyst in each reactor because catalyst activity is a major factor influencing plant performance. Today's catalyst are much improved over those used 10 years ago for the Claus (H/sub 2/S/SO/sub 2/) reaction. Recent technical efforts have focused on the conversion of COS and CS/sub 2/. These carbon-sulfur compounds can account for as much as 50% of the sulfur going to the incinerator, which essentially converts all remaining sulfur species to SO/sub 2/ for atmospheric dispersion. Previously, the mechanism of Claus COS conversion, i.e., hydrolysis or oxidation by SO/sub 2/, was studied and the conclusion was that oxidation by SO/sub 2/ appears to be the predominate mode of COS conversion on sulfated alumina catalysts.

  7. Nanopore and nanoparticle catalysts.

    PubMed

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  8. Sabatier Catalyst Poisoning Investigation

    NASA Technical Reports Server (NTRS)

    Nallette, Tim; Perry, Jay; Abney, Morgan; Knox, Jim; Goldblatt, Loel

    2013-01-01

    The Carbon Dioxide Reduction Assembly (CRA) on the International Space Station (ISS) has been operational since 2010. The CRA uses a Sabatier reactor to produce water and methane by reaction of the metabolic CO2 scrubbed from the cabin air and the hydrogen byproduct from the water electrolysis system used for metabolic oxygen generation. Incorporating the CRA into the overall air revitalization system has facilitated life support system loop closure on the ISS reducing resupply logistics and thereby enhancing longer term missions. The CRA utilizes CO2 which has been adsorbed in a 5A molecular sieve within the Carbon Dioxide Removal Assembly, CDRA. There is a potential of compounds with molecular dimensions similar to, or less than CO2 to also be adsorbed. In this fashion trace contaminants may be concentrated within the CDRA and subsequently desorbed with the CO2 to the CRA. Currently, there is no provision to remove contaminants prior to entering the Sabatier catalyst bed. The risk associated with this is potential catalyst degradation due to trace organic contaminants in the CRA carbon dioxide feed acting as catalyst poisons. To better understand this risk, United Technologies Aerospace System (UTAS) has teamed with MSFC to investigate the impact of various trace contaminants on the CRA catalyst performance at relative ISS cabin air concentrations and at about 200/400 times of ISS concentrations, representative of the potential concentrating effect of the CDRA molecular sieve. This paper summarizes our initial assessment results.

  9. Catalyst, 2000-01.

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2001-01-01

    "Catalyst" is a publication designed to assist higher education in developing alcohol and other drug prevention polices and programs that will foster students' academic and social development and promote campus and community safety. Issue 1 of volume 6 introduces a series of "Presidential Profiles" in which university presidents describe their…

  10. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Octane boosting catalyst

    SciTech Connect

    Miller, J.G.; Pellet, R.J.; Shamshoun, E.S.; Rabo, J.A

    1989-02-07

    The invention provides petroleum cracking and octane boosting catalysts containing a composite of an intermediate pore NZMS in combination with another non-zeolitic molecular sieve having the same framework structure, and processes for cracking of petroleum for the purpose of enhancing the octane rating of the gasoline produced.

  12. Zinc sulfide liquefaction catalyst

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process for the liquefaction of carbonaceous material, such as coal, is set forth wherein coal is liquefied in a catalytic solvent refining reaction wherein an activated zinc sulfide catalyst is utilized which is activated by hydrogenation in a coal derived process solvent in the absence of coal.

  13. Noble metal ionic catalysts.

    PubMed

    Hegde, M S; Madras, Giridhar; Patil, K C

    2009-06-16

    Because of growing environmental concerns and increasingly stringent regulations governing auto emissions, new more efficient exhaust catalysts are needed to reduce the amount of pollutants released from internal combustion engines. To accomplish this goal, the major pollutants in exhaust-CO, NO(x), and unburned hydrocarbons-need to be fully converted to CO(2), N(2), and H(2)O. Most exhaust catalysts contain nanocrystalline noble metals (Pt, Pd, Rh) dispersed on oxide supports such as Al(2)O(3) or SiO(2) promoted by CeO(2). However, in conventional catalysts, only the surface atoms of the noble metal particles serve as adsorption sites, and even in 4-6 nm metal particles, only 1/4 to 1/5 of the total noble metal atoms are utilized for catalytic conversion. The complete dispersion of noble metals can be achieved only as ions within an oxide support. In this Account, we describe a novel solution to this dispersion problem: a new solution combustion method for synthesizing dispersed noble metal ionic catalysts. We have synthesized nanocrystalline, single-phase Ce(1-x)M(x)O(2-delta) and Ce(1-x-y)Ti(y)M(x)O(2-delta) (M = Pt, Pd, Rh; x = 0.01-0.02, delta approximately x, y = 0.15-0.25) oxides in fluorite structure. In these oxide catalysts, Pt(2+), Pd(2+), or Rh(3+) ions are substituted only to the extent of 1-2% of Ce(4+) ion. Lower-valent noble metal ion substitution in CeO(2) creates oxygen vacancies. Reducing molecules (CO, H(2), NH(3)) are adsorbed onto electron-deficient noble metal ions, while oxidizing (O(2), NO) molecules are absorbed onto electron-rich oxide ion vacancy sites. The rates of CO and hydrocarbon oxidation and NO(x) reduction (with >80% N(2) selectivity) are 15-30 times higher in the presence of these ionic catalysts than when the same amount of noble metal loaded on an oxide support is used. Catalysts with palladium ion dispersed in CeO(2) or Ce(1-x)Ti(x)O(2) were far superior to Pt or Rh ionic catalysts. Therefore, we have demonstrated that the

  14. Sulfur condensation in Claus catalyst

    SciTech Connect

    Schoffs, G.R.

    1985-02-01

    The heterogeneous reactions in which catalyst deactivation by pore plugging occur are listed and include: coke formation in petroleum processing, especially hydrocracking and hydrodesulfurization catalysts; steam reforming and methnation catalysts; ammonia synthesis catalyst; and automobile exhause catalysts. The authors explain how the Claus process converts hydrogen sulfide produced by petroleum desulfurization units and gas treatment processes into elemental sulfur and water. More than 15 million tons of sulfur are recovered annually by this process. Commercial Claus plants appear to operate at thermodynamic equilibrium. Depending on the H2S content of the feed and the number of reactors, total H2S conversion to elemental sulfur can exceed 95%.

  15. Molybdenum sulfide/carbide catalysts

    DOEpatents

    Alonso, Gabriel; Chianelli, Russell R.; Fuentes, Sergio; Torres, Brenda

    2007-05-29

    The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.

  16. Methanol-reforming reaction over copper-containing catalysts: the effects of anions and copper loading in the preparation of the catalysts by kneading method

    SciTech Connect

    Kobayashi, H.; Takezawa, N.; Minochi, C.

    1981-06-01

    Methanol-reforming reaction CH/sub 3/OH + H/sub 2/O = 3H/sub 2/ + CO/sub 2/ was carried out over copper-containing catalysts which were prepared from hydroxides of copper or from the hydroxide kneaded with various metal oxides. The specific activity (activity per weight of copper used) either of supported or support-free catalyst was markedly increased when the hydroxide was prepared from alkali solution with addition of copper salt solution at higher pH or when the weight percentage of copper on the support was decreased. However, other kinetic parameters such as activation energy and selectivity of the reaction were unaffected by the preparation of the catalyst unless copper chloride was employed as a starting material of the hydroxide preparation at lower pH. DTA, ir, XPS, AES and other chemical analyses of the catalysts revealed that hydroxide ion in the hydroxide precipitate prepared at lower pH exchanged in part with the anionic group of its starting material during the course of the preparation. The anion or its fragment was found to be strongly held on the surface and inhibited the reaction to a great extent. On the other hand, the anion held was markedly decreased when the catalyst was prepared at higher pH. This catalyst was found to be highly active for the title reaction. The surface areas of metallic copper were considerably increased when copper was kneaded with the support. This gave rise to the increase in the specific activity of the catalyst.

  17. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.

    PubMed

    Gärtner, Christian A; van Veen, André C; Lercher, Johannes A

    2014-09-10

    Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl(-) species acting as active sites are catalytically formed by oxidation of Cl(-) at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl(-) at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl(-). Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity. PMID:25118821

  18. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    PubMed

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  19. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. PMID:24534439

  20. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    PubMed

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction.

  1. Alkali dimers on the surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Lerner, Peter B.; Cole, Milton W.; Cheng, E.

    1995-09-01

    A recent paper by Ancilotto et al. (Zeitschrift für Physik B, in press), presented calculations of adsorption energies and the geometry of a surface dimple for alkali atoms bound to the surfaces of quantum liquids (4He,3He, H2). Here we present a study of the adsorption of two alkali dimers (Li2, Na2) on the surface of liquid helium. The calculations employ a model of an abrupt interface formulated by Ancilotto et al. as well as one using a diffuse interface. Our conclusion its that the dimers are bound to the surface more strongly than their respective monomers. In the case of dimers there is an additional degree of freedom-the orientation of the molecular axis relative to the surface. We study the influence of molecular anisotropy on adsorption by comparing the cases of “erect” and “spinning flat” orientations and conclude that the latter is energetically favored.

  2. Wetting Transitions of Inert Gases on Alkali Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Bojan, M. J.; McDonald, I. A.; Cole, M. W.; Steele, W. A.

    1996-03-01

    Theoretical and experimental discoveries have been made recently of wetting and prewetting transitions of helium and hydrogen films on alkali metal surfaces [1,2]. New experiments show anomalous nonwetting behavior of Ne on Rb and Cs [3]. Building on earlier work [4], we have done and will describe results from the first Monte Carlo simulations showing wetting transitions for classical gases on alkali metal surfaces. * Research supported by an NSF Materials Research Group grant. 1. R. B.Hallock, J. Low Temp. Phys. 101, 31, 1995 2. M. W. Cole, J. Low Temp. Phys. 101, 25, 1995. 3. G. B. Hess, M. Sabatini, and M. H. W. Chan, unpublished 4. J. E. Finn and P. A. Monson, Phys. Rev. A 39, 6402, 1989.

  3. Valence bond cluster studies of alkali metal/semiconductor bonding

    NASA Astrophysics Data System (ADS)

    Tatar, Robert C.; Messmer, Richard P.

    1986-12-01

    We present results of cluster studies of alkali metal/semiconductor bonding. Using the Generalized Valence Bond (GVB) method, we find a remarkable consistency in the behavoir of bonding orbitals for a variety of systems, including: LiH, CLi4, LiH4 and several hypervalent systems, such as SiH3Li2, SiH4Li2. Our results show that the metal-semiconductor bonding in these systems can be understood in terms of a pairing between McAdon-Goddard type metallic bonding orbitals and a set of equivalent orbitals of the non-metallic species. We propose that the results are relevant to the initial stages of alkali overlayer growth on semiconductor surfaces and lead to a simple picture of the bonding including the transition from a non-conducting to a conducting layer. We have considered numerous proposed hypervalent structures in light of the above results and find that they can be understood.

  4. A review of metal recovery from spent petroleum catalysts and ash.

    PubMed

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented.

  5. A review of metal recovery from spent petroleum catalysts and ash.

    PubMed

    Akcil, Ata; Vegliò, Francesco; Ferella, Francesco; Okudan, Mediha Demet; Tuncuk, Aysenur

    2015-11-01

    With the increase in environmental awareness, the disposal of any form of hazardous waste has become a great concern for the industrial sector. Spent catalysts contribute to a significant amount of the solid waste generated by the petrochemical and petroleum refining industry. Hydro-cracking and hydrodesulfurization (HDS) catalysts are extensively used in the petroleum refining and petrochemical industries. The catalysts used in the refining processes lose their effectiveness over time. When the activity of catalysts decline below the acceptable level, they are usually regenerated and reused but regeneration is not possible every time. Recycling of some industrial waste containing base metals (such as V, Ni, Co, Mo) is estimated as an economical opportunity in the exploitation of these wastes. Alkali roasted catalysts can be leached in water to get the Mo and V in solution (in which temperature plays an important role during leaching). Several techniques are possible to separate the different metals, among those selective precipitation and solvent extraction are the most used. Pyrometallurgical treatment and bio-hydrometallurgical leaching were also proposed in the scientific literature but up to now they did not have any industrial application. An overview on patented and commercial processes was also presented. PMID:26188611

  6. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  7. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  8. New microbead cracking catalysts

    SciTech Connect

    Nefedov, S.K.; Guseinov, A.M.; Il'ina, L.M.; Melik-Akhnazarov, T.K.; Stankevich, V.A.

    1984-05-01

    This article reports on the preparation and testing of an experimental batch of KMTsU catalysts using a cocurrent-flow fluid-bed reactor. The proposed manufacturing process is based on the regulation of the density and pore structure of an aluminosilicate matrix by varying the conditions of syneresis and wet treatment in the activation stage. It is recommended that the medium should be at a lower pH in obtaining the gel, that the temperature and pH of the medium should be lower in the activation stage, and that additional dispersion of the gel should be accomplished before spray-drying. The results of the tests on the KMTsU catalyst demonstrate its sufficiently high stable activity, high density (900-920 kg/m/sup 3/), and attrition resistance (92-94%).

  9. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  10. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  11. Na+ and Rb+ tracer diffusion in alkali halides

    NASA Astrophysics Data System (ADS)

    Beniere, F.; Sen, S. K.

    1991-11-01

    We have undertaken a fundamental study of heterodiffusion of foreign ions in pure single crystals. The present work describes the measurements of the diffusion coefficient of monovalent cations in some alkali halides, namely Na+ and Rb+ into KCl, KBr, NaI and KI. The priority is given to the super-accuracy of the experimental data. The target is to test the validity of the existing theories for calculating the enthalpy and entropy of migration.

  12. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  13. Radioisotope powered alkali metal thermoelectric converter design for space systems

    NASA Technical Reports Server (NTRS)

    Sievers, R. K.; Bankston, C. P.

    1988-01-01

    The design concept of an alkali-metal thermoelectric converter (AMTEC) for 15-30-percent-efficient conversion of heat from the General Purpose (radioisotope) Heat Source (GPHS) on spacecraft is presented. The basic physical principles of the conversion cycle are outlined; a theoretical model is derived; a modular design is described and illustrated with drawings; and the overall AMTEC/GPHS system design is characterized. Predicted performance data are presented in extensive tables and graphs and discussed in detail.

  14. Core thresholds and charge-density waves in alkali metals

    NASA Astrophysics Data System (ADS)

    Bruhwiler, P. A.; Schnatterly, S. E.

    1988-07-01

    We have determined experimental upper limits on any broadening which could be due to a charge-density wave in Na and K metal soft x-ray-absorption and emisssion spectra. The upper limit for absorption in Na is a factor of 4 below the expected theoretical value. These results contradict expectations based on the present theory of charge-density waves in alkali metals.

  15. Antacids, Altered Mental Status, and Milk-Alkali Syndrome

    PubMed Central

    Watson, Simon C.; Dellinger, Bonnie B.; Jennings, Katie; Scott, Lancer A.

    2012-01-01

    The frequency of milk-alkali syndrome decreased rapidly after the development of histamine-2 antagonists and proton pump inhibitors for the treatment of peptic ulcer disease; however, the availability and overconsumption of antacids and calcium supplements can still place patients at risk (D. P. Beall et al., 2006). Here we describe a patient who presented with altered mental status, hypercalcemia, metabolic alkalosis, and acute renal failure in the context of ingesting large amounts of antacids to control dyspepsia. PMID:23431478

  16. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    PubMed

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  17. Calculation of the Lamb shift in neutral alkali metals

    NASA Astrophysics Data System (ADS)

    Sapirstein, J.; Cheng, K. T.

    2002-10-01

    The one-loop Lamb shift is calculated for the ground state of the neutral alkali metals lithium through francium. The method used is Furry representation QED, defined in terms of a variety of local potentials. The method is exact in binding corrections, but is potential dependent. Significant differences with known Lamb shift results for lithium are found, and it is shown that large corrections result from a partial set of screening corrections. Comparison with other calculations is made.

  18. An Atypical Cause of Alkali Chemical Burn: a Case Report

    PubMed Central

    Boutefnouchet, T.; Moiemen, N.; Papini, R.

    2010-01-01

    Summary It has already been reported that wet ash turns into a strong alkali agent, which can cause full-thickness skin burns. A case is presented which has the particularity of sustained, self-inflicted contact with wet ash. The coal used was the self-igniting type normally used for burning scented weed or for smoking the hubbly bubbly or shisha pipe. PMID:21991229

  19. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  20. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  1. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  2. FCC catalyst selection

    SciTech Connect

    Carter, G.D.L. ); McElhiney, G. )

    1989-09-01

    This paper discusses a commonly used technique for comparing FCC catalytic selectivities based on the ASTM microactivity test (MAT) procedure, ASTM D-3907-80. In its original form the ASTM test provides only very limited information on selectivity. However, extension of the ASTM MAT procedure by using additional product analyses gives a microselectivity test capable of providing detailed yield structure information. This modified MAT procedure thus provides a cost-effective and rapid means of comparing many catalysts.

  3. Diphenylbutylbenzyl- and diphenyldibenzylphosphonium chlorides are interfacial catalysts in cross-linking of fluorine-containing copolymers

    SciTech Connect

    Lavrova, L.N.; Bondarenko, N.A.; Tsvetkov, E.N.; Nudel'man, Z.N.

    1988-09-10

    Vulcanization in a two-phase system with an interfacial transfer catalyst (ITC) is widely used for obtaining highly thermostable rubbers from fluorine-containing rubbers, copolymers of vinylidene fluoride with hexafluoropropylene. A simple method of synthesis of tertiary diphenylalkylphosphines by alkylation of diphenylphosphine with alkyl halides in the presence of an aqueous alkali and aprotic bipolar solvents (dimethyl sulfide, dimethylformamide, and hexamethanol) has now been developed. They synthesized diphenylbutyl- and diphenylbenzylphosphines by this method, and they were subsequently transformed into the corresponding phosphonium salts by treatment with an excess of benzyl chloride. The prepared diphenylbutylbenzyl- and diphenyldibenzyl- phosphonium chlorides were tested as ITC in vulcanization of SKF-26 fluorine-containing rubber.

  4. Effect of alkali treatment on surface morphology of titanium

    NASA Astrophysics Data System (ADS)

    Tan, K. J.; Wahab, M. A. A.; Mahmod, S.; Idris, M. I.; Abdullah, H. Z.

    2015-07-01

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm-1 at 4 cm-1 resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  5. Electron densities and alkali atoms in exoplanet atmospheres

    SciTech Connect

    Lavvas, P.; Koskinen, T.; Yelle, R. V.

    2014-11-20

    We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.

  6. A Case of Severe Airbag Related Ocular Alkali Injury

    PubMed Central

    Wong, William; Affeldt, John C

    2012-01-01

    While airbags have saved many lives and are clearly beneficial overall, sodium hydroxide (NaOH) powder produced by the inflation reaction can cause significant alkali ocular injury if not irrigated promptly. Here we report a case of severe airbag related ocular alkali injury as a way to bring attention to the need for prompt ocular irrigation following motor vehicle accidents (MVA) with airbag deployment. A 47-year-old man was involved in a MVA with airbag deployment in a rural setting. Attention was paid to several other life-threatening traumatic injuries, however, ocular irrigation was not performed until some 6–7 hours after the MVA. Over the course of 6 months, airbag related alkali injury caused severe limbal ischemia, conjunctivalization of the cornea, corneal epithelial defects, cicatricial scarring, haze, and corneal/limbal vascularization despite amniotic membrane graft. Awareness of the importance of ocular irrigation following airbag deployment must be raised both in the ophthalmology and emergency medicine communities. PMID:22900239

  7. Alkali-related ocular burns: a case series and review.

    PubMed

    Bunker, Daniel J L; George, Robert J; Kleinschmidt, Andrew; Kumar, Rohit J; Maitz, Peter

    2014-01-01

    Alkali burns are known to possess high pathological potential because of their inherent ability to lyse cell membranes and penetrate intraocular structures with devastating results. The authors aimed to evaluate the most common cause of this presentation, the current treatment approaches to injury, and eventual outcome as related to severity. The authors performed a retrospective review of all patients who sustained chemical-related ocular injuries seen at the Concord Hospital Burns Unit, Australia between January 2005 and March 2012. Management was based on cooperation between ophthalmic staff and the burns unit, with emphasis on early aggressive intervention and rigorous follow-up. The records of 39 patients who presented with chemical-related injury were assessed, 12 of whom had confirmed alkali burns involving the cornea. The most commonly implicated agent was sodium hydroxide, usually in the context of otherwise trivial domestic accidents. Acute medical management included copious irrigation and the use of analgesics, cycloplegics, and topical antibiotics. In half the cases, steroid drops and oral vitamin C were also used. Ten of the 12 patients (83%) had return to premorbid visual acuity. Complications included cicatrical ectropion (n = 1), pseudoexfoliative syndrome (n = 1), and symblepharon (n = 1). Surgical correction was needed in the one patient with cicatrical ectropion. This case series shows that appropriate acute management minimizes the potentially devastating sequelae of ocular alkali burns. Emphasis should be placed on prevention of domestic and workplace injuries when using alkaline products.

  8. Effect of alkali treatment on surface morphology of titanium

    SciTech Connect

    Tan, K. J. Wahab, M. A. A. Mahmod, S. Idris, M. I. Abdullah, H. Z.

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  9. Thermal inactivation of alkali phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Tarasevich, B. N.; Chukhrai, E. S.; Poltorak, O. M.

    2009-02-01

    The thermal inactivation of alkali phosphatases from bacteria Escherichia coli (ECAP), bovine intestines (bovine IAP), and chicken intestines (chicken IAP) was studied in different buffer solutions and in the solid state. The conclusion was made that these enzymes had maximum stability in the solid state, and, in a carbonate buffer solution, their activity decreased most rapidly. It was found that the bacterial enzyme was more stable than animal phosphatases. It was noted that, for ECAP, four intermediate stages preceded the loss of enzyme activity, and, for bovine and chicken IAPs, three intermediate stages were observed. The activation energy of thermal inactivation of ECAP over the range 25-70°C was determined to be 80 kJ/mol; it corresponded to the dissociation of active dimers into inactive monomers. Higher activation energies (˜200 kJ/mol) observed at the initial stage of thermal inactivation of animal phosphatases resulted from the simultaneous loss of enzyme activity caused by dimer dissociation and denaturation. It was shown that the activation energy of denaturation of monomeric animal alkali phosphatases ranged from 330 to 380 kJ/mol depending on buffer media. It was concluded that the inactivation of solid samples of alkali phosphatases at 95°C was accompanied by an about twofold decrease in the content of β structures in protein molecules.

  10. Antimicrobial potency of alkali ion substituted calcium phosphate cements.

    PubMed

    Gbureck, Uwe; Knappe, Oliver; Grover, Liam M; Barralet, Jake E

    2005-12-01

    Potassium and sodium containing nanoapatite cements were produced by the reaction of mechanically activated CaNaPO(4) (CSP), CaKPO(4) (CPP) and Ca(2)KNa(PO(4))(2) (CPCP) with a 2.5% Na(2)HPO(4) solution. The cements exhibited clinically acceptable setting times of approximately 5 min and compressive strengths of 5-10 MPa. The antimicrobial properties of the cements were tested with the agar diffusion test using Streptococcus salvarius, Staphylococcus epidermis and Candida albicans. All types of alkali ion containing cements showed a significantly higher antimicrobial potency with inhibition zones of approx. 4-11 mm than a commercial calcium hydroxide cement which resulted in small inhibition zones around the cement samples of a maximum of 1.5 mm. The antimicrobial properties of all the cements were not found to diminish even after longer incubation times. This behaviour was attributed to the formation of soluble alkaline metal phosphates during setting which increased the pH value in the agar gel around the alkali containing calcium phosphate cement to 8.5-10.7 compared to 6.5-8.0 for the Ca(OH)(2) product. The high antimicrobial potency of alkali-calcium phosphate cements may find an application in dentistry as pulp capping agents, root fillers or cavity liners. PMID:16005511

  11. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  12. High temperature corrosion by deposits of alkali salts

    SciTech Connect

    Kloewer, J.

    1996-12-01

    In order to understand and predict how corrosion behavior of metallic high temperature materials is affected by deposits of alkali salts, eight commercial high temperature alloys (AISI 314, alloy 800H, alloy 31, AC66, alloy 45-TM, alloy 625, alloy 59 and alloy C-4) coated with alkali sulfates and chlorides (Na{sub 2}SO{sub 4}/KCl) were investigated in both air and in HCl/SO{sub 2}-containing waste incineration environments. The corrosion rates were found to depend sensitively on the alloy composition, especially on the concentration of molybdenum and silicon. Both stainless steels and nickel base alloys without molybdenum were resistant to dissolution by sulfates in air. Molybdenum-containing steels and nickel base alloys, on the other hand, were extremely susceptible to acidic dissolution in sodium sulfate. These high corrosion rates can be attributed to an increase in salt acidity caused by dissolution of MoO{sub 3}. The effect of HCI in the gas atmosphere was contradictory. All alloys without molybdenum suffered severe internal oxidation, when chlorine was present in the gas atmosphere. The corrosion rates of the nickel-molybdenum alloys, however, were decreased when chlorine was added to the gas phase. The highest corrosion resistance to synthetic waste incineration gas in combination with deposits of alkali sulfates and chlorides was found in the nickel base alloys 45 TM and alloy 625.

  13. Scattering of positrons and electrons by alkali atoms

    NASA Technical Reports Server (NTRS)

    Stein, T. S.; Kauppila, W. E.; Kwan, C. K.; Lukaszew, R. A.; Parikh, S. P.; Wan, Y. J.; Zhou, S.; Dababneh, M. S.

    1990-01-01

    Absolute total scattering cross sections (Q sub T's) were measured for positrons and electrons colliding with sodium, potassium, and rubidium in the 1 to 102 eV range, using the same apparatus and experimental approach (a beam transmission technique) for both projectiles. The present results for positron-sodium and -rubidium collisions represent the first Q sub T measurements reported for these collision systems. Features which distinguish the present comparisons between positron- and electron-alkali atom Q sub T's from those for other atoms and molecules (room-temperature gases) which have been used as targets for positrons and electrons are the proximity of the corresponding positron- and electron-alkali atom Q sub T's over the entire energy range of overlap, with an indication of a merging or near-merging of the corresponding positron and electron Q sub T's near (and above) the relatively low energy of about 40 eV, and a general tendency for the positron-alkali atom Q sub T's to be higher than the corresponding electron values as the projectile energy is decreased below about 40 eV.

  14. Chlor-alkali producers evaluate safer alternatives to asbestos

    SciTech Connect

    Stadig, W.

    1993-03-01

    Until recently, 75% of all US capacity for producing chlor-alkali - more than 40% of the world's capacity - has used asbestos diaphragm-cell technology. Although the Environmental Protection Agency continues to exempt asbestos use in diaphragms from restrictions, producers are considering alternatives. In Germany, stringent regulations will ban asbestos in chlor-alkali production after 1994. Heavy fines were levied recently against some chlor-alkali producers in the United States when EPA inspectors found asbestos fibers in cell renewal areas. Restrictions on the mining of asbestos raise the cost of obtaining adequate amounts of high-quality asbestos and gradually raise the cost of transporting and discarding spent diaphragms. Two alternatives are to use newly developed, non-asbestos diaphragms or to convert to existing ion-exchange membrane-cell technology. Only the former seems economical in the United States. The non-asbestos diaphragm is based on an inorganic polymer composite developed in 1988 as an asbestos substitute. The composite received Du Pont's Plunkett Award for Innovation with Teflon[trademark], landed on the National Development Association's 1991 Honor Roll and became a 1991 R D 100 Award winner. 6 figs.

  15. Steam reforming catalyst

    DOEpatents

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  16. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  19. Modifier interaction and mixed-alkali effect in bond constraint theory applied to ternary alkali metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Poletto Rodrigues, Bruno; Deubener, Joachim; Wondraczek, Lothar

    2016-05-01

    Introducing an interaction parameter γ, we implement modifier interaction and the mixed-alkali effect into bond constraint theory, and apply this extension for simplistic property prediction on ternary phosphate glasses. The severity of the mixed alkali effect results from the interplay of two simultaneous contributions: Bond constraints on the modifier species soften or stiffen with decreasing or increasing γ, respectively. When the modifier size is not too dissimilar the decrease in γ reflects that the alkali ions can easily migrate between different sites, forcing the network to continuously re-accommodate for any subsequent distortions. With increasing size difference, migration becomes increasingly difficult without considerable network deformation. This holds even for smaller ions, where the sluggish dynamics of the larger constituent result in blocking of the fast ion movement, leading to the subsequent increase in γ. Beyond a certain size difference in the modifier pair, a value of γ exceeding unity may indicate the presence of steric hindrance due to the large surrounding modifiers impeding the phosphate network to re-accommodate deformation.

  20. Development of GREET Catalyst Module

    SciTech Connect

    Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.; Cronauer, Donald C.

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.