Regenerable activated bauxite adsorbent alkali monitor probe
Lee, S.H.D.
1992-12-22
A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.
Sensors for monitoring waste glass quality and method of using the same
Bickford, Dennis F.
1994-01-01
A set of three electrical probes for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt.
Sensors for monitoring waste glass quality and method of using the same
Bickford, D.F.
1994-03-15
A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.
Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.
Yin, Jun; Hu, Ying; Yoon, Juyoung
2015-07-21
All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.
Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup
2014-05-01
Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui
2017-01-01
Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649
Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata
2007-09-27
The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest chain polyacid, the formation of a rigid medium (gel) has been observed in the experiments with all cations. After the end point of the titration was passed, a sudden drop in the viscosity and the disappearance of the gelatinous structure were seen. The largest value of viscosity has been recorded for the longest chain polyacid. The change in the cation of the strong base used did not affect the viscosity of the polymeric system.
Jia, Changkai; Zhu, Wei; Ren, Shengwei; Xi, Haijie; Li, Siyuan
2011-01-01
Purpose Suture placement and alkali burn to the cornea are often used to induce inflammatory corneal neovascularization (CorNV) models in animals. This study compares the changes in genome-wide gene expression under these two CorNV conditions in mice. Methods CorNV were induced in Balb/c mice by three interrupted 10–0 sutures placed at sites about 1 mm from the corneal apex, or by alkali burns that were 2 mm in size in the central area of the cornea. At the points in time when neovascularization progressed most quickly, some eyeballs were subjected to histological staining to examine CorNV and inflammatory cells infiltration, and some corneas were harvested to extract mRNA for microarray assay. After normalization and filtering, the microarray data were subject to statistical analysis using Significance Analysis of Microarray software, and interested genes were annotated using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) program. The expression change of classical proangiogenic molecule like vascular endothelial growth factor (VEGF) and antiangiogenic molecule like pigment epithelium-derived factor (PEDF) was further verified using western blotting. Results Suture placement induced CorNV in the areas between the suture and limbus, but did not affect the transparency of the yet unvasuclarized areas of the corneas. In contrast, alkali burn caused edema and total loss of transparency of the whole cornea. Histology showed that sutures only caused localized epithelial loss and inflammatory infiltration between the suture and limbus, but chemical burn depleted the whole epithelial layer of the central cornea and caused heavy cellular infiltration of the whole cornea. At day 5 after suture placement, 1,055 differentially expressed probes were identified, out of which 586 probes were upregulated and 469 probes were downregulated. At a comparable time point, namely on day 6 after the alkali burn to the corneas, 472 probes were upregulated and 389 probes were downregulated. Among these differentially expressed probes, a significant portion (530 probes in total, including 286 upregulated and 244 downregulated probes) showed a similar pattern of change in both models. Annotation (using DAVID) of the overlapping differential genes revealed that the significant enrichment gene ontology terms were “chemotaxis” and “immune response” for the upregulated genes, and “oxidation reduction” and “programmed cell death” for the downregulated genes. Some genes or gene families (e.g., S100A family or α-, β-, or γ-crystallin family) that had not been related to corneal pathogenesis or neovascularization were also revealed to be involved in CorNV. VEGF was upregulated and PEDF was stable as shown with western blotting. Conclusions Sutures and alkali burn to the corneas produced types of damage that affected transparency differentially, but gene profiling revealed similar patterns of changes in gene expression in these two CorNV models. Further studies of the primary genes found to be involved in CorNV will supplement current understanding about the pathogenesis of neovascularization diseases. PMID:21921991
Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katayama, Tetsuya; Tagami, Masahiko; Sarai, Yoshinori
2004-11-15
Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregatesmore » and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.« less
NASA Astrophysics Data System (ADS)
Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin
2017-05-01
The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.
Practical method for transversely measuring the spin polarization of optically pumped alkali atoms
NASA Astrophysics Data System (ADS)
Ding, Zhichao; Yuan, Jie; Long, Xingwu
2018-06-01
A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.
Khatri, Vinay; Meddeb-Mouelhi, Fatma; Adjallé, Kokou; Barnabé, Simon; Beauregard, Marc
2018-01-01
Pretreatment of lignocellulosic biomass (LCB) is a key step for its efficient bioconversion into ethanol. Determining the best pretreatment and its parameters requires monitoring its impacts on the biomass material. Here, we used fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay to study the relationship between surface-exposed polysaccharides and enzymatic hydrolysis of LCB. Our results indicated that alkali extrusion pretreatment led to the highest hydrolysis rates for alfalfa stover, cattail stems and flax shives, despite its lower lignin removal efficiency compared to alkali pretreatment. Corn crop residues were more sensitive to alkali pretreatments, leading to higher hydrolysis rates. A clear relationship was consistently observed between total surface-exposed cellulose detected by the FTCM-depletion assay and biomass enzymatic hydrolysis. Comparison of bioconversion yield and total composition analysis (by NREL/TP-510-42618) of LCB prior to or after pretreatments did not show any close relationship. Lignin removal efficiency and total cellulose content (by NREL/TP-510-42618) led to an unreliable prediction of enzymatic polysaccharide hydrolysis. Fluorescent protein-tagged carbohydrate-binding modules method (FTCM)-depletion assay provided direct evidence that cellulose exposure is the key determinant of hydrolysis yield. The clear and robust relationships that were observed between the cellulose accessibility by FTCM probes and enzymatic hydrolysis rates change could be evolved into a powerful prediction tool that might help develop optimal biomass pretreatment strategies for biofuel production.
Alkali metal ionization detector
Bauerle, James E.; Reed, William H.; Berkey, Edgar
1978-01-01
Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals
NASA Astrophysics Data System (ADS)
Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.
2017-10-01
Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
Code of Federal Regulations, 2010 CFR
2010-07-01
...). (2) You choose the continuous cell room monitoring program option, you certify in your Notification... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Initial Compliance... standards? (a) For each mercury cell chlor-alkali production facility, you have demonstrated initial...
Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...
Fracture properties of concrete specimens made from alkali activated binders
NASA Astrophysics Data System (ADS)
Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk
2017-09-01
The aim of this paper is to quantify crack initiation and other fracture properties - effective fracture toughness and specific fracture energy - of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P-d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P-CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.
Nanoscale insight into the p-n junction of alkali-incorporated Cu(In,Ga)Se 2 solar cells
Stokes, Adam; Al-Jassim, Mowafak; Norman, Andrew; ...
2017-04-05
The effects of alkali diffusion and post-deposition treatment in three-stage processed Cu(In,Ga)Se 2 solar cells are examined by using atom probe tomography and electrical property measurements. Cells, for which the substrate was treated at 650 °C to induce alkali diffusion from the substrate prior to absorber deposition, exhibited high open-circuit voltage (758 mV) and efficiency (18.2%) and also exhibited a 50 to 100-nm-thick ordered vacancy compound layer at the metallurgical junction. Surprisingly, these high-temperature samples exhibited higher concentrations of K at the junction (1.8 at.%) than post-deposition treatment samples (0.4 at.%). A model that uses Ga/(Ga + In) and Cu/(Gamore » + In) profiles to predict bandgaps (+/-17.9 meV) of 22 Cu(In,Ga)Se2 solar cells reported in literature was discussed and ultimately used to predict band properties at the nanoscale by using atom probe tomography data. The high-temperature samples exhibited a greater drop in the valence band maximum (200 meV) due to a lower Cu/(Ga + In) ratio than the post-deposition treatment samples. There was an anticorrelation of K concentrations and Cu/(Ga + In) ratios for all samples, regardless of processing conditions. In conclusion, changes in elemental profiles at the active junctions correlate well with the electrical behaviour of these devices.« less
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
The interactions of sorbates with gallosilicates and alkali-metal exchanged gallosilicates
NASA Astrophysics Data System (ADS)
Limtrakul, J.; Kuno, M.; Treesukol, P.
1999-11-01
Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si-O-T where T=Al or Ga) by weakening the Si-O, Al-O, and Ga-O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, Δ ENSE, of the naked alkali-metal/H 2O adducts with those of the alkali-metal exchanged zeolite/H 2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, Δ E, versus 1/ RX-O w2, with R(X-O w) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H 2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm -1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between Δ νOH and, Δ E, R(X-O w) , and 1/ RX-O w2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.
Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM
2012-07-03
An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.
Bacterial cellulose membrane as separation medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibazaki, Hideki; Kuga, Shigenori; Onabe, Fumihiko
1993-11-10
A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level causedmore » by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy.« less
Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.
Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei
2018-04-09
Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 13 2011-07-01 2011-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 14 2012-07-01 2011-07-01 true Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
40 CFR Table 8 to Subpart IIIii of... - Requirements for Cell Room Monitoring Program
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Requirements for Cell Room Monitoring... Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 8 Table 8 to Subpart IIIII of Part 63—Requirements for Cell Room Monitoring Program As stated in § 63.8192(g)(1), your mercury monitoring system must...
METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE
Smith, R.R.; Echo, M.W.; Doe, C.B.
1963-12-31
A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)
Noise suppression for the differential detection in nuclear magnetic resonance gyroscope
NASA Astrophysics Data System (ADS)
Yang, Dan; Zhou, Binquan; Chen, LinLin; Jia, YuChen; Lu, QiLin
2017-10-01
The nuclear magnetic resonance gyroscope is based on spin-exchange optical pumping of noble gases to detect and measure the angular velocity of the carrier, but it would be challenging to measure the precession signal of noble gas nuclei directly. To solve the problem, the primary detection method utilizes alkali atoms, the precession of nuclear magnetization modulates the alkali atoms at the Larmor frequency of nuclei, relatively speaking, and it is easier to detect the precession signal of alkali atoms. The precession frequency of alkali atoms is detected by the rotation angle of linearly polarized probe light; and differential detection method is commonly used in NMRG in order to detect the linearly polarized light rotation angle. Thus, the detection accuracy of differential detection system will affect the sensitivity of the NMRG. For the purpose of further improvement of the sensitivity level of the NMRG, this paper focuses on the aspects of signal detection, and aims to do an error analysis as well as an experimental research of the linearly light rotation angle detection. Through the theoretical analysis and the experimental illustration, we found that the extinction ratio σ2 and DC bias are the factors that will produce detective noise in the differential detection method.
Ruiz-Osés, M.; Schubert, S.; Attenkofer, K.; ...
2014-12-01
Alkali antimonides have a long history as visible-light-sensitive photocathodes. This study focuses on the process of fabrication of the bi-alkali photocathodes, K 2CsSb. In-situ synchrotron x-ray diffraction and photoresponse measurements were used to monitor phase evolution during sequential photocathode growth mode on Si(100) substrates. The amorphous-to-crystalline transition for the initial antimony layer was observed at a film thickness of 40 Å . The antimony crystalline structure dissolved upon potassium deposition, eventually recrystallizing upon further deposition into K-Sb crystalline modifications. This transition, as well as the conversion of potassium antimonide to K 2CsSb upon cesium deposition, is correlated with changes inmore » the quantum efficiency.« less
40 CFR 63.8244 - How do I monitor and collect data to demonstrate continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... From Mercury Cell Chlor-Alkali Plants Continuous Compliance Requirements § 63.8244 How do I monitor and... temperature specified in § 63.8232(f)(1)(vii) during each heating phase of the regeneration cycle of your... determined according to § 63.8232(f)(2) for three consecutive regeneration cycles, your monitoring value is...
40 CFR 63.8254 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...) If there were no periods during which the mercury continuous emission monitor or CPMS (if applicable... which the mercury continuous emissions monitor or CPMS (if applicable) were out-of-control during the...
Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy
2015-01-01
We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg(2+), Pb(2+), light metal Al(3+) ion, alkali, alkaline earth, and transition metal ions by UV-visible and fluorescent techniques in ACN/H2O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb(2+)/Al(3+) metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb(2+) and Al(3+) ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb(2+) and Al(3+) ions. Copyright © 2014 Elsevier B.V. All rights reserved.
Chip-Scale Atomic Magnetometers
NASA Astrophysics Data System (ADS)
Knappe, Svenja
2010-03-01
Atomic magnetometers have reached sensitivities rivaling those of superconducting quantum interference devices (SQUIDs) in some frequency ranges [1]. A major advancement in atomic magnetometry was made possible by implementing interrogation schemes that suppress spin-exchange collisions between the alkali atoms [2]. Good signal-to-noise can be achieved by operation at very high alkali densities. At the same time, it introduces the challenge to create uniform spin-polarization and monitor the atomic precession about the magnetic field in atomic vapors with large optical densities. Off-resonant detection of the polarization rotation rather than the absorption is essential to operate in this regime. By use of microfabrication methods, we are miniaturizing such atomic magnetometers. They consist of miniature vapor cells with volumes of a few cubic millimeters integrated with micro-optical components. We present the advancement in sensitivities of such devices over nearly four orders of magnitude [3]. This allows for small low-power room-temperature devices with sensitivities that get close to those of SQUIDs in the frequency range around 100 Hz. We outline the current performance of chip-scale atomic magnetometers and the major challenges. Apart from efficient pumping and probing at high optical densities, these include magnetic noise caused by several sensor components and environmental factors, noise on the light fields, as well as magnetic fields from current-carrying parts, such as heaters, lasers, and photodetectors.[4pt] [1] Allred et al., Phys. Rev. Lett. 89, 130801 (2002) [0pt] [2] Happer and Tam, Phys. Rev. A 16, 1877 (1977) [0pt] [3] Griffith et al., Appl. Phys. Lett 94, 023502 (2009)
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...
40 CFR 63.8240 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-product hydrogen stream, each end box ventilation system vent, and each mercury thermal recovery unit vent...
An extensive sampling campaign was conducted in 2005-2007 to monitor the effectiveness of remedial measures to contain mercury pollution at the site of a former mercury cell chlor-alkali plant in Pavlodar, Kazakhstan. Containment measures consisted of cutoff walls and capping of ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, Adam; Al-Jassim, Mowafak; Norman, Andrew
The effects of alkali diffusion and post-deposition treatment in three-stage processed Cu(In,Ga)Se 2 solar cells are examined by using atom probe tomography and electrical property measurements. Cells, for which the substrate was treated at 650 °C to induce alkali diffusion from the substrate prior to absorber deposition, exhibited high open-circuit voltage (758 mV) and efficiency (18.2%) and also exhibited a 50 to 100-nm-thick ordered vacancy compound layer at the metallurgical junction. Surprisingly, these high-temperature samples exhibited higher concentrations of K at the junction (1.8 at.%) than post-deposition treatment samples (0.4 at.%). A model that uses Ga/(Ga + In) and Cu/(Gamore » + In) profiles to predict bandgaps (+/-17.9 meV) of 22 Cu(In,Ga)Se2 solar cells reported in literature was discussed and ultimately used to predict band properties at the nanoscale by using atom probe tomography data. The high-temperature samples exhibited a greater drop in the valence band maximum (200 meV) due to a lower Cu/(Ga + In) ratio than the post-deposition treatment samples. There was an anticorrelation of K concentrations and Cu/(Ga + In) ratios for all samples, regardless of processing conditions. In conclusion, changes in elemental profiles at the active junctions correlate well with the electrical behaviour of these devices.« less
NASA Astrophysics Data System (ADS)
Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.
2000-10-01
The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
Gaowei, M.; Ding, Z.; Schubert, S.; ...
2017-11-10
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaowei, M.; Ding, Z.; Schubert, S.
Advanced photoinjectors, which are critical to many next generation accelerators, open the door to new ways of material probing, both as injectors for free electron lasers and for ultra-fast electron diffraction. For these applications, the nonuniformity of the electric field near the cathode caused by surface roughness can be the dominant source of beam emittance. Therefore, improving the photocathode roughness while maintaining quantum efficiency is essential to the improvement of beam brightness. Here in this article, we report the demonstration of a bi-alkali antimonide photocathode with an order of magnitude improved roughness by sputter deposition from a K 2CsSb sputtermore » target, using in situ and operando X-ray characterizations. We found that a surface roughness of 0.5 nm for a sputtered photocathode with a final thickness of 42 nm can be achieved while still yielding a quantum efficiency of 3.3% at 530 nm wavelength.« less
NASA Astrophysics Data System (ADS)
Kusak, I.; Lunak, M.
2017-09-01
This paper presents basic electric properties of laboratory prepared alkali-activated composite materials on the basis of finely ground granular high furnace slag to which various quantities of carbon nanotubes (CNT) have been added. Impedance spectroscopy in the frequency range from 40 Hz to 1 MHz was used to measure the specimens. Electric resistivity ρ versus frequency and electric resistivity ρ versus CNT content relationships were examined on our specimens R&S ZNC vector analyser with DAK-12 coaxial probe (made by Speag) was used to carry out the measurements at higher frequencies (from 100 MHz to 3 GHz). Electric conductivity σ as a function of the frequency and as a function of the specimen CNT content was studied in this frequency range. Up-to-date instruments and a unique approach have evidently been employed to carry out non-destructive measurement of mortar materials.
Alkali layered compounds interfaces for energy conversion and energy storage
NASA Technical Reports Server (NTRS)
Papageorgopoulos, Chris A.
1996-01-01
During year one a new ultra-high vacuum, an Ar(+) ion sputterer, a low energy electron diffraction (LEED) system, an Auger electron spectrometer (AES), a work function measurement device with a Kelvin probe, and related accessories were used. The study found a focus in the adsorption of chalcogenides on Si and III-V compound semiconductors. In the second year, a scanning tunneling microscope was obtained along with a quadrapole mass spectrometer, power supplies, a computer, a chart recorder, etc. We started the systematic study on the adsorption of chalcogenides on the compound semiconductor surfaces. The third year saw the mounting of the scanning tunneling microscope (STM) on the existing UHV system. The investigation continued with the adsorption of Cs (alkali) on S-covered Si(100)2x1 surfaces. Then the adsorption of S on Cs-covered Si(100) surfaces was studied.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Continuous Compliance... each by-product hydrogen stream, end box ventilation system vent, and mercury thermal recovery unit...
Kim, Jaeseung; Kreller, Cortney R.; Greenberg, Marc M.
2005-01-01
The C4′-oxidized abasic site (C4-AP) is produced by a variety of DNA damaging agents. This alkali labile lesion can exist in up to four diastereomeric cyclic forms, in addition to the acyclic keto-aldehyde. Synthetic oligonucleotides containing the lesion were prepared from a stable photochemical precursor. Chemical integrity of the lesion containing oligonucleotides was probed using phosphodiesterase lability. Analysis of the 3′,5′-phosphate diester of the monomeric lesion released from single diastereomers of photolabile precursors by 1H NMR indicates that isomerization of the hemiacetal and/or hemiketal is rapid. The syntheses and characterization of oligonucleotides containing configurationally stable analogues of C4-AP, which serve as mechanistic probes for deciphering the structural basis of the biochemical and biological effects of the C4′-oxidized abasic lesion, are also described. PMID:16277338
Optical probes for the detection of protons, and alkali and alkaline earth metal cations.
Hamilton, Graham R C; Sahoo, Suban K; Kamila, Sukanta; Singh, Narinder; Kaur, Navneet; Hyland, Barry W; Callan, John F
2015-07-07
Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed.
A 3He-129Xe co-magnetometer probed by a Rb magnetometer with Ramsey-pulse technique
NASA Astrophysics Data System (ADS)
Sheng, Dong; Kabcenell, Aaron; Romalis, Michael
2013-05-01
We report the recent progress in development of a new kind of co-magnetometer, benifiting from both the long spin coherence time of a noble gas and a highly sensitive alkali metal magnetometer. Due to the Fermi-contact interaction between alkali metal electron spin and noble gas nuclear spin the effective magnetization of the noble gas is enhanced by a factor of 6 to 600, allowing near quantum-limited detection of nuclear spins. Collisions between polarized alkali atoms and noble gas also introduce a large shift to the nuclear spin precession frequency. We reduce this effect by using Ramsey pulse techniques to measure the noble gas spin precession frequency ``in the dark'' by turning off the pumping laser between Ramsey pulses. A furthur reduction of the back-hyperpolarization from the noble gas can be achieved by controlling the cell temperature on short time scale. We showed that a 3He-129Xe Ramsey co-magnetometer is effective in cancelling fluctuations of external magnetic fields and gradients and developed cells with sufficient 129Xe T2 time without surface coatings. The new co-magnetometer has potential applications for many precision measurements, such as searches for spin-gravity couplings, electric dipole moments, and nuclear spin gyroscopes. Supported by DARPA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of fourmore » elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.« less
Barton, Zachary J; Rodríguez-López, Joaquín
2017-03-07
We report a method of precisely positioning a Hg-based ultramicroelectrode (UME) for scanning electrochemical microscopy (SECM) investigations of any substrate. Hg-based probes are capable of performing amalgamation reactions with metal cations, which avoid unwanted side reactions and positive feedback mechanisms that can prove problematic for traditional probe positioning methods. However, prolonged collection of ions eventually leads to saturation of the amalgam accompanied by irreversible loss of Hg. In order to obtain negative feedback positioning control without risking damage to the SECM probe, we implement cyclic voltammetry probe approach surfaces (CV-PASs), consisting of CVs performed between incremental motor movements. The amalgamation current, peak stripping current, and integrated stripping charge extracted from a shared CV-PAS give three distinct probe approach curves (CV-PACs), which can be used to determine the tip-substrate gap to within 1% of the probe radius. Using finite element simulations, we establish a new protocol for fitting any CV-PAC and demonstrate its validity with experimental results for sodium and potassium ions in propylene carbonate by obtaining over 3 orders of magnitude greater accuracy and more than 20-fold greater precision than existing methods. Considering the timescales of diffusion and amalgam saturation, we also present limiting conditions for obtaining and fitting CV-PAC data. The ion-specific signals isolated in CV-PACs allow precise and accurate positioning of Hg-based SECM probes over any sample and enable the deployment of CV-PAS SECM as an analytical tool for traditionally challenging conditions.
High resolution in situ ultrasonic corrosion monitor
Grossman, R.J.
1984-01-10
An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.
High resolution in situ ultrasonic corrosion monitor
Grossman, Robert J.
1985-01-01
An ultrasonic corrosion monitor is provided which produces an in situ measurement of the amount of corrosion of a monitoring zone or zones of an elongate probe placed in the corrosive environment. A monitoring zone is preferably formed between the end of the probe and the junction of the zone with a lead-in portion of the probe. Ultrasonic pulses are applied to the probe and a determination made of the time interval between pulses reflected from the end of the probe and the junction referred to, both when the probe is uncorroded and while it is corroding. Corresponding electrical signals are produced and a value for the normalized transit time delay derived from these time interval measurements is used to calculate the amount of corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Jonathan Michael
Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less
UV-active plasmons in alkali and alkaline-earth intercalated graphene
NASA Astrophysics Data System (ADS)
Despoja, V.; Marušić, L.
2018-05-01
The interband π and π +σ plasmons in pristine graphene and the Dirac plasmon in doped graphene are not applicable, since they are broad or weak, and weakly couple to an external longitudinal or electromagnetic probe. Therefore, the ab initio density functional theory is used to demonstrate that the chemical doping of the graphene by the alkali or alkaline-earth atoms dramatically changes the poor graphene excitation spectrum in the ultraviolet frequency range (4-10 eV). Four prominent modes are detected. Two of them are the intralayer plasmons with square-root dispersion, characteristic of the two-dimensional modes. The remaining two are the interlayer plasmons, very strong in the long-wavelength limit but damped for larger wave vectors. The optical absorption calculations show that the interlayer plasmons are both optically active, which makes these materials suitable for small-organic-molecule sensing. This is particularly intriguing because the optically active two-dimensional plasmons have not been detected in other materials.
Measurement of vehicle potential using a mother-daughter tethered rocket
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Denig, W. F.; Banks, P. M.; Raitt, W. J.; Kawashima, N.; Hirao, K.; Oyama, K. I.; Sasaki, S.
1982-01-01
The equipment, experimental design, and results of mother-daughter tethered probes for measuring the potential of a spacecraft are described. The object was to inject a probe into the ionosphere by rocket and then lower an impedance voltage monitor-equipped section of the probe by means of a highly insulated wire. The mother probe, also carrying voltage monitors, would inject charges into the plasma that would be measured at both ends of the tether. Instrumentation on the daughter probe included voltage current monitors and a Langmuir probe, while the mother payload also carried a charge probe, floating probe, a Langmuir probe, and an impedance probe. The first launch was from Japan in 1980, and operations confirmed that Langmuir probes with area ratios less than 400:1 can produce changes in the vehicle potential if probe voltages of more than 10 V are applied in the collection mode. A ratio of 200:1 was sufficient for the daughter probe with voltages of 5 V. The experiment is concluded to verify the tethered probe method of measuring vehicle potential.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
40 CFR 63.8256 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...
40 CFR 63.8256 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...
40 CFR 63.8256 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...
40 CFR 63.8256 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...
40 CFR 63.8256 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... malfunction. (b) Records associated with the by-product hydrogen stream and end box ventilation system vent... the work practice standards. (1) If you choose not to institute a cell room monitoring program...
Clinical evaluation of a new intracranial pressure monitoring device.
Stendel, R; Heidenreich, J; Schilling, A; Akhavan-Sigari, R; Kurth, R; Picht, T; Pietilä, T; Suess, O; Kern, C; Meisel, J; Brock, M
2003-03-01
Continuous monitoring of intracranial pressure (ICP) still plays a key role in the management of patients at risk from intracranial hypertension. Numerous ICP-measuring devices are available. The aim of the present study was to investigate the clinical characteristics and the magnetic resonance imaging (MRI) compatibility of the recently developed Neurovent-P(REHAU AG+CO, REHAU, Germany) ICP monitoring device. In a prospective two-center study, a total of 98 patients with severe head injury, subarachnoid haemorrhage, intracerebral haemorrhage, and non-traumatic brain edema underwent intraparenchymal monitoring of ICP using the Neurovent-P. A control group comprising 50 patients underwent implantation of the Camino-OLM-110-4B ICP monitor. The zero drift of the probes was determined before and after the ICP recording period. Technical and medical complications were documented. The MRI compatibility of the Neurovent-P ICP probe was investigated by evaluating artifacts caused by the probe, probe function and temperature changes during MRI, and probe movement caused by the magnetic field. The mean zero drift was 0.2+/-0.41 mmHg (maximum 3 mmHg) for the Neurovent-P ICP probes and 0.4+/-0.57 mmHg (maximum 12 mmHg) for the Camino-OLM-110-4B ICP probes. No significant correlation was identified between the extent of zero drift following the removal of the probes and the length of monitoring. Intraparenchymal haemorrhage spatially related to the probe occurred in 1 out of 50 (2%) patients with a Camino-OLM-110-4B probe and in 1 out of 98 (1%) with a Neurovent-P. Damage of the probe due to kinking or overextension of the cable or glass fiber occurred in 4 of the 50 (8%) Camino-OLM-110-4B ICP probes and in 5 of the 98 (5%) Neurovent-P probes. On T2-weighted MR images, the Neurovent-P ICP probe induced only small artifacts with very good discrimination of the surrounding tissue. On T1-weighted MR images, there was a good imaging quality but artifact-related local disturbances in signal occurred. There was no temperature change in the Neurovent-P probe and in the surrounding brain tissue during MR imaging. The Neurovent-P ICP measuring system is a safe and reliable tool for ICP monitoring. Handling of the Neurovent-P system is safe when performed properly.
Experimental analysis of electrical properties of composite materials
NASA Astrophysics Data System (ADS)
Fiala, L.; Rovnaník, P.; Černý, R.
2017-02-01
Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.
Chang, Edward I; Ibrahim, Amir; Zhang, Hong; Liu, Jun; Nguyen, Alexander T; Reece, Gregory P; Yu, Peirong
2016-03-01
The efficacy of implantable Doppler probes remains an area of considerable debate. This study aims to decipher its sensitivity and specificity for free flap monitoring. A retrospective review of all free flaps with an implantable Doppler probe was performed between 2000 and 2012. A Cook-Swartz implantable Doppler probe was used in 439 patients (head and neck, n = 364; breast, n = 53; extremity, n = 22), and demonstrated equivalent sensitivity and specificity between flap types. The overall sensitivity and specificity were 77.8 percent and 88.4 percent, respectively. The artery was monitored in 267 patients, compared to venous monitoring in 101 patients, and in 71 patients both the artery and vein were monitored. Arterial monitoring had significantly greater specificity than venous monitoring, (94.2 percent versus 74.0 percent; p < 0.001), but no benefit was found in monitoring both the artery and the vein. Venous monitoring was significantly associated with reoperation (OR, 3.17; 95 percent CI, 1.70 to 5.91; p = 0.0003). There were 284 flaps that had a monitoring segment in addition to the implantable Doppler probe that significantly increased overall specificity for microvascular complications (OR, 17.71; 95 percent CI, 3.39 to 92.23; p = 0.0006). The specificity (90.5 percent versus 84.8 percent) and sensitivity (80.0 percent versus 66.7 percent) were significantly higher for clinically monitored flaps. The take-back rate was 13.0 percent, with positive findings in 59.6 percent, and 5.2 percent total flap loss. The use of implantable Doppler probes has high sensitivity and specificity for buried free flaps despite positive findings in less than 60 percent of take-backs. Monitoring the artery is recommended, but clinical examination remains the gold standard for flap monitoring. Diagnostic, IV.
40 CFR 63.1350 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... alkali bypass PMCDs. (i) The temperature recorder response range must include zero and 1.5 times the... provide output of relative or absolute particulate matter loadings. (v) The bag leak detection system must... period. (7) The flow rate sensor must have provisions to determine the daily zero and upscale calibration...
Crea, Francesco; De Stefano, Concetta; Foti, Claudia; Lando, Gabriele; Milea, Demetrio; Sammartano, Silvio
2016-01-01
Alkali metal ions play very important roles in all biological systems, some of them are essential for life. Their concentration depends on several physiological factors and is very variable. For example, sodium concentrations in human fluids vary from quite low (e.g., 8.2 mmol dm(-3) in mature maternal milk) to high values (0.14 mol dm(-3) in blood plasma). While many data on the concentration of Na(+) and K(+) in various fluids are available, the information on other alkali metal cations is scarce. Since many vital functions depend on the network of interactions occurring in various biofluids, this chapter reviews their complex formation with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Literature data on this topic are quite rare if compared to other cations. Generally, the stability of alkali metal ion complexes of organic and inorganic ligands is rather low (usually log K < 2) and depends on the charge of the ligand, owing to the ionic nature of the interactions. At the same time, the size of the cation is an important factor that influences the stability: very often, but not always (e.g., for sulfate), it follows the trend Li(+) > Na(+) > K(+) > Rb(+) > Cs(+). For example, for citrate it is: log K ML = 0.88, 0.80, 0.48, 0.38, and 0.13 at 25 °C and infinite dilution. Some considerations are made on the main aspects related to the difficulties in the determination of weak complexes. The importance of the alkali metal ion complexes was also studied in the light of modelling natural fluids and in the use of these cations as probes for different processes. Some empirical relationships are proposed for the dependence of the stability constants of Na(+) complexes on the ligand charge, as well as for correlations among log K values of NaL, KL or LiL species (L = generic ligand).
NASA Astrophysics Data System (ADS)
Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy
2012-06-01
In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).
Problems, pitfalls and probes: Welcome to the jungle of electrochemical noise technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgemon, G.L.
1998-02-19
The rise in electrochemical noise (EN) as a corrosion monitoring technique has resulted in unique problems associated with the field application of this method. Many issues relate to the design of the EN probe electrodes. The ability of an electrochemical noise monitoring system to identify and discriminate between localized corrosion mechanisms is related primarily to the capability of the probe to separate the corrosion cell anode from the corresponding cathode. Effectiveness of this separation is largely determined by the details of and the proper design of the probe that is in the environment of interest. No single probe design ormore » geometry can be effectively use in every situation to monitor all types of corrosion. In this paper the authors focus on a case study and probe development history related to monitoring corrosion in an extremely hostile environment using EN. While the ultimate application of EN was and continues to be successful, the case study shows that patience and persistence was necessary to meet and properly implement the monitoring program. Other possible source of problems and frustration with implementing EN are also discussed.« less
Sub-micron opto-chemical probes for studying living neurons
NASA Astrophysics Data System (ADS)
Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.
2017-02-01
We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.
2010-07-01
W81XWH-09-1-0420 TITLE: High Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment Monitoring of Prostate Cancer...4. TITLE AND SUBTITLE High-Resolution PET Imaging Probe for the Detection, Molecular Characterization and Treatment of Prostate Cancer... molecular imaging for diagnosis as well as treatment planning and monitoring in prostate cancer. This investigation hypothesizes that a dedicated
Automatic Flushing Unit With Cleanliness Monitor
NASA Technical Reports Server (NTRS)
Hildebrandt, N. E.
1982-01-01
Liquid-level probe kept clean, therefore at peak accuracy, by unit that flushes probe with solvent, monitors effluent for contamination, and determines probe is particle-free. Approach may be adaptable to industrial cleaning such as flushing filters and pipes, and ensuring that manufactured parts have been adequately cleaned.
Positron emission tomography probe to monitor selected sugar metabolism in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Owen; Clark, Peter M.; Castillo, Blanca Graciela Flores
The invention disclosed herein discloses selected ribose isomers that are useful as PET probes (e.g. [18F]-2-fluoro-2-deoxy-arabinose). These PET probes are useful, for example, in methods designed to monitor physiological processes including ribose metabolism and/or to selectively observe certain tissue/organs in vivo. The invention disclosed herein further provides methods for making and using such probes.
Monitoring probe for groundwater flow
Looney, Brian B.; Ballard, Sanford
1994-01-01
A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.
Monitoring probe for groundwater flow
Looney, B.B.; Ballard, S.
1994-08-23
A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.
High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian
2013-01-01
Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.
Dasary, Samuel S.R.; Zones, Yolanda K.; Barnes, Sandra L.; Ray, P. C.; Singh, Anant K.
2015-01-01
Alizarin functionalized on plasmonic gold nanoparticle displays strong surface enhanced Raman scattering from the various Raman modes of Alizarin, which can be exploited in multiple ways for heavy metal sensing purposes. The present article reports a surface enhanced Raman spectroscopy (SERS) probe for trace level Cadmium in water samples. Alizarin, a highly Raman active dye was functionalized on plasmonic gold surface as a Raman reporter, and then 3-mercaptopropionic acid, 2,6-Pyridinedicarboxylic acid at pH 8.5 was immobilized on the surface of the nanoparticle for the selective coordination of the Cd (II). Upon addition of Cadmium, gold nanoparticle provide an excellent hotspot for Alizarin dye and Raman signal enhancement. This plasmonic SERS assay provided an excellent sensitivity for Cadmium detection from the drinking water samples. We achieved as low as 10 ppt sensitivity from various drinking water sources against other Alkali and heavy metal ions. The developed SERS probe is quite simple and rapid with excellent repeatability and has great potential for prototype scale up for field application. PMID:26770012
Monitoring Physiological Variables with Membrane Probes
NASA Technical Reports Server (NTRS)
Janle, Elsa M.
1997-01-01
This project has demonstrated the possibility of using membrane probes in rodents to monitor physiological variables for extended periods of time. The utility of these probes in physiological studies of microgravity has been demonstrated. The feasibility of developing on-line sensors has also been demonstrated and allows for the possibility of developing real-time automated monitoring systems which can be used in ground-base physiological research as well as in research and medical monitoring in space. In addition to space applications these techniques can be extended to medical monitoring in critical care situations on earth as well as facilitating research in many human and animal diseases.
WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER AND DISTRIBUTION SYSTEM MONITORING
A variety of probes for use in continuous monitoring of water quality exist. They range from single parameter chemical/physical probes to comprehensive screening systems based on whole organism responses. Originally developed for monitoring specific characteristics of water qua...
Light collection device for flame emission detectors
Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.
1990-01-01
A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.
Calasans, C F; Malm, O
1997-12-22
Atmospheric Hg0 contamination and the potential risk of occupational exposure were evaluated in a chlor-alkali facility by the use of transplanted Tillandsia usneoides. This plant species was selected since it presents some features that makes it useful for air monitoring purposes. After short-term exposure (15 days), control plants showed a mean concentration of 0.2 microgram Hg.g-1 whereas Hg values in transplants ranged from 1 to 10,400 micrograms.g-1. This latter value was observed near an elemental Hg spillage. Even after exposure to toxic conditions plant metabolism was still operative, allowing the transplant technique to be employed to assess both Hg taken up through the stomata and Hg associated with particles deposited on the biomonitor.
40 CFR 61.55 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reported and retained according to § 61.53(d) (5) and (6) or § 61.54 (f) and (g). (b) Mercury cell chlor... cell chlor-alkali plant shall, within 1 year of the date of publication of these amendments or within 1... adsorption systems; and (vii) The temperature during the heating phase of the regeneration cycle for carbon...
Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT
2011-12-13
Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.
Comparative testing of pulse oximeter probes.
van Oostrom, Johannes H; Melker, Richard J
2004-05-01
The testing of pulse oximeter probes is generally limited to the integrity of the electrical circuit and does not include the optical properties of the probes. Few pulse oximeter testers evaluate the accuracy of both the monitor and the probe. We designed a study to compare the accuracy of nonproprietary probes (OSS Medical) designed for use with Nellcor, Datex-Ohmeda, and Criticare pulse oximeter monitors with that of their corresponding proprietary probes by using a commercial off-the-shelf pulse oximeter tester (Index). The Index pulse oximeter tester does include testing of the optical properties of the pulse oximeter probes. The pulse oximeter tester was given a controlled input that simulated acute apnea. Desaturation curves were automatically recorded from the pulse oximeter monitors with a data-collection computer. Comparisons between equivalent proprietary and nonproprietary probes were performed. Data were analyzed by using univariate and multivariate general linear model analysis. Five OSS Medical probe models were statistically better than the equivalent proprietary probes. The remainder of the probes were statistically similar. Comparative and simulation studies can have significant advantages over human studies because they are cost-effective, evaluate equipment in a clinically relevant scenario, and pose no risk to patients, but they are limited by the realism of the simulation. We studied the performance of pulse oximeter probes in a simulated environment. Our results show significant differences between some probes that affect the accuracy of measurement.
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh (Inventor); Takano, Nobuyuki (Inventor); Lee, Hyeong Jae (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Ostlund, Patrick N. (Inventor)
2017-01-01
A high temperature ultrasonic probe and a mounting fixture for attaching and aligning the probe to a steam pipe using blind alignment. The high temperature ultrasonic probe includes a piezoelectric transducer having a high temperature. The probe provides both transmitting and receiving functionality. The mounting fixture allows the high temperature ultrasonic probe to be accurately aligned to the bottom external surface of the steam pipe so that the presence of liquid water in the steam pipe can be monitored. The mounting fixture with a mounted high temperature ultrasonic probe are used to conduct health monitoring of steam pipes and to track the height of condensed water through the wall in real-time.
Polarization Spectroscopy and Collisions in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.
2009-05-01
We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.
Alkali metal ion battery with bimetallic electrode
Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli
2015-04-07
Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo
2009-09-01
Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less
Hydrothermal alkali metal catalyst recovery process
Eakman, James M.; Clavenna, LeRoy R.
1979-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.
Limbrick, David D; Lake, Stephen; Talcott, Michael; Alexander, Benjamin; Wight, Samuel; Willie, Jon T; Richard, William D; Genin, Guy M; Leuthardt, Eric C
2012-12-01
Prompt diagnosis of shunt malfunction is critical in preventing neurological morbidity and death in individuals with hydrocephalus; however, diagnostic methods for this condition remain limited. For several decades, investigators have sought a long-term, implantable intracranial pressure (ICP) monitor to assist in the diagnosis of shunt malfunction, but efforts have been impeded by device complexity, marked measurement drift, and limited instrumentation lifespan. In the current report, the authors introduce an entirely novel, simple, compressible gas design that addresses each of these problems. The device described herein, termed the "baric probe," consists of a subdural fluid bladder and multichannel indicator that monitors the position of an air-fluid interface (AFI). A handheld ultrasound probe is used to interrogate the baric probe in vivo, permitting noninvasive ICP determination. To assess the function of device prototypes, ex vivo experiments were conducted using a water column, and short- and long-term in vivo experiments were performed using a porcine model with concurrent measurements of ICP via a fiberoptic monitor. Following a toe region of approximately 2 cm H(2)O, the baric probe's AFI demonstrated a predictable linear relationship to ICP in both ex vivo and in vivo models. After a 2-week implantation of the device, this linear relationship remained robust and reproducible. Further, changes in ICP were observed with the baric probe, on average, 3 seconds in advance of the fiberoptic ICP monitor reading. The authors demonstrate "proof-of-concept" and feasibility for the baric probe, a long-term implantable ICP monitor designed to facilitate the prompt and accurate diagnosis of shunt malfunction. The baric probe showed a consistent linear relationship between ICP and the device's AFI in ex vivo and short- and long-term in vivo models. With a low per-unit cost, a reduced need for radiography or CT, and an indicator that can be read with a handheld ultrasound probe that interfaces with any smart phone, the baric probe promises to simplify the care of patients with shunt-treated hydrocephalus throughout both the developed and the developing world.
Geijsen, Debby E.; Zum Vörde Sive Vörding, Paul J.; Schooneveldt, Gerben; Sijbrands, Jan; Hulshof, Maarten C.; de la Rosette, Jean; de Reijke, Theo M.; Crezee, Hans
2013-01-01
Abstract Background and Purpose: The effectiveness of locoregional hyperthermia combined with intravesical instillation of mitomycin C to reduce the risk of recurrence and progression of intermediate- and high-risk nonmuscle-invasive bladder cancer is currently investigated in clinical trials. Clinically effective locoregional hyperthermia delivery necessitates adequate thermal dosimetry; thus, optimal thermometry methods are needed to monitor accurately the temperature distribution throughout the bladder wall. The aim of the study was to evaluate the technical feasibility of a novel intravesical device (multi-sensor probe) developed to monitor the local bladder wall temperatures during loco-regional C-HT. Materials and Methods: A multisensor thermocouple probe was designed for deployment in the human bladder, using special sensors to cover the bladder wall in different directions. The deployment of the thermocouples against the bladder wall was evaluated with visual, endoscopic, and CT imaging in bladder phantoms, porcine models, and human bladders obtained from obduction for bladder volumes and different deployment sizes of the probe. Finally, porcine bladders were embedded in a phantom and subjected to locoregional heating to compare probe temperatures with additional thermometry inside and outside the bladder wall. Results: The 7.5 cm thermocouple probe yielded optimal bladder wall contact, adapting to different bladder volumes. Temperature monitoring was shown to be accurate and representative for the actual bladder wall temperature. Conclusions: Use of this novel multisensor probe could yield a more accurate monitoring of the bladder wall temperature during locoregional chemohyperthermia. PMID:24112045
Research on Segmentation Monitoring Control of IA-RWA Algorithm with Probe Flow
NASA Astrophysics Data System (ADS)
Ren, Danping; Guo, Kun; Yao, Qiuyan; Zhao, Jijun
2018-04-01
The impairment-aware routing and wavelength assignment algorithm with probe flow (P-IA-RWA) can make an accurate estimation for the transmission quality of the link when the connection request comes. But it also causes some problems. The probe flow data introduced in the P-IA-RWA algorithm can result in the competition for wavelength resources. In order to reduce the competition and the blocking probability of the network, a new P-IA-RWA algorithm with segmentation monitoring-control mechanism (SMC-P-IA-RWA) is proposed. The algorithm would reduce the holding time of network resources for the probe flow. It segments the candidate path suitably for the data transmitting. And the transmission quality of the probe flow sent by the source node will be monitored in the endpoint of each segment. The transmission quality of data can also be monitored, so as to make the appropriate treatment to avoid the unnecessary probe flow. The simulation results show that the proposed SMC-P-IA-RWA algorithm can effectively reduce the blocking probability. It brings a better solution to the competition for resources between the probe flow and the main data to be transferred. And it is more suitable for scheduling control in the large-scale network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
NASA Astrophysics Data System (ADS)
Fuselli, Sergio; Benedetti, Giorgio; Mastrangeli, Renato
A method is described for trapping and analysing airborne methylamines (MMA, DMA and TMA) by means of a 20/35 mesh activated charcoal traps and subsequent GLSC analysis of collected sample using 0.1 N NaOH acqueous solution. The method described may be applied to monitoring methylamines in air in industrial areas, with an Alkali Flame Detector; sensitivities of approx. 0.005 ppmv for each of the three methylamines analysed are reached. Trapping efficiency is compared with that of Tenax GC 60/80 mesh and 60/80 Carbopack B which uses thermal desorption of air samples before GLSC analysis. The Tenax GC trap method enables TMA recovery only with a sensitivity of 0.0001 ppmv. Recovery obtained with 60/80 Carbopack B traps is practically zero.
A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.
Hirosawa, Shota; Arai, Satoshi; Takeoka, Shinji
2012-05-18
We report a mitochondrial targeted redox probe (MitoRP) that comprises a nitroxide radical (TEMPO) moiety and coumarin 343. Using isolated mitochondria in the presence/absence of substrates and inhibitors of oxidative phosphorylation, we demonstrated that MitoRP is a useful probe to monitor the electron flow associated with complex I. This journal is © The Royal Society of Chemistry 2012
Miniature probe for the delivery and monitoring of a photopolymerizable material
NASA Astrophysics Data System (ADS)
Schmocker, Andreas; Khoushabi, Azadeh; Schizas, Constantin; Bourban, Pierre-Etienne; Pioletti, Dominique P.; Moser, Christophe
2015-12-01
Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532-nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluorescence and Raman signal.
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Cellphone probes as an ATMS tool
DOT National Transportation Integrated Search
2003-06-01
The foundation of traffic operations and management is the ability to monitor traffic conditions. One approach to traffic monitoring is to sample conditions by tracking a limited number of probe vehicles as they traverse a network. An emerging techno...
NASA Astrophysics Data System (ADS)
Greisch, Jean Francois; Harding, Michael E.; Chmela, Jiri; Klopper, Willem M.; Schooss, Detlef; Kappes, Manfred M.
2016-06-01
The application of lanthanoid complexes ranges from photovoltaics and light-emitting diodes to quantum memories and biological assays. Rationalization of their design requires a thorough understanding of intramolecular processes such as energy transfer, charge transfer, and non-radiative decay involving their subunits. Characterization of the excited states of such complexes considerably benefits from mass spectrometric methods since the associated optical transitions and processes are strongly affected by stoichiometry, symmetry, and overall charge state. We report herein spectroscopic measurements on ensembles of ions trapped in the gas phase and soft-landed in neon matrices. Their interpretation is considerably facilitated by direct comparison with computations. The combination of energy- and time-resolved measurements on isolated species with density functional as well as ligand-field and Franck-Condon computations enables us to infer structural as well as dynamical information about the species studied. The approach is first illustrated for sets of model lanthanoid complexes whose structure and electronic properties are systematically varied via the substitution of one component (lanthanoid or alkali,alkali-earth ion): (i) systematic dependence of ligand-centered phosphorescence on the lanthanoid(III) promotion energy and its impact on sensitization, and (ii) structural changes induced by the substitution of alkali or alkali-earth ions in relation with structures inferred using ion mobility spectroscopy. The temperature dependence of sensitization is briefly discussed. The focus is then shifted to measurements involving europium complexes with doxycycline an antibiotic of the tetracycline family. Besides discussing the complexes' structural and electronic features, we report on their use to monitor enzymatic processes involving hydrogen peroxide or biologically relevant molecules such as adenosine triphosphate (ATP).
Alkali metal for ultraviolet band-pass filter
NASA Technical Reports Server (NTRS)
Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)
1993-01-01
An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.
Monitoring of vapor phase polycyclic aromatic hydrocarbons
Vo-Dinh, Tuan; Hajaligol, Mohammad R.
2004-06-01
An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.
Spin-orbit-coupled fermions in an optical lattice clock
NASA Astrophysics Data System (ADS)
Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.
2017-02-01
Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.
Alkali metal recovery from carbonaceous material conversion process
Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Orlye, Fanny; Reiller, Pascal E.
2014-02-15
The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. Themore » extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)« less
Monitoring transients in low inductance circuits
Guilford, R.P.; Rosborough, J.R.
1985-10-21
The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.
EXTINGUISHMENT OF ALKALI METAL FIRES
low O2 partial pressures on alkali metal fires Extinguishment of alkali metal fires using in organic salt mixtures Extinguishment of alkali metal ... fires using inorganic salt foams Alkali metal jet stream ignition at various pressure conditions Bibliography
Self-Protection Mechanism of Hexagonal WO3-Based DeNOx Catalysts against Alkali Poisoning.
Zheng, Li; Zhou, Meijuan; Huang, Zhiwei; Chen, Yaxin; Gao, Jiayi; Ma, Zhen; Chen, Jianmin; Tang, Xingfu
2016-11-01
A good catalyst for efficiently controlling NO x emissions often demands strong resistance against alkali poisoning. Although the traditional ion-exchange model, based on acid-base reactions of alkalis with Brønsted acid sites, has been established over the past two decades, it is difficult to be used as a guideline to develop such an alkali-resistant catalyst. Here we establish a self-protection mechanism of deNO x catalysts against alkali poisoning by systematically studying the intrinsic nature of alkali resistance of V 2 O 5 /HWO (HWO = hexagonal WO 3 ) that shows excellent resistance to alkali poisoning in selective catalytic reduction of NO x with NH 3 (SCR). Synchrotron X-ray diffraction and absorption spectroscopies demonstrate that V 2 O 5 /HWO has spatially separated catalytically active sites (CASs) and alkali-trapping sites (ATSs). During the SCR process, ATSs spontaneously trap alkali ions such as K + , even if alkali ions initially block CASs, thus releasing CASs to realize the self-protection against alkali poisoning. X-ray photoelectron spectra coupled with theoretical calculations indicate that the electronic interaction between the alkali ions and ATSs with an energy saving is the driving force of the self-protection. This work provides a strategy to design alkali-resistant deNO x catalysts.
Refractories for high alkali environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Cloer, F.
1996-12-31
Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.
EVALUATION OF MULTIPLE AQUATIC BIOMONITORS FOR SOURCE WATER PROTECTION
A variety of probes for use in continuous monitoring of water quality exist. They range from single parameter chemical/physical probes to comprehensive screening systems based on whole organism responses. Originally developed for monitoring specific characteristics of water qua...
Two-Photon Fluorescent Probe for Monitoring Autophagy via Fluorescence Lifetime Imaging.
Hou, Liling; Ning, Peng; Feng, Yan; Ding, Yaqi; Bai, Lei; Li, Lin; Yu, Haizhu; Meng, Xiangming
2018-06-19
We reported the first lysosome targeted two-photon fluorescent probe (Lyso-NP) as a viscosity probe for monitoring autophagy. The fluorescence lifetime of Lyso-NP exhibited an excellent linear relationship with viscosity value ( R 2 = 0.99, x = 0.39). Lyso-NP also showed the specific capability for imaging lysosomal viscosity under two-photon excitation at 860 nm along with good biocompatibility. More importantly, Lyso-NP could be used to monitor the autophagy process in living cells by quantitatively detecting lysosomal viscosity changes during the membrane fusion process via two-photon fluorescence lifetime imaging.
The pure rotational spectrum of CaNC
NASA Astrophysics Data System (ADS)
Scurlock, C. T.; Steimle, T. C.; Suenram, R. D.; Lovas, F. J.
1994-03-01
The pure rotational spectrum of calcium isocyanide, CaNC, in its (0,0,0) X 2Σ+ vibronic state was measured using a combination of Fourier transform microwave (FTMW) and pump/probe microwave-optical double resonance (PPMODR) spectroscopy. Gaseous CaNC was generated using a laser ablation/supersonic expansion source. The determined spectroscopic parameters are (in MHz), B=4048.754 332 (29); γ=18.055 06 (23); bF=12.481 49 (93); c=2.0735 (14); and eQq0=-2.6974 (11). The hyperfine parameters are qualitatively interpreted in terms of a plausible molecular orbital descriptions and a comparison with the alkaline earth monohalides and the alkali monocyanides is given.
Atom chips with free-standing two-dimensional electron gases: advantages and challenges
NASA Astrophysics Data System (ADS)
Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.
2018-03-01
In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.
Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presentedmore » in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.« less
Kuwahara, Taishi; Takahashi, Atsushi; Takahashi, Yoshihide; Okubo, Kenji; Takagi, Katsumasa; Fujino, Tadashi; Kusa, Shigeki; Takigawa, Masateru; Watari, Yuji; Yamao, Kazuya; Nakashima, Emiko; Kawaguchi, Naohiko; Hikita, Hiroyuki; Sato, Akira; Aonuma, Kazutaka
2014-04-01
The study aim was to compare the incidence of esophageal injuries between different temperature probes in the monitoring of esophageal temperature during atrial fibrillation (AF) ablation. One hundred patients with drug-resistant AF were prospectively and randomly assigned into two groups according to the esophageal temperature probe used: the multi-thermocouple probe group (n = 50) and the deflectable temperature probe group (n = 50). Extensive pulmonary vein (PV) isolation was performed with a 3.5-mm open irrigated tip ablation catheter by using a radiofrequency (RF) power of 25-30 W. In both groups, the esophageal temperature thermocouple was placed on the area of the esophagus adjacent to the ablation site. When the esophageal temperature reached 42 °C, the RF energy delivery was stopped. Esophageal endoscopy was performed 1 day after the catheter ablation. No differences existed between the two groups in terms of clinical background and various parameters related to the catheter ablation, including RF delivery time and number of RF deliveries at an esophageal temperature of >42 °C. Esophageal lesions, such as esophagitis and esophageal ulcers, occurred in 10/50 (20 %) and 15/50 (30 %) patients in the multi-thermocouple and deflectable temperature probe groups, respectively (P = 0.25). Most lesions were mild to moderate injuries, and all were cured using conservative treatment. The incidence of esophageal injury was almost equal between the multi-thermocouple temperature probe and the deflectable temperature probe during esophageal temperature monitoring. Most of the esophageal lesions that developed during esophageal temperature monitoring were mild to moderate and reversible.
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
1999-12-14
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.
Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
2000-01-01
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.
Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.
DOT National Transportation Integrated Search
2016-12-19
This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...
Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua
2017-01-01
It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.
Zamyadi, Arash; Dorner, Sarah; Ndong, Mouhamed; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle
2014-02-01
The increasing presence of potentially toxic cyanobacterial blooms in drinking water sources and within drinking water treatment plants (DWTPs) has been reported worldwide. The objectives of this study are to validate the application of in vivo probes for the detection and management of cyanobacteria breakthrough inside DWTPs, and to verify the possibility of treatment adjustment based on intensive real-time monitoring. In vivo phycocyanin YSI probes were used to monitor the fate of cyanobacteria in raw water, clarified water, filtered water, and chlorinated water in a full scale DWTP. Simultaneous samples were also taken for microscopic enumeration. The in vivo probe was successfully used to detect the incoming densities of high cyanobacterial cell number into the clarification process and their breakthrough into the filtered water. In vivo probes were used to trace the increase in floating cells over the clarifier, a robust sign of malfunction of the coagulation-sedimentation process. Pre-emptive treatment adjustments, based on in vivo probe monitoring, resulted in successful removal of cyanobacterial cells. The field results on validation of the probes with cyanobacterial bloom samples showed that the probe responses are highly linear and can be used to trigger alerts to take action.
Wang, Hong; Zhang, Peisheng; Tian, Yong; Zhang, Yuan; Yang, Heping; Chen, Shu; Zeng, Rongjin; Long, Yunfei; Chen, Jian
2018-04-30
A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.
Yang, Siwei; Sun, Jing; Zhu, Chong; He, Peng; Peng, Zheng; Ding, Guqiao
2016-02-07
The graphene quantum dot based fluorescent probe community needs unambiguous evidence about the control on the ion selectivity. In this paper, polyethylene glycol modified N-doped graphene quantum dots (PN-GQDs) were synthesized by alkylation reaction between graphene quantum dots and organic halides. We demonstrate the tunable selectivity and sensitivity by controlling the supramolecular recognition through the length and the end group size of the polyether chain on PN-GQDs. The relationship formulae between the selectivity/detection limit and polyether chains are experimentally deduced. The polyether chain length determines the interaction between the PN-GQDs and ions with different ratios of charge to radius, which in turn leads to a good selectivity control. Meanwhile the detection limit shows an exponential growth with the size of end groups of the polyether chain. The PN-GQDs can be used as ultrasensitive and selective fluorescent probes for Li(+), Na(+), K(+), Mg(2+), Ca(2+) and Sr(2+), respectively.
NASA Astrophysics Data System (ADS)
Henriques, E. S.; Geraldes, C. F. G. C.; Ramos, M. J.
Molecular dynamics simulations and complementary modelling studies have been carried out for the [Gd(DOTA)·(H2O)]- and [Tm(DOTP)]5- chelates in aqueous media, to provide a better understanding of several structural and dynamical properties of these versatile nuclear magnetic resonance (NMR) probes, including coordination shells and corresponding water exchange mechanisms, and interactions of these complexes with alkali metal ions. This knowledge is of key importance in the areas of 1H relaxation and shift reagents for NMR applications in medical diagnosis. A new refinement of our own previously developed set of parameters for these Ln(III) chelates has been used, and is reported here. Calculations of water mean residence times suggest a reassessment of the characterization of the chelates' second coordination shell, one where the simple spherical distribution model is discarded in favour of a more detailed approach. Na+ probe interaction maps are in good agreement with the available site location predictions derived from 23Na NMR shifts.
The CritiView: a new fiber optic based optical device for the assessment of tissue vitality
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Blum, Yoram; Dekel, Nava; Deutsch, Assaf; Halfon, Rafael; Kremer, Shlomi; Pewzner, Eliyahu; Sherman, Efrat; Barnea, Ofer
2006-02-01
The most important parameter that reflects the balance between oxygen supply and demand in tissues is the mitochondrial NADH redox state that could be monitored In vivo. Nevertheless single parameter monitoring is limited in the interpretation capacity of the very complicated pathophysiological events, therefore three more parameters were added to the NADH and the multiparametric monitoring system was used in experimental and clinical studies. In our previous paper1 we described the CritiView (CRV1) including a fiber optic probe that monitor four physiological parameters in real time. In the new model (CRV3) several factors such as UV safety, size and price of the device were improved significantly. The CRV3 enable to monitor the various parameters in three different locations in the tissue thus increasing the reliability of the data due to the better statistics. The connection between the device and the monitored tissue could be done by various types of probes. The main probe that was tested also in clinical studies was a special 3 points probe that includes 9 optical fibers (3 in each point) that was embedded in a three way Foley catheter. This catheter enabled the monitoring of urethral wall vitality as an indicator of the development of body metabolic emergency state. The three point probe was tested in the brain exposed to the lack of oxygen (Anoxia, Hypoxia or Ischemia). A decrease in blood oxygenation and a large increase in mitochondrial NADH fluorescence were recorded. The microcirculatory blood flow increased during anoxia and hypoxia and decreased significantly under ischemia.
Electron launching voltage monitor
Mendel, Clifford W.; Savage, Mark E.
1992-01-01
An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.
Irague, Romain; Topham, Christopher M.; Martineau, Nelly; Baylac, Audrey; Auriol, Clément; Walther, Thomas; François, Jean-Marie; Remaud-Siméon, Magali
2018-01-01
An end-point ADP/NAD+ acid/alkali assay procedure, directly applicable to library screening of any type of ATP-utilising/ADP producing enzyme activity, was implemented. Typically, ADP production is coupled to NAD+ co-enzyme formation by the conventional addition of pyruvate kinase and lactate dehydrogenase. Transformation of enzymatically generated NAD+ into a photometrically active alkali derivative product is then achieved through the successive application of acidic/alkali treatment steps. The assay was successfully miniaturized to search for malate kinase activity in a structurally-guided library of LysC aspartate kinase variants comprising 6,700 clones. The screening procedure enabled the isolation of nine positive variants showing novel kinase activity on (L)-malate, the best mutant, LysC V115A:E119S:E434V exhibited strong substrate selectivity for (L)-malate compared to (L)-aspartate with a (kcat/Km)malate/(kcat/Km)aspartate ratio of 86. Double mutants V115A:E119S, V115A:E119C and E119S:E434V were constructed to further probe the origins of stabilising substrate binding energy gains for (L)-malate due to mutation. The introduction of less sterically hindering side-chains in engineered enzymes carrying E119S and V115A mutations increases the effective volume available for substrate binding in the catalytic pocket. Improved binding of the (L)-malate substrate may be assisted by less hindered movement of the Phe184 aromatic side-chain. Additional favourable long-range electostatic effects on binding arising from the E434V surface mutation are conditionally dependent upon the presence of the V115A mutation close to Phe184 in the active-site. PMID:29462203
Hydrothermal alkali metal recovery process
Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.
[Probe into monitoring mechanism of Chinese materia medica resources].
Zhang, Xiao-Bo; Li, Da-Ning; Guo, Lan-Ping; Lu, Jian-Wei; Sun, Li-Ying; Huang, Lu-Qi
2013-10-01
Focusing on the problems of Chinese materia medica resources,and combining with the national Chinese materia medica resources survey, the paper probes into monitoring mechanism of Chinese materia medica resources. The establishment of the monitoring mechanism needs one organization and management agencies to supervise and guide monitoring work, one network system to gather data information, a group of people to perform monitoring work, a system of technical methods to assure monitoring work scientific and practical, a series of achievements and products to figure out the methods for solving problems, a group of monitoring index system to accumulate basic data, and a plenty of funds to keep normal operation of monitoring work.
Laboratory Testing of Volcanic Gas Sampling Techniques
NASA Astrophysics Data System (ADS)
Kress, V. C.; Green, R.; Ortiz, M.; Delmelle, P.; Fischer, T.
2003-12-01
A series of laboratory experiments were performed designed to calibrate several commonly used methods for field measurement of volcanic gas composition. H2, CO2, SO2 and CHCl2F gases were mixed through carefully calibrated rotameters to form mixtures representative of the types of volcanic compositions encountered at Kilauea and Showa-Shinzan. Gas mixtures were passed through a horizontal furnace at 700oC to break down CHCl2F and form an equilibrium high-temperature mixture. With the exception of Giggenbach bottle samples, all gas sampling was performed adjacent to the furnace exit in order to roughly simulate the air-contaminated samples encountered in Nature. Giggenbach bottle samples were taken from just beyond the hot-spot 10cm down the furnace tube to minimize atmospheric contamination. Alkali-trap measurements were performed by passing gases over or bubbling gases through 6N KOH, NaOH or LiOH solution for 10 minutes. Results were highly variable with errors in measured S/Cl varying from +1600% to -19%. In general reduced Kilauea compositions showed smaller errors than the more oxidized Showa-Shinzan compositions. Results were not resolvably different in experiments where gas was bubbled through the alkaline solution. In a second set of experiments, 25mm circles of Whatman 42 filter paper were impregnated with NaHCO3or KHCO3 alkaline solutions stabilized with glycerol. Some filters also included Alizarin (5.6-7.2) and neutral red (6.8-8.0) Ph indicator to provide a visual monitor of gas absorption. Filters were mounted in individual holders and used in stacks of 3. Durations were adjusted to maximize reaction in the first filter in the stack and minimize reaction in the final filter. Errors in filter pack measurements were smaller and more systematic than the alkali trap measurements. S/Cl was overestimated in oxidized gas mixtures and underestimated in reduced mixtures. Alkali-trap methods allow extended unattended monitoring of volcanic gasses, but our results suggest that they are poor recorders of gas composition. Filter pack methods are somewhat better, but are more difficult to interpret than previously recognized. We suggest several refinements to the filter-pack technique that can improve accuracy. Giggenbach bottles remain the best method for volcanic gas sampling, despite the inherent difficulty and danger of obtaining samples in active volcanic environments. Relative merits of different alkali solutions and indicators are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Buendia, A.M.; Climent, V.; Verdu, P.
The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestonemore » with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR (dedolomitization degree) and ASR.« less
Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall
NASA Astrophysics Data System (ADS)
Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo
2018-04-01
A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.
Alkali metal nitrate purification
Fiorucci, Louis C.; Morgan, Michael J.
1986-02-04
A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, W.Y.
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
[Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].
Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai
2015-09-01
In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.
Monitoring transients in low inductance circuits
Guilford, Richard P.; Rosborough, John R.
1987-01-01
A pair of flat cable transmission lines are monitored for transient current spikes by using a probe connected to a current transformer by a pickup loop and monitoring the output of the current transformer. The approach utilizes a U-shaped pickup probe wherein the pair of flat cable transmission lines are received between the legs of the U-shaped probe. The U-shaped probe is preferably formed of a flat coil conductor adhered to one side of a flexible substrate. On the other side of the flexible substrate there is a copper foil shield. The copper foil shield is connected to one end of the flat conductor coil and connected to one leg of the pickup loop which passes through the current transformer. The other end of the flat conductor coil is connected to the other leg of the pickup loop.
21 CFR 870.1915 - Thermodilution probe.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thermodilution probe. 870.1915 Section 870.1915...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1915 Thermodilution probe. (a) Identification. A thermodilution probe is a device that monitors cardiac output by use of...
21 CFR 870.1915 - Thermodilution probe.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thermodilution probe. 870.1915 Section 870.1915...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1915 Thermodilution probe. (a) Identification. A thermodilution probe is a device that monitors cardiac output by use of...
21 CFR 870.1915 - Thermodilution probe.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thermodilution probe. 870.1915 Section 870.1915...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1915 Thermodilution probe. (a) Identification. A thermodilution probe is a device that monitors cardiac output by use of...
21 CFR 870.1915 - Thermodilution probe.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thermodilution probe. 870.1915 Section 870.1915...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1915 Thermodilution probe. (a) Identification. A thermodilution probe is a device that monitors cardiac output by use of...
NASA Astrophysics Data System (ADS)
Harashima, Takuya; Morikawa, Takumi; Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu
2017-04-01
A Si neural probe is one of the most important tools for neurophysiology and brain science because of its various functions such as optical stimulation and drug delivery. However, the Si neural probe is not robust compared with a metal tetrode, and could be broken by mechanical stress caused by insertion to the brain. Therefore, the Si neural probe becomes more useful if it has a stress sensor that can measure mechanical forces applied to the probe so as not to be broken. In this paper, we proposed and fabricated the Si neural probe with a piezoresistive force sensor for minimally invasive and precise monitoring of insertion forces. The fabricated piezoresistive force sensor accurately measured forces and successfully detected insertion events without buckling or bending in the shank of the Si neural probe. This Si neural probe with a piezoresistive force sensor has become one of the most versatile tools for neurophysiology and brain science.
USDA-ARS?s Scientific Manuscript database
Real-time information on salinity levels and transport of fertilizers are generally missing from soil profile knowledge bases. A dual-frequency multisensor capacitance probe (MCP) is now commercially available for sandy soils that simultaneously monitor volumetric soil water content (VWC, ') and sa...
Coaxial-probe contact-force monitoring for dielectric properties measurements
USDA-ARS?s Scientific Manuscript database
A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...
Monitoring Coaxial-Probe Contact Force for Dielectric Properties Measurement
USDA-ARS?s Scientific Manuscript database
A means is described for measuring and monitoring the contact force applied to a material sample with an open-ended coaxial-line probe for purposes of measuring the dielectric properties of semisolid material samples such as fruit, vegetable and animal tissues. The equipment consists of a stainless...
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring.
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-02-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes' Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide-silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0-536 μm.
Electron launching voltage monitor
Mendel, C.W.; Savage, M.E.
1992-03-17
An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors. 5 figs.
Capacitance-level/density monitor for fluidized-bed combustor
Fasching, George E.; Utt, Carroll E.
1982-01-01
A multiple segment three-terminal type capacitance probe with segment selection, capacitance detection and compensation circuitry and read-out control for level/density measurements in a fluidized-bed vessel is provided. The probe is driven at a high excitation frequency of up to 50 kHz to sense quadrature (capacitive) current related to probe/vessel capacitance while being relatively insensitive to the resistance current component. Compensation circuitry is provided for generating a negative current of equal magnitude to cancel out only the resistive component current. Clock-operated control circuitry separately selects the probe segments in a predetermined order for detecting and storing this capacitance measurement. The selected segment acts as a guarded electrode and is connected to the read-out circuitry while all unselected segments are connected to the probe body, which together form the probe guard electrode. The selected probe segment capacitance component signal is directed to a corresponding segment channel sample and hold circuit dedicated to that segment to store the signal derived from that segment. This provides parallel outputs for display, computer input, etc., for the detected capacitance values. The rate of segment sampling may be varied to either monitor the dynamic density profile of the bed (high sampling rate) or monitor average bed characteristics (slower sampling rate).
A new glass option for parenteral packaging.
Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L
2014-01-01
Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.
Methods of recovering alkali metals
Krumhansl, James L; Rigali, Mark J
2014-03-04
Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.
Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua
2016-01-01
This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recovery of alkali metal constituents from catalytic coal conversion residues
Soung, Wen Y.
1984-01-01
In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
Investigation of the fluidity of biological fluids with a PDDTBN spin probe
NASA Astrophysics Data System (ADS)
Severcan, Feride; Acar, Berrin; Gökalp, Saadet
1997-06-01
The aim of this study is to ascertain whether the electron spin resonance technique using perdeutero-di- t-butyl nitroxide (PDDTBN) as a spin probe is able to monitor relative fluidity changes occurring in body fluids, such as blood and parotid saliva, according to different physiological conditions. The present study reveals that the spin probe PDDTBN is able to monitor the fluidity changes in parotid saliva related to habitual smoking, and in whole blood related to the estradiol level. The rotational correlation time of the spin probe and the local viscosity values of the parotid saliva and blood have been reported.
Method for the safe disposal of alkali metal
Johnson, Terry R.
1977-01-01
Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.
2005-03-01
anti- HLA -A2, -A24, -A28 mAb CR11-351 (13,14); anti- HLA -A2, -A28 mAb KS-1 (14); anti- HLA -B7, - B27 , -Bw42, -Bw54, -Bw55, -Bw56, -Bw67, -Bw73 mAb KS-4 (15...AD Award Number: W81XWH-04-1-0372 TITLE: CTL-Tumor Cell Interaction: The Generation of Molecular Probes of Monitoring the HLA -A*0201-HER-2/neu...AND SUBTITLE 5. FUNDING NUMBERS CTL-Tumor Cell Interaction: The Generation of Molecular W81XWH-04-1-0372 Probes of Monitoring the HLA -A*0201-HER-2/neu
A study on the dynamic interfacial tension of acidic crude oil/alkali (alkali-polymer) systems--
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Yang, P.; Qin, T.
1989-01-01
This paper describes the investigation of dynamic interfacial tension (DIFT) between the acidic Liao-He crude oil and two types of brine: a simple alkali system and a combined alkali-polymer system. It was found that interfacial tension (IFT) changed markedly with time and that the history of DIFT depended upon the concentration of alkali in the brine. The experimental results also showed that the IFT dropped dramatically as soon as the fresh oil contacted brine causing spontaneous emulsification to occur. The steady-state value of DIFT {gamma} st can be lower with the combined alkali-polymer system than with the simple alkali system.more » The results indicate that biopolymer is more effective than partially hydrolyzed polyacrylamide (PHPAM) for lowering {gamma} st and that Na{sub 2}Co{sub 1} causes a lower {gamma} st than NaOH in the combined alkali-polymer system. Optimized formulations containing Na{sub 2}CO{sub 3} added biopolymer can reduce {gamma} st by two orders of magnitude, and PHPAM can reduce {gamma} st by one order of magnitude. The interaction between alkali and polymer in the combined alkali-polymer system is discussed.« less
Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI
Ledbetter, Micah P [Oakland, CA; Savukov, Igor M [Los Alamos, NM; Budker, Dmitry [El Cerrito, CA; Shah, Vishal K [Plainsboro, NJ; Knappe, Svenja [Boulder, CO; Kitching, John [Boulder, CO; Michalak, David J [Berkeley, CA; Xu, Shoujun [Houston, TX; Pines, Alexander [Berkeley, CA
2011-08-09
An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Friedrich, E-mail: Friedrich.Roth@cfel.de; Knupfer, Martin, E-mail: M.Knupfer@ifw-dresden.de
We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understandmore » the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.« less
Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin
2012-01-01
Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a single assay and to perform the assay on simple and robust instrumentation is a prerequisite for the development of novel molecular point of care tests. PMID:22539973
Calcium-Alkali Syndrome in the Modern Era
Patel, Ami M.; Adeseun, Gbemisola A.; Goldfarb, Stanley
2013-01-01
The ingestion of calcium, along with alkali, results in a well-described triad of hypercalcemia, metabolic alkalosis, and renal insufficiency. Over time, the epidemiology and root cause of the syndrome have shifted, such that the disorder, originally called the milk-alkali syndrome, is now better described as the calcium-alkali syndrome. The calcium-alkali syndrome is an important cause of morbidity that may be on the rise, an unintended consequence of shifts in calcium and vitamin D intake in segments of the population. We review the pathophysiology of the calcium-alkali syndrome. PMID:24288027
Brinkhoff, James; Hornbuckle, John; Dowling, Thomas
2017-12-26
Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.
NASA Astrophysics Data System (ADS)
Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek
2017-02-01
This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.
Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel
2016-06-01
Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leite, Luiz R; Santos, Simone N; Maia, Henrique; Henz, Benhur D; Giuseppin, Fábio; Oliverira, Anderson; Zanatta, André R; Peres, Ayrton K; Novakoski, Clarissa; Barreto, Jose R; Vassalo, Fabrício; d'Avila, Andre; Singh, Sheldon M
2011-04-01
Luminal esophageal temperature (LET) monitoring is one strategy to minimize esophageal injury during atrial fibrillation ablation procedures. However, esophageal ulceration and fistulas have been reported despite adequate LET monitoring. The objective of this study was to assess a novel approach to LET monitoring with a deflectable LET probe on the rate of esophageal injury in patients undergoing atrial fibrillation ablation. Forty-five consecutive patients undergoing an atrial fibrillation ablation procedure followed by esophageal endoscopy were included in this prospective observational pilot study. LET monitoring was performed with a 7F deflectable ablation catheter that was positioned as close as possible to the site of left atrial ablation using the deflectable component of the catheter guided by visualization of its position on intracardiac echocardiography. Ablation in the posterior left atrial was limited to 25 W and terminated when the LET increased 2°C from baseline. Endoscopy was performed 1 to 2 days after the procedure. All patients had at least 1 LET elevation >2°C necessitating cessation of ablation. Deflection of the LET probe was needed to accurately measure LET in 5% of patients when ablating near the left pulmonary veins, whereas deflection of the LET probe was necessary in 88% of patients when ablating near the right pulmonary veins. The average maximum increase in LET was 2.5±1.5°C. No patients had esophageal thermal injury on follow-up endoscopy. A strategy of optimal LET probe placement using a deflectable LET probe and intracardiac echocardiography guidance, combined with cessation of radiofrequency ablation with a 2°C rise in LET, may reduce esophageal thermal injury during left atrial ablation procedures.
EXTINGUISHMENT OF ALKALI METAL FIRES
Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions
Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.
Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
Process to separate alkali metal salts from alkali metal reacted hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier; Larsen, Dennis
A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phasemore » may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.« less
Electrolytic systems and methods for making metal halides and refining metals
Holland, Justin M.; Cecala, David M.
2015-05-26
Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.
Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654
Sodium to sodium carbonate conversion process
Herrmann, Steven D.
1997-01-01
A method of converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO.sub.2 are introduced into a thin film evaporator with the CO.sub.2 present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and T1 can be converted into a low level non-hazardous waste using the thin film evaporator of the invention.
Chen, Wei-Yu; Chen, Yu-Chie
2007-11-01
The presence of alkali cation adductions of oligonucleotides commonly deteriorates matrix-assisted laser desorption/ionization (MALDI) mass spectra. Thus, desalting is required for oligonucleotide samples prior to MALDI MS analysis in order to prevent the mass spectra from developing poor quality. In this paper, we demonstrate a new approach to extract traces of oligonucleotides from aqueous solutions containing high concentrations of salts using microwave-assisted extraction. The C18-presenting magnetite beads, capable of absorbing microwave irradiation, are used as affinity probes for oligonucleotides with the addition of triethylammonium acetate as the counterions. This new microwave-assisted extraction approach using magnetite beads as the trapping agents and as microwave-absorbers has been demonstrated to be very effective in the selective binding of oligonucleotides from aqueous solutions. The extraction of oligonucleotides from solutions onto the C18-presenting magnetite beads takes only 30 s to enrich oligonucleotides in sufficient quantities for MALDI MS analysis. After using this desalting approach, alkali cation adductions of oligonucleotides are dramatically reduced in the MALDI mass spectra. The presence of saturated NaCl (approximately 6 M) in the oligonucleotide sample is tolerated without degrading the mass spectra. The detection limit for d(A)6 is approximately 2.8 fmol.
Salts of alkali metal anions and process of preparing same
Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak
1978-01-01
Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.
Use of fathometers and electrical-conductivity probes to monitor riverbed scour at bridge piers
Hayes, Donald C.; Drummond, F.E.
1995-01-01
Two methods, a fathometer system and an electrical- conductivity probe system, were developed to monitor scour at bridge piers. The scour-monitoring systems consisted of a sensor (fathometer or electrical- conductivity probe), power supply, data logger, relay, and system program. The fathometer system was installed and tested at a bridge over the Leipsic River at Leipsic, Delaware, and at a bridge over Sinepuxent Bay near Ocean City. Maryland. Field data collected indicate that fathometers can be used to identify and monitor the riverbed elevation if post processing of the data and trends in the data are used to determine the riverbed location in relation to the transducer. The accuracy of the system is approximately the same as the resolution of the fathometer. Signal scatter can be a major source of error in the data. The electrical- conductivity probe system was installed and tested at a bridge over the Pamunkey River near Hanover, Virginia. The approximate elevation of the riverbed is determined by comparing conductivities of the surface-water flow with conductivities of submerged bed material from sensors located in each. Field data collected indicate that an electrical- conductivity probe, as tested, has limited usefulness in identifying and monitoring the riverbed elevation during high flows. As the discharge increases, the concentration of sediment in the surface-water flow increases, especially near the riverbed. Conductivities, measured at the sensors in the surface-water flow could not be distinguished from conductivities measured at the shallowest sensor in the submerged bed material.
Renewable-reagent electrochemical sensor
Wang, Joseph; Olsen, Khris B.
1999-01-01
A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).
Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique
Kostyuk, Oksana; Birch, Helen L; Mudera, Vivek; Brown, Robert A
2004-01-01
This study aimed to investigate the preferential collagen fibril alignment in unloaded and loaded tendons using elastic scattering spectroscopy. The device consisted of an optical probe, a pulsed light source (320–860 nm), a spectrometer and a PC. Two probes with either 2.75 mm or 300 μm source-detector separations were used to monitor deep and superficial layers, respectively. Equine superficial digital flexor tendons were subjected to ex vivo progressive tensional loading. Seven times more backscattered light was detected parallel rather than perpendicular to the tendon axis with the 2.75 mm separation probe in unloaded tendons. In contrast, using the 300 μm separation probe the plane of maximum backscatter (3-fold greater) was perpendicular to the tendon axis. There was no optical anisotropy in the cross-sectional plane of the tendon (i.e. the transversely cut tendon surface), with no structural anisotropy. During mechanical loading (9–14% strain) backscatter anisotropy increased 8.5- to 18.5-fold along the principal strain axis for 2.75 mm probe separation, but almost disappeared in the perpendicular plane (measured using the 300 μm probe separation). Optical (anisotropy) and mechanical (strain) measurements were highly correlated. We conclude that spatial anisotropy of backscattered light can be used for quantitative monitoring of collagen fibril alignment and tissue reorganization during loading, with the potential for minimally invasive real-time structural monitoring of fibrous tissues in normal, pathological or repairing tissues and in tissue engineering. PMID:14578479
Challenges and Implementation of Radiation-Force Imaging with an Intracardiac Ultrasound Transducer
Hsu, Stephen J.; Fahey, Brian J.; Dumont, Douglas M.; Wolf, Patrick D.; Trahey, Gregg E.
2010-01-01
Intracardiac echocardiography (ICE) has been demonstrated to be an effective imaging modality for the guidance of several cardiac procedures, including radiofrequency ablation (RFA). However, assessing lesion size during the ablation with conventional ultrasound has been limited, as the associated changes within the B-mode images often are subtle. Acoustic radiation force impulse (ARFI) imaging is a promising modality to monitor RFAs as it is capable of visualizing variations in local stiffnesses within the myocardium. We demonstrate ARFI imaging with an intracardiac probe that creates higher quality images of the developing lesion. We evaluated the performance of an ICE probe with ARFI imaging in monitoring RFAs. The intracardiac probe was used to create high contrast, high resolution ARFI images of a tissue-mimicking phantom containing stiffer spherical inclusions. The probe also was used to examine an excised segment of an ovine right ventricle with a RFA-created surface lesion. Although the lesion was not visible in conventional B-mode images, the ARFI images were able to show the boundaries between the lesion and the surrounding tissue. ARFI imaging with an intracardiac probe then was used to monitor cardiac ablations in vivo. RFAs were performed within the right atrium of an ovine heart, and B-mode and ARFI imaging with the intracardiac probe was used to monitor the developing lesions. Although there was little indication of a developing lesion within the B-mode images, the corresponding ARFI images displayed regions around the ablation site that displaced less. PMID:17523564
On-line process control monitoring system
O'Rourke, Patrick E.; Van Hare, David R.; Prather, William S.
1992-01-01
An on-line, fiber-optic based apparatus for monitoring the concentration of a chemical substance at a plurality of locations in a chemical processing system comprises a plurality of probes, each of which is at a different location in the system, a light source, optic fibers for carrying light to and from the probes, a multiplexer for switching light from the source from one probe to the next in series, a diode array spectrophotometer for producing a spectrum from the light received from the probes, and a computer programmed to analyze the spectra so produced. The probes allow the light to pass through the chemical substance so that a portion of the light is absorbed before being returned to the multiplexer. A standard and a reference cell are included for data validation and error checking.
Carbonation of metal silicates for long-term CO2 sequestration
Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S
2014-03-18
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
Carbonation of metal silicates for long-term CO.sub.2 sequestration
Blencoe, James G [Harriman, TN; Palmer, Donald A [Oliver Springs, TN; Anovitz, Lawrence M [Knoxville, TN; Beard, James S [Martinsville, VA
2012-02-14
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).
DOT National Transportation Integrated Search
2015-04-01
This study investigated the test methods used to determine the : alkali content of fly ash. It also evaluated if high-alkali fly ash : exacerbates alkali-silica reaction in laboratory tests and field : concrete.
Wei, Ning; You, Jia; Friehs, Karl; Flaschel, Erwin; Nattkemper, Tim Wilhelm
2007-08-15
Fermentation industries would benefit from on-line monitoring of important parameters describing cell growth such as cell density and viability during fermentation processes. For this purpose, an in situ probe has been developed, which utilizes a dark field illumination unit to obtain high contrast images with an integrated CCD camera. To test the probe, brewer's yeast Saccharomyces cerevisiae is chosen as the target microorganism. Images of the yeast cells in the bioreactors are captured, processed, and analyzed automatically by means of mechatronics, image processing, and machine learning. Two support vector machine based classifiers are used for separating cells from background, and for distinguishing live from dead cells afterwards. The evaluation of the in situ experiments showed strong correlation between results obtained by the probe and those by widely accepted standard methods. Thus, the in situ probe has been proved to be a feasible device for on-line monitoring of both cell density and viability with high accuracy and stability. (c) 2007 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng
2017-04-01
Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.
Method and apparatus for non-invasive monitoring of blood glucose
Thomas, Graham H.; Watson, Roger M.; Noell, J. Oakey
1992-06-09
A new and improved method and apparatus are provided for non-invasive monitoring of changes in blood glucose concentration in a tissue specimen and particularly in an individual. The method uses acoustic velocity measurements for monitoring the effect of glucose concentration upon the density and adiabatic compressibility of the serum. In a preferred embodiment, the acoustic velocity measurements are made through the earlobe of a subject by means of an acoustic probe or monitor which includes a transducer for transmitting and receiving ultrasonic energy pulses to and from the blood flowing in the subject's earlobe and a reflector for facilitating reflection of the acoustic pulses from the blood. The probe is designed in such a way that when properly affixed to an ear, the transducer is positioned flush against the anterior portion of an earlobe while the reflector is positioned flush against the interior portion of the earlobe. A microthermocouple is provided on the probe for monitoring the internal temperature of the blood being sampled. An electrical system, essentially comprising a frequency generator, a time intervalometer and an oscilloscope, is linked to the glucose monitoring probe. The electrical system analyzes selected ones of the pulses reflected from the blood sample in order to determine therefrom the acoustic velocity of the blood which, in turn, provides a representation of the blood glucose concentration levels at the time of the acoustic velocity measurements.
Apparatus enables accurate determination of alkali oxides in alkali metals
NASA Technical Reports Server (NTRS)
Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.
1966-01-01
Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.
Corrosion probe. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less
Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV
2008-01-01
A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.
Acid and alkali doped PBI electrolyte in electrochemical system
NASA Astrophysics Data System (ADS)
Xing, Baozhong
In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism was established. In solution the cations and OH- all participate in the transport of current. It is the OH- that breaks the bonds between PBI molecules and enables the cations pass through the membrane. The performance of alkali doped PBI (doped under optimum conditions) in fuel cell as PEM is as good as NafionRTM.
NASA Astrophysics Data System (ADS)
Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying
2018-01-01
The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.
Alkali content of fly ash : measuring and testing strategies for compliance.
DOT National Transportation Integrated Search
2015-04-01
Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...
Renewable-reagent electrochemical sensor
Wang, J.; Olsen, K.B.
1999-08-24
A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.
Carbonation of metal silicates for long-term CO.sub.2 sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.
In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to producemore » a carbonate of the metal formerly contained in the metal silicate of step (a).« less
Turbulence Environment Characterization
1979-06-01
of ro is consistent with the simultaneous measurement made with the Seeing Monitor. An average turbulent profile developed primarily from microthermal ...data. The operation of the routine meteorological instrumentation, microthermal probes, acoustic sounder, Seeing Monitor and Star Sensor have been...and J. Spencer of RADC gave sub- stantial support and assistance with the microthermal probes, acoustic sounder and PDP-8 software. We acknowledge R
On-line biofilm monitoring by "BIOX" electrochemical probe.
Mollica, A; Cristiani, P
2003-01-01
The innovative electrochemical monitoring probe (BIOX) recently developed to improve the antifouling treatments of cooling systems in industrial plants is presented. On the basis of the good results obtained from applications on marine sites, some research has been stated to validate this technique in biofilm growth and prevention of microbial corrosion in fresh and drinking waters.
NASA Technical Reports Server (NTRS)
Singh, G.
1973-01-01
An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.
Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores.
Kiwull-Schöne, Heidrun; Kiwull, Peter; Manz, Friedrich; Kalhoff, Hermann
2008-02-01
Alkali-enriched diets are recommended for humans to diminish the net acid load of their usual diet. In contrast, herbivores have to deal with a high dietary alkali impact on acid-base balance. Here we explore the role of nutritional alkali in experimentally induced chronic metabolic acidosis. Data were collected from healthy male adult rabbits kept in metabolism cages to obtain 24-h urine and arterial blood samples. Randomized groups consumed rabbit diets ad libitum, providing sufficient energy but variable alkali load. One subgroup (n = 10) received high-alkali food and approximately 15 mEq/kg ammonium chloride (NH4Cl) with its drinking water for 5 d. Another group (n = 14) was fed low-alkali food for 5 d and given approximately 4 mEq/kg NH4Cl daily for the last 2 d. The wide range of alimentary acid-base load was significantly reflected by renal base excretion, but normal acid-base conditions were maintained in the arterial blood. In rabbits fed a high-alkali diet, the excreted alkaline urine (pH(u) > 8.0) typically contained a large amount of precipitated carbonate, whereas in rabbits fed a low-alkali diet, both pH(u) and precipitate decreased considerably. During high-alkali feeding, application of NH4Cl likewise decreased pH(u), but arterial pH was still maintained with no indication of metabolic acidosis. During low-alkali feeding, a comparably small amount of added NH4Cl further lowered pH(u) and was accompanied by a significant systemic metabolic acidosis. We conclude that exhausted renal base-saving function by dietary alkali depletion is a prerequisite for growing susceptibility to NH4Cl-induced chronic metabolic acidosis in the herbivore rabbit.
Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides
Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman
2012-01-01
Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669
NASA Technical Reports Server (NTRS)
Kolb, V.; Orgel, L. E.
1995-01-01
We have prepared a [32P]-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.
NASA Technical Reports Server (NTRS)
Kolb, Vera; Orgel, Leslie E.
1995-01-01
We have prepared a (P-32)-labeled oligonucleotide probe carrying a ureido (-NH-CO-NH2) function at its 3'-terminus. This labeled oligomer was used to study polycondensations of urea and formaldehyde and of various phenols and formaldehyde in aqueous solution. The formation of formaldehyde copolymers attached to the amido-function of the probe was monitored by gel electrophoresis. Our results are generally in agreement with those obtained using conventional techniques. Our method is suitable for monitoring potentially prebiotic polycondensation reactions involving formaldehyde.
Code of Federal Regulations, 2013 CFR
2013-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2011 CFR
2011-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2010 CFR
2010-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2014 CFR
2014-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Code of Federal Regulations, 2012 CFR
2012-07-01
... produce chlorine gas, hydrogen gas, and alkali metal hydroxide. (f) Mercury chlor-alkali electrolyzer... converted to alkali metal hydroxide, mercury, and hydrogen gas in a short-circuited, electrolytic reaction. (h) Hydrogen gas stream means a hydrogen stream formed in the chlor-alkali cell denuder. (i) End box...
Sodium to sodium carbonate conversion process
Herrmann, S.D.
1997-10-14
A method is described for converting radioactive alkali metal into a low level disposable solid waste material. The radioactive alkali metal is atomized and introduced into an aqueous caustic solution having caustic present in the range of from about 20 wt % to about 70 wt % to convert the radioactive alkali metal to a radioactive alkali metal hydroxide. The aqueous caustic containing radioactive alkali metal hydroxide and CO{sub 2} are introduced into a thin film evaporator with the CO{sub 2} present in an amount greater than required to convert the alkali metal hydroxide to a radioactive alkali metal carbonate, and thereafter the radioactive alkali metal carbonate is separated from the thin film evaporator as a dry powder. Hydroxide solutions containing toxic metal hydroxide including one or more metal ions of Sb, As, Ba, Be, Cd, Cr, Pb, Hg, Ni, Se, Ag and Tl can be converted into a low level non-hazardous waste using the thin film evaporator of the invention. 3 figs.
Controlled in-situ dissolution of an alkali metal
Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald
2012-09-11
A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.
Utilizing Non-Contact Stress Measurement System (NSMS) as a Health Monitor
NASA Technical Reports Server (NTRS)
Hayes, Terry; Hayes, Bryan; Bynum, Ken
2011-01-01
Continuously monitor all 156 blades throughout the entire operating envelope without adversely affecting tunnel conditions or compromise compressor shell integrity, Calculate dynamic response and identify the frequency/mode to determine individual blade deflection amplitudes, natural frequencies, phase, and damping (Q), Log static deflection to build a database of deflection values at certain compressor conditions to use as basis for real-time online Blade Stack monitor, Monitor for stall, surge, flutter, and blade damage, Operate with limited user input, low maintenance cost, safe illumination of probes, easy probe replacement, and require little or no access to compressor.
Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L
2010-06-01
Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-07-14
Method for the production of a clay-alkali-amine CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air. Results are presented illustrating the performance of the clay-alkali-amine CO.sub.2 sorbent compared to a clay-amine sorbent lacking the alkali inclusion.
NASA Astrophysics Data System (ADS)
Zhang, Z. T.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Khim, S.; Gass, S.; Wolter, A. U. B.; Wurmehl, S.; Grafe, H.-J.; Kühne, H.
2018-03-01
We report 75As nuclear magnetic resonance measurements on single crystals of RbFe2As2 and CsFe2As2 . Taking previously reported results for KFe2As2 into account, we find that the anisotropic electronic correlations evolve towards a magnetic instability in the A Fe2As2 series (with A =K , Rb, Cs). Upon isovalent substitution with larger alkali-metal ions, a drastic enhancement of the anisotropic nuclear spin-lattice relaxation rate and decreasing Knight shift reveal the formation of pronounced spin fluctuations with stripe-type modulation. Furthermore, a decreasing power-law exponent of the nuclear spin-lattice relaxation rate (1/T1)H ∥a b, probing the in-plane spin fluctuations, evidences an emergent deviation from Fermi-liquid behavior. All these findings clearly indicate that the expansion of the lattice in the A Fe2As2 series tunes the electronic correlations towards a quantum critical point at the transition to a yet unobserved ordered phase.
40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...
40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...
EXTINGUISHMENT OF ALKALI METAL FIRES
was found to be effective on low temperature (1000F) fires and was useful on alkali metal fires on or under insulation. Organic liquids were not...particularly effective on alkali metal fires . A section is presented on a typical alkali metal system which might be used to generate electrical power in space.
Utilizing Time Domain Reflectometry on monitoring bedload in a mountain stream
NASA Astrophysics Data System (ADS)
Miyata, S.; Fujita, M.
2015-12-01
Understanding bedload transport processes in steep mountain streams is essential for disaster mitigation as well as predicting reservoir capacity and restoration of river ecosystem. Despite various monitoring methods proposed previously, precise bedload monitoring in steep streams still remains difficulty. This study aimed to develop a bedload monitoring system by continuous measurement of thickness and porosity of sediment under water that can be applicable to retention basins and pools in steep streams. When a probe of TDR (Time Domain Reflectometry) measurement system is inserted as to penetrate two adjacent layers with different dielectric constants, analysis of TDR waveform enables us to determine position of the layer boundary and ratio of materials in the layer. Methodology of analyzing observed TDR waveforms were established based on results of a series of column experiment, in which a single TDR probe with length of 40 cm was installed in a column filled with water and, then, sand was supplied gradually. Flume experiment was performed to apply the TDR system on monitoring sediment volume under flowing water conditions. Eight probes with lengths of 27 cm were distributed equally in a model retention basin (i.e., container), into which water and bedload were flowed from a connected flume. The model retention basin was weighed by a load cell and the sediment volume was calculated. A semi-automatic waveform analysis was developed to calculate continuously thicknesses and porosities of the sediment at the eight probes. Relative errors of sediment volume and bedload (=time differential of the volume) were 13 % at maximum, suggesting that the TDR system proposed in this study with multiple probes is applicable to bedload monitoring in retention basins of steep streams. Combination of this system and other indirect bedload monitoring method (e.g., geophone) potentially make a breakthrough for understanding sediment transport processes in steep mountain streams.
Bui, Phuc Tan; Nishino, Tomoaki; Shiigi, Hiroshi; Nagaoka, Tsutomu
2015-01-31
A DNA molecule was utilized as a probe tip to achieve single-molecule genetic diagnoses. Hybridization of the probe and target DNAs resulted in electron tunneling along the emergent double-stranded DNA. Simple stationary monitoring of the tunneling current leads to single-molecule DNA detection and discovery of base mismatches and methylation.
NASA Technical Reports Server (NTRS)
Baughman, J. R.; Thys, P. C.
1973-01-01
A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.
Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries
Deng, Zhi; Mo, Yifei; Ong, Shyue Ping
2016-03-25
The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less
Method of handling radioactive alkali metal waste
Wolson, Raymond D.; McPheeters, Charles C.
1980-01-01
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
Method of handling radioactive alkali metal waste
Wolson, R.D.; McPheeters, C.C.
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
[Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].
Alekseenko, V A; Kus'min, A A; Filist, S A
2008-01-01
Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.
40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...
40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...
40 CFR 721.4660 - Alcohol, alkali metal salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...
Structure of xanthan gum and cell ultrastructure at different times of alkali stress
de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa
2016-01-01
The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232
NASA Astrophysics Data System (ADS)
Ramella-Roman, Jessica C.; Ho, Thuan; Le, Du; Ghassemi, Pejhman; Nguyen, Thu; Lichy, Alison; Groah, Suzanne
2013-03-01
Skin perfusion and oxygenation is easily disrupted by imposed pressure. Fiber optics probes, particularly those spectroscopy or Doppler based, may relay misleading information about tissue microcirculation dynamics depending on external forces on the sensor. Such forces could be caused by something as simple as tape used to secure the fiber probe to the test subject, or as in our studies by the full weight of a patient with spinal cord injury (SCI) sitting on the probe. We are conducting a study on patients with SCI conducting pressure relief maneuvers in their wheelchairs. This study aims to provide experimental evidence of the optimal timing between pressure relief maneuvers. We have devised a wireless pressure-controlling device; a pressure sensor positioned on a compression aluminum plate reads the imposed pressure in real time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the sample. This apparatus was used to monitor the effect of increasing values of pressure on spectroscopic fiber probes built to monitor tissue oxygenation and Doppler probes used to assess tissue perfusion.
Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.
Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O
1994-09-01
Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.
Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications.
Huang, He; Li, Chunguang; Zhu, Shoujun; Wang, Hailong; Chen, Cailing; Wang, Zhaorui; Bai, Tianyu; Shi, Zhan; Feng, Shouhua
2014-11-18
Nitrogen-doped (N-doped) photoluminescent carbon dots (CDs) were prepared by a one-pot microwave-assisted hydrothermal treatment using histidine as the sole carbon source in the absence of acid, alkali, or metal ions. With a diameter of 2-5 nm, the synthesized CDs had apparent lattice fringes and exhibited an excitation-dependent photoluminescent behavior. The CDs were highly yielded, well-dispersed in aqueous solution, and showed high photostability in the solutions of a wide range of pH and salinity. They were used as probes to identify the presence of Fe(3+) ions with a detection limit of 10 nM. With confirmed nontoxicity, these CDs could enter the cancer cells, indicating a practical potential for cellular imaging and labeling.
Femtosecond laser spectroscopy on the vibrational wave packet dynamics of the A 1Σ+ state of NaK
NASA Astrophysics Data System (ADS)
Berg, L.-E.; Beutter, M.; Hansson, T.
1996-05-01
The vibrational wave packet dynamics of a heteronuclear diatomic alkali molecule in an excited state, the A 1Σ+ state of gaseous NaK, has been measured for the first time. At λpump = 790 nm, a wave packet oscillation period of 442 fs and dephasing within 10 ps has been observed. This dynamics has been analysed by calculation of Franck-Condon factors and difference potentials. It is from this seen that initially the pump pulse prepares a wave packet at the inner turning point of the A-state. The wave packet then evolves in time and is probed at the outer turning point by a transition to the E-state with subsequent fluorescence detection.
Butler, Stephen J
2014-11-24
Two tripodal fluorescent probes Zn⋅L(1,2) have been synthesised, and their anion-binding capabilities were examined by using fluorescence spectroscopy. Probe Zn⋅L(1) allows the selective and ratiometric detection of adenosine triphosphate (ATP) at physiological pH, even in the presence of several competing anions, such as ADP, phosphate and bicarbonate. The probe was applied to the real-time monitoring of the apyrase-catalysed hydrolysis of ATP, in a medium that mimics an extracellular fluid. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming
2018-05-01
Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Advanced Human Factors Engineering Tool Technologies.
1988-03-01
charger/ AC adapter immersible probe air temperature probe surface temperature probe . * Sling psychrometer , MSA or Taylor 1328A * Aspirating... psychrometer , Model PP-100 or CP-147, Psychro-Dyne * Wet-bulb-heat-stress monitor, Model B&K 1219, Briel & Kjaer Transducer, Model B&K MM 0030 (3 each), Brijel
Extraction process for removing metallic impurities from alkalide metals
Royer, L.T.
1987-03-20
A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.
Theoretical study on the thermal and optical features of a diode side-pumped alkali laser
NASA Astrophysics Data System (ADS)
Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You
2018-03-01
As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.
Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi
2015-12-28
A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.
Vibrational Spectra of Molecular Ions Isolated in Solid Neon. 6. CO4(-)
1991-04-04
of each of these groups are nonequivalent . Arguments are preentee indicating that this product is the CO4- anion. The infrared frequencies of the...of an alkali metal, a prominent, complicated pattern of the CO2 group be nonequivalent . The complexity of the absorption absorptions near 1600 cm...ADDRESS(ES) 10. SPONSORING/MONITORING U. S. Army Research Office AGENCY REPORT NUMBER P. 0. Box 12211 Research Triangle Park, NC 27709-2211 Ae40 ,, -69. 9’H
1-.sup.11 C-D-Glucose and related compounds
Shiue, Chyng-Yann; Wolf, Alfred P.
1984-03-27
The novel compounds 1-.sup.11 C-D-glucose, 1-.sup.11 C-D-mannose, 1-.sup.11 C-D-galactose, 2-.sup.11 C-D-glucose, 2-.sup.11 C-D-mannose and 2-.sup.11 C-D-galactose which can be used in nuclear medicine to monitor the metabolism of glucose and galactose can be rapidly prepared by reaction of the appropriate aldose substrate with an alkali metal .sup.11 C-labeled cyanide followed by reduction with a Raney alloy in formic acid.
Integrated RFA/OCT catheter for real-time guidance of cardiac RFA therapy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fu, Xiaoyong; Blumenthal, Colin; Dosluoglu, Deniz; Wang, Yves T.; Jenkins, Michael W.; Souza, Rakesh; Snyder, Christopher; Arruda, Mauricio; Rollins, Andrew M.
2016-03-01
Currently, cardiac radiofrequency ablation is guided by indirect signals. We demonstrate an integrated radiofrequency ablation (RFA) and optical coherence tomography (OCT) probe for directly monitoring of the RFA procedure with OCT images in real time. The integrated RFA/OCT probe is modified from a standard commercial RFA catheter, and a newly designed and fabricated miniature forward-viewing cone-scanning OCT probe is integrated into the modified probe. The OCT system is verified with the human finger images, and the results show the integrated RFA/OCT probe can acquire high quality OCT images. The radiofrequency energy delivering function of the integrated probe is verified by comparing the RFA lesion sizes with standard commercial RFA probe. For the standard commercial probe, the average width and depth of the 10 lesions were 3.5 mm and 1.8 mm respectively. For the integrated RFA/OCT probe, the average width and depth of the 10 lesions were 3.6 mm and 1.7 mm respectively. The lesions created by the two probes are indistinguishable in size. This demonstrates that our glass window in the integrated probe has little effect on the RF energy delivery. And the integrated probe is used to monitoring the cardiac RFA procedure in real time. The results show that the RFA lesion formation can be confirmed by the loss of birefringence in the heart tissue. The system can potentially in vivo image of the cardiac wall to aid RFA therapy for cardiac arrhythmias.
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
Electron Scattering Studies of Gas Phase Molecular Structure at High Temperature
NASA Astrophysics Data System (ADS)
Mawhorter, Richard J., Jr.
A high precision counting electron diffraction study of the structure of gaseous sulfur dioxide as a function of temperature from 300(DEGREES) to 1000(DEGREES)K is presented. The results agree well with current theory, and yield insight into the effects of anharmonicity on molecular structure. Another aspect of molecular structure is the molecular charge density distribution. The difference (DELTA)(sigma) is between the electron scattering cross sections for the actual molecule and independent atom model (IAM) are a sensitive measure of the change in this distribution due to bond formation. These difference cross sections have been calculated using ab initio methods, and the results for a wide range of simple polyatomic molecules are presented. Such calculations are routinely done for a single, fixed molecular geometry, an approach which neglects the effects of the vibrational motion of real molecules. The effect of vibrational averaging is studied in detail for the three normal vibrational modes of H(,2)O in the ground state. The effects are small, lending credence to the practice of comparing cross sections calculated at a fixed geometry with inherently averaged experimental data. The efficacy of the standard formula used to account for vibrational averaging in the IAM is also examined. Finally, the nature of the ionic bond is probed with an experimental study of the structure of alkali chlorides, NaCl, KCl, RbCl, and CsCl, in the gas phase. Temperatures from 840-960(DEGREES)K were required to achieve the necessary vapor pressures of approximately 0.01 torr. A planar rhombic structure for the dimer molecule is confirmed, with a fairly uniform decrease of the chlorine-alkali-chlorine angle as the alkalis increase in size. The experiment also yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.
Jain, Suyog N; Gogate, Parag R
2018-03-15
Biosorbent synthesized from dead leaves of Prunus Dulcis with chemical activation during the synthesis was applied for the removal of Acid Green 25 dye from wastewater. The obtained biosorbent was characterized using Brunauer-Emmett-Teller analysis, Fourier transform-infrared spectroscopy and scanning electron microscopy measurements. It was demonstrated that alkali treatment during the synthesis significantly increased surface area of biosorbent from 67.205 to 426.346 m 2 /g. The effect of various operating parameters on dye removal was investigated in batch operation and optimum values of parameters were established as pH of 2, 14 g/L as the dose of natural biosorbent and 6 g/L as the dose of alkali treated biosorbent. Relative error values were determined to check fitting of obtained data to the different kinetic and isotherm models. It was established that pseudo-second order kinetic model and Langmuir isotherm fitted suitably to the obtained batch experimental data. Maximum biosorption capacity values were estimated as 22.68 and 50.79 mg/g for natural biosorbent and for alkali activated Prunus Dulcis, respectively. Adsorption was observed as endothermic and activation energy of 6.22 kJ/mol confirmed physical type of adsorption. Column experiments were also conducted to probe the effectiveness of biosorbent for practical applications in continuous operation. Breakthrough parameters were established by studying the effect of biosorbent height, flow rate of dye solution and initial dye concentration on the extent of dye removal. The maximum biosorption capacity under optimized conditions in the column operation was estimated as 28.57 mg/g. Thomas and Yoon-Nelson models were found to be suitably fitted to obtained column data. Reusability study carried out in batch and continuous column operations confirmed that synthesized biosorbent can be used repeatedly for dye removal from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coherent control of alkali cluster fragmentation dynamics
NASA Astrophysics Data System (ADS)
Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger
2003-06-01
Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.
Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.
1997-12-31
Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples.more » Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available.« less
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.; Dembovska, L.
2015-11-01
Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.
Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.
Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
NASA Astrophysics Data System (ADS)
Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.
2018-03-01
The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.
Hydrothermal carbonization of rice husk for fuel upgrading
NASA Astrophysics Data System (ADS)
Suteerawattananonda, N.; Kongkaew, N.; Patumsawad, S.
2018-01-01
The biomass is popularly used as renewable energy. In Thailand rice is the most consume agricultural products. Agricultural residues from rice husk can be an energy resource. However, alkali and alkali earth materials (AAEMs) in biomass ash are the causes of corrosion and erosion problem in the heat exchanger equipment, while the acidity of ash affects the slagging agglomeration problem. Reduction of alkali and alkali earth materials can minimize the problem. In order to challenge the reduction of alkali and alkali earth materials in biomass ash, hydrothermal carbonization process was selected. Thai rice husk was used as sample to compare the result of treatment. The rice husk was heated under the condition of different temperature ranged from 180°C to 250°C, at operate pressure ranges from 12 bar to 42 bar with residence holding reaction time 1 hour. The results of proximate analysis show that the percentage by mass of fixed carbon are increased 2 times, but volatile matter is decreased by 40% and ash content is decreased by 11% due to the increment of temperature. Meanwhile, the X-Ray fluorescence (XRF) analysis results show the decreasing of alkali and alkali earth materials are reduced.
Alkali elemental and potassium isotopic compositions of Semarkona chondrules
Alexander, C.M. O'D.; Grossman, J.N.
2005-01-01
We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.
Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.
Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu
2015-06-02
A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.
NASA Astrophysics Data System (ADS)
Mironov, A. E.; Hewitt, J. D.; Eden, J. G.
2017-03-01
We report the selective population of Rb or Cs n p
Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian
2015-10-01
Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range. Copyright © 2015 Elsevier Ltd. All rights reserved.
DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes
NASA Astrophysics Data System (ADS)
You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong
2017-05-01
Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.
U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring
Zhong, Nianbing; Zhao, Mingfu; Li, Yishan
2016-01-01
To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm. PMID:26977344
Potentially Reactive Forms of Silica in Volcanic Rocks Using Different Analytical Approaches
NASA Astrophysics Data System (ADS)
Esteves, Hugo; Fernandes, Isabel; Janeiro, Ana; Santos Silva, António; Pereira, Manuel; Medeiros, Sara; Nunes, João Carlos
2017-12-01
Several concrete structures show signs of deterioration resulting from internal chemical reactions, such as the alkali-silica reaction (ASR). It is well known that these swelling reactions occur in the presence of moisture, between some silica mineral phases present in the aggregates and the alkalis of the concrete, leading to the degradation of concrete structures and consequently compromising their safety. In most of the cases, rehabilitation, demolition or even rebuilding of such structures is needed and the effective costs can be very high. Volcanic rocks are commonly used as aggregates in concrete, and they are sometimes the only option due to the unavailability of other rock types. These rocks may contain different forms of silica that are deleterious to concrete, such as opal, chalcedony, cristobalite, tridymite and micro- to cryptocrystalline quartz, as well as Si-rich volcanic glass. Volcanic rocks are typically very finegrained and their constituting minerals are usually not distinguished under optical microscopy, thus leading to using complementary methods. The objective of this research is to find the more adequate analytical methods to identify silica phases that might be present in volcanic aggregates and cause ASR. The complementary methods used include X-Ray Diffraction (XRD), mineral acid digestion and Scanning Electron Microscopy with Energy Dispersive X-Ray Spectrometry (SEM/EDS), as well as Electron Probe Micro-Analysis (EPMA).
Voltammetric studies of porous molybdenum electrodes for the alkali metal thermoelectric converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Bankston, C.P.; Khanna, S.K.
1986-11-01
Voltammetry of partially oxidized porous molybdenum alkali metal thermoelectric converter (AMTEC) electrodes from --600 to --1000 K revealed a series of redox processes within the operational voltage range of the AMTEC device. The most important of these processes involve reactions that add sodium to MoO/sub 2/, Na/sub 2/Mo/sub 3/O/sub 6/, and Na/sub 2/MoO/sub 4/. The redox processes can be used as an in situ analytical probe of oxide species in porous molybdenum electrodes. These constituents are important in establishing the electronic and ionic conductivities of AMTEC electrodes. The estimated equilibrium potentials of these reactions provide improved estimates of the freemore » energies of formation of Na/sub 2/Mo/sub 3/O/sub 6/, NaMoO/sub 2/, and Na/sub 3/MoO/sub 4/. In the AMTEC operating regime, there is evidence for the comparatively slow corrosive attack by Na/sub 2/MoO/sub 4/ on molybdenum. The ionic conductivity of Na/sub 2/MoO/sub 4/ measured from 600 to over 1000 K shows sharp increases in conductivity at --750, 865, and 960 K. The conductivity is sufficiently large at T > 700 K to explain the observed electrochemical phenomena, as well as enhanced sodium transport in AMTEC electrodes below the freezing point (960 K) of Na/sub 2/MoO/sub 4/.« less
NASA Astrophysics Data System (ADS)
Kim, Mi Seon; Choi, Man Sik; Kim, Chan-Kook
2016-03-01
To evaluate the applicability of a diffusive gradient in thin film (DGT) probe for monitoring dissolved metals in coastal seawater, DGT-labile metal concentrations were compared with total dissolved metal concentrations using spiked and natural seawater samples in the laboratory and transplanted mussels ( Mytilus galloprovincialis). This was achieved through the simultaneous deployment of DGT probes and transplanted mussels in Ulsan Bay during winter and summer. DGT-labile metal concentrations were 45% (Cu) ~ 90% (Zn) of total dissolved concentrations, and the order of non-labile concentrations was Cu > Pb > Co ~ Ni > Cd ~ Zn in both metal-contaminated and non-contaminated seawater samples, which was similar to the order of stability of metal complexes in the Irving-Williams series. The overall variability of the DGT probe results within and between tanks was less than 10% (relative standard deviation: RSD) for all the metals tested during a 48-h deployment. The accumulation of metals, as determined by DGT probes, represented the spatial gradients better than the transplanted mussels did for all of the metals tested, and the extent of metal accumulation in mussels differed depending on the metal. The comparison of results for the DGT probe and the transplanted mussels in two seasons (winter and summer) suggested that metal accumulation in mussels was controlled by the physiological factors of mussels and partly by their diet (particulate metal loadings). The DGT probe could be used as a monitoring tool for dissolved metals in coastal seawater because its results explained only labile species. When using the DGT probe, slightly more than half of the total dissolved concentration in seawater samples for all the metals investigated displayed timeintegrated properties and distinct spatial gradients from pristine to metal-contaminated seawater.
Alkali-aggregate reactivity (AAR) facts book.
DOT National Transportation Integrated Search
2013-03-01
This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...
Recovery of Ga(III) by Raw and Alkali Treated Citrus limetta Peels
2014-01-01
Alkali treated Citrus limetta peels were used for recovery of Ga(III) from its aqueous solution. The raw and alkali treated peels were characterized for functional groups. The efficiency of adsorption increased from 47.62 mg/g for raw peels to 83.33 mg/g for alkali treated peels. Between pH 1 and 3, the adsorption increased and thereafter decreased drastically. The adsorption followed pseudosecond order kinetics and Langmuir isotherm gave the best fit for the experimental data. Desorption studies showed 95.28% desorption after 3 cycles for raw peels while it was 89.51% for alkali treated peels. Simulated Bayer liquor showed 39.57% adsorption for gallium ions on raw peels which was enhanced to 41.13% for alkali treated peels. PMID:27382624
Alkali resistant optical coatings for alkali lasers and methods of production thereof
Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C
2014-11-18
In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
CO.sub.2 removal sorbent composition with high chemical stability during multiple cycles
Siriwardane, Ranjani V.; Rosencwaig, Shira
2015-09-22
Disclosed herein is a clay-alkali-amine CO.sub.2 sorbent composition prepared by integrating a clay substrate, basic alkali salt, and amine liquid. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay-alkali-amine C02 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a C02 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.
1986-01-01
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.
1985-07-10
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Engineering considerations for corrosion monitoring of gas gathering pipeline systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braga, T.G.; Asperger, R.G.
1987-01-01
Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed inmore » relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.« less
Kim, Jeong Tae; Ho, Samuel Y M; Kim, Youn Hwan
2014-02-01
Postoperative flap monitoring is a vital aspect of free tissue transfer in order to detect early vascular compromise and to enable early flap salvage. The implantable Doppler monitoring system is one of many monitoring devices used to ensure accuracy and reduce unnecessary flap explorations. However, there are a number of concerns with its use, namely tension on the anastomosis, possible vessel constriction and false-negative detection. This study aimed to alleviate these concerns, by introducing a new method of placing the implantable Doppler probe on the adjacent vessel limb of a chimaeric flap. This is illustrated by a case series of chimaeric free tissue flaps that allow this surrogate placement of the Doppler probe. The flap is raised in a chimaeric fashion, with a main perforator pedicle to the skin or muscle paddle for the main reconstructive purpose and a side branch from the main pedicle going to a smaller adipofascial or muscle flap for monitoring. This branch vascular pedicle leading to the chimaeric tissue is kept sufficiently long to enable placement of the Doppler cuff and prevent turbulence. The probe of a Cook-Swartz implantable Doppler system is placed around the branch pedicle, approximately 5 mm from the branching point, and secured with a vessel clip. This is then secured away from the major vessels of the main free flap. Removal of the probe's crystal and wire is easily done with a single gentle traction on postoperative day 7. Five cases of chimaeric free flaps were performed with this manoeuvre: three thoracodorsal perforator chimaeric flaps for head-and-neck or extremity reconstruction, one latissimus dorsi neuromuscular chimaeric flap for facial reanimation and one digastric lymph node transfer for the treatment of lower limb lymphoedema. The Doppler system showed a low but sustained oscillating flow in all cases indicating vascular patency, with minimal flow interference from other large-calibre vessels. There was no discernible kinking on the anastomosis. There were no complications encountered during probe removal. This postoperative monitoring manoeuvre was done successfully with good results. The monitoring equipment is very sensitive to any flow disturbance due to positional changes in the head-and-neck region or the extremities and is able to detect flow changes in buried flaps postoperatively. Chimaeric flap composition is easier now than before because of perforator-oriented pedicle dissection, and surrogate Doppler monitoring is one more application of the chimaeric flap. This novel chimaeric fashion of implantable Doppler probe placement is a good surrogate measure of flow in the main pedicle. Copyright © 2013. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glissmeyer, John A.; Antonio, Ernest J.; Flaherty, Julia E.
2016-02-29
This document reports on a series of tests conducted to assess the proposed air sampling location for the National Research Universal reactor (NRU) complex exhaust stack, located in Chalk River, Ontario, Canada, with respect to the applicable criteria regarding the placement of an air sampling probe. Due to the age of the equipment in the existing monitoring system, and the increasing difficulty in acquiring replacement parts to maintain this equipment, a more up-to-date system is planned to replace the current effluent monitoring system, and a new monitoring location has been proposed. The new sampling probe should be located within themore » exhaust stack according to the criteria established by the American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream. The internal Pacific Northwest National Laboratory (PNNL) project for this task was 65167, Atomic Energy Canada Ltd. Chalk River Effluent Duct Flow Qualification. The testing described in this document was guided by the Test Plan: Testing of the NRU Stack Air Sampling Position (TP-STMON-032).« less
NASA Astrophysics Data System (ADS)
Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.
2018-05-01
Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe3+, REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH2O and F- activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites.
Hardy, Micael; Zielonka, Jacek; Karoui, Hakim; Sikora, Adam; Michalski, Radosław; Podsiadły, Radosław; Lopez, Marcos; Vasquez-Vivar, Jeannette; Kalyanaraman, Balaraman; Ouari, Olivier
2018-05-20
Since the discovery of the superoxide dismutase enzyme, the generation and fate of short-lived oxidizing, nitrosating, nitrating, and halogenating species in biological systems has been of great interest. Despite the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in numerous diseases and intracellular signaling, the rigorous detection of ROS and RNS has remained a challenge. Recent Advances: Chemical characterization of the reactions of selected ROS and RNS with electron paramagnetic resonance (EPR) spin traps and fluorescent probes led to the establishment of species-specific products, which can be used for specific detection of several forms of ROS and RNS in cell-free systems and in cultured cells in vitro and in animals in vivo. Profiling oxidation products from the ROS and RNS probes provides a rigorous method for detection of those species in biological systems. Formation and detection of species-specific products from the probes enables accurate characterization of the oxidative environment in cells. Measurement of the total signal (fluorescence, chemiluminescence, etc.) intensity does not allow for identification of the ROS/RNS formed. It is critical to identify the products formed by using chromatographic or other rigorous techniques. Product analyses should be accompanied by monitoring of the intracellular probe level, another factor controlling the yield of the product(s) formed. More work is required to characterize the chemical reactivity of the ROS/RNS probes, and to develop new probes/detection approaches enabling real-time, selective monitoring of the specific products formed from the probes. Antioxid. Redox Signal. 28, 1416-1432.
Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu
2012-01-01
Background Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. Methodology/Principal Findings The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na+ in old leaves under alkali stress. Alkali stress mightily reduced the NO3 − contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO3 − was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO3 − in old leaves. NO3 − deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH4 +, which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Conclusions/Significance Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research. PMID:22655071
Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring
Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.
1997-01-01
A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.
Li, Ling-Ling; Li, Kun; Li, Meng-Yang; Shi, Lei; Liu, Yan-Hong; Zhang, Hong; Pan, Sheng-Lin; Wang, Nan; Zhou, Qian; Yu, Xiao-Qi
2018-05-01
The viscosity of lysosome is reported to be a key indicator of lysosomal functionality. However, the existing mechanical methods of viscosity measurement can hardly be applied at the cellular or subcellular level. Herein, a BODIPY-based two-photon fluorescent probe was presented for monitoring lysosomal viscosity with high spatial and temporal resolution. By installing two morpholine moieties to the fluorophore as target and rotational groups, the TICT effect between the two morpholine rings and the main fluorophore scaffold endowed the probe with excellent viscosity sensitivity. Moreover, Lyso-B succeeded in showing the impact of dexamethasone on lysosomal viscosity in real time.
NASA Astrophysics Data System (ADS)
Abiy, Lidet; Telischi, Fred; Parel, Jean-Marie A.; Manns, Fabrice; Saettele, Ralph; Morawski, Krzysztof; Ozdamar, Ozcan; Borgos, John; Delgado, Rafael; Miskiel, Edward; Yavuz, Erdem
2003-06-01
The aim of this project is the development of a microsurgical laser Doppler (LD) probe that simultaneously monitors blood flow and Electrocochleography (ECochG) from the round window of the ear. The device will prevent neurosensory hearing loss during acoustic neuroma surgery by preventing damage to the internal auditory nerve and to the cochlear blood flow supply. A commercially available 0.5 mm diameter Laser-Doppler velocimetry probe (LaserFlo, Vasamedics) was modified to integrate an ECochG electrode. A tube for suction and irrigation was incorporated into a sheath of the probe shaft, to facilitate cleaning of the round window (RW) and allow drug delivery to the round window membrane. The prototype microprobe was calibrated on a single vessel model and tested in vivo in a rabbit model. Preliminary results indicate that the microprobe was able to measure changes in cochlear blood flow (CBF) and ECochG potentials from the round window of rabbits in vivo. The microprobe is suitable for monitoring cochlear blood flow and auditory cochlear potentials during human surgery.
Ultrafast control and monitoring of material properties using terahertz pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowlan, Pamela Renee
These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less
Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long
2015-07-07
It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.
Yeung, Edward S.; Chen, Guoying
1990-05-01
A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.
Recombinant phage probes for Listeria monocytogenes
NASA Astrophysics Data System (ADS)
Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.
2007-10-01
Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.
Fang, Mingxi; Adhikari, Rashmi; Bi, Jianheng; Mazi, Wafa; Dorh, Nethaniah; Wang, Jianbo; Conner, Nathan; Ainsley, Jon; Karabencheva-Christova, Tatyana G; Luo, Fen-Tair; Tiwari, Ashutosh; Liu, Haiying
2017-12-28
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
Bianchini, G.M.; McRae, T.G.
1983-06-23
The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.
NASA Astrophysics Data System (ADS)
Xia, Huifen; Pan, Junliang; Niu, Lijuan; Xu, Tianhan
2018-02-01
The results illustrate that under the condition of the same viscosity of ASP system, oil displacement efficiency is different while the ASP system with different alkali concentration has the same order of magnitude as the interfacial tension of oil. In this paper, the microscopic simulation visual model is used to study the mechanism of starting migration of residual oil by doing ASP flooding experiments with different alkali concentration. The results indicate that the migration of residual oil is different from that in the ASP systems with different alkali concentration. ASP system with high alkali concentration can start the migration by means of emulsifying residual oil into oil droplets and oil threads, on this account, increasing the alkali concentration can make the recovery degree of ASP system higher, which will finally be beneficial to the oil recovery.
In situ alkali-silica reaction observed by x-ray microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.
1997-04-01
In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques availablemore » for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.« less
Guo, Rui; Shi, LianXuan; Yang, ChunWu; Yan, ChangRong; Zhong, XiuLi; Liu, Qi; Xia, Xu; Li, HaoRu
2016-01-01
Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L.) plants as experimental material to investigate whether alkali stress induces ionic and metabolism changes in old and young leaves of cotton plants exposed to alkali stress. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable tricarboxylic acid cycle, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages. PMID:27933088
Zhang, Pingping; Fu, Jinmin; Hu, Longxing
2012-10-01
Soil alkalization is one of the most prominent adverse environmental factors limiting plant growth, while alkali stress affects amino acids and carbohydrates metabolism. The objective of this study was conducted to investigate the effects of alkali stress on growth, amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Seventy-day-old plants were subjected to four pH levels: 6.0 (control), 8.0 (low), 9.4 (moderate) and 10.3 (severe) for 7 days. Moderate to severe alkali stress (pH >9.4) caused a significant decline in turf quality and growth rate in Kentucky bluegrass. Soluble protein was unchanged in shoots, but decreased in roots as pH increased. The levels of amino acids was kept at the same level as control level at 4 days after treatment (DAT) in shoots, but greater at 7 DAT, when plants were subjected to severe (pH 10.3) alkali stress. The alkali stressed plants had a greater level of starch, water soluble carbohydrate and sucrose content, but lower level of fructose and glucose. Fructan and total non-structural carbohydrate (TNC) increased at 4 DAT and decreased at 7 DAT for alkali stressed plants. These results suggested that the decrease in fructose and glucose contributed to the growth reduction under alkali stress, while the increase in amino acids, sucrose and storage form of carbohydrate (fructan, starch) could be an adaptative mechanism in Kentucky bluegrass under alkali stress.
The purpose of this paper is to provide guidelines for sub-slab sampling using dedicated vapor probes. Use of dedicated vapor probes allows for multiple sample events before and after corrective action and for vacuum testing to enhance the design and monitoring of a corrective m...
Secretory phospholipase A2 activity in blood serum: the challenge to sense.
Alekseeva, A S; Korotaeva, A A; Samoilova, E V; Volynsky, P E; Vodovozova, E L; Boldyrev, I A
2014-11-07
Excess levels of secretory phospholipase A2 (sPLA2) is known to contribute to several inflammatory diseases including vascular inflammation correlating with coronary events in coronary artery disease. Thus a method to monitor sPLA2 activity in blood serum is urgently needed. Such method is still a challenge since existing fluorescent probes do not allow to monitor sPLA2 activity directly in blood serum. Here we analyze and overcome barriers in sPLA2 sensing methodology and report a fluorescent probe and a kinetic model of its hydrolysis by sPLA2. New probe is designed with a fluorophore and a quencher not interfering binding to the enzyme. At the same time phospholipid matrix bearing the probe promotes efficient initial quenching of the fluorophore. Kinetic model of probe hydrolysis takes into account signal change due to the side processes. The probe and the kinetic model applied together prove the concept that the activity of sPLA can be measured directly in blood serum. Copyright © 2014 Elsevier Inc. All rights reserved.
Thermal properties of alkali-activated aluminosilicates with CNT admixture
NASA Astrophysics Data System (ADS)
Zmeskal, Oldrich; Trhlikova, Lucie; Fiala, Lukas; Florian, Pavel; Cerny, Robert
2017-07-01
Material properties of electrically conductive cement-based materials with increased attention paid on electric and thermal properties were often studied in the last years. Both electric and thermal properties play an important role thanks to their possible utilization in various practical applications (e.g. snow-melting systems or building structures monitoring systems without the need of an external monitoring system). The DC/AC characteristics depend significantly on the electrical resistivity and the electrical capacity of bulk materials. With respect to the DC/AC characteristics of cement-based materials, such materials can be basically classified as electric insulators. In order to enhance them, various conductive admixtures such as those based on different forms of carbon, can be used. Typical representatives of carbon-based admixtures are carbon nanotubes (CNT), carbon fibers (CF), graphite powder (GP) and carbon black (CB). With an adequate amount of such admixtures, electric properties significantly change and new materials with higher added value can be prepared. However, other types of materials can be enhanced in the same way. Alkali-activated aluminosilicates (AAA) based on blast furnace slag are materials with high compressive strength comparable with cement-based materials. Moreover, the price of slag is lower than of Portland cement. Therefore, this paper deals with the study of thermal properties of this promising material with different concentrations of CNT. Within the paper a simple method of basic thermal parameters determination based on the thermal transient response to a heat power step is presented.
Alkali metal hafnium oxide scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward
The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A 2HfO 3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Determination of the common and rare alkalies in mineral analysis
Wells, R.C.; Stevens, R.E.
1934-01-01
Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.
1990-12-01
42) that is brighter than any of the other alkali metal fires (Reference 36). Combustion of lithium is accompanied by emission of dense, white, opaque...extinguishing alkali metal fires (Reference 64). Application of an inert gas such as argon to a well-established lithium fire was found to be...extinguishers be used against alkali metal fires (References 1, 64); water reacts with explosive violence with alkali metals (References 35, 36). In an
Zheng, Cong Cong; Wang, Yong Jing; Sun, Hao; Wang, Xin Yu; Gao, Ying Zhi
2017-07-18
Soil salinization and overgrazing are two main factors limiting animal husbandry in the Songnen Grassland. Leymus chinensis is a dominant rhizome grass, resistant to grazing as well as to-lerant to salt stress. Foliar labeled with 15 N-urea was used to study the nitrogen allocation strategy and compensatory growth response to clipping under saline-alkali conditions. The results showed that the total absorbed 15 N allocated to the aboveground part was more than 60%. Compared with the control treatment (no saline-alkali, no clipping), saline-alkali increased the distribution of 15 N by 5.1% in root; the 15 N distribution into aboveground in the moderate clipping and saline-alkali treatment was 11.6% higher than that of the control, exhibiting over-compensatory growth of aboveground biomass and total biomass, however, 15 N allocated to stem base was significantly increased by 9.5% under severe clipping level and saline-alkali addition, showing under-compensatory growth of shoot, root and total biomass. These results suggested that L. chinensis adapted to mode-rate clipping by over-compensatory growth under salt-alkali stress condition. However, L. chinensis would take a relatively conservative growth strategy through the enhanced N allocation to stem base for storage under severe saline-alkali and clipping conditions.
NASA Astrophysics Data System (ADS)
Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong
2013-08-01
For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.
Cheng, Sy-Chyi; Wang, Chin-Hsiung; Shiea, Jentaie
2016-05-17
A flame-induced atmospheric pressure chemical ionization (FAPCI) source, consisting of a miniflame, nebulizer, and heated tube, was developed to ionize analytes. The ionization was performed by reacting analytes with a charged species generated in a flame. A stainless steel needle deposited with saturated alkali chloride solution was introduced into the mini oxyacetylene flame to generate alkali ions, which were reacted with analytes (M) generated in a heated nebulizer. The alkali-adducted 18-crown-6 ether ions, including (M + Li)(+), (M + Na)(+), (M + K)(+), (M + Rb)(+), and (M + Cs)(+), were successfully detected on the FAPCI mass spectra when the corresponding alkali chloride solutions were separately introduced to the flame. When an alkali chloride mixture was introduced, all alkali-adducted analyte ions were simultaneously detected. Their intensity order was as follows: (M + Cs)(+) > (M + Rb)(+) > (M + K)(+) > (M + Na)(+) > (M + Li)(+), and this trend agreed with the lattice energies of alkali chlorides. Besides alkali ions, other transition metal ions such as Ni(+), Cu(+), and Ag(+) were generated in a flame for analyte ionization. Other than metal ions, the reactive species generated in the fossil fuel flame could also be used to ionize analytes, which formed protonated analyte ions (M + H)(+) in positive ion mode and deprotonated analyte ions (M - H)(-) in negative ion mode.
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C.; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J.; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J.
2017-01-01
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu2ZnSnS4) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source. PMID:28233864
Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.
Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J
2017-02-24
Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.
Eddy-Current Monitoring Of Composite Layups
NASA Technical Reports Server (NTRS)
Fox, Robert L.; Buckley, John D.
1993-01-01
Eddy-current-probe apparatus used to determine predominant orientations of fibers in fiber/matrix composite materials. Apparatus nondestructive, noninvasive means for monitoring composite prepregs and layups during fabrication to ensure predictable and repeatable mechanical properties of finished composite panels. Consists essentially of electromagnet coil wrapped around horseshoe-shaped powdered-iron or ferrite ore. Optionally, capacitor included in series or parallel with coil to form resonant circuit. Impedance monitor excites radio-frequency current in coil and measures impedance of probe circuit. Affected by whatever material placed near ends of core, where material intercepts alternating magnetic field excited in core by current in coil.
A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring
Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr
2017-01-01
In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341
Tsang, Floris Y.
1980-01-01
Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.
Alkali metal and alkali earth metal gadolinium halide scintillators
Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.
2016-08-02
The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, Stanley E.
1998-01-01
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.
Thin-film fiber optic hydrogen and temperature sensor system
Nave, S.E.
1998-07-21
The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.
Fiber-based hybrid probe for non-invasive cerebral monitoring in neonatology
NASA Astrophysics Data System (ADS)
Rehberger, Matthias; Giovannella, Martina; Pagliazzi, Marco; Weigel, Udo; Durduran, Turgut; Contini, Davide; Spinelli, Lorenzo; Pifferi, Antonio; Torricelli, Alessandro; Schmitt, Robert
2015-07-01
Improved cerebral monitoring systems are needed to prevent preterm infants from long-term cognitive and motor restrictions. Combining advanced near-infrared diffuse spectroscopy measurement technologies, time-resolved spectroscopy (TRS) and diffuse correlation spectroscopy (DCS) will introduce novel indicators of cerebral oxygen metabolism and blood flow for neonatology. For non-invasive sensing a fiber-optical probe is used to send and receive light from the infant head. In this study we introduce a new fiber-based hybrid probe that is designed for volume production. The probe supports TRS and DCS measurements in a cross geometry, thus both technologies gain information on the same region inside the tissue. The probe is highly miniaturized to perform cerebral measurements on heads of extreme preterm infants down to head diameters of 6cm. Considerations concerning probe production focus on a reproducible accuracy in shape and precise optical alignment. In this way deviations in measurement data within a series of probes should be minimized. In addition to that, requirements for clinical use like robustness and hygiene are considered. An additional soft-touching sleeve made of FDA compatible silicone allows for a flexible attachment with respect to the individual anatomy of each patient. We present the technical concept of the hybrid probe and corresponding manufacturing methods. A prototype of the probe is shown and tested on tissue phantoms as well as in vivo to verify its operational reliability.
Electroactive materials for rechargeable batteries
Wu, Huiming; Amine, Khalil; Abouimrane, Ali
2015-04-21
An as-prepared cathode for a secondary battery, the cathode including an alkaline source material including an alkali metal oxide, an alkali metal sulfide, an alkali metal salt, or a combination of any two or more thereof.
DNA probe for monitoring dynamic and transient molecular encounters on live cell membranes
You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Wu, Cuichen Sam; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong
2017-01-01
Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, such as motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within different lipid domains. PMID:28319616
Yu, Fabiao; Li, Peng; Wang, Bingshuai; Han, Keli
2013-05-22
The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.
De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G
2009-09-01
The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also provided mutual confirmation of specific conclusions.
A dual sensor for real-time monitoring of glucose and oxygen
Zhang, Liqiang; Su, Fengyu; Buizer, Sean; Lu, Hongguang; Gao, Weimin; Tian, Yanqing; Meldrum, Deirdre
2013-01-01
A dual glucose and oxygen sensor in a polymer format was developed. The dual sensor composed of a blue emitter as the glucose probe, a red emitter as an oxygen probe, and a yellow emitter as a built-in reference probe which does not respond to either glucose or oxygen. All the three probes were chemically immobilized in a polyacrylamide-based matrix. Therefore, the dual sensor possesses three well separated emission colors and ratiometric approach is applicable for analysis of the glucose and oxygen concentration at biological conditions. The sensor was applied for real-time monitoring of glucose and oxygen consumption of bacterial cells, Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), and mammalian cells of mouse macrophage J774 and human cervical cancer HeLa cell lines. On the other hand, in order to achieve satisfactory sensing performance for glucose, compositions of the matrices among poly(2-hydroxyethyl methacrylate), polyacrylamide, and poly(6-aminohexyl methacrylamide) which is a linker polymer for grafting the glucose probe, were optimized. PMID:24090834
Method of making alkali metal hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek
A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.
Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
Senthamaraikannan, P; Kathiresan, M
2018-04-15
The physical, chemical, tensile, crystalline, thermal, and surface morphological properties of raw and alkali treated Coccinia Grandis.L Fibers (CGFs) were characterized for the first time in this work. The results of the chemical analysis indicate that, after alkali treatment, the cellulose content of CGFs increased whereas hemicelluloses, lignin and wax contents decreased. This directly influenced the tensile strength, crystallinity index, thermal stability and the roughness of alkali-treated CGFs. The thermal stability and activation energy of the CGFs improved from 213.4 °C to 220.6 °C and 67.02 kJ/mol to 73.43 kJ/mol, respectively, due to alkali treatment. The statistical approach, Weibull distribution was adopted to analyze the tensile properties. The improved properties of the alkali treated CGF indicate that it could be an appropriate material for reinforcement in polymer composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bamberger, C.E.; Robinson, P.R.
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Bamberger, Carlos E.; Robinson, Paul R.
1980-01-01
A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.
Chang, Chia-Jung; Tyagi, Vinay Kumar; Lo, Shang-Lien
2011-09-01
Individual and combined effects of microwave (MW) and alkali pretreatments on sludge disintegration and subsequent aerobic digestion of waste activated sludge (WAS) were studied. Pretreatments with MW (600W-85°C-2 min), conventional heating (520 W-80°C-12 min) and alkali (1.5 g NaOH/L - pH 12-30 min) achieved 8.5%, 7% and 18% COD solubilization, respectively. However, combined MW-alkali pretreatment synergistically enhanced sludge solubilization and achieved 46% COD solubilization, 20% greater than the additive value of MW alone and alkali alone (8.5+18%=26.5%). Moreover, the results of the batch aerobic digestion study on MW-alkali pretreated sludge showed 93% and 63% reductions in SCOD and VSS concentrations, respectively, at 16 days of SRT. The VSS reduction was 20% higher than that of WAS without pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Purification of alkali metal nitrates
Fiorucci, Louis C.; Gregory, Kevin M.
1985-05-14
A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.
Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling
2016-06-25
Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
The utilization of alkali-treated melon husk by broilers.
Abiola, S S; Amalime, A C; Akadiri, K C
2002-09-01
The effects of alkali treatment on chemical constituents of melon husk (MH) and performance characteristics of broilers fed alkali-treated MH (ATMH) diets were investigated. The chemical analysis showed that alkali treatment increased the ash content of MH (from 15.70% to 16.86%) and reduced the crude fibre content (from 29.00% to 14.00%). Result of feed intake was superior on 30% alkali diet with a value of 100.14 g/bird/day. Body weight gain decreased with increase in the level of ATMH in the diet. Highest dressing percentage of 66.33% and best meat/bone ratio of 2.57 were obtained on 10% and 20% alkali diets, respectively. Dietary treatments had significant effect (P < 0.05) on gizzard weight. Up to 20% of maize can be replaced with ATMH in broiler diets to produce good quality poultry carcases and chicken meat with favourable shelf life.
Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q
2017-03-01
The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin. Copyright © 2016. Published by Elsevier Ltd.
Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides
NASA Astrophysics Data System (ADS)
Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.
2018-03-01
Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.
Ollila, Ann M.; Newsom, Horton E.; Clark, Benton; Wiens, Roger C.; Cousin, Agnes; Blank, Jen G.; Mangold, Nicolas; Sautter, Violaine; Maurice, Sylvestre; Clegg, Samuel M.; Gasnault, Olivier; Forni, Olivier; Tokar, Robert; Lewin, Eric; Dyar, M. Darby; Lasue, Jeremie; Anderson, Ryan; McLennan, Scott M.; Bridges, John; Vaniman, Dave; Lanza, Nina; Fabre, Cecile; Melikechi, Noureddine; Perett, Glynis M.; Campbell, John L.; King, Penelope L.; Barraclough, Bruce; Delapp, Dorothea; Johnstone, Stephen; Meslin, Pierre-Yves; Rosen-Gooding, Anya; Williams, Josh
2014-01-01
The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low (100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.
NASA Astrophysics Data System (ADS)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-03-01
The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.
Alkali absorption and citrate excretion in calcium nephrolithiasis
NASA Technical Reports Server (NTRS)
Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.
1993-01-01
The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).
Modeling the Time-dependent Changes in Electrical Conductivity of Basaltic Melts With Redox State
NASA Astrophysics Data System (ADS)
Pommier, A.; Gaillard, F.; Pichavant, M.
2008-12-01
The electrical conductivity σ is an efficient probe of mass transfer processes within silicate melts and magmas. Little attention has been given to the influence of redox state (fO2) on the melts conductivity. We present an experimental setup allowing electrical conductivity measurements for basaltic melts under variable fO2. We demonstrate a significant dependence of σ with fO2, allowing to characterize in situ the mechanisms and kinetics of redox changes in the melt. Experiments were conducted on basalts from Pu'u 'O'o, Hawaii, and Mt.Vesuvius, Italy. Measurements were performed cylindrical glass samples (OD: 6mm, ID: 1mm, L: 8mm) using an impedance spectrometer. Experiments were conducted in a 1atm vertical furnace, from 1200°C to 1400°C. Variable gas atmosphere (air, CO2 or CO-CO2 gas mixtures) were used, imposing ΔNNO from -1 to +7. Electrical conductivities were determined for the two melts at constant fO2, different T (constant fO2) and constant T, different fO2 (variable fO2) obtained by changing the gas composition. Isothermal reduction and oxidation cycles were performed. Glasses quenched from different T and fO2 conditions were analyzed by electron microprobe, the FeO concentration was determined by wet chemistry. In constant fO2 experiments, a small but detectable effect of fO2 on σ is evidenced. At 1300°C, the difference in the Kilauea sample conductivity between reduced (ΔNNO=-1) and oxidized (ΔNNO=+7) fO2 is <1(ohm.m)-1, the sample being more conductive when reduced. The temperature dependence of σ was fitted using Arrhenian equations, the activation energy Ea being 100kJ/mol. Sodium was identified as the main charge carrier in the melts. The fO2-effect on σ can thus be attributed to the influence of the Fe2+/Fe3+ ratio on sodium mobility. The fO2-dependence of σ was included in the model of Pommier et al.(2008), allowing the conductivity of natural melts to be calculated as a function of T, P, H2O, and fO2. Variable fO2 experiments confirmed the increase in σ when reducing the melt. At 1200°C, for both reduction-oxidation cycles, a stable value of σ following a change in fO2 is reached in 15hours, while 2hours are needed at 1400°C. The real-time changes in σ of basaltic melts following fO2 step changes were monitored. The time-dependent changes in σ are interpreted in terms of kinetics processes due to redox reequilibration between melt and gas. The evolution of σ with time can be fitted using a diffusion-limited process for reduction in CO-CO2 gas mixtures and oxidation in air. However, a reaction at the gas-melt interface probably rate limits oxidation in CO2. Reduction and oxidation rates are similar and increase with T. Oxidation-reduction rates calculated from the analysis of the conductivity evolution with time range from 10-9 to 10-8m2/s for the T range 1200-1400°C. These reaction rates are in agreement with typical alkali diffusion coefficients in basaltic melts. However, the high value of Ea (230kJ/mol) calculated from the T dependence of the oxidation-reduction rates agrees with the Ea for alkali-Earth elements. Furthermore, microprobe analyses document the existence of alkali-Earth cation fluxes during oxidations and reductions. Such cation migration probably occurs to charge-balance electron fluxes in the melt, in agreement with the study of Cooper et al. (1996). Our results suggest that the migration of alkali and alkali-Earth elements rate-limits the redox state changes in basaltic melts, and that redox mechanisms are not restricted to oxygen chemical diffusion. A discussion of chemical vs tracer oxygen diffusion studies is proposed.
Photocathode transfer and storage techniques using alkali vapor feedback control
NASA Astrophysics Data System (ADS)
Springer, R. W.; Cameron, B. J.
1991-12-01
Photocathodes of quantum efficiency above 1 percent at the doubled YAG frequency of 532 nM are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of approximately 2 volts or less. As such, these surfaces are very reactive as they provide many surface states for the residual gases that have positive electron affinities such as oxygen and omnipotent water. Attendant to this problem is that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the Cs-Ag-Bi-O, the Cs3Sb and the K2CsSb. The most stable material found is the K2CsSb. The vacuum conditions can be met by a variety of pumping schemes. The vacuum is achieved by using sputter ion diode pumps, and baking at 250 C or less for whatever time is required to reduce the pump currents to below 1 uA at room temperature. To obtain the required partial pressure of cesium, a simple very sensitive diagnostic gauge has been developed that can discriminate between free alkali and other gases present. This Pressure Alkali Monitor (PAM) can be used on cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vacuum system and preserved for over 10 days with less than a 25 percent loss to the QE at 543.5 nM.
Measurement Of Molecular Mobilities Of Polymers
NASA Technical Reports Server (NTRS)
Kim, Soon Sam; Tsay, Fun-Dow
1989-01-01
New molecular-probe technique used to measure molecular mobility of polymer. Method based on use of time-resolved electron-spin resonance (ESR) spectroscopy to monitor decay of transient nutation amplitudes from photoexcited triplet states of probe molecules with which polymer is doped. The higher molecular mobility of polymer matrix, the faster nutation amplitudes of the probe molecules decay.
Nitroxide amide-BODIPY probe behavior in fibroblasts analyzed by advanced fluorescence microscopy.
Liras, M; Simoncelli, S; Rivas-Aravena, A; García, O; Scaiano, J C; Alarcon, E I; Aspée, A
2016-04-26
A novel synthesized nitroxide amide-BODIPY prefluorescent probe was used to study cellular redox balance that modulates nitroxide/hydroxylamine ratio in cultured human fibroblasts. FLIM quantitatively differentiated between nitroxide states of the cytoplasm-localized probe imaged by TIRF, monitoring nitroxide depletion by hydrogen peroxide; eluding incorrect interpretation if only fluorescence intensity is considered.
PROCESS OF RECOVERING ALKALI METALS
Wolkoff, J.
1961-08-15
A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)
Development of a low-cost temperature data monitoring. An upgrade for hot box apparatus
NASA Astrophysics Data System (ADS)
de Rubeis, T.; Nardi, I.; Muttillo, M.
2017-11-01
The monitoring phase has gained a fundamental role in the energy efficiency evaluation of a system. Number and typology of the probes depend on the physical quantity to be monitored, and on the size and complexity of the system. Moreover, a measurement equipment should be designed to allow the employment of probes different for number and measured physical quantities. For this reason, a scalable equipment represents a good way for easily carrying out a system monitoring. Proprietary software and high costs characterize instruments of current use, thus limiting the possibilities to realize customized monitoring. In this paper, a temperature measuring instrument, conceived, designed, and realized for real time applications, is presented. The proposed system is based on digital thermometers and on open-source code. A remarkable feature of the instrument is the possibility of acquiring data from a high and variable number of probes (order of hundred), assuring flexibility of the software, since it can be programmed, and low-cost of the hardware components. The contemporary use of multiple temperature probes suggested to apply this instrument for a hot box apparatus, although the software can be set for recording different physical quantities. A hot box compliant with standard EN ISO 8990 should be equipped with several temperature probes to investigate heat exchanges of a specimen wall and thermal field of the chambers. In this work, preliminary tests have been carried out focusing only on the evaluation of the prototypal system’s performance. The tests were realized by comparing different sensors, such as thermocouples and resistance thermometers, traditionally employed in hot box experiments. A preliminary test was realized imposing a dynamic condition with a thermoelectric Peltier cell. Data obtained by digital thermometers DS18B20, compared with the ones of Pt100 probes, show a good correlation. Based on these encouraging results, a further test was carried out in hot box, comparing the data measured by digital thermometers, Pt100 and T-type thermocouples. In this case also, the analyses show a good correlation between either digital thermometers and analog sensors. From these results, it is reasonable to foresee that this measuring instrument could help those willing to realize or refurbish a hot box apparatus, and those who want to undertake temperature monitoring.
Method of extracting coal from a coal refuse pile
Yavorsky, Paul M.
1991-01-01
A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.
Crystallized alkali-silica gel in concrete from the late 1890s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Karl; Gress, David; Van Dam, Tom
The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less
General-Purpose Monitoring during Speech Production
ERIC Educational Resources Information Center
Ries, Stephanie; Janssen, Niels; Dufau, Stephane; Alario, F.-Xavier; Burle, Boris
2011-01-01
The concept of "monitoring" refers to our ability to control our actions on-line. Monitoring involved in speech production is often described in psycholinguistic models as an inherent part of the language system. We probed the specificity of speech monitoring in two psycholinguistic experiments where electroencephalographic activities were…
High-quality electromagnetically-induced absorption resonances in a buffer-gas-filled vapour cell
NASA Astrophysics Data System (ADS)
Brazhnikov, D. V.; Ignatovich, S. M.; Vishnyakov, V. I.; Skvortsov, M. N.; Andreeva, Ch; Entin, V. M.; Ryabtsev, I. I.
2018-02-01
Magneto-optical subnatural-linewidth resonances of electromagnetically-induced absorption (EIA) in an alkali vapour cell have been experimentally studied. The observation configuration includes using two counter-propagating pumps and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition in the 87Rb D 1 line in the presence of argon buffer gas. The EIA signals registered in a probe-wave transmission reach an unprecedented contrast of about 135% with respect to the wide ‘Doppler’ absorption pedestal and 29% with respect to the level of background transmission signal. These contrast values correspond to a relatively small resonance full width at half maximum of about 7.2 mG (5.2 kHz). The width of the narrowest EIA resonance observed is about 2.1 mG (1.5 kHz). To our knowledge, such a large relative contrast at the kHz-width is the record result for EIA resonances. In general, the work has experimentally proved that the magneto-optical scheme used has very good prospects for various quantum technologies (quantum sensors of weak magnetic fields, optical switches and other photonic elements).
NASA Astrophysics Data System (ADS)
Li, Cheng; Ingersoll, Andrew P.; Oyafuso, Fabiano
2018-04-01
We derived a new formula for calculating the moist adiabatic temperature profile of an atmosphere consisting of ideal gases with multiple condensing species. This expression unifies various formulas published in the literature and can be generalized to account for chemical reactions. Unlike previous methods, it converges to machine precision independent of mesh size. It accounts for any ratio of condensable vapors to dry gas, from zero to infinity, and for variable heat capacities as a function of temperature. Because the derivation is generic, the new formula is not only applicable to planetary atmosphere in the solar system, but also to hot Jupiters and brown dwarfs in which a variety of alkali metals, silicates and exotic materials condense. We demonstrate that even though the vapors are ideal gases, they interact in their effects on the moist adiabatic lapse rate. Finally, we apply the new thermodynamic model to study the effects of downdrafts on the distribution of minor constituents and thermal profile in the Galileo probe hotspot. We find that the Galileo Probe measurements can be interpreted as a strong downdraft that displaces an air parcel from 1 bar to the 4 bar level.
Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers
2009-11-04
vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4
Positive electrode for a lithium battery
Park, Sang-Ho; Amine, Khalil
2015-04-07
A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.
Molecular Probe Fluorescence Monitoring of Polymerization
NASA Technical Reports Server (NTRS)
Bunton, Patrick
2002-01-01
This project investigated the feasibility of using fluorescence spectroscopy to determine viscosity of polymer/monomer in support of Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS). This project will attempt to measure gradient induced flow at a miscible interface during and / or after in-flight polymerization of dodecyl acrylate (lauryl acrylate). Concentration and temperature gradients will be intentionally introduced during polymerization and the resultant fluid flow determined by Particle Imaging Velocimetry (PIV). This report describes an investigation of the feasibility of using fluorescence of a probe molecule to monitor viscosity and/or concentration during and after polymerization. The probe used was pyrene which has been shown to be sensitive to its local environment in methyl methacrylate.
NASA Technical Reports Server (NTRS)
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.
Yeung, E.S.; Chen, G.
1990-05-01
A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.
Maillard, François; Girardclos, Olivier; Assad, Mohamad; Zappelini, Cyril; Pérez Mena, Julia Maria; Yung, Loïc; Guyeux, Christophe; Chrétien, Stéphane; Bigham, Gary; Cosio, Claudia; Chalot, Michel
2016-07-01
Although current Hg emissions from industrial activities may be accurately monitored, evidence of past releases to the atmosphere must rely on one or more environmental proxies. We used Hg concentrations in tree cores collected from poplars and willows to investigate the historical changes of Hg emissions from a dredged sediment landfill and compared them to a nearby control location. Our results demonstrated the potential value of using dendrochemistry to record historical Hg emissions from past industrial activities. Copyright © 2016 Elsevier Inc. All rights reserved.
Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania
NASA Astrophysics Data System (ADS)
Bytnar, Krzysztof; Burmistrz, Piotr
2013-09-01
In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minerały ilaste, sporadycznie też miki oraz skalenie. Udział alkaliów zawartych w wilgoci węgli stosowanych do produkcji koksu w ogólnej ilości zawartych w nim alkaliów wynosi dla badanych węgli od 17.8 do 62.0%. Obecność sodu i potasu w wilgoci węgla związana jest wyłącznie z obecnością w niej jonów chlorkowych. Wyniki analizy wody odprowadzanej z procesu wirowania flotokoncentratu wskazują, że stosunek masowy Na do K w wilgoci węgla wynosi 20:1. Wzrost zawartość wilgoci w koksie będący wynikiem ich zwiększonej ilości w mieszance węglowej prowadzi do wzrostu reaktywności (wskaźnik CRI) oraz spadku wytrzymałości (wskaźnik CSR) oznaczonych metoda Nippon Steel Co.
NASA Technical Reports Server (NTRS)
Yakshinskiy, B. V.; Madey, T. E.
2003-01-01
We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.
21 CFR 876.1725 - Gastrointestinal motility monitoring system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gastrointestinal motility monitoring system. 876... Gastrointestinal motility monitoring system. (a) Identification. A gastrointestinal motility monitoring system is a device used to measure peristalic activity or pressure in the stomach or esophagus by means of a probe...
Monitoring ion-channel function in real time through quantum decoherence
Hall, Liam T.; Hill, Charles D.; Cole, Jared H.; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C. L.
2010-01-01
In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery. PMID:20937908
Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Chen, Rong
2014-04-15
A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.
Monitoring ion-channel function in real time through quantum decoherence.
Hall, Liam T; Hill, Charles D; Cole, Jared H; Städler, Brigitte; Caruso, Frank; Mulvaney, Paul; Wrachtrup, Jörg; Hollenberg, Lloyd C L
2010-11-02
In drug discovery, there is a clear and urgent need for detection of cell-membrane ion-channel operation with wide-field capability. Existing techniques are generally invasive or require specialized nanostructures. We show that quantum nanotechnology could provide a solution. The nitrogen-vacancy (NV) center in nanodiamond is of great interest as a single-atom quantum probe for nanoscale processes. However, until now nothing was known about the quantum behavior of a NV probe in a complex biological environment. We explore the quantum dynamics of a NV probe in proximity to the ion channel, lipid bilayer, and surrounding aqueous environment. Our theoretical results indicate that real-time detection of ion-channel operation at millisecond resolution is possible by directly monitoring the quantum decoherence of the NV probe. With the potential to scan and scale up to an array-based system, this conclusion may have wide-ranging implications for nanoscale biology and drug discovery.
Use of fly ash, slag, or silica fume to inhibit alkali-silica reactivity.
DOT National Transportation Integrated Search
1995-01-01
This study had two objectives: (1) to evaluate the effectiveness of particular mineral admixtures when combined with portland cements of varying alkali content in preventing expansion due to alkali-silica reactivity (ASR), and (2) to determine if set...
Hydration heat of alkali activated fine-grained ceramic
NASA Astrophysics Data System (ADS)
Jerman, Miloš; Černý, Robert
2017-07-01
Early-age hydration heat of alkali activated ceramic dust is studied as a function of silicate modulus. A mixture of sodium hydroxide and water glass is used as alkali activator. The measurements are carried out using a large-volume isothermal heat flow calorimeter which is capable of detecting even very small values of specific heat power. Experimental results show that the specific hydration heat power of alkali activated fine-ground ceramic is very low and increases with the decreasing silicate modulus of the mix.
Hong, Min; Sun, Hongxiao; Xu, Lidan; Yue, Qiaoli; Shen, Guodong; Li, Meifang; Tang, Bo; Li, Chen-Zhong
2018-08-27
This study strategically fabricates a nucleic acid functionalized gold nanoparticle and graphene oxide composite probe (AuNP/GO probe) to achieve both the recognition and in situ monitoring of cytoplasmic target precursor microRNAs (pre-miRNAs) and mature microRNAs (miRNAs) in living cells. The pre-miRNA-21 detection with AuNP probes has a good linear range of 0-300 nM and a limit of detection (LOD) of 4.5 nM, whereas the GO probe has a linear relationship with mature miRNA-21 from 0.1 to 10 nM with a LOD of 1.74 nM. This assay was utilized to directly visualize the relative expression levels of pre- and mature forms of miRNA-21 and let-7a. The results suggested that the expression levels of precursor miRNAs remain constant in cancer cells and normal cells. However, the expression levels of mature miRNAs vary widely, demonstrating the "up-regulation" of miRNA-21 and "down-regulation" of let-7a in cancer cells in contrast to that in normal cells. The practicality of this strategy was verified by in situ monitoring changes in cytoplasmic pre-miRNA-21 and mature miRNA-21 in response to small-molecule inhibitors of miRNA-21. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Xiaoyan; Zhou, Huanfen; Tang, Weiqiang; Guo, Qing; Zhang, Yan
2015-01-01
Purpose: Chemical burn in cornea may cause permanent visual problem or complete blindness. In the present study, we investigated the role of microRNA 206 (miR-206) in relieving chemical burn in mouse cornea. Method: An alkali burn model was established in C57BL/6 mice to induce chemical corneal injury. Within 72 hours, the transient inflammatory responses in alkali-treated corneas were measured by opacity and corneal neovascularization (CNV) levels, and the gene expression profile of miR-206 was measured by quantitative real-time PCR (qPCR). Inhibitory oligonucleotides of miR-206, miR-206-I, were intrastromally injected into alkali-burned corneas. The possible protective effects of down-regulating miR-206 were assessed by both in vivo measurements of inflammatory responses and in vitro histochemical examinations of corneal epithelium sections. The possible binding of miR-206 on its molecular target, connexin43 (Cx43), was assessed by luciferase reporter (LR) and western blot (WB) assays. Cx43 was silenced by siRNA to examine its effect on regulating miR-206 modulation in alkali-burned cornea. Results: Opacity and CNV levels, along with gene expression of miR-206, were all transiently elevated within 72 hours of alkali-burned mouse cornea. Intrastromal injection of miR-206-I into alkali-burned cornea down-regulated miR-206 and ameliorated inflammatory responses both in vivo and in vitro. LR and WB assays confirmed that Cx43 was directly targeted by miR-206 in mouse cornea. Genetic silencing of Cx43 reversed the protective effect of miR-206 down-regulation in alkali-burned cornea. Conclusion: miR-206, associated with Cx43, is a novel molecular modulator in alkali burn in mouse cornea. PMID:26045777
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; ...
2018-03-07
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Hamed, Saja H; Altrabsheh, Bilal; Assa'd, Tareq; Jaradat, Said; Alshra'ah, Mohammad; Aljamal, Abdulfattah; Alkhatib, Hatim S; Almalty, Abdul-Majeed
2012-12-01
Different probes are used in dermato-cosmetic research to measure the electrical properties of the skin. The principle governing the choice of the geometry and material of the measuring probe is not well defined in the literature and some device's measuring principles are not accessible for the scientific community. The purpose of this work was to develop a simple inexpensive conductance meter for the objective in vivo evaluation of skin hydration. The conductance meter probe was designed using the basic equation governing wave propagation along Transverse Electromagnetic transmission lines. It consisted of two concentric copper circular electrodes printed on FR4 dielectric material. The performance of the probe was validated by evaluating its measurement depth, its ability to monitor in vitro water sorption-desorption and in vivo skin hydration effect in comparison to that of the Corneometer CM 825. The measurement depth of the probe, 15 μm, was comparable to that of CM 825. The in vitro readings of the probe correlated strongly with the amount of water adsorbed on filter paper. Skin hydration after application of a moisturizer was monitored effectively by the new probe with good correlation to the results of CM 825. In conclusion, a simple probe for evaluating skin hydration was made from off-the-shelf materials and its performance was validated in comparison to a commercially available probe. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X
2017-03-22
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.
Arterial compliance probe for local blood pulse wave velocity measurement.
Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar
2015-08-01
Arterial compliance and vessel wall dynamics are significant in vascular diagnosis. We present the design of arterial compliance probes for measurement of local pulse wave velocity (PWV). Two designs of compliance probe are discussed, viz (a) a magnetic plethysmograph (MPG) based probe, and (b) a photoplethysmograph (PPG) based probe. The ability of the local PWV probes to consistently capture carotid blood pulse waves is verified by in-vivo trials on few volunteers. The probes could reliably perform repeatable measurements of local PWV from carotid artery along small artery sections less than 20 mm. Further, correlation between the measured values of local PWV using probes and various measures of blood pressure (BP) was also investigated. The study indicates that such arterial compliance probes have strong potential in cuff less BP monitoring.
Biasing, acquisition, and interpretation of a dense Langmuir probe array in NSTX.
Jaworski, M A; Kallman, J; Kaita, R; Kugel, H; LeBlanc, B; Marsala, R; Ruzic, D N
2010-10-01
A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiment (NSTX). This array is instrumented with a system of electronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe, and operation as passive floating potential and scrape-off-layer SOL current monitors). The use of flush-mounted probes requires careful interpretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals are used in complementary fashion to determine the temperature and density at the probe location. A comparison to midplane measurements is made.
Nicotine-substitute gum-induced milk alkali syndrome: a look at unexpected sources of calcium.
Swanson, Christine M; Mackey, Patricia A; Westphal, Sydney A; Argueta, Rodolfo
2013-01-01
This report describes a 64-year-old woman with recurrent hypercalcemia. Her laboratory evaluation was consistent with milk-alkali syndrome. It was eventually discovered that the source of the excessive calcium consumption was nicotine-replacement chewing gum and carbonated water. An extensive literature search was performed to see if milk-alkali syndrome due to nicotine-replacement gum and carbonated water has been previously reported. No prior report describing the association of milk alkali syndrome with nicotine-replacement gum and carbonated water was found. We present a unique case of milk-alkali syndrome due to nicotine-replacement gum and carbonated water. It serves as a lesson to evaluate other sources besides calcium supplements as the cause of excessive calcium intake.
Coupled channel effects on resonance states of positronic alkali atom
NASA Astrophysics Data System (ADS)
Yamashita, Takuma; Kino, Yasushi
2018-01-01
S-wave Feshbach resonance states belonging to dipole series in positronic alkali atoms (e+Li, e+Na, e+K, e+Rb and e+Cs) are studied by coupled-channel calculations within a three-body model. Resonance energies and widths below a dissociation threshold of alkali-ion and positronium are calculated with a complex scaling method. Extended model potentials that provide positronic pseudo-alkali-atoms are introduced to investigate the relationship between the resonance states and dissociation thresholds based on a three-body dynamics. Resonances of the dipole series below a dissociation threshold of alkali-atom and positron would have some associations with atomic energy levels that results in longer resonance lifetimes than the prediction of the analytical law derived from the ion-dipole interaction.
TRACC: an open source software for processing sap flux data from thermal dissipation probes
Eric J. Ward; Jean-Christophe Domec; John King; Ge Sun; Steve McNulty; Asko Noormets
2017-01-01
Key message TRACC is an open-source software for standardizing the cleaning, conversion, and calibration of sap flux density data from thermal dissipation probes, which addresses issues of nighttime transpiration and water storage. Abstract Thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs...
Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; ...
2013-04-08
Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are D Li = 1.5 × 10 -22 m 2.s -1 and D H = 6.8 × 10 -23 m 2.s -1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution-precipitation models for silicate minerals.« less
40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...
40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
40 CFR 61.53 - Stack sampling.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator employing mercury chlor-alkali cell(s) shall test emissions from hydrogen streams according to... the Administrator, for a minimum of 2 years. (b) Mercury chlor-alkali plant—hydrogen and end-box.... (c) Mercury chlor-alkali plants—cell room ventilation system. (1) Stationary sources using mercury...
Method and system for capturing carbon dioxide and/or sulfur dioxide from gas stream
Chang, Shih-Ger; Li, Yang; Zhao, Xinglei
2014-07-08
The present invention provides a system for capturing CO.sub.2 and/or SO.sub.2, comprising: (a) a CO.sub.2 and/or SO.sub.2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO.sub.2 and/or SO.sub.2 to produce a CO.sub.2- and/or SO.sub.2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO.sub.2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO.sub.2 gas. The present invention also provides for a system for capturing SO.sub.2, comprising: (a) a SO.sub.2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO.sub.2 to produce an alkali metal sulfite/sulfate precipitate and CO.sub.2.
NASA Astrophysics Data System (ADS)
Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu
2016-05-01
We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.
High pressure optical combustion probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, S.D.; Richards, G.A.
1995-06-01
The Department of Energy`s Morgantown Energy Technology Center has developed a combustion probe for monitoring flame presence and heat release. The technology involved is a compact optical detector of the OH radical`s UV fluorescence. The OH Monitor/Probe is designed to determine the flame presence and provide a qualitative signal proportional to the flame intensity. The probe can be adjusted to monitor a specific volume in the combustion zone to track spatial fluctuations in the flame. The probe is capable of nanosecond time response and is usually slowed electronically to fit the flame characteristics. The probe is a sapphire rod inmore » a stainless steel tube which may be inserted into the combustion chamber and pointed at the flame zone. The end of the sapphire rod is retracted into the SS tube to define a narrow optical collection cone. The collection cone may be adjusted to fit the experiment. The fluorescence signal is collected by the sapphire rod and transmitted through a UV transmitting, fused silica, fiber optic to the detector assembly. The detector is a side window photomultiplier (PMT) with a 310 run line filter. A Hamamatsu photomultiplier base combined with a integral high voltage power supply permits this to be a low voltage device. Electronic connections include: a power lead from a modular DC power supply for 15 VDC; a control lead for 0-1 volts to control the high voltage level (and therefore gain); and a lead out for the actual signal. All low voltage connections make this a safe and easy to use device while still delivering the sensitivity required.« less
Multiparametric monitoring of tissue vitality in clinical situations
NASA Astrophysics Data System (ADS)
Mayevsky, Avraham; Manor, Tamar; Meilin, Sigal; Razon, Nisim; Ouknine, George E.; Ornstein, Eugene
2001-05-01
The monitoring of various tissue's physiological and biochemical parameters is one of the tools used by the clinicians to improve diagnosis capacity. As of today, the very few devices developed for real time clinical monitoring of tissue vitality are based on a single parameter measurement. Tissue energy balance could be defined as the ratio between oxygen or energy supply and demand. In order to determine the vitality of the brain, for example, it is necessary to measure at least the following 3 parameters: Energy Demand--potassium ion homeostasis; Energy Supply-- cerebral blood flow; Energy Balance--mitochondrial NADH redox state. For other tissues one can measure various energy demand processes specific to the tested organ. We have developed a unique multiparametric monitoring system tested in various experimental and clinical applications. The multiprobe assembly (MPA) consists of a fiber optic probe for measurement of tissue blood flow and mitochondrial NADH redox state, ion selective electrodes (K+, Ca2+, H+), electrodes for electrical activities (ECoG or ECG and DC potential), temperature probe and for monitoring the brain - Intra Cranial Pressure probe (ICP). The computerized monitoring system was used in the neurological intensive care unit to monitor comatose patients for a period of 24-48 hours. Also, a simplified MPA was used in the neurosurgical operating room or during organ transplantation procedure. It was found that the MPA could be used in clinical situations and that the data collected has a significant diagnosis value for the medical team.
Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release
NASA Astrophysics Data System (ADS)
Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário
2017-12-01
Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.
40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...
40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...
40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal salt (generic). 721.10098 Section 721.10098 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to...
COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL
Seaborg, G.T.
1960-08-01
A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.
Process for the disposal of alkali metals
Lewis, Leroy C.
1977-01-01
Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2007-07-03
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
Li, Alexander D. Q. [Pullman, WA; Wang, Wei [Pullman, WA
2009-07-07
Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.
Stewart, Campbell; Haitsma, Iain; Zador, Zsolt; Hemphill, J Claude; Morabito, Diane; Manley, Geoffrey; Rosenthal, Guy
2008-12-01
Monitoring of brain tissue oxygen tension is increasingly being used to monitor patients after severe traumatic brain injury and to guide therapies aimed at maintaining brain tissue oxygen tension above threshold levels. The new Licox PMO combined oxygen and temperature catheter (Integra LifeSciences, Plainsboro, NJ) combines measurements of oxygen tension and temperature in a single probe inserted through a bolt mechanism. In this study, we sought to evaluate the accuracy of the new Licox PMO probe under controlled laboratory conditions and to assess the accuracy of oxygen tension and temperature measurements and the new automated card calibration system. We also describe our clinical experience with the Licox PMO probe. Oxygen tension was measured in a 2-chambered apparatus at different oxygen tensions and temperatures. The new card calibration system was compared with a manually calibrated system. Rates of hematoma, infection, and dislodgement in our clinical experience were recorded. The new Licox PMO probe accurately measures oxygen tension over a wide range of oxygen concentrations and physiological temperatures, but it does have a small tendency to underestimate oxygen tension (mean error, -3.8 +/- 3.5%) that is more pronounced between the temperatures of 33 and 39 degrees C. The thermistor of the PMO probe also has a tendency to underestimate temperature when compared with a resistance thermometer (mean error, -0.67 +/- 0.22 degrees C). The card calibration system was also found to introduce some variability in measurements of oxygen tension when compared with a manually calibrated system. Clinical experience with the new probe indicates good placement within the white matter using the improved bolt system and low rates of hematoma (2.9%), infection (0%), and dislodgement (5.9%). The new Licox PMO probe is accurate but has a small, consistent tendency to under-read oxygen tension that is more pronounced at higher temperatures. The probe tends to under-read temperature by 0.5 to 0.8 degrees C across temperatures, suggesting that caution should be used when brain temperature is measured with the Licox PMO probe and used to guide temperature-directed treatment strategies. The Licox PMO probe improves upon previous models in allowing consistent and accurate placement in the white matter and obviating the need for placement of 2 separate probes to measure oxygen tension and temperature.
Fluorescent Probes Used for Detection of Hydrogen Peroxide under Biological Conditions.
Żamojć, Krzysztof; Zdrowowicz, Magdalena; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Chmurzyński, Lech
2016-05-03
Hydrogen peroxide is a well-established precursor of reactive oxygen and nitrogen species that are known to contribute to oxidative stress-the crucial factor responsible for the course of a wide range of phy-sicochemical processes as well as the genesis of various diseases, such as cancer and neurodegenerative disorders. Thus, the development of sensitive and selective methods for the detection and quantitative determination of hydrogen peroxide is of great importance in monitoring the in vivo production of that species and elucidating its biological functions. This review highlights the progress that has been made in the development of fluorescent and luminescent probes (excluding nanoparticles) employed to monitor hydrogen peroxide under biological conditions. Attention was focused on probes developed in the past 10 years.
Computer controlled fluorometer device and method of operating same
Kolber, Z.; Falkowski, P.
1990-07-17
A computer controlled fluorometer device and method of operating same, said device being made to include a pump flash source and a probe flash source and one or more sample chambers in combination with a light condenser lens system and associated filters and reflectors and collimators, as well as signal conditioning and monitoring means and a programmable computer means and a software programmable source of background irradiance that is operable according to the method of the invention to rapidly, efficiently and accurately measure photosynthetic activity by precisely monitoring and recording changes in fluorescence yield produced by a controlled series of predetermined cycles of probe and pump flashes from the respective probe and pump sources that are controlled by the computer means. 13 figs.
Computer controlled fluorometer device and method of operating same
Kolber, Zbigniew; Falkowski, Paul
1990-01-01
A computer controlled fluorometer device and method of operating same, said device being made to include a pump flash source and a probe flash source and one or more sample chambers in combination with a light condenser lens system and associated filters and reflectors and collimators, as well as signal conditioning and monitoring means and a programmable computer means and a software programmable source of background irradiance that is operable according to the method of the invention to rapidly, efficiently and accurately measure photosynthetic activity by precisely monitoring and recording changes in fluorescence yield produced by a controlled series of predetermined cycles of probe and pump flashes from the respective probe and pump sources that are controlled by the computer means.
Liu, Shupeng; Rong, Ming; Zhang, Heng; Chen, Na; Pang, Fufei; Chen, Zhenyi; Wang, Tingyun; Yan, Jianshe
2016-01-01
Monitoring drug concentrations in vivo is very useful for adjusting a drug dosage during treatment and for drug research. Specifically, cutting-edge “on-line” drug research relies on knowing how drugs are metabolized or how they interact with the blood in real-time. Thus, this study explored performing in vivo Raman measurements of the model drug levofloxacin lactate in the blood using a nanoparticle-coated optical fiber probe (optical fiber nano-probe). The results show that we were able to measure real-time changes in the blood concentration of levofloxacin lactate, suggesting that this technique could be helpful for performing drug analyses and drug monitoring in a clinical setting without repeatedly withdrawing blood from patients. PMID:27231590
A precipitation collector and automated pH-monitoring system
Gerald M. Aubertin; Benjamin C. Thorner; John Campbell
1976-01-01
A sensitive precipitation collector and automated pH-monitoring system are described. This system provides for continuous monitoring and recording of the pH of precipitation. Discrete or composite rainwater samples are manually obtainable for chemical analyses. The system can easily be adapted to accommodate a flow-through specific conductance probe and monitoring...
NASA Astrophysics Data System (ADS)
Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi
1995-05-01
A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
Electrochemical cell utilizing molten alkali metal electrode-reactant
Virkar, Anil V.; Miller, Gerald R.
1983-11-04
An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.
Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation
NASA Astrophysics Data System (ADS)
Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas
2018-04-01
The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.
Electronic structure of semiconducting alkali-metal silicides and germanides
NASA Astrophysics Data System (ADS)
Tegze, M.; Hafner, J.
1989-11-01
We present self-consistent linearized-muffin-tin-orbital calculations of the electronic structure of three alkali-metal germanides and silicides (KGe, NaGe, and NaSi). Like the alkali-metal-lead compounds investigated in our earlier work [M. Tegze and J. Hafner, Phys. Rev. B 39, 8263 (1989)] the Ge and Si compounds of the alkali metals form complex structures based on the packing of tetrahedral Ge4 and Si4 clusters. Our calculations show that all three compounds are narrow-gap semiconductors. The width of the energy gap depends on two main factors: the ratio of the intracluster to the intercluster interactions between the group-IV elements (which increases from Pb to Si) and the strength of the interactions between the alkali-metal atoms (which varies with the size ratio).
Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard
2001-01-01
Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.
Alkali Metal Handling Practices at NASA MSFC
NASA Technical Reports Server (NTRS)
Salvail, Patrick G.; Carter, Robert R.
2002-01-01
NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.
A N, Balaji; K J, Nagarajan
2017-10-15
The aim of this study is to examine the use of new natural fibers, which are extracted from the Saharan aloe vera cactus plant leaves as reinforcement in polymer composites. The physicochemical, mechanical and thermal properties of the Saharan Aloe Vera Cactus Leaves (SACL) fibers are investigated, through the effect of alkali treatment. The contents of α-cellulose, hemicellulose, wax and moisture present in SACL fibers were characterized by standard test methods The mechanical properties of SACL fibers were measured through single fiber tensile test. The interfacial strength between the fiber and matrix was estimated by the fiber pull-out test. These results ensure that the chemical and mechanical properties of the fibers are improved after the alkali treatment. FT-IR spectroscopic analysis confirms that the alkali treatment process has removed certain amount of amorphous materials from the fibers. XRD analysis results show that the alkali treatment has enhanced the Crystallinity Index and Crystalline Size of the fibers. Thermal behavior of the fibers was analyzed by using TGA. The thermal stability and the thermal degradation temperature increases after the alkali treatment of fibers. The morphologies of fibers were analyzed by SEM and prove that the fiber surfaces become rough after alkali treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Ye; Wang, Zhengxuan; Li, Hui; Liang, Mingcai; Yang, Lin
2016-12-01
To elucidate whether and how alkali treatment, which is a common process for rice protein (RP) extraction, affects antioxidant activity of RP, the different degree of alkali (from 0.1% to 0.4% of NaOH) was used to extract RP (RP-1, RP-2, RP-3, RP-4). The antioxidant capacities of scavenging free radicals [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt, ABTS; 1,1-diphenyl-2-picrylhydrazyl, DPPH), chelating metals (iron, copper) and reducing power investigated in the hydrolysates of RPs (RP-1, RP-2, RP-3, RP-4) during in vitro pepsin-pancreatin digestion were effectively affected by alkali treatment. The present study demonstrated that the weakest antioxidant responses to ABTS radical-scavenging activity, DPPH radical-scavenging activity, iron chelating activity, copper chelating activity and reducing power were produced by RP-4 extracted by the highest alkali proportion (0.4% NaOH). The present study indicates that antioxidant capacity of RP could be more readily depressed by strict alkali degree and affected by gastrointestinal proteases. Results suggest that alkali extraction is a vital process to regulate the antioxidant activity of RP through modifying the compositions of amino acids, which are dependent on alkali magnitude. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia
Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.
1997-01-01
Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula D???(Mg2Al)Al6Si6O18(BO 3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(Y) = ???(X) + Al(Y)] and the uvite type [Na*(X) + Al(Y) = Ca(X) + Mg*(Y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite). Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures.
SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues.
Tijero, M; Gabriel, G; Caro, J; Altuna, A; Hernández, R; Villa, R; Berganzo, J; Blanco, F J; Salido, R; Fernández, L J
2009-04-15
This paper presents a minimally invasive needle-shaped probe capable of monitoring the electrical impedance of living tissues. This microprobe consists of a 160 microm thick SU-8 substrate containing four planar platinum (Pt) microelectrodes. We design the probe to minimize damage to the surrounding tissue and to be stiff enough to be inserted in living tissues. The proposed batch fabrication process is low cost and low time consuming. The microelectrodes obtained with this process are strongly adhered to the SU-8 substrate and their impedance does not depend on frequency variation. In vitro experiments are compared with previously developed Si and SiC based microprobes and results suggest that it is preferable to use the SU-8 based microprobes due to their flexibility and low cost. The microprobe is assembled on a flexible printed circuit FPC with a conductive glue, packaged with epoxy and wired to the external instrumentation. This flexible probe is inserted into a rat kidney without fracturing and succeeds in demonstrating the ischemia monitoring.
Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo
2008-08-15
A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.
Surgical Force-Measuring Probe
NASA Technical Reports Server (NTRS)
Tcheng, Ping; Roberts, Paul W.; Scott, Charles E.
1993-01-01
Aerodynamic balance adapted to medical use. Electromechanical probe measures forces and moments applied to human tissue during surgery. Measurements used to document optimum forces and moments for surgical research and training. In neurosurgical research, measurements correlated with monitored responses of nerves. In training, students learn procedures by emulating forces used by experienced surgeons. Lightweight, pen-shaped probe easily held by surgeon. Cable feeds output signals to processing circuitry.
Fang, Yu; Shi, Wen; Hu, Yiming; Li, Xiaohua; Ma, Huimin
2018-05-24
A new dual-function fluorescent probe is developed for detecting nitroreductase (NTR) and adenosine triphosphate (ATP) with different responses. Imaging application of the probe reveals that intracellular NTR and ATP display an adverse changing trend during a hypoxic process and ATP can serve as a new sign for cell hypoxia.
Non-toxic fluorescent phosphonium probes to detect mitochondrial potential
NASA Astrophysics Data System (ADS)
Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.
2017-03-01
We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.
A survey of gas-side fouling measuring devices
NASA Technical Reports Server (NTRS)
Marner, W. J.; Henslee, S. P.
1984-01-01
A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.
Factors affecting alkali jarosite precipitation
NASA Astrophysics Data System (ADS)
Dutrizac, J. E.
1983-12-01
Several factors affecting the precipitation of the alkali jarosites (sodium jarosite, potassium jarosite, rubidium jarosite, and ammonium jarosite) have been studied systematically using sodium jarosite as the model. The pH of the reacting solution exercises a major influence on the amount of jarosite formed, but has little effect on the composition of the washed product. Higher temperatures significantly increase the yield and slightly raise the alkali content of the jarosites. The yield and alkali content both increase greatly with the alkali concentration to about twice the stoichiometric requirement but, thereafter, remain nearly constant. At 97 °C, the amount of product increases with longer retention times to about 15 hours, but more prolonged reaction times are without significant effect on the amount or composition of the jarosite. Factors such as the presence of seed or ionic strength have little effect on the yield or jarosite composition. The amount of precipitate augments directly as the iron concentration of the solution increases, but the product composition is nearly independent of this variable. A significant degree of agitation is necessary to suspend the product and to prevent the jarosite from coating the apparatus with correspondingly small yields. Once the product is adequately suspended, however, further agitation is without significant effect. The partitioning of alkali ions during jarosite precipitation was ascertained for K:Na, Na:NH4, K:NH4, and K:Rb. Potassium jarosite is the most stable of the alkali jarosites and the stability falls systematically for lighter or heavier congeners; ammonium jarosite is slightly more stable than the sodium analogue. Complete solid solubility among the various alkali jarosite-type compounds was established.
NASA Astrophysics Data System (ADS)
Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.
2013-01-01
With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.
2015-01-01
Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals. PMID:26215055
Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J
2015-08-18
Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent examples from our laboratory and collaborations in which applications of chemical probes reveal that labile copper contributes to various physiologies. The first example shows that copper is an endogenous regulator of neuronal activity, the second illustrates cellular prioritization of mitochondrial copper homeostasis, and the third identifies the "cuprosome" as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition- and reactivity-based fluorescent probes have helped to uncover new biological roles for labile transition metals, and the further development of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors, will continue to reveal exciting and new biological roles for labile transition metals.
Zhang, Huatang; Xiao, Peng; Wong, Yin Ting; Shen, Wei; Chhabra, Mohit; Peltier, Raoul; Jiang, Yin; He, Yonghe; He, Jun; Tan, Yi; Xie, Yusheng; Ho, Derek; Lam, Yun-Wah; Sun, Jinpeng; Sun, Hongyan
2017-09-01
Alkaline phosphatase (ALP) is a family of enzymes involved in the regulation of important biological processes such as cell differentiation and bone mineralization. Monitoring the activity of ALP in serum can help diagnose a variety of diseases including bone and liver diseases. There has been growing interest in developing new chemical tools for monitoring ALP activity in living systems. Such tools will help further delineate the roles of ALP in biological and pathological processes. Previously reported fluorescent probes has a number of disadvantages that limit their application, such as poor selectivity and short-wavelength excitation. In this work, we report a new two-photon fluorescent probe (TP-Phos) to selectively detect ALP activity. The probe is composed of a two-photon fluorophore, a phosphate recognition moiety, and a self-cleavable adaptor. It offers a number of advantages over previously reported probes, such as fast reaction kinetics, high sensitivity and low cytotoxicity. Experimental results also showed that TP-Phos displayed improved selectivity over DIFMUP, a commonly utilized ALP probe. The selectivity is attributed to the utilization of an ortho-functionalised phenyl phosphate group, which increases the steric hindrance of the probe and the active site of phosphatases. Moreover, the two-photon nature of the probe confers enhanced imaging properties such as increased penetration depth and lower tissue autofluorescence. TP-Phos was successfully used to image the endogenous ALP activity of hippocampus, kidney and liver tissues from rat. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tseng, Tung-Tse
In this research the interferences with the on -line detection of radioiodines, under nuclear accident conditions, were studied. The special tool employed for this research is the developed on-line radioiodine monitor (the Penn State Radioiodine Monitor), which is capable of detecting low levels of radioiodine on-line in air containing orders of magnitude higher levels of radioactive noble gases. Most of the data reported in this thesis were collected during a series of experiments called "Source -Term Experiment Program (STEP)." The experiments were conducted at the Argonne National Laboratory's TREAT reactor located at the Idaho National Engineering Laboratory (INEL). In these tests, fission products were released from the Light Water Reactor (LWR) test fuels as a result of simulating a reactor accident. The Penn State Monitor was then used to sample the fission products accumulated in a large container which simulated the reactor containment building. The test results proved that the Penn State Monitor was not affected significantly by the passage of large amounts of noble gases through the system. Also, it confirmed the predicted results that the operation of conventional on-line radioiodine detectors would, under nuclear accident conditions, be seriously impaired by the passage of high concentrations of radioactive noble gases through such systems. This work also demonstrated that under conditions of high noble gas concentrations and low radioiodine concentrations, the formation of noble-gas-decayed alkali metals can seriously interfere with the on-line detection of radioiodine, especially during the 24 hours immediately after the accident. The decayed alkali metal particulates were also found to be much more penetrating than the ordinary type of particulates, since a large fraction (15%) of the particulates were found to penetrate through the commonly used High Efficiency Particulate Air (HEPA) filter (rated >99.97% for 0.3 (mu)m particulate). Also, a significant fraction ((TURN)40%) of these particles became deposited on silver zeolite iodine filters inside the counting chamber. Finally, the Penn State Monitor proved itself to be a powerful research tool for the on-line source term studies since it can easily produce near noble-gas-free spectra during the real time studies occurring under simulated nuclear accident conditions.
Development of a subsurface gas flow probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, R.P.; Ballard, S.; Barker, G.T.
1997-04-01
This report describes a project to develop a flow probe to monitor gas movement in the vadose zone due to passive venting or active remediation efforts such as soil vapor extraction. 3-D and 1-D probes were designed, fabricated, tested in known flow fields under laboratory conditions, and field tested. The 3-D pores were based on technology developed for ground water flow monitoring. The probes gave excellent agreement with measured air velocities in the laboratory tests. Data processing software developed for ground water flow probes was modified for use with air flow, and to accommodate various probe designs. Modifications were mademore » to decrease the cost of the probes, including developing a downhole multiplexer. Modeling indicated problems with flow channeling due to the mode of deployment. Additional testing was conducted and modifications were made to the probe and to the deployment methods. The probes were deployed at three test sites: a large outdoor test tank, a brief vapor extraction test at the Chemical Waste landfill, and at an active remediation site at a local gas station. The data from the field tests varied markedly from the laboratory test data. All of the major events such as vapor extraction system turn on and turn off, as well as changes in the flow rate, could be seen in the data. However, there were long term trends in the data which were much larger than the velocity signals, which made it difficult to determine accurate air velocities. These long term trends may be due to changes in soil moisture content and seasonal ground temperature variations.« less
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME II. APPENDICES F-J
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 63.8182 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali... subpart if you own or operate a mercury cell chlor-alkali plant. (b) You are required to obtain a title V... 61 that apply to mercury chlor-alkali plants, which are listed in paragraphs (c)(1) through (3) of...
40 CFR 721.4660 - Alcohol, alkali metal salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Mercury Cell Chlor- Alkali...: NESHAP for Mercury Cell Chlor-Alkali Plants (Renewal). ICR Numbers: EPA ICR Number 2046.07, OMB Control... disclose the information. Respondents/Affected Entities: Owners or operators of mercury cell chlor-alkali...
Preparation of sorbent pellets with high integrity for sorption of CO.sub.2 from gas streams
Siriwardane, Ranjani V.
2016-05-10
Method for the production of a CO.sub.2 sorbent prepared by integrating a clay substrate, basic alkali salt, amine liquid, hydraulic binder, and a liquid binder. The basic alkali salt is present relative to the clay substrate in a weight ratio of from about 1 part to about 50 parts per 100 parts of the clay substrate. The amine liquid is present relative to a clay-alkali combination in a weight ratio of from about 1 part to about 10 parts per 10 parts of the clay-alkali combination. The clay substrate and basic alkali salt may be combined in a solid-solid heterogeneous mixture and followed by introduction of the amine liquid. Alternatively, an alkaline solution may be blended with the amine solution prior to contacting the clay substrate. The clay-alkali-amine CO.sub.2 sorbent is particularly advantageous for low temperature CO.sub.2 removal cycles in a gas stream having a CO.sub.2 concentration less than around 2000 ppm and an oxygen concentration around 21%, such as air.
Long term mechanical properties of alkali activated slag
NASA Astrophysics Data System (ADS)
Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.
2018-01-01
This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.
NASA Astrophysics Data System (ADS)
Ray, Arijit; Hatui, Kalyanbrata; Paul, Dalim Kumar; Sen, Gautam; Biswas, S. K.; Das, Brindaban
2016-02-01
Kutch rift basin of northwestern India is characterized by a topography that is controlled by a number of fault controlled uplifted blocks. Kutch Mainland Uplift, the largest uplifted block in the central part of the basin, contains alkali basalt plugs and tholeiitic basalt flows of the Deccan age. Alkali plugs often contain small, discoidal mantle xenoliths of spinel lherzolite and spinel wehrlite composition. Olivine occurs as xenocrysts (coarse, fractured, broken olivine grains with embayed margin; Fo> 90), phenocrysts (euhedral, smaller, and less forsteritic ~ Fo80), and as groundmass grains (small, anhedral, Fo75) in these alkali basalts. In a few cases, the alkali plugs are connected with feeder dykes. Based on the width of feeder dykes, on the sizes of the xenocrysts and xenoliths, thickness of alteration rim around olivine xenocryst, we estimate that the alkali magmas erupted at a minimum speed of 0.37 km per hour. The speed was likely greater because of the fact that the xenoliths broke up into smaller fragments as their host magma ascended through the lithosphere.
DOT National Transportation Integrated Search
2015-06-01
Recent advances in probe vehicle data collection systems have enabled monitoring traffic : conditions at finer temporal and spatial resolution. The primary objective of the current study is : to leverage these probe data sources to understand if ther...
NASA Astrophysics Data System (ADS)
Devetter, Brent M.; Mukherjee, Prabuddha; Murphy, Catherine J.; Bhargava, Rohit
2015-05-01
Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes.Colloidal plasmonic nanomaterials, consisting of metals such as gold and silver, are excellent candidates for advanced optical probes and devices, but precise control over surface chemistry is essential for realizing their full potential. Coupling thiolated (R-SH) molecules to nanoprobe surfaces is a convenient and established route to tailor surface properties. The ability to dynamically probe and monitor the surface chemistry of nanoparticles in solution is essential for rapidly manufacturing spectroscopically tunable nanoparticles. In this study, we report the development of surface-enhanced Raman spectroscopy (SERS) as a method to monitor the kinetics of gold-thiolate bond formation on colloidal gold nanoparticles. A theoretical model combining SERS enhancement with the Beer-Lambert law is proposed to explain ensemble scattering and absorption effects in colloids during chemisorption. In order to maximize biological relevance and signal reproducibility, experiments used to validate the model focused on maintaining nanoparticle stability after the addition of water-soluble aromatic thiolated molecules. Our results indicate that ligand exchange on gold nanoparticles follow a first-order Langmuir adsorption model with rate constants on the order of 0.01 min-1. This study demonstrates an experimental spectroscopic method and theoretical model for monitoring binding kinetics that may prove useful for designing novel probes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01006c
Day, Clifford K.; Stringer, James L.
1977-01-01
Apparatus for measuring displacements of core components of a liquid metal fast breeder reactor by means of an eddy current probe. The active portion of the probe is located within a dry thimble which is supported on a stationary portion of the reactor core support structure. Split rings of metal, having a resistivity significantly different than sodium, are fixedly mounted on the core component to be monitored. The split rings are slidably positioned around, concentric with the probe and symmetrically situated along the axis of the probe so that motion of the ring along the axis of the probe produces a proportional change in the probes electrical output.
Jiang, Huie; Liu, Yan; Luo, Weifang; Wang, Yujiao; Tang, Xiaoliang; Dou, Wei; Cui, Yumei; Liu, Weisheng
2018-07-19
A two-photon fluorescent probe for Cu 2+ and S 2- has been strategically prepared with naphthalimide derivative platform (NPE) covalently grafted onto the surface of magnetic core-shell Fe 3 O 4 @SiO 2 nanoparticles. The probe (NPE-Fe 3 O 4 @SiO 2 ) exhibits selective response to Cu 2+ with enhanced fluorescence and efficient separation of Cu 2+ with external magnetic field. The consequent product NPE-Fe 3 O 4 @SiO 2 -Cu of NPE-Fe 3 O 4 @SiO 2 and Cu 2+ can work as an excellent sensor for S 2- by removing Cu 2+ from the complex with fluorescence decreased, recovering the fluorescence of the probe. Therefore, the constituted Off-On-Off type fluorescence monitoring system means the probe is resumable. Moreover, the probe has been used to quantitatively detect Cu 2+ and S 2- with low detection limits, which are 0.28 μM and 0.12 μM, respectively. Furthermore, the probe shows low cytotoxicity and excellent membrane permeability, which has been successfully applied for monitoring Cu 2+ and S 2- in living cells and imaging Cu 2+ in deep-tissue with two-photon excited fluorescence. Copyright © 2018. Published by Elsevier B.V.
Armstrong, David R; Blair, Victoria L; Clegg, William; Dale, Sophie H; Garcia-Alvarez, Joaquin; Honeyman, Gordon W; Hevia, Eva; Mulvey, Robert E; Russo, Luca
2010-07-14
Performed with a desire to advance knowledge of the structures and mechanisms governing alkali-metal-mediated zincation, this study monitors the reaction between the TMP-dialkylzincate reagent [(TMEDA)Na(TMP)((t)Bu)Zn((t)Bu)] 1 and trifluoromethyl benzene C(6)H(5)CF(3) 2. A complicated mixture of products is observed at room temperature. X-ray crystallography has identified two of these products as ortho- and meta-regioisomers of heterotrianionic [(TMEDA)Na(TMP)(C(6)H(4)-CF(3))Zn((t)Bu)], 3-ortho and 3-meta, respectively. Multinuclear NMR data of the bulk crystalline product confirm the presence of these two regioisomers as well as a third isomer, 3-para, in a respective ratio of 20:11:1, and an additional product 4, which also exhibits ortho-zincation of the aryl substrate. Repeating the reaction at 0 degrees C gave exclusively 4, which was crystallographically characterized as [{(TMEDA)(2)Na}(+){Zn(C(6)H(4)-CF(3))((t)Bu)(2)}(-)]. Mimicking the original room-temperature reaction, this kinetic product was subsequently reacted with TMP(H) to afford a complicated mixture of products, including significantly the three regioisomers of 3. Surprisingly, 4 adopts a solvent-separated ion pair arrangement in contrast to the contacted ion variants of 3-ortho and 3-meta. Aided by DFT calculations on model systems, discussion focuses on the different basicities, amido or alkyl, and steps, exhibited in these reactions, and how the structures and bonding within these isolated key metallic intermediates (prior to any electrophilic interception step), specifically the interactions involving the alkali metal, influence the regioselectivity of the Zn-H exchange process.
NASA Astrophysics Data System (ADS)
Luitel, Hom Nath; Chand, Rumi; Watari, Takanori
2018-04-01
A facile hydrothermal method was used to synthesize ZnMoO4:Er3+,Yb3+ nanoparticles. The shapes and sizes of the nanoparticles were well tuned by simply monitoring the pH of the starting solution. Microballs consisting of agglomerated nanograins were observed at strong acidic condition. At mild pH, plates and rectangular particles were realized, while strong basic pH stabilized rods. Further increasing pH to extremely basic conditions (pH > 13), rods changed to fragile hairy structures. The nucleation and growth mechanism of nanograins to form different morphology nanoparticles were studied and illustrated. XRD patterns confirmed well crystalline, triclinic structure despite small amount of aliovalent metal ions doping. Under 980 nm excitation, the ZnMoO4:Er3+,Yb3+ nanophosphor exhibited strong green (centered at 530 and 560 nm) and weak red (centered at 660 nm) upconversion (UC) emissions. Substitution of part of the Zn2+ ions by monovalent alkali ions intensified the UC emission intensities drastically. The order of intensification was K+>Na+>Li+>Rb+>no alkali ion. When Zn2+ ions were substituted with 10 at% K+ ions, the green and red UC emissions intensities increased by more than 50 and 15 folds, respectively. Time dependent measurements confirmed efficient Yb to Er energy transfer in the ZnMoO4:Er3+,Yb3+,K+ nanophosphor. The optimized ZnMoO4:Er3+,Yb3+,K+ phosphor exhibited intense UC emissions with 0.31% quantum yield. The upconverted light is visible to naked eye while pumping by laser of less than 1 mW power and opens door for variety of novel applications.
Volcanic rocks of the McDermitt Caldera, Nevada-Oregon
Greene, Robert C.
1976-01-01
The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is olive gray and contains about 8 percent plagioclase phenocrysts. It has an upper phase of black vitrophyre which directly underlies The alkali rhyolite of Jordan Meadow. The rhyolite of McCormick Ranch is present farther north and consists of pinkish rhyolite with small amounts of phenocrysts of alkali feldspar, quartz, and plagioclase. The alkali rhyolite of Jordan Meadow consists of interlayered aphyric, sparsely porphyritic, and abundantly porphyritic alkali rhyolites whose colors are predominantly light gray, greenish gray, and brown, respectively. Phenocrysts are alkali feldspar (to 15 percent) locally with quartz. Sections inside the caldera are as much as 360 m thick and consist of intimately interlayered gray, green, and brown alkali rhyolites commonly flow folded. Outside the caldera sections are equally thick in the south and southwest, but thinner to the north; in these places units of similar lithology are persistent for many kilometers, and flow folding is rare. A basal green porphyritic unit north of the caldera contains definite shard texture, but elsewhere this feature is rare. Nevertheless, the great lateral extent and relative thinness of the alkali rhyolite of Jordan Meadow suggests that it is welded ash-flow tuff. Overlying the alkali rhyolite of Jordan Meadow within the McDermitt caldera are four units of lavas. The rhyolite of Hoppin Peaks contains light-brownish-gray rhyolite and black vitophyre, all with sparse phenocrysts of alkali feldspar, quartz, and plagioclase. The rhyolite of McDermitt Creek is greenish or brownish gray and contains abundant phenocrysts of plagioclase. It .is in part structureless and in part flow banded. Alkali rhyolite of Washburn Creek is light gray and contains 0-5 percent phenocrysts alkali feldspar. Quartz labile of Black Mountain forms four isolated remnants of volcanoes in the south part of the caldera. It is brown where well crystallized and black where vitric and contains 5-15 percent pla
Method and composition for testing for the presence of an alkali metal
Guon, Jerold
1981-01-01
A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.
Electrochemical generation of useful chemical species from lunar materials
NASA Technical Reports Server (NTRS)
Sammells, Anthony F.; Semkow, Krystyna W.
1987-01-01
A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.
Electrochemical generation of useful chemical species from lunar materials
NASA Astrophysics Data System (ADS)
Sammells, Anthony F.; Semkow, Krystyna W.
1987-09-01
A high temperature electrolytic cell which simultaneously generates oxygen at the anode and liquid alkali metals at the cathode is electrochemically characterized. The electrolytic technology being investigated utilizes the oxygen vacancy conducting solid electrolyte, yttria stabilized zirconia, which effectively separates the oxygen evolving (at La0.89Sr0.10MnO3) and alkali metal (Li, Na) reducing (from a molten salt at either Pt or FeSi2) half cell reactions. In the finally engineered cell liquid alkali metal would be continuously removed from the cathode compartment and used as an effective reductant for the direct thermochemical refining of lunar ores to their metallic state with simultaneous oxidation of the alkali metal to its oxide. The alkali metal oxide would then be reintroduced into the electrolytic cell to complete the overall system cycle.
Mineralization dynamics of metakaolin-based alkali-activated cements
Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.
2017-01-01
This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.
Gianni, Carola; Atoui, Moustapha; Mohanty, Sanghamitra; Trivedi, Chintan; Bai, Rong; Al-Ahmad, Amin; Burkhardt, J David; Gallinghouse, G Joseph; Hranitzky, Patrick M; Horton, Rodney P; Sanchez, Javier E; Di Biase, Luigi; Lakkireddy, Dhanunjaya R; Natale, Andrea
2016-11-01
Luminal esophageal temperature monitoring is performed with a variety of temperature probes, but little is known about the relationship between the structure of a given probe and its thermodynamic characteristics. The purpose of this study was to evaluate the difference in thermodynamics between a 9Fr standard esophageal probe and an 18Fr esophageal stethoscope. In the experimental setting, each probe was submerged in a constant temperature water bath maintained at 42°C; in the patient setting, we monitored the temperature with both probes at the same time. The time constant of the stethoscope was higher than that of the probe (33.5 vs 8.3 s). Compared to the probe, the mean temperature measured by the stethoscope at 10 seconds was significantly lower (22.5°C ± 0.4°C vs 33.5°C ± 0.3°C, P<.0001), whereas the time to reach the peak temperature was significantly longer (132.6 ± 5.9 s vs 38.8 ± 1.0 s, P<.0001). Even in the ablation cases we observed that when the esophageal probe reached a peak temperature of 39.6°C ± 0.3°C, the esophageal stethoscope still displayed a temperature of 37.3°C ± 0.2°C (a mean of 2.39°C ± 0.3°C lower, P<.0001), showing a <0.5°C increase in temperature half of the times. The 18Fr esophageal stethoscope has a significantly slower time response compared to the 9Fr esophageal probe. In the clinical setting, this might result in a considerable underestimation of the luminal esophageal temperature with potentially fatal consequences. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.
Padmaja, G; Kistaiah, P
2009-03-19
A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.
Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thamir, F.; McBride, C.M.
1985-12-31
Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inabilitymore » to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs.« less
Arunachalam, K.; Maccarini, P.; Juang, T.; Gaeta, C.; Stauffer, P. R.
2009-01-01
Purpose This paper presents a novel conformal thermal monitoring sheet sensor array with differential thermal sensitivity for measuring temperature distributions over large surface areas. Performance of the sensor array is evaluated in terms of thermal accuracy, mechanical stability and conformity to contoured surfaces, probe self heating under irradiation from microwave and ultrasound hyperthermia sources, and electromagnetic field perturbation. Materials and Methods A prototype TMS with 4×4 array of fiberoptic sensors embedded between two flexible and thermally conducting polyimide films was developed as an alternative to the standard 1-2 mm diameter plastic catheter based probes used in clinical hyperthermia. Computed tomography images and bending tests were performed to evaluate the conformability and mechanical stability respectively. Irradiation and thermal barrier tests were conducted and thermal response of the prototype was compared with round cross-sectional clinical probes. Results Bending and conformity tests demonstrated higher flexibility, dimensional stability and close conformity to human torso. Minimal perturbation of microwave fields and low probe self heating was observed when irradiated with 915MHz microwave and 3.4MHz ultrasound sources. The transient and steady state thermal responses of the TMS array were superior compared to the clinical probes. Conclusions A conformal TMS sensor array with improved thermal sensitivity and dimensional stability was investigated for real-time skin temperature monitoring. This fixed-geometry, body-conforming array of thermal sensors allows fast and accurate characterization of two-dimensional temperature distributions over large surface areas. The prototype TMS demonstrates significant advantages over clinical probes for characterizing skin temperature distributions during hyperthermia treatments of superficial tissue disease. PMID:18465416
NASA Astrophysics Data System (ADS)
Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.
2018-06-01
Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.
Near atomically smooth alkali antimonide photocathode thin films
Feng, Jun; Karkare, Siddharth; Nasiatka, James; ...
2017-01-24
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Near atomically smooth alkali antimonide photocathode thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun; Karkare, Siddharth; Nasiatka, James
Nano-roughness is one of the major factors degrading the emittance of electron beams that can be generated by high efficiency photocathodes, such as the thermally reacted alkali antimonide thin films. In this paper, we demonstrate a co-deposition based method for producing alkali antimonide cathodes that produce near atomic smoothness with high reproducibility. Here, we calculate the effect of the surface roughness on the emittance and show that such smooth cathode surfaces are essential for operation of alkali antimonide cathodes in high field, low emittance radio frequency electron guns and to obtain ultracold electrons for ultrafast electron diffraction applications.
Ruckmani, K.; Kavimani, S.; Jayakar, B.; Anandan, R.
1998-01-01
The alkali preparation of the root and fresh leaf juice of Moringa oleifera possessed significant dose –depen-dent anti-ulcer activity in experimentally induced acute gastric ulcers with aspirin, the anti-ulcer effect of the alkali preparation of the root seems to be more pronounced than that of the fresh leaf juice. Te anti-ulcer activity of the alkali preparation of the root could be due to its content of alkaloids or its anticholinergic and antihistaminic activities, or a combination of these factors. PMID:22556845
High temperature alkali corrosion of ceramics in coal gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J.
1992-02-24
The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.
Diode pumped alkali vapor fiber laser
Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.
2007-10-23
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Diode pumped alkali vapor fiber laser
Payne, Stephen A [Castro Valley, CA; Beach, Raymond J [Livermore, CA; Dawson, Jay W [Livermore, CA; Krupke, William F [Pleasanton, CA
2006-07-26
A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.
Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A
2012-01-01
Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271
Alkali Silicate Vehicle Forms Durable, Fireproof Paint
NASA Technical Reports Server (NTRS)
Schutt, John B.; Seindenberg, Benjamin
1964-01-01
The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.
Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization
NASA Astrophysics Data System (ADS)
Karpenko, A.; Iablonskyi, D.; Urpelainen, S.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.
2014-05-01
The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.
NASA Astrophysics Data System (ADS)
Wang, Shuangyi; Housden, James; Singh, Davinder; Rhode, Kawal
2017-12-01
3D trans-oesophageal echocardiography (TOE) has become a powerful tool for monitoring intra-operative catheters used during cardiac procedures in recent years. However, the control of the TOE probe remains as a manual task and therefore the operator has to hold the probe for a long period of time and sometimes in a radiation environment. To solve this problem, an add-on robotic system has been developed for holding and manipulating a commercial TOE probe. This paper focuses on the application of making automatic adjustments to the probe pose in order to accurately monitor the moving catheters. The positioning strategy is divided into an initialization step based on a pre-planning method and a localized adjustments step based on the robotic differential kinematics and related image servoing techniques. Both steps are described in the paper along with simulation experiments performed to validate the concept. The results indicate an error less than 0.5 mm for the initialization step and an error less than 2 mm for the localized adjustments step. Compared to the much bigger live 3D image volume, it is concluded that the methods are promising. Future work will focus on evaluating the method in the real TOE scanning scenario.
Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer.
Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing
2016-09-08
The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO₂:Al₂O₃:Na₂O:NaOH:H₂O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection.
Hemicellulose and lignin removal on typha fiber by alkali treatment
NASA Astrophysics Data System (ADS)
Ikramullah; Rizal, Samsul; Thalib, Sulaiman; Huzni, Syifaul
2018-05-01
One of the methods commonly utilized to alter the surfaces of natural fibers for improving the interface compatibility among fiber and polymer matrix is by alkali treatment. Several natural fibers have been experimented with alkali treatments such as abaca, borassus and kenaf. There is a relatively few of literature that reports the FTIR investigation of Typha fibers. The purpose of this study is to determine the effect of alkali treatment on Typha fiber. Two of three bundle fibers are immersed in a 5% NaOH solution for one and two hours. The chemical structure of alkali-treated and untreated fibers are both being analyzed by Fourier Transform Infrared Spectroscopy (FTIR) instrument. The emergence of peak at 1155.36 cm-1 in strong intensity denotes the C-O-C asymmetric stretching in cellulose compound. The lignin composition of the fiber is typified by the stretching band of C-O group at 1247 cm-1. Meanwhile, the peak at 1735.03 cm-1 wavenumber is allegedly C=O stretching evidencing the existence of hemicelluloses and pectin. The peaks which are suspected to be hemicellulose, lignin and pectin are no longer visible in alkali treated Typha fiber. Giving alkali treatment to Typha fiber has been successfully removed impurities (hemicelluloses and lignin), as approved by the FTIR analysis. This will lead to a better contact and bonding mechanism between fiber and polymer matrix.
Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer
Chen, Liang; Wang, Zaiqin; Wang, Yuanyi; Feng, Jing
2016-01-01
The effective activation and utilization of metakaolin as an alkali activated geopolymer precursor and its use in concrete surface protection is of great interest. In this paper, the formula of alkali activated metakaolin-based geopolymers was studied using an orthogonal experimental design. It was found that the optimal geopolymer was prepared with metakaolin, sodium hydroxide, sodium silicate and water, with the molar ratio of SiO2:Al2O3:Na2O:NaOH:H2O being 3.4:1.1:0.5:1.0:11.8. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) were adopted to investigate the influence of curing conditions on the mechanical properties and microstructures of the geopolymers. The best curing condition was 60 °C for 168 h, and this alkali activated metakaolin-based geopolymer showed the highest compression strength at 52.26 MPa. In addition, hollow micro-sphere glass beads were mixed with metakaolin particles to improve the thermal insulation properties of the alkali activated metakaolin-based geopolymer. These results suggest that a suitable volume ratio of metakaolin to hollow micro-sphere glass beads in alkali activated metakaolin-based geopolymers was 6:1, which achieved a thermal conductivity of 0.37 W/mK and compressive strength of 50 MPa. By adjusting to a milder curing condition, as-prepared alkali activated metakaolin-based geopolymers could find widespread applications in concrete thermal protection. PMID:28773888
Optical monitoring of spinal cord hemodynamics, a feasibility study
NASA Astrophysics Data System (ADS)
Shadgan, Babak; Kwon, Brian K.; Streijger, Femke; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Cripton, Peter A.; Macnab, Andrew
2017-02-01
Background: After an acute traumatic spinal cord injury (SCI), the spinal cord is subjected to ischemia, hypoxia, and increased hydrostatic pressure which exacerbate further secondary damage and neuronal deficit. The purpose of this pilot study was to explore the use of near infrared spectroscopy (NIRS) for non-invasive and real-time monitoring of these changes within the injured spinal cord in an animal model. NIRS is a non-invasive optical technique that utilizes light in the near infrared spectrum to monitor changes in the concentration of tissue chromophores from which alterations in tissues oxygenation and perfusion can be inferred in real time. Methods: A custom-made miniaturized NIRS sensor was developed to monitor spinal cord hemodynamics and oxygenation noninvasively and in real time simultaneously with invasive, intraparenchymal monitoring in a pig model of SCI. The spinal cord around the T10 injury site was instrumented with intraparenchymal probes inserted directly into the spinal cord to measure oxygen pressure, blood flow, and hydrostatic pressure, and the same region of the spinal cord was monitored with the custom-designed extradural NIRS probe. We investigated how well the extradural NIRS probe detected intraparenchymal changes adjacent to the injury site after alterations in systemic blood pressure, global hypoxia, and traumatic injury generated by a weight-drop contusion. Results: The NIRS sensor successfully identified periods of systemic hypoxia, re-ventilation and changes in spinal cord perfusion and oxygenation during alterations of mean arterial pressure and following spinal cord injury. Conclusion: This pilot study indicates that extradural NIRS monitoring of the spinal cord is feasible as a non-invasive optical method to identify changes in spinal cord hemodynamics and oxygenation in real time. Further development of this technique would allow clinicians to monitor real-time physiologic changes within the injured spinal cord during the acute post-injury period.
NASA Astrophysics Data System (ADS)
Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.
2003-07-01
Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a patient with peripheral vascular disease (PVD) were found.
Biasing, Acquisition and Interpretation of a Dense Langmuir Probe Array in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaworski, M. A.; Kallman, J.; Kaita, R.
2010-09-22
A dense array of 99 Langmuir probes has been installed in the lower divertor region of the National Spherical Torus Experiments (NSTX). This array is instrumented with a system of elec- tronics that allows flexibility in the choice of probes to bias as well as the type of measurement (including standard swept, single probe, triple probe and operation as passive floating potential and scrape-off-layer (SOL) current monitors). The use of flush-mounted probes requires careful inter- pretation. The time dependent nature of the SOL makes swept-probe traces difficult to interpret. To overcome these challenges, the single- and triple-Langmuir probe signals aremore » used in comple- mentary fashion to determine the temperature and density at the probe location. A comparison to mid-plane measurements is made. Work is supported by DOE contracts DE-AC02-09CHI1466 and DE-PS02-07ER07-29.« less
Method and apparatus for simultaneously measuring temperature and pressure
Hirschfeld, Tomas B.; Haugen, Gilbert R.
1988-01-01
Method and apparatus are provided for simultaneously measuring temperature and pressure in a class of crystalline materials having anisotropic thermal coefficients and having a coefficient of linear compression along the crystalline c-axis substantially the same as those perpendicular thereto. Temperature is determined by monitoring the fluorescence half life of a probe of such crystalline material, e.g., ruby. Pressure is determined by monitoring at least one other fluorescent property of the probe that depends on pressure and/or temperature, e.g., absolute fluorescent intensity or frequency shifts of fluorescent emission lines.
Monitoring of Au(iii) species in plants using a selective fluorescent probe.
Li, Zhen; Xu, Yuqing; Fu, Jie; Zhu, Hailiang; Qian, Yong
2018-01-23
A colorimetric and ratiometric probe with a push-pull chromophore dicyanoisophorone system, AuP, has been developed for the detection of Au(iii) species with highly sensitive and selective response to real-water samples and living tissues of Arabidopsis thaliana.
2003-10-30
KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.
Rosetta Langmuir Probe Photoelectron Emission and Solar Ultraviolet Flux at Comet 67P
NASA Astrophysics Data System (ADS)
Johansson, F. L.; Odelstad, E.; Paulsson, J. J.; Harang, S. S.; Eriksson, A. I.; Mannel, T.; Vigren, E.; Edberg, N. J. T.; Miloch, W. J.; Simon Wedlund, C.; Thiemann, E.; Epavier, F.; Andersson, L.
2017-12-01
The Langmuir Probe instrument on Rosetta monitored the photoelectron emission current of the probes during the Rosetta mission at comet 67P/Churyumov-Gerasimenko, in essence acting as a photodiode monitoring the solar ultraviolet radiation at wavelengths below 250 nm. We have used three methods of extracting the photoelectron saturation current from the Langmuir probe measurements. The resulting dataset can be used as an index of the solar far and extreme ultraviolet at the Rosetta spacecraft position, including flares, in wavelengths that are important for photoionisation of the cometary neutral gas. Comparing the photoemission current to data measurements by MAVEN/EUVM and TIMED/SEE, we find good correlation when 67P was at large heliocentric distances early and late in the mission, but up to 50 percent decrease of the expected photoelectron current at perihelion. We discuss possible reasons for the photoemission decrease, including scattering and absorption by nanograins created by disintegration of cometary dust far away from the nucleus.
Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng
2018-01-01
A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME I. REPORT AND APPENDICES A-E
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby
NASA Technical Reports Server (NTRS)
Gayen, S. K.; Wang, W. B.; Petricevic, V.; Dorsinville, R.; Alfano, R. R.
1985-01-01
In a picosecond excite-and-probe absorption measurement, a 527-nm picosecond pulse excites the 4T2 state of the Cr(3+) ion in ruby and a 3.4-micron picosecond probe pulse monitors the growth and decay of population in the 2E state as a function of pump-probe delay. From the growth of population in the metastable 2E state, an upper limit of 7 ps for the nonradiative lifetime of the 4T2 state is determined.
NASA Astrophysics Data System (ADS)
Ghrefat, Habes A.; Goodell, Philip C.
2011-08-01
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR-SWIR (0.4-2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial-spectral-temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.
Zhao, Yang; Zhao, Chaoyue; DuanMu, Huizi; Yu, Yang; Ji, Wei; Zhu, Yanming
2014-01-01
So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops. PMID:24586886
K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias
NASA Technical Reports Server (NTRS)
Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.
2013-01-01
Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.
DFT study of the interaction between DOTA chelator and competitive alkali metal ions.
Frimpong, E; Skelton, A A; Honarparvar, B
2017-09-01
1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
Giotis, Efstathios S; Muthaiyan, Arunachalam; Blair, Ian S; Wilkinson, Brian J; McDowell, David A
2008-01-01
Background Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. Results In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. Conclusion Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources. PMID:18577215
A beam current density monitor for intense electron beams
NASA Astrophysics Data System (ADS)
Fiorito, R. B.; Raleigh, M.; Seltzer, S. M.
1983-12-01
The authors describe a new type of electric probe for mapping the radial current density profile of high-energy, high current electron beams. The idea of developing an electrically sensitive probe for these conditions was originally suggested to one of the authors during a year's visit to the Lawrence Livermore National Laboratory. The resulting probe is intended for use on the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator at that laboratory. This report discusses in detail: the mechanical design, the electrical response, and temperature effects, as they pertain to the electric probe, and describe the first experimental results obtained using this probe on ETA.
Freeze-drying process monitoring using a cold plasma ionization device.
Mayeresse, Y; Veillon, R; Sibille, P H; Nomine, C
2007-01-01
A cold plasma ionization device has been designed to monitor freeze-drying processes in situ by monitoring lyophilization chamber moisture content. This plasma device, which consists of a probe that can be mounted directly on the lyophilization chamber, depends upon the ionization of nitrogen and water molecules using a radiofrequency generator and spectrometric signal collection. The study performed on this probe shows that it is steam sterilizable, simple to integrate, reproducible, and sensitive. The limitations include suitable positioning in the lyophilization chamber, calibration, and signal integration. Sensitivity was evaluated in relation to the quantity of vials and the probe positioning, and correlation with existing methods, such as microbalance, was established. These tests verified signal reproducibility through three freeze-drying cycles. Scaling-up studies demonstrated a similar product signature for the same product using pilot-scale and larger-scale equipment. On an industrial scale, the method efficiently monitored the freeze-drying cycle, but in a larger industrial freeze-dryer the signal was slightly modified. This was mainly due to the positioning of the plasma device, in relation to the vapor flow pathway, which is not necessarily homogeneous within the freeze-drying chamber. The plasma tool is a relevant method for monitoring freeze-drying processes and may in the future allow the verification of current thermodynamic freeze-drying models. This plasma technique may ultimately represent a process analytical technology (PAT) approach for the freeze-drying process.
Scott, David E.; Willis, Sean D.; Gabbert, Seth; Johnson, Dave A.; Naylor, Erik; Janle, Elsa M.; Krichevsky, Janice E.; Lunte, Craig E.; Lunte, Susan M.
2015-01-01
The development of an on-animal separation-based sensor that can be employed for monitoring drug metabolism in a freely roaming sheep is described. The system consists of microdialysis sampling coupled directly to microchip electrophoresis with electrochemical detection (MD-ME-EC). Separations were accomplished using an all-glass chip with integrated platinum working and reference electrodes. Discrete samples from the microdialysis flow were introduced into the electrophoresis chip using a flow-gated injection approach. Electrochemical detection was accomplished in-channel using a two-electrode isolated potentiostat. Nitrite was separated by microchip electrophoresis using reverse polarity and a run buffer consisting of 50 mM phosphate at pH 7.4. The entire system was under telemetry control. The system was first tested with rats to monitor the production of nitrite following introduction of nitroglycerin into the subdermal tissue using a linear probe. The data acquired using the on-line MD-ME-EC system was compared to that obtained off-line analysis by liquid chromatography with electrochemical detection (LC-EC), using a second microdialysis probe implanted parallel to the first probe in the same animal. The MD-ME-EC device was then used on-animal to monitor the subdermal metabolism of nitroglycerin in sheep. The ultimate goal is to use this device to simultaneously monitor drug metabolism and behavior in a freely roaming animal. PMID:25697221
Mayer-Cumblidge, M. Uljana; Cao, Haishi
2013-01-15
A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.
Mayer-Cumblidge, M Uljana [Richland, WA; Cao, Haishi [Richland, WA
2010-08-17
A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.
Swan, Raymond A.
1994-01-01
A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.
A new temperature profiling probe for investigating groundwater-surface water interaction
Naranjo, Ramon C.; Robert Turcotte,
2015-01-01
Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.
Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, andmore » reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.« less
Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z
2015-02-10
Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.
Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?
Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Repasky, Kevin
2014-02-01
A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly related to geologic carbon sequestration. Furthermore, commercialization of the technology developed is being pursued with five different companies via the Department of energy SBIR/STTR program« less
21 CFR 870.2120 - Extravascular blood flow probe.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood flow probe. 870.2120 Section 870.2120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2120 Extravascular...
Genetically encoded probes for NAD+/NADH monitoring.
Bilan, Dmitry S; Belousov, Vsevolod V
2016-11-01
NAD + and NADH participate in many metabolic reactions. The NAD + /NADH ratio is an important parameter reflecting the general metabolic and redox state of different types of cells. For a long time, in situ and in vivo NAD + /NADH monitoring has been hampered by the lack of suitable tools. The recent development of genetically encoded indicators based on fluorescent proteins linked to specific nucleotide-binding domains has already helped to address this monitoring problem. In this review, we will focus on four available indicators: Peredox, Frex family probes, RexYFP and SoNar. Each indicator has advantages and limitations. We will also discuss the most important points that should be considered when selecting a suitable indicator for certain experimental conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, Carlos E.
1980-01-01
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
NASA Technical Reports Server (NTRS)
Altman, R. L.; Mayer, L. A.; Ling, A. C. (Inventor)
1983-01-01
Fire extinguishant composition comprising a mixture of a finely divided aluminum compound and alkali metal, stannous or plumbous halide is provided. Aluminum compound may be aluminum hydroxide, alumina or boehmite but preferably it is an alkali metal dawsonite. The metal halide may be an alkali metal, e.g. potassium iodide, bromide or chloride or stannous or plumbous iodide, bromide or chloride. Potassium iodide is preferred.
Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds
Bamberger, C.E.
A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.
NASA Astrophysics Data System (ADS)
Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui
2017-03-01
A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.
Deng, Wei; Li, Ronglong; Zhang, Mengjun; Gong, Lixiang; Kan, Chengyou
2010-09-01
Soap-free P(St-MAA) latex particles with variable styrene (St)/methacrylic acid (MAA) ratio were synthesized by batch emulsion copolymerization at 70 degrees C for 7h, and the particles with porous structure were obtained after stepwise alkali/acid post-treatment. The effects of MAA amount on the particle morphologies after the alkali and the stepwise alkali/acid post-treatments were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Results indicated that the alkali-treated latex particles showed anomalous structure with rough surface, and no hollow was clearly identified inside them. When these alkali-treated particles were further treated with acid solution, the particle surface became much smoother, and porous morphology appeared. It was found that when the MAA amount was less than or equal to 4mol%, no obvious morphological variation was observed; while the latex particles showed clearly porous structure as the MAA amount increased to 6mol%; with the further increase of MAA amount to 8mol%, the pore size decreased distinctly. Copyright 2010 Elsevier Inc. All rights reserved.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
Utilization of Mineral Wools as Alkali-Activated Material Precursor
Yliniemi, Juho; Kinnunen, Paivo; Karinkanta, Pasi; Illikainen, Mirja
2016-01-01
Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW). The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation. PMID:28773435
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Claire E., E-mail: whitece@princeton.edu; Andlinger Center for Energy and the Environment, Princeton University, Princeton; Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos
2015-01-15
The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicatemore » (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.« less
NASA Astrophysics Data System (ADS)
Asrah, Hidayati; Mirasa, Abdul Karim; Bolong, Nurmin
2018-02-01
This study investigated the mechanism of how POFA mitigated the ASR expansion. Two types of POFA; the UPOFA and GPOFA with different fineness were used to replace the cement at 20% and 40% and their effects on the mortar bar expansion, calcium hydroxide, alkali dilution, and calcium concentration were investigated. The results showed that UPOFA has a significant ability to mitigate the ASR, even at a lower level of replacement (20%) compared to GPOFA. The mechanism of UPOFA in mitigating the ASR expansion was through a reduction in the calcium hydroxide content, which produced low calcium concentration within the mortar pore solution. Low pore solution alkalinity signified that UPOFA had good alkali dilution effect. Meanwhile, a higher dosage of GPOFA was required to mitigate the ASR expansion. An increase in the pore solution alkalinity of GPOFA mortar indicated higher penetration of alkalis from the NaOH solution, which reduced the alkali dilution effect. However, this was compensated by the increase in the cement dilution effect at higher GPOFA replacement, which controlled the mortar bar expansion below the ASTM limit.
Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange
Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.
1994-01-01
Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.
Petrology of the Western Highland Province: Ancient crust formation at the Apollo 14 site
NASA Astrophysics Data System (ADS)
Shervais, John W.; McGee, James J.
1999-03-01
Plutonic rocks found at the Apollo 14 site comprise four lithologic suites: the magnesian suite, the alkali suite, evolved lithologies, and the ferroan anorthosite suite (FAN). Rocks of the magnesian suite include troctolite, anorthosite, norite, dunite, and harzburgite; they are characterized by plagioclase ~An95 and mafic minerals with mg#s 82-92. Alkali suite rocks and evolved rocks generally have plagioclase ~An90 to ~An40, and mafic minerals with mg#s 82-40. Lithologies include anorthosite, norite, quartz monzodiorite, granite, and felsite. Ferroan anorthosites have plagioclase ~An96 and mafic minerals with mg#s 45-70. Whole rock geochemical data show that most magnesian suite samples and all alkali anorthosites are cumulates with little or no trapped liquid component. Norites may contain significant trapped liquid component, and some alkali norites may represent cumulate-enriched, near-liquid compositions, similar to KREEP basalt 15386. Evolved lithologies include evolved partial cumulates related to alkali suite fractionation (quartz monzodiorite), immiscible melts derived from these evolved magmas (granites), and impact melts of preexisting granite (felsite). Plots of whole rock mg# versus whole rock Ca/(Ca+Na+K) show a distinct gap between rocks of the magnesian suite and rocks of the alkali suite, suggesting either distinct parent magmas or distinct physical processes of formation. Chondrite-normalized rare earth element (REE) patterns show that rocks of both the magnesian suite and alkali suite have similar ranges, despite the large difference in major element chemistry. Current models for the origin of the magnesian suite call for a komatiitic parent magma derived from early magma ocean cumulates; these melts must assimilate plagiophile elements to form troctolites at low pressures and must assimilate a highly enriched KREEP component so that the resulting mixture has REE concentrations similar to high-K KREEP. There are as yet no plausible scenarios that can explain these unusual requirements. We propose that partial melting of a primitive lunar interior and buffering of these melts by ultramagnesian early magma ocean cumulates provides a more reasonable pathway to form magnesian troctolites. Alkali anorthosites and norites formed by crystallization of a parent magma with major element compositions similar to KREEP basalt 15386. If the parent magma of the alkali suite and evolved rocks is related to the magnesian suite, then that magma must have evolved through combined assimilation-fractional crystallization processes to form the alkali suite cumulates.
Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes.
Bagatolli, Luis A
2015-01-01
A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.
Transesophageal echocardiography probe shutdown in a patient with hyperthermia.
Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant
2016-01-01
The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever.
Transesophageal echocardiography probe shutdown in a patient with hyperthermia
Saluja, Vandana; Singh, Gaganpal; Pandey, Chandrakant
2016-01-01
The use of transesophageal echocardiography (TEE) has been increasing over the past few years. It is considered a semi-invasive monitor and a safe diagnostic device. Though complications are rare, they must be known to operators who frequently perform TEE. TEE probes are known to cause tissue heating and damage on prolonged use. In this case report, we describe shutdown of the transesophageal probe in our patient with high-grade fever. PMID:26952152
1980-06-01
Microthermal Probe System; 2) Acoustic Sounder; 3) Star Sensor; and i 4) Seeing Monitor. Thý in ..ru. cn.tat -ion, much of it one-of-a-kind prototype...profiles of C 2 N2 3) Acoustic Sounder: an instrument that measures C to 300 m altitude; 4) Microthermal Probes: two systems, consisting of three 2...atmospheric program produced - 146 - Y- MICROTHERMAL NICRPHMERI-AL PROBES (3) _j PPRBES (3) WIND SPEED & WIND SPEED & DIRECTION ---- I- DIRECTION
NASA Astrophysics Data System (ADS)
Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman
2018-06-01
Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.
NASA Astrophysics Data System (ADS)
Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.
2009-02-01
Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.
Murugan, N Arul; Kongsted, Jacob; Ågren, Hans
2013-08-13
Presently, there is a great demand for small probe molecules that can be used for two-photon excitation microscopy (TPM)-based monitoring of intracellular and intraorganelle activity and pH. The candidate molecules should ideally possess a large two-photon absorption cross section with optical properties sensitive to pH changes. In the present work, we investigate the potential of a methoxy napthalene (MONAP) derivative for its suitability to serve as a pH sensor using TPM. Using an integrated approach rooted in hybrid quantum mechanics/molecular mechanics, the structures, dynamics, and the one- and two-photon properties of the probe in dimethylformamide solvent are studied. It is found that the protonated form is responsible for the optical property of MONAP at moderately low pH, for which the calculated pH-induced red shift is in good agreement with experiments. A 2-fold increase in the two-photon absorption cross section in the IR region of the spectrum is predicted for the moderately low pH form of the probe, suggesting that this can be a potential probe for pH monitoring of living cells. We also propose some design principles aimed at obtaining control of the absorption spectral range of the probe by structural tuning. Our work indicates that the integrated approach employed is capable of capturing the pH-induced changes in structure and optical properties of organic molecular probes and that such in silico tools can be used to draw structure-property relationships to design novel molecular probes suitable for a specific application.
Spill-Resistant Alkali-Metal-Vapor Dispenser
NASA Technical Reports Server (NTRS)
Klipstein, William
2005-01-01
A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.
Ando, Takahiro; Mori, Atsushi; Ito, Rie; Nishiwaki, Kimitoshi
2017-12-01
We investigated whether calcium chloride (CaCl 2 ), a supplementary additive in carbon dioxide (CO 2 ) absorbents, could affect carbon monoxide (CO) production caused by desflurane degradation, using a Japanese alkali-free CO 2 absorbent Yabashi Lime ® -f (YL-f), its CaCl 2 -free and 1% CaCl 2 -added derivatives, and other commercially available alkali-free absorbents with or without CaCl 2 . The reaction between 1 L of desflurane gas (3-10%) and 20 g of desiccated specimen was performed in an artificial closed-circuit anesthesia system for 3 min at 20 or 40 °C. The CO concentration was measured using a gas chromatograph equipped with a semiconductor sensor detector. The systems were validated by detecting dose-dependent CO production with an alkali hydroxide-containing CO 2 absorbent, Sodasorb ® . Compared with YL-f, the CaCl 2 -free derivative caused the production of significantly more CO, while the 1% CaCl 2 -added derivative caused the production of a comparable amount of CO. These phenomena were confirmed using commercially available absorbents AMSORB ® PLUS, an alkali-free absorbent with CaCl 2 , and LoFloSorb™, an alkali-free absorbent without CaCl 2 . These results suggest that CaCl 2 plays an important role in preventing CO generation caused by desflurane degradation with alkali hydroxide-free CO 2 absorbents like YL-f.
Alkali production in the mouth and its relationship with certain patient's characteristics.
Gordan, Valeria Veiga; McEdward, Deborah Landry; Ottenga, Marc Edward; Garvan, Cynthia Wilson; Harris, Pearl Ann
2014-01-01
To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB), alcohol (AH), sugary drinks (SD), and diet. Alkali production through arginine deiminase (ADS) and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Participants in the lowest SES (Socio-economic status) group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk; Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD; Provis, John L., E-mail: j.provis@sheffield.ac.uk
2013-11-15
Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclearmore » magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.« less
Alkali- and Sulfur-Resistant Tungsten-Based Catalysts for NOx Emissions Control.
Huang, Zhiwei; Li, Hao; Gao, Jiayi; Gu, Xiao; Zheng, Li; Hu, Pingping; Xin, Ying; Chen, Junxiao; Chen, Yaxin; Zhang, Zhaoliang; Chen, Jianmin; Tang, Xingfu
2015-12-15
The development of catalysts with simultaneous resistance to alkalis and sulfur poisoning is of great importance for efficiently controlling NOx emissions using the selective catalytic reduction of NOx with NH3 (SCR), because the conventional V2O5/WO3-TiO2 catalysts often suffer severe deactivation by alkalis. Here, we support V2O5 on a hexagonal WO3 (HWO) to develop a V2O5/HWO catalyst, which has exceptional resistance to alkali and sulfur poisoning in the SCR reactions. A 350 μmol g(-1) K(+) loading and the presence of 1,300 mg m(-3) SO2 do not almost influence the SCR activity of the V2O5/HWO catalyst, and under the same conditions, the conventional V2O5/WO3-TiO2 catalysts completely lost the SCR activity within 4 h. The strong resistance to alkali and sulfur poisoning of the V2O5/HWO catalysts mainly originates from the hexagonal structure of the HWO. The HWO allows the V2O5 to be highly dispersed on the external surfaces for catalyzing the SCR reactions and has the relatively smooth surfaces and the size-suitable tunnels specifically for alkalis' diffusion and trapping. This work provides a useful strategy to develop SCR catalysts with exceptional resistance to alkali and sulfur poisoning for controlling NOx emissions from the stationary source and the mobile source.