Science.gov

Sample records for alkali reaction products

  1. Microscopic analysis of alkali-aggregate reaction products in a 50-year-old concrete

    SciTech Connect

    Fernandes, Isabel . E-mail: ifernand@fc.up.pt; Noronha, Fernando . E-mail: fmnoronh@fc.up.pt; Teles, Madalena . E-mail: mteles@fe.up.pt

    2004-11-15

    Fifty-year-old concrete from a large dam was examined in the scope of an investigation program concerning the properties of granite as aggregate material for concrete. Site inspection, which was developed in order to detect possible signs of deterioration of the concrete, revealed the existence of efflorescence and exudations. Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analyses were attempted to identify the composition of these materials and their morphology. From the analyses, it was concluded that some of the exudations were composed by alkali-silica gel. In these samples, an interesting behavior was observed in different moments after a 3-month interval. It was noticed that the initially noncrystalline alkali-silica gel transformed into sodium-rich needles and tablets after a few months kept in a desiccator in the laboratory. Therefore, it was concluded that the materials identified corresponded to different stages of evolution of an alkali-aggregate reaction product.

  2. Physics and chemistry of alkali-silica reactions

    SciTech Connect

    Diamond, S.; Barneyback, R.S. Jr.; Struble, L.J.

    1981-01-01

    The philosophy underlying recent research on alkali-silica reactions is reviewed and illustrations of recent results are provided. It has been possible to follow the kinetics of the chemical reaction between dissolved alkalis and opal in mortars by monitoring the rate at which alkalis are removed from the pore solutions of reacting mortars. Studies of the expansion behavior of synthetic alkali silica gels under controlled conditions were carried out and show no obvious correlation to chemical composition. The alkali reaction in mortars was found to produce changes in the appearance of opal grains documentable by the use of a scanning electron microscope.

  3. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  4. Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng

    2009-06-01

    In order to evaluate the complex interplay between dissolution and precipitation reaction kinetics, we examined the hypothesis of partial equilibria between secondary mineral products and aqueous solutions in feldspar-water systems. Speciation and solubility geochemical modeling was used to compute the saturation indices (SI) for product minerals in batch feldspar dissolution experiments at elevated temperatures and pressures and to trace the reaction paths on activity-activity diagrams. The modeling results demonstrated: (1) the experimental aqueous solutions were supersaturated with respect to product minerals for almost the entire duration of the experiments; (2) the aqueous solution chemistry did not evolve along the phase boundaries but crossed the phase boundaries at oblique angles; and (3) the earlier precipitated product minerals did not dissolve but continued to precipitate even after the solution chemistry had evolved into the stability fields of minerals lower in the paragenesis sequence. These three lines of evidence signify that product mineral precipitation is a slow kinetic process and partial equilibria between aqueous solution and product minerals were not held. In contrast, the experimental evidences are consistent with the hypothesis of strong coupling of mineral dissolution/precipitation kinetics [e.g., Zhu C., Blum A. E. and Veblen D. R. (2004a) Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa, Arizona, USA. In Water-Rock Interaction (eds. R. B. Wanty and R. R. I. Seal). A.A. Balkema, Saratoga Springs, New York. pp. 895-899]. In all batch experiments examined, the time of congruent feldspar dissolution was short and supersaturation with respect to the product minerals was reached within a short period of time. The experimental system progressed from a dissolution driven regime to a precipitation limited regime in a short order. The results of this study suggest a complex feedback between dissolution and

  5. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    SciTech Connect

    Hou, H.

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  6. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  7. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    SciTech Connect

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A.

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  8. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  9. Alkali-silica reaction resistant concrete using pumice blended cement

    NASA Astrophysics Data System (ADS)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  10. Modeling of alkali aggregate reaction effects in concrete dams

    SciTech Connect

    Capra, B.; Bournazel, J.P.; Bourdarot, E.

    1995-12-31

    Alkali Aggregate Reactions (AAR) are difficult to model due to the random distribution of the reactive sites and the imperfect knowledge of these chemical reactions. A new approach, using fracture mechanics and probabilities, capable to describe the anisotropic swelling of a structure is presented.

  11. PVC waterproofing membranes and alkali-aggregated reaction in dams

    SciTech Connect

    Scuero, A.M.

    1995-12-31

    A waterproofing polyvinylchloride (PVC) based geocomposite was installed on two dams subject to alkali-aggregate reaction, to eliminate water intrusion and to protect the facing from further deterioration. The installation system allows drainage of the infiltrated water, thus accomplishing dehydration of the dam body. On one dam, the membrane also provided protection for future slot cutting.

  12. Influence of lithium hydroxide on alkali-silica reaction

    SciTech Connect

    Bulteel, D.; Garcia-Diaz, E.; Degrugilliers, P.

    2010-04-15

    Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR. The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH. Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable. These observations demonstrate that lithium ions have an inhibitor role on ASR.

  13. Universalities in ultracold reactions of alkali-metal polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John L.; Petrov, Alexander; Kotochigova, Svetlana

    2011-12-01

    We consider ultracold collisions of ground-state heteronuclear alkali-metal dimers that are susceptible to four-center chemical reactions 2AB→A2+B2 even at submicrokelvin temperatures. These reactions depend strongly on species, temperature, electric field, and confinement in an optical lattice. We calculate ab initio van der Waals coefficients for these interactions and use a quantum formalism to study the scattering properties of such molecules under an external electric field and optical lattice. We also apply a quantum threshold model to explore the dependence of reaction rates on the various parameters. We find that, among the heteronuclear alkali-metal fermionic species, LiNa is the least reactive, whereas LiCs is the most reactive. For the bosonic species, LiK is the most reactive in zero field, but all species considered, LiNa, LiK, LiRb, LiCs, and KRb, share a universal reaction rate once a sufficiently high electric field is applied. For indistinguishable bosons, the inelastic/reactive rate increases as d2 in the quantum regime, where d is the dipole moment induced by the electric field. This is a weaker power-law dependence than for indistinguishable fermions, for which the rate behaves as d6.

  14. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciTech Connect

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-04-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.

  15. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  16. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  17. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  18. The use of performance parameters in monitoring the safety of dams experiencing alkali-aggregate reaction

    SciTech Connect

    Veesaert, C.J.; LaBoon, J.H.

    1995-12-31

    As the Bureau of Reclamation (Reclamation) moves away from design and construction of new water resource projects toward optimizing the management of existing water resource projects, monitoring the condition of high risk structures such as dams becomes very important. To address this need, Reclamation has developed a logical approach of monitoring the safety of a dam over time. This approach analyzes visual and instrumentation performance parameters unique to each dam, Performance parameters specify the expected performance (behavior) of both embankment and concrete dams, including those concrete dams effected by alkali-aggregate reaction. This paper presents an overview of the concept of performance parameters in monitoring the safety of dams, which have experienced alkali-aggregate reaction. Three case studies are presented to illustrate the use of performance parameters in monitoring a dam`s behavior over time, relative to the effects of alkali-aggregate reaction.

  19. Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction

    SciTech Connect

    Turanli, L.; Bektas, F.; Monteiro, P.J.M

    2003-10-01

    The objective of this experimental study was to use ground clay brick (GCB) as a pozzolanic material to minimize the alkali-silica reaction expansion. Two different types of clay bricks were finely ground and their activity indices were determined. ASTM accelerated mortar bar tests were performed to investigate the effect of GCB when used to replace cement mass. The microstructure of the mortar was investigated using scanning electron microscopy (SEM). The results showed that the GCBs meet the strength activity requirements of ASTM. In addition, the GCBs were found to be effective in suppressing the alkali-silica reaction expansion. The expansion decreased as the amount of GCBs in the mortar increased.

  20. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    SciTech Connect

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G

    2003-11-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites.

  1. Alkali-silica reaction and its effectes on concrete

    SciTech Connect

    Stark, D.

    1995-12-31

    Alkali-silica reactivity (ASR) has resulted in cracking of concrete in numerous dams in the United States and elsewhere. Many of these dams were constructed prior to the initial discovery of ASR in California in the late 1930`s, thus no special precautions could have been taken to prevent its development Since that time, ASR has been identified in all types of structures located in many parts of the world. Voluminous research has been carried out to better characterize its development, to more completely understand the mechanisms of expansion and distress, and to design means to mitigate its development in new and existing construction. Based on this work, this paper describes the nature of ASR, its effects on concrete, and means to control its development, with special reference to dams.

  2. Alkali-Stabilized Pt-OHx Species Catalyze Low-Temperature Water-Gas Shift Reactions

    SciTech Connect

    Zhai, Y.; Pierre, D; Si, R; Deng, W; Ferrin, P; Nilekar, A; Peng, G; Herron, J; Bell, D; et. al.

    2010-01-01

    We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H{sub 2}O + CO {yields} H{sub 2} + CO{sub 2}) used for producing H{sub 2}. The alkali ion-associated surface OH groups are activated by CO at low temperatures ({approx}100 C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O{sub x}(OH){sub y} species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

  3. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    SciTech Connect

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting; Pan, Pei-Yun; Liu, Yen-Hsiang Yang, En-Che

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thus permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.

  4. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  5. Influence of stress restraint on the expansive behaviour of concrete affected by alkali-silica reaction

    SciTech Connect

    Berra, M.; Faggiani, G.; Mangialardi, T.; Paolini, A.E.

    2010-09-15

    The primary objective of this study was to ascertain whether the Threshold Alkali Level (TAL) of the concrete aggregates may be taken as a suitable reactivity parameter for the selection of aggregates susceptible of alkali-silica reaction (ASR), even when ASR expansion in concrete develops under restrained conditions. Concrete mixes made with different alkali contents and two natural siliceous aggregates with very different TALs were tested for their expansivity at 38 {sup o}C and 100% RH under unrestrained and restrained conditions. Four compressive stress levels over the range from 0.17 to 3.50 N/mm{sup 2} were applied by using a new appositely designed experimental equipment. The lowest stress (0.17 N/mm{sup 2}) was selected in order to estimate the expansive pressure developed by the ASR gel under 'free' expansion conditions. It was found that, even under restrained conditions, the threshold alkali level proves to be a suitable reactivity parameter for designing concrete mixes that are not susceptible of deleterious ASR expansion. An empirical relationship between expansive pressure, concrete alkali content and aggregate TAL was developed in view of its possible use for ASR diagnosis and/or safety evaluation of concrete structures.

  6. Stability of cenospheres in lightweight cement composites in terms of alkali-silica reaction

    SciTech Connect

    Wang Junyan Zhang Minhong; Li Wei; Chia, Kok-Seng; Liew, Richard J.Y.

    2012-05-15

    This paper presents an experimental study on characteristics and stability of cenospheres used in lightweight cement composites. ASTM C227 and C1260 tests were used to evaluate if cenospheres are potentially deleterious due to alkali-silica reaction (ASR). Natural sand was used as control. Examination by scanning electron microscope with energy-dispersive X-ray spectroscopy and analyses by X-ray diffractometer and thermogravimetry were conducted on samples with cenospheres after 9-month C227 and C1260 tests to better understand the behavior of cenospheres exposed to high alkaline environments and higher temperatures in these tests. Results indicate that cenospheres are not potentially deleterious due to ASR. Expansion of the mortar specimens tested to ASTM C227 and C1260 seems to be affected by the pozzolanic reactivity of cenospheres. Fine cenospheres showed limited pozzolanic reactivity at 28-30 Degree-Sign C and 38 Degree-Sign C, but exhibited significant pozzolanic reactivity at 80 Degree-Sign C with aluminum tobermorite [Ca{sub 5}Si{sub 5}Al(OH)O{sub 17} Bullet-Operator 5H{sub 2}O] identified as the main reaction product.

  7. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production.

    PubMed

    Kumar, Ritesh; Kumar, G Ravi; Chandrashekar, N

    2011-06-01

    In this study, microwave assisted transesterification of Pongamia pinnata seed oil was carried out for the production of biodiesel. The experiments were carried out using methanol and two alkali catalysts i.e., sodium hydroxide (NaOH) and potassium hydroxide (KOH). The experiments were carried out at 6:1 alcohol/oil molar ratio and 60°C reaction temperature. The effect of catalyst concentration and reaction time on the yield and quality of biodiesel was studied. The result of the study suggested that 0.5% sodium hydroxide and 1.0% potassium hydroxide catalyst concentration were optimum for biodiesel production from P. pinnata oil under microwave heating. There was a significant reduction in reaction time for microwave induced transesterification as compared to conventional heating. PMID:21482464

  8. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  9. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    SciTech Connect

    Mo Xiangyin . E-mail: moxiangyin@njnu.edu.cn; Fournier, Benoit

    2007-02-15

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials.

  10. Petrography study on altered flint aggregate by alkali-silica reaction

    SciTech Connect

    Bulteel, D. . E-mail: bulteel@ensm-douai.fr; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-11-15

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K{sup +} and Ca{sup 2+} penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction.

  11. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  12. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  13. Second international conference on alkali-aggregate reactions in hydroelectric plants and dams

    SciTech Connect

    1995-12-31

    This document is the report of the Second International Conference on Alkali-Aggregate Reactions in Hydroelectric Plants and Dams. This conference was held in October 1995 in Chattanooga, TN and sponsored by the Tennessee Valley Authority. Thirty five papers were presented, with technical sessions covering: (1) The TVA experience, (2) AAR in Hydroelectric Powerplants, (3) AAR in Dams and Spillways, and (4) Long-term management of AAR. Additionally, there were several workshop sessions.

  14. Detection, monitoring and modelling of alkali-aggregate reaction in Kouga Dam (South Africa)

    SciTech Connect

    Elges, H.; Lecocq, P.; Oosthuizen, C.; Geertsema, A.

    1995-12-31

    Kouga Dam (formerly Paul Sauer Dam) is a double curvature arch dam completed in 1969. The aggregates and the cement used for the construction have subsequently been proven to be alkali reactive. The results of the monitoring programme and the alkali-aggregate reaction (AAR) tests as well as the methodology developed to standardise the logging of cores for these investigations are presented. A brief description of the Finite Element Model used to approximate the AAR process in order to determine positions for in-situ stress measurements is also given. The aim with these tests is to refine the model for prediction of the long-term behaviour of the dam and to make an assessment of the possibility of raising the dam.

  15. Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan

    SciTech Connect

    Katayama, Tetsuya . E-mail: katayamat@kge.co.jp; Tagami, Masahiko; Sarai, Yoshinori; Izumi, Satoshi; Hira, Toshikatsu

    2004-11-15

    Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregates and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.

  16. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    PubMed

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer. PMID:22075634

  17. Low-temperature oxidation of alkali overlayers: Ionic species and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Krix, David; Nienhaus, Hermann

    2013-04-01

    Clean and oxidized alkali metal films have been studied using X-ray photoelectron spectroscopy (XPS). Thin films, typically 10 nm thick, of lithium, sodium, potassium, rubidium and cesium have been deposited on silicon substrates and oxidized at 120 K. Plasmon losses were found to dress the primary photo emission structures of the metals’ core lines which confirms the metallic, bulk like nature of the films. The emission from the O 1s core levels was used to determine the chemical composition and the reaction kinetics during the exposure to molecular oxygen at low pressures. Molecular oxide ions O2- and O22- as well as atomic oxygen ions O2- were detected in varying amounts depending on the alkali metal used. Diffusive transport of material in the film is shown to greatly determine the composition of the oxides. Especially, the growth of potassium superoxide is explained by the diffusion of potassium atoms to the surface and growth at the surface in a Deal-Grove like model.

  18. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    DOE PAGESBeta

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The barsmore » contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.« less

  19. Finite element analysis of three TVA dams with alkali-aggregate reaction

    SciTech Connect

    Grenoble, B.A.; Meisenheimer, J.K.; Wagner, C.D.; Newell, V.A.

    1995-12-31

    Three large Tennessee Valley Authority (TVA) dams are currently experiencing problems caused by alkali-aggregate reaction (AAR). Since the fall of 1990, engineers in Stone & Webster`s Denver, Colorado office have been working with TVA to evaluate how AAR is affecting the dams and to identify measures for controlling the adverse effects of the concrete growth. This paper provides an overview of how finite element analysis is being used to understand the affects of AAR on these structures and to evaluate alternatives for minimizing the adverse effects of the concrete growth. Work on Hiwassee Dam is essentially complete, while that on the Chickamauga and Fontana Projects is still in progress. Consequently, this paper will focus primarily on Hiwassee Dam. The ongoing work on the other two projects will only be discussed briefly.

  20. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    SciTech Connect

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The bars contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.

  1. Alkalis in Coal and Coal Cleaning Products / Alkalia W Węglu I Productach Jego Wzbogacania

    NASA Astrophysics Data System (ADS)

    Bytnar, Krzysztof; Burmistrz, Piotr

    2013-09-01

    In the coking process, the prevailing part of the alkalis contained in the coal charge goes to coke. The content of alkalis in coal (and also in coke) is determined mainly by the content of two elements: sodium and potasium. The presence of these elements in coal is connected with their occurrence in the mineral matter and moisture of coal. In the mineral matter and moisture of the coals used for the coke production determinable the content of sodium is 26.6 up to 62. per cent, whereas that of potassium is 37.1 up to 73.4 per cent of the total content of alkalis. Major carriers of alkalis are clay minerals. Occasionally alkalis are found in micas and feldspars. The fraction of alkalis contained in the moisture of the coal used for the production of coke in the total amount of alkalis contained there is 17.8 up to 62.0 per cent. The presence of sodium and potassium in the coal moisture is strictly connected with the presence of the chloride ions. The analysis of the water drained during process of the water-extracting from the flotoconcentrate showed that the Na to K mass ratio in the coal moisture is 20:1. Increased amount of the alkalis in the coal blends results in increased content of the alkalis in coke. This leads to the increase of the reactivity (CRI index), and to the decrease of strength (CSR index) determined with the Nippon Steel Co. method. W procesie koksowania przeważająca część zawartych we wsadzie węglowym alkaliów przechodzi do koksu. Zawartość alkaliów w węglu, a co za tym idzie i w koksie determinowana jest głównie zawartością dwóch pierwiastków: sodu i potasu. Obecność tych pierwiastków w węglu wiąże się z występowaniem ich w substancji mineralnej i wilgoci węgla. W substancji mineralnej oraz wilgoci węgli stosowanych do produkcji koksu, oznaczona zawartość sodu wynosi od 26.6 do 62.9%, a zawartość potasu od 37.1 do 73.4% alkaliów ogółem. Głównymi nośnikami alkaliów w substancji mineralnej są minera

  2. Non-Destructive Diagnostic Technique for Detection of Deteriorated Porcelain Shell Due to Alkali-Silica Reaction

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayuki; Yuasa, Sadayuki; Nakura, Toru; Hayashi, Tomohiro

    Recently we experienced gas leak trouble of a hollow porcelain shell, which had been working in service for more than a few decades. From our investigation, it was found that an alkali-silica reaction might occur in the porcelain body over time depending on the sealing structure, the number of times the porcelain was fired, and the amount of alkali in the cement. This paper describes the mechanism of porosity change in porcelain body, the factors of such deterioration speed, FEM stress analysis results, and an Ultrasonic Test (UT) for the integrity of porcelain. In addition, the UT inspection results are shown.

  3. Reaction efficiency of organic alkalis with various classes of lipids during thermally assisted hydrolysis and methylation.

    PubMed

    Ishida, Yasuyuki; Katagiri, Mizuho; Ohtani, Hajime

    2009-04-10

    Reaction efficiencies of two organic alkalis, tetramethylammonium hydroxide (TMAH) and trimethylsulfonium hydroxide (TMSH), with lipids during thermally assisted hydrolysis and methylation (THM) were examined focusing on (1) the types of lipids and (2) degree of unsaturation of fatty acid moieties. Different types of lipids such as triglycerides, phospholipids, free fatty acids and cholesteryl esters containing saturated, monounsaturated or polyunsaturated fatty acid (PUFA) residues were subjected to THM-gas chromatography (GC) in the presence of TMAH or TMSH. The obtained results revealed that the THM reaction using TMAH allowed almost quantitative methylation of saturated and monounsaturated fatty acid components independently of the classes of lipids. However, strong alkalinity of TMAH brought about isomerization and/or degradation of PUFA components. In contrast, the use of TMSH was effective to highly sensitive detection of PUFA as well as saturated and monounsaturated fatty acid components contained in triglycerides, phospholipids (phosphatidylcholines) and free fatty acids. On the other hand, TMSH was proved to react hardly with any kind of fatty acid residues in cholesteryl esters due to their steric hindrance. PMID:19223033

  4. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  5. Evaluation Of Demercurization Efficiency Of Chlor-Alkali Production In Pavlodar City, Kazakhstan

    EPA Science Inventory

    Mercury pollution in Pavlodar, a city in northeastern Kazakhstan, is the result of chlor-alkali chemical plant operations in 1975-1993, where chlorine production capacity was approximately 100,000 tons per year. The total quantity of metallic mercury released into the environmen...

  6. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  7. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups. PMID:26188034

  8. Classification of alkali-silica reaction and corrosion distress using acoustic emission

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Marwa; ElBatanouny, Mohamed; Serrato, Michael; Dixon, Kenneth; Larosche, Carl; Ziehl, Paul

    2016-02-01

    The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.

  9. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm). PMID:26790877

  10. Influence of steel fibers on the development of alkali-aggregate reaction

    SciTech Connect

    Pires de Carvalho, Maria Rita; Pagan Hasparyk, Nicole

    2010-04-15

    This work presents the results of an experimental research concerning the use of fibers in mortar specimens subjected to alkali-aggregate reaction (AAR). Two types of steel fibers (0.16 mm diameter and 6.0 mm length, and 0.20 mm diameter and 13.0 mm length) were used with fiber volume contents of 1% and 2%. Besides the expansion accelerated tests, compressive tests and flexural tests have also been carried out to display the main mechanical characteristics of the fiber-reinforced mortars after being subjected to AAR. Moreover, the microstructure of the specimens was analyzed by scanning electron microscopy and energy dispersive X-ray. The results shown that the addition of steel fibers reduced the expansion due to AAR for the experimental conditions studied in this paper. The most expressive benefit corresponded to the addition of 13.0 mm fibers in the mixture containing 2% fiber content. This fiber volume content also corresponded to the maximum increment in the mechanical properties compared to the reference mortar, mainly for the post-cracking strength and for the toughness in bending. It was observed that the fibers have a beneficial effect on the material, without compromising its main mechanical properties.

  11. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  12. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  13. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  14. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals.

    PubMed

    Biswas, Bijoy; Singh, Rawel; Kumar, Jitendra; Khan, Adnan Ali; Krishna, Bhavya B; Bhaskar, Thallada

    2016-08-01

    Effect of different lignins were studied during slow pyrolysis. Maximum bio-oil yield of 31.2, 34.1, and 29.5wt.% was obtained at 350, 450 and 350°C for prot lignin, alkali lignin and dealkaline lignin respectively. Maximum yield of phenolic compounds 78%, 80% and 92% from prot lignin, alkali and dealkaline lignin at 350, 450 and 350°C. The differences in the pyrolysis products indicated the source of lignins such as soft and hard wood lignins. The biochar characterisation revealed that the various ether linkages were broken during pyrolysis and lignin was converted into monomeric substituted phenols. Bio-oil showed that the relative contents of each phenolic compound changes significantly with pyrolysis temperature and also the relative contents of each compound changes with different samples. PMID:26873286

  15. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  16. Crystallized alkali-silica gel in concrete from the late 1890s

    SciTech Connect

    Peterson, Karl . E-mail: cee@mtu.edu; Gress, David . E-mail: dlgress@unh.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Sutter, Lawrence . E-mail: cee@mtu.edu

    2006-08-15

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levels in the cements used.

  17. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  18. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. PMID:26057718

  19. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  20. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    SciTech Connect

    Stastna, A.; Sachlova, S.; Pertold, Z.; Prikryl, R.; Leichmann, J.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

  1. Pretreatment of banana agricultural waste for bio-ethanol production: individual and interactive effects of acid and alkali pretreatments with autoclaving, microwave heating and ultrasonication.

    PubMed

    Gabhane, Jagdish; William, S P M Prince; Gadhe, Abhijit; Rath, Ritika; Vaidya, Atul Narayan; Wate, Satish

    2014-02-01

    Banana agricultural waste is one of the potential lignocellulosic substrates which are mostly un-utilized but sufficiently available in many parts of the world. In the present study, suitability of banana waste for biofuel production with respect to pretreatment and reducing sugar yield was assessed. The effectiveness of both acid and alkali pretreatments along with autoclaving, microwave heating and ultrasonication on different morphological parts of banana (BMPs) was studied. The data were statistically analyzed using ANOVA and numerical point prediction tool of MINITAB RELEASE 14. Accordingly, the optimum cumulative conditions for maximum recovery of reducing sugar through acid pretreatment are: leaf (LF) as the substrate with 25 min of reaction time and 180°C of reaction temperature using microwave. Whereas, the optimum conditions for alkaline pretreatments are: pith (PH) as the substrate with 51 min of reaction time and 50°C of reaction temperature using ultrasonication (US). PMID:24268472

  2. Reaction products of chlorine dioxide.

    PubMed Central

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  3. Enhanced cellulosic ethanol production from mild-alkali pretreated rice straw in SSF using Clavispora NRRL Y-50464

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the first lower-cost cellulosic ethanol production from mild alkali retreated rice straw using a native ß-glucosidase producing yeast strain, Clavispora NRRL Y-50464 by SSF. Ethanol production and efficiency of ethanol conversion from 10, 15, and 20% of solids loading of rice stra...

  4. Alkali pretreatment enhances biogas production in the anaerobic digestion of pulp and paper sludge.

    PubMed

    Lin, Yunqin; Wang, Dehan; Wu, Shaoquan; Wang, Chunmin

    2009-10-15

    The objective of this research was to develop an alkali pretreatment process prior to anaerobic digestion (AD) of pulp and paper sludge (PPS) to improve the methane productivity. Different concentrations of sodium hydroxide solution were used to pretreat PPS, and then followed by AD of PPS and monosodium glutamate waste liquor (MGWL). Laboratory-scale experiments were carried out in completely mixed bioreactors, 1L capacity with 700 mL worked. Optimal amount of sodium hydroxide for organics solubilization in the step of pretreatment was 8 g NaOH/100g TS(sludge). Under this condition, the PPS flocs structure was well disrupted resulting in the void rate and fiber size decreased after pretreatment, and SCOD increased up to 83% as well as the peak value of VFA concentration attained 1040 mg acetic acid/L during AD. The AD efficiency of PPS with and without pretreatment was evaluated. The highest methane yield under optimal pretreatment condition was 0.32 m(3) CH(4)/kg VS(removal), 183.5% of the control. The results indicated that alkali/NaOH pretreatment could be an effective method for improving methane yield with PPS. PMID:19464792

  5. Effect of charge density in chain extension reactions involving complexes of 4, 4'-diaminodiphenylmethane and various alkali metal salts

    NASA Astrophysics Data System (ADS)

    Deshmukh, Subrajeet; Carrasquillo, Katherine; Tsai, Fang Chang; Wu, Lina; Hsu, Shaw Ling; University of Massachusetts Amherst Team

    Controlling the reaction of methylene diphenyl diisocyanate (MDI)-terminated polyester prepolymer and 4, 4'-diaminodiphenylmethane (MDA) is extremely important in many large scale applications. The ion-diamine complex has the advantage of blocking the instantaneous reaction between the diamine and isocyanate from taking place until it is released at elevated temperatures. We synthesized complexes of MDA with various alkali metal salts. These complexes create a barrier between the diamine and isocyanate thus preventing the premature reaction. We compared the complexes in terms of their dissociation and the subsequent curing with the prepolymer. Charge density had a tremendous effect. DSC showed that Na complexes dissociated at a lower temperature and needed less energy to dissociate than the Li complexes. The effect of change in cation on complex dissociation was more pronounced compared to the change in anion. Also, the ionic liquid introduced greatly altered the dissociation behavior. Temperature and time resolved IR spectroscopy was used to monitor the urea and NH band. By DSC and IR, we showed that NaCl complex is best suited for the curing of prepolymer with regards to curing temperature and energy.

  6. Coniston Dam: The rehabiliation of a 50-year-old concrete dam affected by alkali aggregate reaction

    SciTech Connect

    Read, P.H.; Thomas, M.

    1995-12-31

    This paper discusses the rehabilitation of the Coniston main dam in Ontario, with particular emphasis on the alkali-aggregate reaction (AAR) related aspects of the investigation and the influence of these on the design approach adopted, including measures taken to allow for possible future expansion of the original gravity section concrete. The rehabilitation program was primarily undertaken to increase the stability of the gravity sections and log chute which did not meet current dam safety criteria. However, all parts of the structure were found to be affected by AAR and the downstream face of the gravity sections were severely deteriorated due to the combined effects of AAR and freeze-thaw cycles. Field and laboratory investigations were undertaken to determine the extent of deterioration of the dam structures and to assess the potential for continued deterioration. Based on the findings from these studies, a rehabilitation and upgrade strategy was developed which included removal of badly deteriorated concrete, placement of reinforced concrete liners (upstream and downstream), addition of mass concrete buttresses along the length of the gravity sections, replacement of the deck and epoxy injection of the cracked sluiceway piers. Particular attention was paid to the design of the new concrete mixes (to limit the supply of alkalis to the existing concrete) and to the relief of stress between the original concrete core and new concrete liners. The new gravity section liner was debonded from the core concrete to reduce the transfer of stress due to continued expansion of the core; furthermore, the reinforcement of the liner was designed to resist tensile stresses induced by future expansion. Consideration was also given to minimizing the ingress of water to the dam core in order to reduce the degree of saturation and likelihood of further AAR and freeze-thaw action.

  7. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    PubMed

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. PMID:27078206

  8. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates

  9. Hyrdo-Quebec`s experience using deep slot cutting to rehabilitate concrete gravity dams affected by alkali-aggregate reaction

    SciTech Connect

    Veilleux, M.

    1995-12-31

    In recent years, Hydro-Qu{acute e}bec has cut vertical slots in concrete dams to solve structural problems stemming from aging of concrete subject to thermal cycles and alkali-aggregate reaction (AAR). In most cases, the structural disorders caused large cracks and permanent displacement. This paper describes Hydro-Qu{acute e}bec`s experience using a new slot-cutting and sealing technology to rehabilitate concrete gravity dams affected by AAR, among them rehabilitation of the Paugan (1991), La Tuque (1992-1993), Rapides Farmers (1993-1994) and Chelsea (1994) hydroelectric developments. The aim of this technology is to relieve internal stress and to create an effective expansion joint which can accommodate reversible and irreversible displacement induced by thermal cycles as well as permanent movement due to chemical concrete swelling caused by AAR. This method of rehabilitation is generally used in conjunction with grouting and drainage work and sometimes with post-tensioned anchor rods or cables.

  10. A study of switchgrass pyrolysis: Product variability and reaction kinetics

    NASA Astrophysics Data System (ADS)

    Bovee, Jonathan Matthew

    Samples of the same cultivar of cave-in-rock switchgrass were harvested from plots in Frankenmuth, Roger City, Cass County, and Grand Valley, Michigan. It was determined that variation exists, between locations, among the pyrolytic compounds which can lead to variability in bio-oil and increased processing costs at bio-refineries to make hydrocarbon fuels. Washed and extractives-free switchgrass samples, which contain a lower alkali and alkaline earth metals content than untreated samples, were shown to produce lower amounts of acids, esters, furans, ketones, phenolics, and saccharides and also larger amounts of aldehydes upon pyrolysis. Although the minerals catalyzed pyrolytic reactions, there was no evidence indicating their effect on reducing the production of anhydrosugars, specifically levoglucosan. To further link minerals present in the biomass to a catalytic pathway, mathematic models were employed to determine the kinetic parameters of the switchgrass. While the calculated activation energies of switchgrass, using the FWO and KAS methods, were 227.7 and 217.8 kJ/mol, correspondingly, it was concluded that the activation energies for the switchgrass hemicellulose and cellulose peaks were 115.5 and 158.2 kJ/mol, respectively, using a modified model-fitting method. The minerals that effect the production of small molecules and levoglucosan also have an observable catalytic effect on switchgrass reaction rate, which may be quantifiable through the use of reaction kinetics so as to determine activation energy.

  11. Evidence of alkali rich melt reactions with mantle peridotite : Natural observations and experimental analogues

    NASA Astrophysics Data System (ADS)

    Grant, T. B.; Milke, R.; Wunder, B.

    2012-04-01

    The Heldburg Phonolite, (Thuringia, Germany) is peculiar in its nature due to its absence of a Eu anomaly, and hence lack of feldspar fractionation, as well as the presence of spinel lherzolite xenocrysts. These observations suggest a higher than normal (mantle) pressure of origin, and its potential as a metasomatic agent at depth is explored in this work. Disequilibrium between the phonolite and its entrained upper mantle xenocrysts resulted in the development of secondary reaction rim assemblages of; (1) phlogopite + minor diopside around olivine, (2) pargasitic amphibole, phlogopite and minor diopside around orthopyroxene. We document both the natural rims and the attempts to reproduce them under experimental conditions, in order to elucidate the likely origin of the phonolite and its efficacy for metasomatising the upper mantle. Platinum capsules were loaded with mixtures of crushed mineral separates, (of pure synthetic forsterite, San Carlos olivine, synthetic enstatite or a natural enstatite from Kilosa, Tanzania) with a synthetic Fe-free phonolite melt in a 16:84% weight ratio, respectively. Experiments were run in a piston cylinder apparatus with CaF2 as the pressure medium. In addition to varying PT conditions, a wide range of water contents were tested (0-14wt%). It was found that pressures of 10-14 kbar, and temperatures of 900-1000°C, satisfy the conditions at which the reactions can form, thus, it is likely that the phonolite existed at upper mantle conditions. Water must be present to stabilize the desired hydrous phases, with >6wt% required at 900°C and 10 kbar. The destabilization of feldspar is also essential to the process, hence higher water contents are needed at the lowest PT conditions compared to 4-5 wt. % H2O at greater PT. The formation of amphibole around enstatite appears to be affected by sluggish reaction kinetics and the orientation of the host pyroxene, sometimes leading to diopside single rims. Furthermore we note some of the

  12. Alkali-activated binders by use of industrial by-products

    SciTech Connect

    Buchwald, A.; Schulz, M

    2005-05-01

    Cement kiln dust (CKD) materials are used as alkaline accelerators for latent hydraulic substances and as alkali activators for different alumosilicate materials, including ground-granulated blast furnace slag, low-calcium fly ash and metakaolin. The dusts differ in their phase composition, especially in the amount of reactive phases and the kind and amount of alkali salts. The quantitative phase composition, pore solution composition and strength behavior of the activated blends is reported.

  13. Dynamics of alkali ions-neutral molecules reactions: Radio frequency-guided beam experimental cross-sections and direct quasiclassical trajectory studies

    SciTech Connect

    Aguilar, J.; Andres, J. de; Lucas, J. M.; Alberti, M.; Huarte-Larranaga, F.; Bassi, D.; Aguilar, A.

    2012-11-27

    Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structure information.

  14. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2014-01-01

    Alkali- or acid-induced structural modifications in β-chitin from squid (Dosidicus gigas, d'Orbigny, 1835) pens and their moisture absorption ability (MAA) and deacetylating reaction were investigated and compared with α-chitin from shrimp shells. β-Chitin was converted into the α-form after 3h in 40% NaOH or 1-3 h in 40% HCl solution, and α-chitin obtained from NaOH treatment had higher MAA than had native α-chitin, due to polymorphic destructions. In contrast, induced α-chitin from acid treatment of β-chitin had few polymorphic modifications, showing no significant change (P>0.05) in MAA. β-Chitin was more susceptible to alkali deacetylation than was α-chitin, and required a lower concentration of NaOH and shorter reaction time. These results demonstrate that alkali- or acid-treated β-chitin retained high susceptibility toward solvents, which in turn resulted in good biological activity of β-chitosan for use as a natural antioxidant and antimicrobial substance or application as edible coatings and films for various food applications. PMID:24444948

  15. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  16. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  17. Genotoxicity testing of Maillard reaction products.

    PubMed

    Shibamoto, T

    1989-01-01

    Since the development of short-term genotoxicity tests such as the Ames assay, the mutagenicity of Maillard reaction products has been tested extensively. Some products have exhibited strong activity. For example, one of the earliest studies demonstrated some mutagenic activity in a dichloromethane extract of a D-glucose/ammonia Maillard model system. Many researchers have attempted to pinpoint the principal chemical(s) of mutagenicity of the Maillard products using various sugar-amino acid browning model systems over last two decades. However, no mutagenic individual Maillard product has been isolated and identified. Nitrite has been also used as a reactant in browning reaction model systems, primarily to investigate the formation of potentially mutagenic or carcinogenic N-nitroso compounds. Recently some potent mutagens isolated from pyrolyzed amino acids or proteins have begun to receive attention as Maillard reaction products. PMID:2675034

  18. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions.

    PubMed

    Luongo, Carl A; Bu, Jiexun; Burke, Nicole L; Gilbert, Joshua D; Prentice, Boone M; Cummings, Steven; Reed, Christopher A; McLuckey, Scott A

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations. PMID:25560986

  19. Selective Removal of Alkali Metal Cations from Multiply-Charged Ions via Gas-Phase Ion/Ion Reactions Using Weakly Coordinating Anions

    NASA Astrophysics Data System (ADS)

    Luongo, Carl A.; Bu, Jiexun; Burke, Nicole L.; Gilbert, Joshua D.; Prentice, Boone M.; Cummings, Steven; Reed, Christopher A.; McLuckey, Scott A.

    2015-03-01

    Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 -), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 -). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.

  20. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  1. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  2. REACTION PRODUCTS FROM THE CHLORINATION OF SEAWATER

    EPA Science Inventory

    Chemical treatment of natural waters, in particular the use of chlorine as a biocide, modifies the chemistry of these waters in ways that are not fully understood. The research described in this report examined both inorganic and organic reaction products from the chlorination of...

  3. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision. PMID:25857876

  4. Life cycle assessment of solid waste management strategies in a chlor-alkali production facility.

    PubMed

    Muñoz, Edmundo; Navia, Rodrigo

    2011-06-01

    The waste management of a chlor-alkali and calcium chloride industrial facility from southern Chile was the object of this study. The main solid waste materials generated in these processes are brine sediments and calcium chloride sediments, respectively. Both residues are mixed in the liquid phase and filtered in a press filter, obtaining a final low humidity solid waste, called 'mixed sediments', which is disposed of in an industrial landfill as non-hazardous waste. The aim of the present study was to compare by means of LCA, the current waste management option of the studied chlor-alkali facility, namely landfill disposal, with two new possible options: the reuse of the mixed sediments as mineral additive in compost and the use of brine sediments as an unconventional sorbent for the removal of heavy metals from wastewater. The functional unit was defined as 1 tonne of waste being managed. To perform this evaluation, software SimaPro 7.0 was used, selecting the Ecoindicator 99 and CML 2000 methodologies for impact evaluation. The obtained results indicate that the use of brine sediments as a novel material for the removal of heavy metals from wastewater (scenario 3) presented environmental benefits when compared with the waste management option of sediments landfilling (scenario 1). The avoided environmental loads, generated by the substitution of activated granular carbon and the removal of Cu and Zn from wastewater in the treatment process generated positive environmental impacts, enhancing the environmental performance of scenario 3. PMID:20699293

  5. Amorphisation mechanism of a flint aggregate during the alkali-silica reaction: X-ray diffraction and X-ray absorption XANES contributions

    SciTech Connect

    Verstraete, J.; Khouchaf, L.; Bulteel, D.; Garcia-Diaz, E.; Flank, A.M; Tuilier, M.H

    2004-04-01

    Flint samples at different stages of the Alkali-Silica Reaction were prepared and analyzed by X-ray diffraction (XRD) and silicon K-edge X-ray absorption near edge structure techniques (XANES). The results are compared to those of measurements performed on alpha quartz c-SiO{sub 2} and rough flint aggregate. The molar fraction of Q{sub 3} sites is determined as a function of the time of reaction. Up to 14 h of attack, the effect of the reaction seems of little importance. From 30 to 168 h, we showed an acceleration of the effect of the reaction on the crystal structure of the aggregate resulting in an amorphisation of the crystal. During this period, the amorphous fraction increases linearly with the number of Q{sub 3} sites. The results of the XANES confirm the amorphisation of the aggregate during the reaction and show the presence of silicon in a tetrahedral environment of oxygen whatever the time of attack.

  6. Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals

    SciTech Connect

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    2009-07-01

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

  7. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  8. Desiccating Stress-Induced MMP Production and Activity Worsens Wound Healing in Alkali-Burned Corneas

    PubMed Central

    Bian, Fang; Pelegrino, Flavia S. A.; Pflugfelder, Stephen C.; Volpe, Eugene A.; Li, De-Quan; de Paiva, Cintia S.

    2015-01-01

    Purpose To evaluate the effects of dry eye on ocular surface protease activity and sight threatening corneal complications following ocular surface chemical injury. Methods C57BL/6 mice were subjected to unilateral alkali burn (AB) with or without concomitant dry eye for 2 or 5 days. Mice were observed daily for appearance of corneal perforation. Whole corneas were harvested and lysed for RNA extraction. Quantitative real-time PCR was performed to measure expression of inflammation cytokines, matrix metalloproteinases (MMP). Matrix metalloproteinase–9 activity, gelatinase activity, and myeloperoxidase (MPO) activity were evaluated in corneal lysates. Presence of infiltrating neutrophils was evaluated by immunohistochemistry and flow cytometry. Results Eyes subjected to the combined model of AB and dry eye (CM) had 20% sterile corneal perforation rate as soon as 1 day after the initial injury, which increased to 35% by 5 days, delayed wound closure and increased corneal opacity. Increased levels of IL-1β, -6, and MMPs-1, -3, -8, -9, and -13, and chemokine (C-X-C motif) ligand 1 (CSCL1) transcripts were found after 2 days in CM compared with AB corneas. Increased MMP-1, -3, -9, and -13 immunoreactivity and gelatinolytic activity were seen in CM corneas compared with AB. Increased neutrophil infiltration and MPO activity was noted in the CM group compared with AB 2 days post injury. Conclusions Desiccating stress worsens outcome of ocular AB, creating a cytokine and protease storm with greater neutrophil infiltration, increasing the risk of corneal perforation. PMID:26225631

  9. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  10. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.

    PubMed

    Wang, Yue; Guo, Wanqian; Cheng, Chieh-Lun; Ho, Shih-Hsin; Chang, Jo-Shu; Ren, Nanqi

    2016-01-01

    This study presents a successful butanol production method using alkali and acid pretreated biomass of Chlorella vulgaris JSC-6. The butanol concentration, yield, and productivity were 13.1g/L, 0.58mol/mol sugar, 0.66g/L/h, respectively. Nearly 2.93L/L of biohydrogen was produced during the acidogenesis phase in ABE fermentation. The hydrogen yield and productivity were 0.39mol/mol sugar and 104.2g/L/h respectively. In addition, the high glucose consumption efficiency (97.5%) suggests that the hydrolysate pretreated with NaOH (1%) followed by H2SO4 (3%) did not contain inhibitors to the fermentation. It was also discovered that an excess amount of nitrogen sources arising from hydrolysis of highly concentrated microalgal biomass negatively affected the butanol production. This work demonstrates the technical feasibility of producing butanol from sustainable third-generation feedstock (i.e., microalgal biomass). PMID:26528906

  11. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-01

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions. PMID:22978468

  12. Isolation of sophorose during sophorolipid production and studies of its stability in aqueous alkali: epimerisation of sophorose to 2-O-β-D-glucopyranosyl-D-mannose.

    PubMed

    Al-Jasim, Ammar; Davis, Mark; Cossar, Douglas; Miller, Timothy; Humphreys, Paul; Laws, Andrew P

    2016-02-01

    NMR and anion exchange chromatography analysis of the waste streams generated during the commercial production of sophorolipids by the yeast Candida bombicola identified the presence of small but significant quantities (1% w/v) of free sophorose. Sophorose, a valuable disaccharide, was isolated from the aqueous wastes using a simple extraction procedure and was purified by chromatography on a carbon celite column providing easy access to large quantities of the disaccharide. Experiments were undertaken to identify the origin of sophorose and it is likely that acetylated sophorose derivatives were produced by an enzyme catalysed hydrolysis of the glucosyl-lipid bond of sophorolipids; the acetylated sophorose derivatives then undergo hydrolysis to release the parent disaccharide. Treatment of sophorose with aqueous alkali at elevated temperatures (0.1M NaOH at 50 °C) resulted in C2-epimerisation of the terminal reducing sugar and its conversion to the corresponding 2-O-β-D-glucopyranosyl-D-mannose which was isolated and characterised. In aqueous alkaline solution β-(1,2)-linked glycosidic bonds do not undergo either hydrolysis or peeling reactions. PMID:26774878

  13. Invalidity of the Concept of Slow Growth and Alkali Production in Cowpea Rhizobia

    PubMed Central

    Hernandez, Blanca S.; Focht, Dennis D.

    1984-01-01

    A total of 103 rhizobial strains representing the cowpea miscellany and Rhizobium japonicum were studied with regard to growth rate, glucose metabolic pathways, and pH change in culture medium. Doubling times ranged from 1.4 ± 0.04 to 44.1 ± 5.2 h; although two populations of “fast-growing” and “slow-growing” rhizobia were noted, they overlapped and were not distinctly separated. Twenty-four strains which had doubling times of less than 8 h all showed NADP-linked 6-phosphogluconate dehydrogenase (6-PGD) activity, whereas only one slow-growing strain (doubling time, 10.8 ± 0.9 h) of all those tested showed 6-PGD activity. Doubling times among fast growers could not be explained solely by the presence or absence of 6-PGD activity (r2 = 0.14) because the tricarboxylic acid cycle and the Emden-Meyerhoff-Parnas pathway were operative in both 6-PGD-positive and 6-PGD-negative strains. Growth rate and pH change were unrelated to each other. Fast- or slow-growing strains were not associated with any particular legume species or group of species from which they were originally isolated, with the exception of Stylosanthes spp., all nine isolates of which were slow growers. We conclude that 6-PGD activity is a more distinctive characteristic among physiologically different groups of rhizobia than doubling times and that characterization of the cowpea rhizobia as slow-growing alkali producers is an invalid concept. PMID:16346589

  14. Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane.

    PubMed

    Shi, Wenying; Li, Hongbin; Zhou, Rong; Zhang, Haixia; Du, Qiyun

    2016-06-01

    A series of alkalized polysulfones (APSF) were synthesized by several chemical reactions (chloromethylation, quaternization and alkalization). Among these reactions, chloromethylation and quaternization are two key reactions and have been studied in detail regarding the optimization of both chloromethylation and quaternization. FTIR and (1)H NMR spectrum confirmed the successful preparation of chloromethylated polysulfone. The best IEC of APSF was obtained for 1.68meqg(-1) under reaction time of 10h and reaction temperature of 45°C. The APSF membrane as a heterogeneous catalyst for the transesterification of soybean oil with methanol was prepared through the method of solvent evaporation phase inversion. The effects of co-solvent types, mass ratios of soybean oil/co-solvent, water content and free fatty acids (FFAs) content in soybean oil on the conversions using the APSF membrane during transesterification were studied. The reusability of the APSF membrane and the kinetics of the reaction catalyzed by the APSF membrane were also investigated. PMID:26783142

  15. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  16. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  17. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  18. Production of pesticide metabolites by oxidative reactions.

    PubMed

    Hodgson, E

    1982-08-01

    The cytochrome P-450-dependent monooxygenase system catalyzes a wide variety of oxidations of pesticide chemicals and related compounds. These reactions include epoxidation and aromatic hydroxylation, aliphatic hydroxylation, O-, N- and S-dealkylation, N-oxidation, oxidative deamination, S-oxidation, P-oxidation, desulfuration and ester cleavage and may result in either detoxication or activation of the pesticide. The current status of such reactions, relative to the production, in vivo, of biologically active intermediates in pesticide metabolism is summarized. More recently we have shown that the FAD-containing monooxygenase of mammalian liver (E.C.1.14.13.8), a xenobiotic metabolizing enzyme of broad specificity formerly known as an amine oxidase, is involved in a variety of pesticide oxidations. These include sulfoxidation of organophosphorus insecticides such as phorate and disulfoton, oxidative desulfuration of phosphonate insecticides such as fonofos and oxidation at the phosphorus atom in such compounds as the cotton defoliant, folex. The relative importance of the FAD-containing monooxygenase vis-a-vis the cytochrome P-450-dependent monooxygenase system is discussed, based on in vitro studies on purified enzymes. PMID:7161848

  19. Reactions of uranium hexafluoride photolysis products

    NASA Astrophysics Data System (ADS)

    Lyman, John L.; Laguna, Glenn; Greiner, N. R.

    1985-01-01

    This paper confirms that the ultraviolet photolysis reactions of UF6 in the B band spectral region is simple bond cleavage to UF5 and F. The photolysis products may either recombine to UF6 or the UF5 may dimerize, and ultimately polymerize, to solid UF5 particles. We use four methods to set an upper limit for the rate constant for recombination of kr<2.0×10-12cm3 molecule-1 s-1. We measure the rate constant for UF5 dimerization to be kd=(1.0±0.2)×10-11 cm3 molecule-1 s-1. The principal method employed in these studies is the use of diode lasers to monitor, in real time, the changes in density of the species UF6 and UF5 after laser photolysis of the UF6 gas sample.

  20. Electroweak meson production reaction in the nucleon resonance region

    SciTech Connect

    Sato, Toru

    2015-10-15

    We report on our recent study of the the neutrino-nucleon reaction in the nucleon resonance region. The dynamical reaction model of meson production reaction on the nucleon for the pion and photon induced reaction has been developed in order to investigate the spectrum of nucleon excited state. We have extended this model in order to describe the weak meson production reactions with the πN, ηN, KΛ, KΣ and ππN final states. We also studied the role of the final state interaction in the photon and the neutrino induced pion production reaction on the deuteron around the Δ(1232) resonance region.

  1. Properties of the solid thermolysis products of brown coal impregnated with an alkali

    SciTech Connect

    Yu.V. Tamarkina; L.A. Bovan; V.A. Kucherenko

    2008-08-15

    The mechanism of formation of a porous active carbon framework is considered, and the properties of the solid thermolysis products of brown coal (Aleksandriisk deposit, Ukraine) with potassium hydroxide are studied. The yields of the solid thermolysis products and potassium humates, the rate of the interaction of the solid thermolysis products with KOH at 700-900{sup o}C, the specific surface areas, the adsorption capacities for methylene blue and iodine, and the specific activities of surface areas are determined under variation of the KOH/coal ratio KOH < 18 mol/kg and temperature (110-900{sup o}C).

  2. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.

    PubMed

    Topçu, Ilker Bekir; Boğa, Ahmet Raif; Bilir, Turhan

    2008-01-01

    Use of waste glass or glass cullet (GC) as concrete aggregate is becoming more widespread each day because of the increase in resource efficiency. Recycling of wastes is very important for sustainable development. When glass is used as aggregate in concrete or mortar, expansions and internal stresses occur due to an alkali-silica reaction (ASR). Furthermore, rapid loss in durability is generally observed due to extreme crack formation and an increase in permeability. It is necessary to use some kind of chemical or mineral admixture to reduce crack formation. In this study, mortar bars are produced by using three different colors of glass in four different quantities as fine aggregate by weight, and the effects of these glass aggregates on ASR are investigated, corresponding to ASTM C 1260. Additionally, in order to reduce the expansions of mortars, 10% and 20% fly ash (FA) as mineral admixture and 1% and 2% Li(2)CO(3) as chemical admixture are incorporated by weight in the cement and their effects on expansion are examined. It is observed that among white (WG), green (GG) and brown glass (BG) aggregates, WG aggregate causes the greatest expansion. In addition, expansion increases with an increase in amount of glass. According to the test results, it is seen that over 20% FA and 2% Li(2)CO(3) replacements are required to produce mortars which have expansion values below the 0.2% critical value when exposed to ASR. However, usages of these admixtures reduce expansions occurring because of ASR. PMID:17570652

  3. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  4. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  5. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry. PMID:23837337

  6. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  7. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; de Ligny, D.; Roux, J.; Baudelet, F.; Strukelj, E.; Richet, P.

    2009-11-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe2+ and Fe3+, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  8. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  9. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  10. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  11. A new mechanism for radiation damage processes in alkali halides

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Turkin, A. A.; Vainshtein, D. I.; den Hartog, H. W.

    1999-12-01

    We present a theory of radiation damage formation in alkali halides based on a new mechanism of dislocation climb, which involves the production of VF centers (self-trapped hole neighboring a cation vacancy) as a result of the absorption of H centers of dislocation lines. We consider the evolution of all experimentally observed extended defects: metal colloids, gas bubbles, and vacancy voids. Voids are shown to arise and grow large due to the reaction between F and VF centers at the surface of halogen bubbles. Voids can ignite a back reaction between the radiolytic products resulting in decomposition of the irradiated material.

  12. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, C.E.; Robinson, P.R.

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cyclic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  13. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOEpatents

    Bamberger, Carlos E.; Robinson, Paul R.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  14. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  15. Negative ion production by backscattering from alkali-metal surfaces bombarded by ions of hydrogen and deuterium

    SciTech Connect

    Schneider, P.J.

    1980-03-01

    Measurements have been made of the total backscattered D/sup -/ and H/sup -/ yields from thick, clean targets of Cs, Rb, K, Na, and Li, bombarded with H/sub 2//sup +/, H/sub 3//sup +/, D/sub 2//sup +/, and D/sub 3//sup +/ with incident energies from 0.15 to 4.0 keV/nucleus. All of the measurements were made at background pressures less than 10/sup -9/ Torr and the alkali-metal targets were evaporated onto a cold substrate (T = 77K) in situ to assure thick, uncontaminated targets. Measurements of the H/sup -/ yield from various transition metal targets with thin coverages of alkali-metals have also been made as a function of the surface work function. The negative ion yields are discussed in terms of the probabilities of reflection of the incident particles, of formation of the negative ion at the surface and of the survival of the negative ion leaving the surface. For each thick alkali-metal target, the negative ion yield measurements have been used in a least squares fit to determine two parameters in a theoretically derived expression for the negative ion yield. The parameters obtained from a thick Na target have been used to calculate the yield from a Cu target with thin coverage of Na (such that the surface work function is equal to thick Na).

  16. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  17. Chapter K: Progress in the Evaluation of Alkali-Aggregate Reaction in Concrete Construction in the Pacific Northwest, United States and Canada

    USGS Publications Warehouse

    Shrimer, Fred H.

    2005-01-01

    The supply of aggregates suitable for use in construction and maintenance of infrastructure in western North America is a continuing concern to the engineering and resources-management community. Steady population growth throughout the region has fueled demand for high-quality aggregates, in the face of rapid depletion of existing aggregate resources and slow and difficult permitting of new sources of traditional aggregate types. In addition to these challenges, the requirement for aggregates to meet various engineering standards continues to increase. In addition to their physical-mechanical properties, other performance characteristics of construction aggregates specifically depend on their mineralogy and texture. These properties can result in deleterious chemical reactions when aggregate is used in concrete mixes. When this chemical reaction-termed 'alkali-aggregate reaction' (AAR)-occurs, it can pose a major problem for concrete structures, reducing their service life and requiring expensive repair or even replacement of the concrete. AAR is thus to be avoided in order to promote the longevity of concrete structures and to ensure that public moneys invested in infrastructure are well spent. Because the AAR phenomenon is directly related to the mineral composition, texture, and petrogenesis of the rock particles that make up aggregates, an understanding of the relation between the geology and the performance of aggregates in concrete is important. In the Pacific Northwest, some aggregates have a moderate to high AAR potential, but many others have no or only a low AAR potential. Overall, AAR is not as widespread or serious a problem in the Pacific Northwest as in other regions of North America. The identification of reactive aggregates in the Pacific Northwest and the accurate prediction of their behavior in concrete continue to present challenges for the assessment and management of geologic resources to the owners and operators of pits and quarries and to the

  18. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  19. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  20. Products of the Benzene + O(3P) Reaction

    SciTech Connect

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  1. Reaction rate and products for the reaction O/3P/ + H2CO

    NASA Technical Reports Server (NTRS)

    Chang, J. S.; Barker, J. R.

    1979-01-01

    A study of reaction kinetics of O + H2CO in a discharge-flow system using mass spectrometric detection of reactants and products is presented. It was performed under both oxygen-atom-rich and formaldehyde-rich conditions over the 296 to 437 K range, showing that the global bimolecular rate constant is in agreement with other studies. This study differs from others in that the reaction products can be observed, and a substantial yield of a primary reaction product was measured with a mass spectral peak at m/e=44. This suggests that the global reaction rate probably consists of combination, as well as of simple abstraction. For the combination, one hypothesis is that triplet dioxymethylene is formed which polymerizes to triplet formic acid; the vibrationally excited triplet formic acid may decompose to form several sets of products, including HCO + OH and HCO2 + H.

  2. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.

    PubMed

    Zhang, Changsheng; Griffith, Byron R; Fu, Qiang; Albermann, Christoph; Fu, Xun; Lee, In-Kyoung; Li, Lingjun; Thorson, Jon S

    2006-09-01

    Glycosyltransferases (GTs), an essential class of ubiquitous enzymes, are generally perceived as unidirectional catalysts. In contrast, we report that four glycosyltransferases from two distinct natural product biosynthetic pathways-calicheamicin and vancomycin-readily catalyze reversible reactions, allowing sugars and aglycons to be exchanged with ease. As proof of the broader applicability of these new reactions, more than 70 differentially glycosylated calicheamicin and vancomycin variants are reported. This study suggests the reversibility of GT-catalyzed reactions may be general and useful for generating exotic nucleotide sugars, establishing in vitro GT activity in complex systems, and enhancing natural product diversity. PMID:16946071

  3. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  4. Superconductivity in alkali metal fullerides

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Rosseinsky, M. J.; Haddon, R. C.; Ramirez, A. P.; Hebard, A. F.; Tycko, R.; Fleming, R. M.; Dabbagh, G.

    1991-12-01

    The recent synthesis of macroscopic quantities of spherical molecular carbon compounds, commonly called fullerenes, has stimulated a wide variety of studies of the chemical and physical properties of this novel class of compounds. We discovered that the smallest of the known fullerenes, C 60, could be made conducting and superconducting by reaction with alkali metals. In this paper, an overview of the motivation for these discoveries and some recent results are presented.

  5. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  6. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  7. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    NASA Technical Reports Server (NTRS)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  8. Kinetics, mechanisms and products of reactions of Criegee intermediates

    NASA Astrophysics Data System (ADS)

    Orr-Ewing, Andrew

    The atmospheric ozonolysis of alkenes such as isoprene produces Criegee intermediates which are increasingly recognized as important contributors to oxidation chemistry in the Earth's troposphere. Stabilized Criegee intermediates are conveniently produced in the laboratory by ultraviolet photolysis of diiodoalkanes in the presence of O2, and can be detected by absorption spectroscopy using their strong electronic bands in the near ultraviolet region. We have used these techniques to study a wide range of reactions of Criegee intermediates, including their self-reactions, and reactions with carboxylic acids and various other trace atmospheric constituents. In collaboration with the Sandia National Laboratory group led by Drs C.A. Taatjes and D.L. Osborn, we have used photoionization and mass spectrometry methods, combined with electronic structure calculations, to characterize the products of several of these reactions. Our laboratory studies determine rate coefficients for the Criegee intermediate reactions, many of which prove to be fast. In the case of reactions with carboxylic acids, a correlation between the dipole moments of the reactants and the reaction rate coefficients suggests a dipole-capture controlled reaction and allows us to propose a structure-activity relationship to predict the rates of related processes. The contributions of these various Criegee intermediate reactions to the chemistry of the troposphere have been assessed using the STOCHEM-CRI global atmospheric chemistry model. This work was supported by NERC grant NE/K004905/1.

  9. Alkali-metal intercalation in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Béguin, F.; Duclaux, L.; Méténier, K.; Frackowiak, E.; Salvetat, J. P.; Conard, J.; Bonnamy, S.; Lauginie, P.

    1999-09-01

    We report on successful intercalation of multiwall (MWNT) and single wall (SWNT) carbon nanotubes with alkali metals by electrochemical and vapor phase reactions. A LiC10 compound was produced by full electrochemical reduction of MWNT. KC8 and CsC8-MWNT first stage derivatives were synthesized in conditions of alkali vapor saturation. Their identity periods and the 2×2 R 0° alkali superlattice are comparable to their parent graphite compounds. The dysonian shape of KC8 EPR line and the temperature-independent Pauli susceptibility are both characteristic of a metallic behavior, which was confirmed by 13C NMR anisotropic shifts. Exposure of SWNT bundles to alkali vapor led to an increase of the pristine triangular lattice from 1.67 nm to 1.85 nm and 1.87 nm for potassium and rubidium, respectively.

  10. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  11. Synthesis of superheavy nuclei: A search for new production reactions

    SciTech Connect

    Zagrebaev, Valery; Greiner, Walter

    2008-09-15

    Nuclear reactions leading to the formation of new superheavy (SH) elements and isotopes are discussed in the paper. 'Cold' and 'hot' synthesis, fusion of fission fragments, transfer reactions, and reactions with radioactive ion beams are analyzed along with their abilities and limitations. If the possibility of increasing the beam intensity and the detection efficiency (by a total of one order of magnitude) is found, then several isotopes of new elements with Z=120-124 could be synthesized in fusion reactions of titanium, chromium, and iron beams with actinide targets. The use of light- and medium-mass neutron-rich radioactive beams may help us fill the gap between the SH nuclei produced in the hot fusion reactions and the mainland. In these reactions, we may really approach the 'island of stability.' Such a possibility is also provided by the multinucleon transfer processes in low-energy damped collisions of heavy actinide nuclei. The production of SH elements in fusion reactions with accelerated fission fragments looks less encouraging.

  12. Fission-product SiC reaction in HTGR fuel

    SciTech Connect

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  13. Energy distribution among reaction products. VII - H + F2.

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.; Sloan, J. J.

    1972-01-01

    The 'arrested relaxation' variant of the IR chemiluminescence technique is used in a study of the distribution of vibrational, rotational and translational energies between the products of the reaction by which H + F2 yields HF + F. Diagrams are plotted and numerical values are obtained for the energy distribution rate constants.

  14. CHLORINE DIOXIDE CHEMISTRY, REACTIONS, AND DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    This chapter contains two main sections-the first section describes the chemistry and reactions of chlorine dioxide, and the second describes the disinfection by-products (DBPs) of chlorine dioxide and their control. A short section on Research Needs completes this chapter. The...

  15. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  16. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    NASA Astrophysics Data System (ADS)

    San Nicolas, Rackel; Provis, John

    2015-12-01

    The interfacial transition zone (ITZ) is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz) aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE) generated in an environmental scanning electron microscope (ESEM) are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N)-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution) and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  17. Progress in Understanding Alkali-Alkali Spin Relaxation

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Happer, William; Chann, Bien; Kadlecek, Stephen; Anderson, L. W.; Walker, Thad G.

    2000-06-01

    In extensive experiments we have shown that a spin interaction with a relatively long correlation time causes much of the spin relaxation in very dense alkali-metal vapors. The spin relaxation is affected by the pressure of the helium or nitrogen buffer gas, although there is little dependence at pressures above one atmosphere. There are substantial differences in the relaxation rates for different isotopes of the same element, for example ^87Rb and ^85Rb. We have completed extensive modeling of how singlet and triplet dimers and doublet trimers of the alkali-metal atoms could cause spin relaxation in dense alkali-metal vapors. In the case of doublet trimers or triplet dimers, we assume the main coupling to the nuclear spins is through the Fermi Contact interaction with the unpaired electrons. Spin loss to the rotation of the molecule is assumed to occur through the electronic spin-rotation and spin-axis (dipole-dipole) interactions for the triplet dimers. For the singlet dimers, we assume that the nuclear spins couple directly to the rotational angular momentum of the molecule through the electric quadrupole interaction. We account for all of the total nuclear spin states that occur for the dimers and trimers. We have also considered the possibility that the collisional breakup and formation rates of the dimers or trimers could saturate with increasing buffer gas pressure. Such saturation occurs in many other unimolecular reactions and is often ascribed to breakup through activated states.

  18. Clocking Surface Reaction by In-Plane Product Rotation.

    PubMed

    Anggara, Kelvin; Huang, Kai; Leung, Lydie; Chatterjee, Avisek; Cheng, Fang; Polanyi, John C

    2016-06-15

    Electron-induced reaction of physisorbed meta-diiodobenzene (mDIB) on Cu(110) at 4.6 K was studied by Scanning Tunneling Microscopy and molecular dynamics theory. Single-electron dissociation of the first C-I bond led to in-plane rotation of an iodophenyl (IPh) intermediate, whose motion could be treated as a "clock" of the reaction dynamics. Alternative reaction mechanisms, successive and concerted, were observed giving different product distributions. In the successive mechanism, two electrons successively broke single C-I bonds; the first C-I bond breaking yielded IPh that rotated directionally by three different angles, with the second C-I bond breaking giving chemisorbed I atoms (#2) at three preferred locations corresponding to the C-I bond alignments in the prior rotated IPh configurations. In the concerted mechanism a single electron broke two C-I bonds, giving two chemisorbed I atoms; significantly these were found at angles corresponding to the C-I bond direction for unrotated mDIB. Molecular dynamics accounted for the difference in reaction outcomes between the successive and the concerted mechanisms in terms of the time required for the IPh to rotate in-plane; in successive reaction the time delay between first and second C-I bond-breaking events allowed the IPh to rotate, whereas in concerted reaction the computed delay between excitation and reaction (∼1 ps) was too short for molecular rotation before the second C-I bond broke. The dependence of the extent of motion at a surface on the delay between first and second bond breaking suggested a novel means to "clock" sub-picosecond dynamics by imaging the products arising from varying time delays between impacting pairs of electrons. PMID:27191189

  19. Metabolic transit and toxicity of Maillard reaction products.

    PubMed

    Finot, P A; Furniss, D E

    1989-01-01

    The feeding of Maillard reaction products (MRP) has been reported to lead to a variety of effects on metabolism which may be classed as "anti-nutritional" or "anti-physiological", depending on whether they are due to the loss of essential nutrients or to the presence of the MRP per se. This paper describes the sensitivity of essential nutrients in the "early" and "advanced" stages of the Maillard reaction, the metabolic transit of Amadori compounds, premelanoidins, melanoidins, hydroxymethyl-furfural, carboxymethyl-lysine, as well as the effects of MRP on pancreatic amylase and on urinary zinc excretion. PMID:2506565

  20. Sorption enhanced reaction process (SERP) for production of hydrogen

    SciTech Connect

    Sircar, S.; Anand, M.; Carvill, B.

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  1. Production of thermo-alkali-stable xylanase by a novel polyextremophilic Bacillus halodurans TSEV1 in cane molasses medium and its applicability in making whole wheat bread.

    PubMed

    Kumar, Vikash; Satyanarayana, T

    2014-06-01

    A high titre of thermo-alkali-stable xylanase was attained in cane molasses medium. When the culture variables for endoxylanase production were optimized [cane molasses 7 %, soluble alkaline extract of wheat bran (SAE-WB) 37 % and ammonium chloride 0.30 %], a 4.5-fold enhancement in xylanase production (69 U ml(-1)) was achieved as compared to that in the unoptimized medium (15 U ml(-1)). The enzyme titre attained in shake flasks could be sustained in a 7-l laboratory bioreactor. An activity band corresponding to 40 kDa was visualized on SDS-PAGE zymogram analysis. The enzyme has broad range of pH and temperature for activity with optima at 9.0 and 80 °C, and stable between pH 4.0 and 11.0 with 85 % retention of activity. It has T 1/2 of 40 and 15 min at 70 and 80 °C. The enzyme is halotolerant since it displays activity in the presence of salt up to 15 %, and remains 100 % active in the absence of salt. The supplementation of whole wheat dough with xylanase improves antistaling property, reducing sugar content, bread volume with prebiotic xylooligosaccharides in bread. This is the first report on xylanase production in cane molasses medium with SAE-WB as the inducer and its applicability in whole wheat bread making that improves human health. PMID:24297158

  2. Maillard reaction products from chitosan-xylan ionic liquid solution.

    PubMed

    Luo, Yuqiong; Ling, Yunzhi; Wang, Xiaoying; Han, Yang; Zeng, Xianjie; Sun, Runcang

    2013-10-15

    A facile method is reported to prepare Maillard reaction products (MRPs) from chitosan and xylan in co-solvent ionic liquid. UV absorbance and fluorescence changes were regarded as indicators of the occurrence of Maillard reaction. FT-IR, NMR, XRD and TG were used to investigate the structure of chitosan-xylan conjugate. The results revealed that when chitosan reacted with xylan in ionic liquid, the hydrogen bonds in chitosan were destroyed, the facts resulted in the formation of chitosan-xylan MRPs. Moreover, when the mass ratio of chitosan to xylan was 1:1, the Maillard reaction proceeded easily. In addition, relatively high antioxidant property was also noted for the chitosan-xylan conjugate with mass ratio 1:1. So the obtained chitosan-xylan MRP is a promising antioxidant agent for food industry. PMID:23987419

  3. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGESBeta

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  4. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  5. Mechanical and microstructural properties of alkali-activated fly ash geopolymers.

    PubMed

    Komljenović, M; Bascarević, Z; Bradić, V

    2010-09-15

    This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio. PMID:20554110

  6. Reaction behavior of zircaloy with simulated fission products

    SciTech Connect

    Kohli, R.

    1981-01-01

    The investigation reported in this paper was prompted by the lack of information on the reaction behavior of Zircaloy on long-term exposure to fission product environments in the temperature range 573 - 973 K. Small Zircaloy-2 (Zircaloy-2 contains by weight 1.5% Sn; 0.15% Fe; 0.08% Cr; 0.05% Ni; rest Zr) strip specimens (ca. 25mm x 3mm x 0.75 mm thick) were exposed to various simulated fission product environments (Cs, I, Br, Cd, In, Sb, Sn, Se as vapor; all others as powders) for times to 5.4 Ms (1500 h) in the temperature range 673 - 973 K. The reaction behavior was characterized by scanning electron microscopy with an EDAX analyzer, optical metallography, and x-ray diffraction.

  7. Dual Position Sensitive MWPC for tracking reaction products at VAMOS++

    NASA Astrophysics Data System (ADS)

    Vandebrouck, M.; Lemasson, A.; Rejmund, M.; Fremont, G.; Pancin, J.; Navin, A.; Michelagnoli, C.; Goupil, J.; Spitaels, C.; Jacquot, B.

    2016-03-01

    The characteristics and performance of a Dual Position Sensitive Multi-Wire Proportional Counter (DPS-MWPC) used to measure the scattering angle, the interaction position on the target and the velocity of reaction products detected in the VAMOS++ magnetic spectrometer, are reported. The detector consists of a pair of position sensitive low pressure MWPCs and provides both fast timing signals, along with the two-dimensional position coordinates required to define the trajectory of the reaction products. A time-of-flight resolution of 305(11) ps (FWHM) was measured. The measured resolutions (FWHM) were 2.5(3) mrad and 560(70) μm for the scattering angle and the interaction point at the target respectively. The subsequent improvement of the Doppler correction of the energy of the γ-rays, detected in the γ-ray tracking array AGATA in coincidence with isotopically identified ions in VAMOS++, is also discussed.

  8. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  9. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause

  10. Evaluation of photon production data from neutron-induced reactions

    SciTech Connect

    Fu, C.Y.

    1980-01-01

    The evaluation methods and procedures used for generating the photon production data in the current Evaluated Nuclear Data File (ENDF/B, Version V) are reviewed. There are 42 materials in the General Purpose File of ENDF/B-V that contain data for prompt photon production. Almost all evaluations had substantial experimental data bases, but fewer than half of them employed any of the following evaluation methods. Only a few used theoretical techniques that are sophisticated enough to ensure internal consistency with other particle production data. Comments are made on four evaluation methods: the empirical formalism of Howerton et al., the Troubetzkoy model, the multiparticle Hauser-Feshbach/precompound model, and the Yost method. Critiques are also made on three procedures used for conserving photon energies in neutron capture reactions. The presence of photon production data in the file is useful for studying energy balance, since photon production generally accounts for a large portion of the reaction energy output. Problems found in energy balance checks are discussed. 9 figures, 1 table.

  11. Mecanismes d'action des fines et des granulats de verre sur la reaction alcali-silice et la reaction pouzzolanique

    NASA Astrophysics Data System (ADS)

    Idir, Rachida

    Recycling composite glass with different colours in order to be manufactured into new glass products is at present not economically viable. Therefore, the search for new issues other than stockpile areas or dumping sites could be a serious opportunity. To a certain extent, one of the possible solutions is to use the recycled glass in manufacturing cements and in the preparation of concrete mixtures. However, it is essential to manage the two main behaviours that the glass can have when used in cement-based materials: (1) the use of glass as coarse aggregates reveals harmful behaviour related to alkali-silica reaction; (2) on the other hand, it can result in useful behaviour related to pozzolanic reaction if used as fine particles. Furthermore, the significant alkali content should not be overlooked as their mass corresponds to about 13% of the total mass of the glass and as they may activate the alkali-silica reaction. An experimental programme was conducted to provide answers to the various questions raised about the use of glass in cement-based materials. The first part of this work was primarily devoted to the evaluation of the reactive potential of glass in mortars (alkali and pozzolanic reactions). At this stage, nine classes of glass particles ranging from 3mum to 2.5 mm were considered. Then, fine glass particles were used in order to counteract the negative effect of some classes of coarse aggregates having revealed alkali-reactive behaviour. The second part of this work was performed to study the mechanisms that could explain the behaviours of fine and coarse particles in aqueous and concentrated environments. Different answers have been proposed to explain the observed behaviour in terms of grain sizes of glass. Keywords: Glass, Powder, Pozzolan, aggregates, alkali-reaction, alkali-aggregate reaction, alkali-silica reaction, Pouzzolanicity, alkalis, Mortars

  12. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  13. Manifestation of macroscopic correlations in elementary reaction kinetics. I. Irreversible reaction A+A-->product.

    PubMed

    Doktorov, Alexander B; Kipriyanov, Alexander A; Kipriyanov, Alexey A

    2010-05-28

    Using an modern many-particle method for the derivation of non-Markovian binary kinetic equations, we have treated theoretically the applicability of the encounter theory (ET) (the prototype of the collision theory) concepts to the widely known diffusion assisted irreversible bulk reaction A+A-->product (for example, radical reaction) in dilute solutions. The method shows that the agreement with the ET is observed when the familiar integral ET is employed which in this method is just a step in the derivation of kinetic equations. It allows for two-particle correlations only, but fails to take account of correlation of reactant simultaneously with the partner of the encounter and the reactant in the bulk. However, the next step leading to the modified ET under transformation of equations to the regular form both extends the time range of the applicability of ET rate equation (as it was for reactions proceeding with one of the reactants in excess), and gives the equation of the generalized ET. In full agreement with physical considerations, this theory reveals macroscopic correlations induced by the encounters in the reservoir of free walks. This means that the encounters of reactants in solution are correlated on a rather large time interval of the reaction. Though any nonstationary (non-Markovian) effects manifest themselves rather weakly in the kinetics of the bimolecular reaction in question, just the existence of the revealed macroscopic correlations in the binary theory is of primary importance. In particular, it means that the well-known phenomena which are generally considered to be associated solely with correlation of particles on the encounter (for example, chemically induced dynamic nuclear polarization) may be induced by correlation in the reservoir of free random walks of radicals in solution. PMID:20515095

  14. High temperature alkali corrosion of ceramics in coal gas: Final report

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  15. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions.

    PubMed

    Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2015-04-01

    With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali-silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (C-S-H type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled. PMID:25577317

  16. Theoretical aspects of product formation from the NCO + NO reaction

    SciTech Connect

    Lin, M.C.; He, Y. ); Melius, C.F. )

    1993-09-09

    The reaction of NCO with NO, an important elementary process involved in the reduction of NO[sub x] by HNCO, has been studied theoretically using the BAC-MP4 technique in conjunction with RRKM calculations. The computed molecular structures and thermochemical data for various intermediates and transition states suggest that the reaction takes place primarily via the singlet, ground electronic state OCNNO molecule according to the following mechanism; (step a) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] N[sub 2]O + CO; (step b) NCO + NO [leftrightarrow] [sup 1]OCNNO [yields] c-OCNNO[minus] N[sub 2] + CO[sub 2]. The formation of N[sub 2]O + CO occurs by the fragmentation of the singlet OCNNO intermediate step (a), whereas the production of N[sub 2] + CO[sub 2] by cyclization-fragmentation occurs via step b. The tight transition states leading to the formation of these products, coupled with the loose entrance channel, give rise to the experimentally observed strong negative temperature dependence which can be quantitatively accounted for by the results of RRKM calculations based on the BAC-MP4 data. The experimentally measured product branching ratio for channels a and b could be accounted for theoretically by lowering the calculated energy barrier for step a by 3.6 kcal/mol, corresponding to about 15% of the barrier height. 22 refs., 3 figs., 5 tabs.

  17. Formation of slow molecules in chemical reactions in crossed molecular beams

    NASA Astrophysics Data System (ADS)

    Tscherbul, T. V.; Barinovs, Ğ.; Kłos, J.; Krems, R. V.

    2008-08-01

    We demonstrate that chemical reactions in collisions of molecular beams can generally produce low-velocity molecules in the laboratory-fixed frame. Our analysis shows that collisions of beams may simultaneously yield slow reactant molecules and slow products. The reaction products are formed in selected rovibrational states and scattered in a specific direction, which can be controlled by tuning the kinetic energies of the incident beams and the angle between the beams. Our calculations indicate that chemical reactions of polar alkali-metal dimers are barrierless and we suggest that chemical reactions involving alkali-metal dimers may be particularly suitable for producing slow molecules in crossed beams.

  18. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  19. Production of Energetic Light Fragments in Spallation Reactions

    NASA Astrophysics Data System (ADS)

    Mashnik, Stepan G.; Kerby, Leslie M.; Gudima, Konstantin K.; Sierk, Arnold J.

    2014-03-01

    Different reaction mechanisms contribute to the production of light fragments (LF) from nuclear reactions. Available models cannot accurately predict emission of LF from arbitrary reactions. However, the emission of LF is important formany applications, such as cosmic-ray-induced single event upsets, radiation protection, and cancer therapy with proton and heavy-ion beams, to name just a few. The cascade-exciton model (CEM) and the Los Alamos version of the quark-gluon string model (LAQGSM), as implemented in the CEM03.03 and LAQGSM03.03 event generators used in the Los Alamos Monte Carlo transport code MCNP6, describe quite well the spectra of fragments with sizes up to 4He across a broad range of target masses and incident energies. However, they do not predict high-energy tails for LF heavier than 4He. The standard versions of CEM and LAQGSM do not account for preequilibrium emission of LF larger than 4He. The aim of our work is to extend the preequilibrium model to include such processes. We do this by including the emission of fragments heavier than 4He at the preequilibrium stage, and using an improved version of the Fermi Break-up model, providing improved agreement with various experimental data.

  20. Reactions of superoxide with myeloperoxidase and its products.

    PubMed

    Winterbourn, Christine C; Kettle, Anthony J

    2004-10-01

    Myeloperoxidase (MPO) uses hydrogen peroxide to oxidize chloride to hypochlorous acid. It also converts numerous substrates to reactive free radicals. When released by neutrophils, the enzyme operates in the presence of a flux of superoxide. We show that superoxide has a profound influence on oxidative reactions catalysed by MPO. It reacts directly with the enzyme to modulate production of hypochlorous acid. Within neutrophil phagosomes, where MPO functions to kill micro-organisms, it may be the preferred substrate for the enzyme. Superoxide also reacts rapidly with radicals generated by MPO, e.g. from tyrosine and tyrosyl peptides. Initial products are organic peroxides. These species are likely to be toxic and contribute to the pathophysiological actions of MPO. PMID:15507767

  1. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    PubMed

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  2. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia

    PubMed Central

    Elazzazy, Ahmed M.; Abdelmoneim, T.S.; Almaghrabi, O.A.

    2014-01-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems. PMID:26150754

  3. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  4. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    PubMed

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-01

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment. PMID:26921508

  5. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  6. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  7. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  8. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  9. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  10. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo substituted phenyl azo... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10126 Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  11. 40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  12. Effects of the order of addition of reagents and alkali on modification of wheat starches.

    PubMed

    Sui, Zhongquan; Huber, Kerry C; BeMiller, James N

    2015-07-10

    The objective of this research was to determine if adding reactive reagents to wheat starch granules before addition of alkali (the TRF method) would produce products that are different than those obtained with the conventional procedure (adding alkali before addition of reagent). Laboratory-isolated (LI) and commercial (C) normal (NWS) and waxy (WWS) wheat starches were each reacted with 6 reagents (acetic-adipic mixed anhydride (AAMA), phosphoryl chloride (POCl3), sodium trimetaphosphate (STMP), acetic anhydride (AA), succinic anhydride (SA), octenylsuccinic anhydride (OSA)). Data obtained were similar to those previously obtained with maize starches (Sui, Huber, & BeMiller, 2013). Almost no starch polymer molecule modification occurred when the TRF method and AAMA or AA were used; less than a third as much reaction when SA was the reagent used, and about the same amount of reaction when POCl3, STMP, or OSA were the reagents used (for different reasons). PMID:25857973

  13. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    SciTech Connect

    Copuroglu, Oguzhan; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.; Kuehnel, Radko

    2009-07-15

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  14. Water-soluble reaction products from ozonolysis of grasses

    SciTech Connect

    Morrison, W.H. III; Akin, D.E. )

    1990-03-01

    Ozone has been used to pretreat agricultural byproducts with the aim of increasing nutritive value for ruminants. However, not all treatments with ozone result in enhanced digestibility, suggesting reaction products from ozone treatment of plants might inhibit rumen microbial activity. Coastal Bermuda grass (Cynodon dactylon L. Pers.) (CBG) and Kentucky-31 tall fescue (Festuca arundinacea Schreb.) (K-31) were treated with ozone and the water-soluble products determined. The following acids were identified: caproic, levulinic, p-hydroxybenzoic, vinillic, azelaic, and malonic. In addition, vanillin and p-hydroxybenzaldehyde were also identified. Ozone treatment of the cell walls of CBG produced mainly p-hydroxybenzoic acid, vanillic acid, azelaic acid, p-hydroxybenzaldehyde, and vanillin. Ozone treatment of K-31 cell walls produced levulinic acid in addition to those products found from CBG cell walls. The production of vanillin and p-hydroxybenzaldehyde, which have been shown to be especially toxic to rumen microorganisms, offers an explanation for the negative affects of ozone treatment on forage.

  15. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  16. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  17. Reaction products in mass spectrometry elucidated with infrared spectroscopy.

    PubMed

    Polfer, Nick C; Oomens, Jos

    2007-08-01

    Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown

  18. 40 CFR 721.10390 - Acetoacetanilide reaction product with multifunctional acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.10390 Acetoacetanilide reaction product with... chemical substance identified generically as acetoacetanilide reaction product with multifunctional... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetoacetanilide reaction product...

  19. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethyl silicate, reaction products...

  20. 40 CFR 721.10570 - Cyclic amine reaction product with acetophenone and formaldehyde acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction product... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclic amine reaction product...

  1. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment...

  2. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propen-1-ol, reaction products...

  3. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products with..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of...

  4. 40 CFR 721.10390 - Acetoacetanilide reaction product with multifunctional acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.10390 Acetoacetanilide reaction product with... chemical substance identified generically as acetoacetanilide reaction product with multifunctional... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetoacetanilide reaction product...

  5. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethyl silicate, reaction products...

  6. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, reaction products with...

  7. 40 CFR 721.10570 - Cyclic amine reaction product with acetophenone and formaldehyde acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10570 Cyclic amine reaction product... subject to reporting. (1) The chemical substance identified generically as cyclic amine reaction product... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclic amine reaction product...

  8. 40 CFR 721.10428 - Fatty acids, C18-unsatd., dimers, reaction products with 1-piperazineethanamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., reaction products with 1-piperazineethanamine. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as fatty acids, C18-unsatd., dimers, reaction products with..., reaction products with 1-piperazineethanamine. 721.10428 Section 721.10428 Protection of...

  9. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propen-1-ol, reaction products...

  10. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethyl silicate, reaction products...

  11. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethyl silicate, reaction products...

  12. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, reaction products with...

  13. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment...

  14. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment...

  15. 40 CFR 721.10494 - Reaction product of trimethylolpropane triacrylate and alkylene imine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10494 Reaction product of trimethylolpropane.... (1) The chemical substance identified generically as reaction product of trimethylolpropane... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of...

  16. 40 CFR 721.10494 - Reaction product of trimethylolpropane triacrylate and alkylene imine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10494 Reaction product of trimethylolpropane.... (1) The chemical substance identified generically as reaction product of trimethylolpropane... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of...

  17. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with...

  18. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment...

  19. 40 CFR 721.9285 - Reaction products of formalin (37%) with amine C12.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.9285 Reaction products of formalin (37%) with amine C12. Link to an... to reporting. (1) The chemical substance identified generically as reaction products of formalin (37... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of formalin...

  20. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with...

  1. 40 CFR 721.10390 - Acetoacetanilide reaction product with multifunctional acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.10390 Acetoacetanilide reaction product with... chemical substance identified generically as acetoacetanilide reaction product with multifunctional... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetoacetanilide reaction product...

  2. 40 CFR 721.9514 - Ethyl silicate, reaction products with modified alkoxysilane salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.9514 Ethyl silicate, reaction products with.... (1) The chemical substance identified generically as Ethyl silicate, reaction products with modified... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethyl silicate, reaction products...

  3. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with 1,3... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, reaction products with...

  4. 40 CFR 721.9485 - Dimer acid/polymerized rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reaction product (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as Dimer acid/polymerized rosin amidoamine reaction product (PMN... amidoamine reaction product (generic). 721.9485 Section 721.9485 Protection of Environment...

  5. Use of Empty Fruit Bunches from the oil palm for bioethanol production: a thorough comparison between dilute acid and dilute alkali pretreatment.

    PubMed

    Chiesa, S; Gnansounou, E

    2014-05-01

    In the present work, two pretreatment techniques using either dilute acid (H2SO4) or dilute alkali (NaOH) have been compared for producing bioethanol from Empty Fruit Bunches (EFBs) from oil palm tree, a relevant feedstock for tropical countries. Treatments' performances under different conditions have been assessed and statistically optimized with respect to the response upon standardized enzymatic saccharification. The dilute acid treatment performed at optimal conditions (161.5°C, 9.44 min and 1.51% acid loading) gave 85.5% glucose yield, comparable to those of other commonly investigated feedstocks. Besides, the possibility of using fibers instead of finely ground biomass may be of economic interest. Oppositely, treatment with dilute alkali has shown lower performances under the conditions explored, most likely given the relatively significant lignin content, suggesting that the use of stronger alkali regime (with the associated drawbacks) is unavoidable to improve the performance of this treatment. PMID:24662312

  6. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    PubMed

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  7. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  8. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  9. Maillard reaction products as antimicrobial components for packaging films.

    PubMed

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. PMID:24128521

  10. Podand-based dimeric chromium(III)-salen complex for asymmetric Henry reaction: cooperative catalysis promoted by complexation of alkali metal ions.

    PubMed

    Ouyang, Guang-Hui; He, Yan-Mei; Fan, Qing-Hua

    2014-12-01

    A new kind of podand-based dimeric salen ligand was synthesized, and its association with potassium cations was investigated by (1) H NMR spectroscopy. The corresponding Cr(III) -salen dimer was assembled by a supramolecular host-guest self-assembly process and was then used as a catalyst in highly efficient and enantioselective asymmetric Henry reactions. Regulation by KBArF (BArF =[3,5-(CF3 )2 C6 H3 ]4 B) led to remarkable improvements in yield (by up to 58 %) and enantioselectivity (for example, from 80 % ee to 96 % ee). PMID:25346533

  11. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  12. In vivo effects of Maillard reaction products derived from biscuits.

    PubMed

    Patrignani, Mariela; Rinaldi, Gustavo Juan; Lupano, Cecilia Elena

    2016-04-01

    The antioxidant activity, antihypertensive effect and prebiotic activity of Maillard reaction products (MRPs) derived from biscuits were investigated in Wistar rats. Animals were fed the following diets for 6 weeks: control (AIN-93 diet); Asc-diet (AIN-93 diet with ascorbic acid in the drinking water); HT-B diet (containing high amount of MRP derived from biscuits) and LT-B diet (containing negligible amounts of biscuit MRP). Serum antioxidant activity (FRAP, ABTS), as well as lipid peroxidation (TBARS) were determined at the end of the experiment. Results showed that dietary MRP reduced the food efficiency, increased the antioxidant activity of serum, increased the ratio between lactic and total aerobic bacteria, increased water-holding capacity of faeces and reduced blood pressure, but did not reduce mineral absorption. Therefore, the biscuit MRP functional claims could be demonstrated by an in vivo study. PMID:26593484

  13. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  14. Sorption enhanced reaction process (SERP) for the production of hydrogen

    SciTech Connect

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S.

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  15. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    SciTech Connect

    Anand, M.; Hufton, J.; Mayorga, S.

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  16. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  17. SAFE Alkali Metal Heat Pipe Reliability

    NASA Astrophysics Data System (ADS)

    Reid, Robert S.

    2003-01-01

    Alkali metal heat pipes are among the best understood and tested of components for first generation space fission reactors. A flight reactor will require production of a hundred or more heat pipes with assured reliability over a number of years. To date, alkali metal heat pipes have been built mostly in low budget development environments with little formal quality assurance. Despite this, heat pipe test samples suggest that high reliability can be achieved with the care justified for space flight qualification. Fabrication procedures have been established that, if consistently applied, ensure long-term trouble-free heat pipe operation. Alkali metal heat pipes have been successfully flight tested in micro gravity and also have been shown capable of multi-year operation with no evidence of sensitivity to fast neutron fluence up to 1023 n/cm2. This represents 50 times the fluence of the proposed Safe Affordable Fission Engine (SAFE-100) heat pipe reactor core.

  18. A COMBINED REACTION/PRODUCT RECOVERY PROCESS FOR THE CONTINUOUS PRODUCTION OF BIODIESEL

    SciTech Connect

    Birdwell, J.F., Jr.; McFarlane, J.; Schuh, D.L.; Tsouris, C; Day, J.N.; Hullette, J.N.

    2009-09-01

    Oak Ridge National Laboratory (ORNL) and Nu-Energie, LLC entered into a Cooperative Research And Development Agreement (CRADA) for the purpose of demonstrating and deploying a novel technology for the continuous synthesis and recovery of biodiesel from the transesterification of triglycerides. The focus of the work was the demonstration of a combination Couette reactor and centrifugal separator - an invention of ORNL researchers - that facilitates both product synthesis and recovery from reaction byproducts in the same apparatus. At present, transesterification of triglycerides to produce biodiesel is performed in batch-type reactors with an excess of a chemical catalyst, which is required to achieve high reactant conversions in reasonable reaction times (e.g., 1 hour). The need for long reactor residence times requires use of large reactors and ancillary equipment (e.g., feed and product tankage), and correspondingly large facilities, in order to obtain the economy of scale required to make the process economically viable. Hence, the goal of this CRADA was to demonstrate successful, extended operation of a laboratory-scale reactor/separator prototype to process typical industrial reactant materials, and to design, fabricate, and test a production-scale unit for deployment at the biodiesel production site. Because of its ease of operation, rapid attainment of steady state, high mass transfer and phase separation efficiencies, and compact size, a centrifugal contactor was chosen for intensification of the biodiesel production process. The unit was modified to increase the residence time from a few seconds to minutes*. For this application, liquid phases were introduced into the reactor as separate streams. One was composed of the methanol and base catalyst and the other was the soy oil used in the experiments. Following reaction in the mixing zone, the immiscible glycerine and methyl ester products were separated in the high speed rotor and collected from separate

  19. GALS - setup for production and study of multinucleon transfer reaction products: present status

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, S.; Zagrebaev, V.; Kozulin, E.; Kudryavtsev, Yu; Fedosseev, V.; Bark, R.; Janas, Z.

    2016-06-01

    This is a brief report on the current status of the new GAs cell based Laser ionization Setup (GALS) at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR, Dubna. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron-rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  20. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  1. 40 CFR 721.9300 - Reaction products of substituted hydroxy-alkanes and polyalkylpolyisocyanatocarbomono- cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9300 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of...

  2. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of...

  3. 40 CFR 721.9300 - Reaction products of substituted hydroxy-alkanes and polyalkylpolyisocyanatocarbomono- cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9300 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction products of...

  4. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of...

  5. 40 CFR 721.9300 - Reaction products of substituted hydroxy-alkanes and polyalkylpolyisocyanatocarbomono- cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9300 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of...

  6. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of...

  7. 40 CFR 721.9300 - Reaction products of substituted hydroxy-alkanes and polyalkylpolyisocyanatocarbomono- cycle.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9300 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of...

  8. 40 CFR 721.9300 - Reaction products of substituted hydroxy-alkanes and polyalkylpolyisocyanatocarbomono- cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9300 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of...

  9. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of...

  10. 40 CFR 721.10060 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, alkyl diglycidyl dibenzene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Specific Chemical Substances § 721.10060 Reaction product of alkylphenyl glycidyl ether... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of...

  11. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  12. Diversity and Mechanisms of Alkali Tolerance in Lactobacilli▿

    PubMed Central

    Sawatari, Yuki; Yokota, Atsushi

    2007-01-01

    We determined the maximum pH that allows growth (pHmax) for 34 strains of lactobacilli. High alkali tolerance was exhibited by strains of Lactobacillus casei, L. paracasei subsp. tolerans, L. paracasei subsp. paracasei, L. curvatus, L. pentosus, and L. plantarum that originated from plant material, with pHmax values between 8.5 and 8.9. Among these, L. casei NRIC 1917 and L. paracasei subsp. tolerans NRIC 1940 showed the highest pHmax, at 8.9. Digestive tract isolates of L. gasseri, L. johnsonii, L. reuteri, L. salivarius subsp. salicinius, and L. salivarius subsp. salivarius exhibited moderate alkali tolerance, with pHmax values between 8.1 and 8.5. Dairy isolates of L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and L. helveticus exhibited no alkali tolerance, with pHmax values between 6.7 and 7.1. Measurement of the internal pH of representative strains revealed the formation of transmembrane proton gradients (ΔpH) in a reversed direction (i.e., acidic interior) at alkaline external-pH ranges, regardless of their degrees of alkali tolerance. Thus, the reversed ΔpH did not determine alkali tolerance diversity. However, the ΔpH contributed to alkali tolerance, as the pHmax values of several strains decreased with the addition of nigericin, which dissipates ΔpH. Although neutral external-pH values resulted in the highest glycolysis activity in the presence of nigericin regardless of alkali tolerance, substantial glucose utilization was still detected in the alkali-tolerant strains, even in a pH range of between 8.0 and 8.5, at which the remaining strains lost most activity. Therefore, the alkali tolerance of glycolysis reactions contributes greatly to the determination of alkali tolerance diversity. PMID:17449704

  13. The Characterisation of an Alkali-Stable Maltogenic Amylase from Bacillus lehensis G1 and Improved Malto-Oligosaccharide Production by Hydrolysis Suppression

    PubMed Central

    Abdul Manas, Nor Hasmaliana; Pachelles, Samson; Mahadi, Nor Muhammad; Illias, Rosli Md.

    2014-01-01

    A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates. PMID:25221964

  14. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  15. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  16. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  17. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  18. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  19. 40 CFR 721.10125 - Alkenedioic acid, dialkyl ester, reaction products with polyaminocarbomonocycle and alkenoic acid...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) The chemical substances identified generically as alkenedioic acid, dialkyl ester, reaction..., reaction products with polyaminocarbomonocycle and alkenoic acid alkyl ester (generic). 721.10125 Section... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  20. X (3872) production from reactions involving D and D* mesons

    NASA Astrophysics Data System (ADS)

    Martínez Torres, A.; Khemchandani, K. P.; Navarra, F. S.; Nielsen, M.; Abreu, Luciano M.

    2015-07-01

    In this proceeding we show the results found for the cross sections of the processes D → πX(3872), *D → πX(3872) and *D* → πX(3872), information needed for calculations of the X (3872) abundance in heavy ion collisions. Our formalism is based on the generation of X(3872) from the interaction of the hadrons 0D*0 — c.c, D-D*+ — c.c and D-sD*+s — c.c. The evaluation of the cross section associated with processes having D* meson(s) involves an anomalous vertex, X*D*, which we have determined by considering triangular loops motivated by the molecular nature of X (3872). We find that the contribution of this vertex is important. Encouraged by this finding we estimate the X*D* coupling, which turns out to be 1.95 ± 0.22. We then use it to obtain the cross section for the reaction *D* → πX and find that the X*D* vertex is also relevant in this case. We also discuss the role of the charged components of X in the determination of the production cross sections.

  1. Production of unknown transactinides in asymmetry-exit-channel quasifission reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N. V.; Zubov, A. S.

    2005-03-01

    Possibilities of production of new isotopes of superheavy nuclei with charge numbers 104-108 in asymmetry-exit-channel quasifission reactions are studied for the first time. The optimal conditions for the synthesis are suggested in this type of reaction. The products of suggested reactions can fill a gap of unknown isotopes between the isotopes of heaviest nuclei obtained in cold and hot complete fusion reactions.

  2. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  3. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  4. Significance of melatonin in antioxidative defense system: reactions and products.

    PubMed

    Tan, D X; Manchester, L C; Reiter, R J; Qi, W B; Karbownik, M; Calvo, J R

    2000-01-01

    Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a

  5. Sporicidal effects of iodine-oxide thermite reaction products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany

    2012-03-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. This reaction releases iodine gas that is known to be a sporicide. To test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure rather than the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin.

  6. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  7. Gamma ray line production from cosmic ray spallation reactions

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  8. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    PubMed

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB. PMID:27089425

  9. Sporicidal Effects of Iodine-oxide Thermite Reaction Products

    NASA Astrophysics Data System (ADS)

    Russell, Rod; Bless, Stephan; Blinkova, Alexandra; Chen, Tiffany; InstituteAdvanced Tehnology Collaboration; Dept of Molecular Genetics; Microbiology-UT Austin Collaboration; Chemistry; Biochemistry-UT Austin Collaboration

    2011-06-01

    Iodine pentoxide-aluminum thermite reactions have been driven by impacts at 1000 m/s on steel plates 3 mm or thicker. The activation energy of this material reaction is 197 J/g. The reactivity is increased by reducing grain size. This reaction releases iodine gas that is known to be a sporicide. In order to test the impact reactions for sporicidal effects, reactions took place in closed chambers containing dried Bacillus subtilis spores. The reduction in colony-forming units was dependent on the exposure time; long exposure times resulted in a 105 decrease in germination rate. This was shown to be due to the gas exposure and not the heat or turbulence. Sporicidal effectiveness was increased by adding neodymium and saran resin. The sporicidal effect is very dependent on exposure time, ranging from about 90% kill for times on the order of a second to 99.99% for one-hour times.

  10. Maleic anhydride-polyether-polyamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.

    1987-04-21

    A material is described having a use as a motor fuel additive for controlling engine octane requirement increase (ORI), controlling and reducing hydrocarbon and carbon monoxide engine emissions, and having carburetor detergency properties. The material is the reaction product of maleic anhydride, a polyether polyamine, preferably a polyether diamine, and a hydrocarbyl polyamine, preferably an n-alkyl-alkylene diamine. A concentrate comprising the prescribed reaction product dissolved in a hydrocarbon solvent is also described. Motor fuels containing the reaction product additive of the instant invention show improved ORI control and carburetor detergency in comparison with motor fuels without the reaction product additive.

  11. The alkali-labile linkage between keratan sulphate and protein

    PubMed Central

    Hopwood, John J.; Robinson, H. Clem

    1974-01-01

    Keratan sulphate was isolated from adult intervertebral disc in 90% yield by sequential digestion of the whole tissue with papain, Pronase and Proteus vulgaris chondroitin sulphate lyase. Treatment of this preparation with alkali cleaved a glycosidic bond between N-acetylgalactosamine and threonine and produced, by an alkali-catalysed `peeling' reaction, an unsaturated derivative of N-acetylgalactosamine which reacted as a chromogen in the Morgan–Elson reaction, but remained covalently bonded to the keratan sulphate chain. This derivative was reduced and labelled by alkaline NaB3H4. The substituent at position 3 of N-acetylgalactosamine in the keratan sulphate–protein linkage was identified as a disaccharide, N-acetylneuraminylgalactose, which was isolated from the reaction mixture after alkali treatment. PMID:4281652

  12. Ultrafiltration membrane reactor for obtaining experimental reaction rates at defined concentrations of inhibiting sugars during enzymatic saccharifiction of alkali-pretreated sallow: formulation of a simple empirical rate equation

    SciTech Connect

    Frennesson, I.; Traegaardh, G.; Hahn-Haegerdal, B.

    1985-09-01

    The kinetics of the enzymatic hydrolysis of sodium hydroxide-pretreated sallow were studied in an ultrafiltration membrane reactor in the presence of different concentrations of glucose. In the UF membrane reactor low-molecular-weight products were continuously removed at a low dilution rate and replaced by a buffer solution that contained different concentrations of glucose, which made it possible to keep the inhibiting product concentration constant throughout an experiment. The reaction rate was related to the degree of substrate conversion and a mathematical relationship was formulated that describes the influence of the product concentration on the rate coefficient.

  13. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Octadecanoic acid, reaction...

  14. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, reaction...

  15. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Octadecanoic acid, reaction...

  16. 40 CFR 721.10211 - Octadecanoic acid, reaction products with diethylenetriamine and urea, acetates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10211 Octadecanoic acid, reaction... subject to reporting. (1) The chemical substance identified as octadecanoic acid, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Octadecanoic acid, reaction...

  17. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  18. Polumeric electrode coated with reaction product of cyclic compound

    SciTech Connect

    Maxfield, M.; Elsenbaumer, R.L.; Shacklette, L.W.

    1984-09-18

    Batteries are disclosed with electrodes, especially cathodes, having a conjugated backbone polymer such as polyacetylene as electroactive material and a coating. The coating is formed by reaction between the oxidized polymer and a pyrrole, thiophene, azulene, furan or aniline compound.

  19. Adsorption on Alkali Halides.

    NASA Astrophysics Data System (ADS)

    Urzua Duran, Gilberto Antonio

    1995-01-01

    Using a variety of interionic potentials, I have computed the configurations of adsorbed alkali halides monomers on the (001) surface of selected alkali halides crystals. In the majority of cases studied it is found that the monomer adsorbs perpendicular to the surface with the cation sitting nearly on top of the surface anion. In about ten percent of the cases though the monomer adsorbs tilted from the vertical. In these cases the ion that is closer to the surface can be the cation or the anion. The effect of polarization forces is found to be important. In order to discuss the effects of surface retaxation with adsorbates, I have evaluated the surface relaxation of the alkali halide crystals, using a shell model for the interionic forces. It is found that surface relaxation and rumpling are generally small, especially when the van der Waals forces are included. A theory of the effect of substrate vibrations on the binding of an adsorbed atom is developed. At T = 0 the binding energy is D_0-E, where D_0 is the surface well depth (classical binding energy) and E is the quantum correction. For several simple models, it is found that E is surprisingly model-independent. We compare D _0-E with the binding energies to a rigid substrate, D_0-E_{rs}, and to a vibrationally averaged substrate, D _0-E_{va}. We prove that E_{va}>=q E>=q E_ {rs} and that similar relations hold at finite temperature for the free energy of binding. In most cases E_{rs} is better than E_{va} as an approximation to E.

  20. Laser ion source for multi-nucleon transfer reaction products

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2015-06-01

    We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of

  1. Product distribution for the reaction of HO2 with ClO

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1980-01-01

    The paper reports the direct measurement of the reaction product HOCl from the reaction of H2O with ClO, and sets an upper limit for the possible product O3, using a discharge flow/mass spectrometry/resonance fluorescence apparatus. The upper limits of the reaction channel producing HCl + O3 are 1.5% at 298 K and 3.0% at 248 K. It is seen that the HCl production rate from the HO2 + ClO reaction could be as large as that from the Cl + CH4 reaction in the lower and middle stratosphere. Thus, this reaction may possibly increase the HCl production rate appreciably and thereby reduce the calculated O3 destruction by chlorofluoromethanes.

  2. Dynamical Effects and Product Distributions in Simulated CN + Methane Reactions.

    PubMed

    Preston, Thomas J; Hornung, Balázs; Pandit, Shubhrangshu; Harvey, Jeremy N; Orr-Ewing, Andrew J

    2016-07-14

    Dynamics of collisions between structured molecular species quickly become complex as molecules become large. Reactions of methane with halogen and oxygen atoms serve as model systems for polyatomic molecule chemical dynamics, and replacing the atomic reagent with a diatomic radical affords further insights. A new, full-dimensional potential energy surface for collisions between CN + CH4 to form HCN + CH3 is developed and then used to perform quasi-classical simulations of the reaction. Coupled-cluster energies serve as input to an empirical valence bonding (EVB) model, which provides an analytical function for the surface. Efficient sampling permits simulation of velocity-map ion images and exploration of dynamics over a range of collision energies. Reaction populates HCN vibration, and energy partitioning changes with collision energy. The reaction cross-section depends on the orientation of the diatomic CN radical. A two-dimensional extension of the cone of acceptance for an atom in the line-of-centers model appropriately describes its reactivity. The simulation results foster future experiments and diatomic extensions to existing atomic models of chemical collisions and reaction dynamics. PMID:26812395

  3. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10448 Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic)....

  4. 40 CFR 721.10301 - Reaction products of fatty alcohols, (aminoethylaminopropyl) dialkoxymethylsilane, glycidol, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... uses subject to reporting. (1) The chemical substance identified generically as reaction products of... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of fatty alcohols... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  5. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy...

  6. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylene diamine... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2582 Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic)....

  7. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized,...

  8. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  9. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  10. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.524 Alcohols, C6-12, ethoxylated, reaction product... chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with maleic... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohols, C6-12, ethoxylated,...

  11. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylene diamine... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2582 Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic)....

  12. 40 CFR 721.10212 - 1,2-Ethanediol, reaction products with epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10212 1,2-Ethanediol, reaction products with epichlorohydrin. (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,2-Ethanediol, reaction products...

  13. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, methylester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10448 Acetic acid, hydroxy- methoxy-, methylester, reaction products with substituted alkylamine (generic)....

  14. 40 CFR 721.9285 - Reaction products of formalin (37%) with amine C12.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9285 Reaction products of formalin (37%) with amine C12. (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of formalin...

  15. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  16. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkane-diol...

  17. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylene diamine... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2582 Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic)....

  18. 40 CFR 721.9265 - Reaction product of dichlorobenzidine and substituted alkylamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9265 Reaction product of dichlorobenzidine and... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of...

  19. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkane-diol...

  20. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy...

  1. 40 CFR 721.10212 - 1,2-Ethanediol, reaction products with epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10212 1,2-Ethanediol, reaction products with epichlorohydrin. (a... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1,2-Ethanediol, reaction products...

  2. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylphenol... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10058 Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

  3. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  4. 40 CFR 721.10212 - 1,2-Ethanediol, reaction products with epichlorohydrin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10212 1,2-Ethanediol, reaction products with epichlorohydrin. (a... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Ethanediol, reaction products...

  5. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylphenol... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10058 Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

  6. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  7. 40 CFR 721.10484 - Siloxanes and Silicones, Me vinyl, hydroxy-terminated, reaction products with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10484 Siloxanes and Silicones, Me vinyl, hydroxy-terminated, reaction products with -modified silica. (a) Chemical substance and..., hydroxy-terminated, reaction products with -modified silica. 721.10484 Section 721.10484 Protection...

  8. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  9. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.524 Alcohols, C6-12, ethoxylated, reaction product... chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with maleic... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohols, C6-12, ethoxylated,...

  10. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction products...

  11. 40 CFR 721.10301 - Reaction products of fatty alcohols, (aminoethylaminopropyl) dialkoxymethylsilane, glycidol, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... uses subject to reporting. (1) The chemical substance identified generically as reaction products of... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of fatty alcohols... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  12. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, reaction products...

  13. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Soybean oil, epoxidized,...

  14. 40 CFR 721.10574 - Alkylcarboxy polyester acrylate reaction products with mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  15. 40 CFR 721.9285 - Reaction products of formalin (37%) with amine C12.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9285 Reaction products of formalin (37%) with amine C12. (a) Chemical... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of formalin...

  16. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  17. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of alkylene diamine... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2582 Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic)....

  18. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde reaction products...

  19. 40 CFR 721.9265 - Reaction product of dichlorobenzidine and substituted alkylamide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9265 Reaction product of dichlorobenzidine and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of...

  20. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  1. 40 CFR 721.10212 - 1,2-Ethanediol, reaction products with epichlorohydrin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10212 1,2-Ethanediol, reaction products with epichlorohydrin. (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,2-Ethanediol, reaction products...

  2. 40 CFR 721.10301 - Reaction products of fatty alcohols, (aminoethylaminopropyl) dialkoxymethylsilane, glycidol, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... uses subject to reporting. (1) The chemical substance identified generically as reaction products of... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction products of fatty alcohols... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  3. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.524 Alcohols, C6-12, ethoxylated, reaction product... chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with maleic... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohols, C6-12, ethoxylated,...

  4. 40 CFR 721.10484 - Siloxanes and Silicones, Me vinyl, hydroxy-terminated, reaction products with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10484 Siloxanes and Silicones, Me vinyl, hydroxy-terminated, reaction products with -modified silica. (a) Chemical substance and..., hydroxy-terminated, reaction products with -modified silica. 721.10484 Section 721.10484 Protection...

  5. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde reaction products...

  6. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  7. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  8. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy...

  9. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Soybean oil, epoxidized,...

  10. 40 CFR 721.8085 - Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of substituted... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8085 Reaction product of substituted aromatic diol, formaldehyde and alkanolamine, propoxylated (generic)....

  11. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkane-diol...

  12. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy...

  13. 40 CFR 721.9285 - Reaction products of formalin (37%) with amine C12.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9285 Reaction products of formalin (37%) with amine C12. (a) Chemical... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of formalin...

  14. 40 CFR 721.9265 - Reaction product of dichlorobenzidine and substituted alkylamide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9265 Reaction product of dichlorobenzidine and... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of...

  15. 40 CFR 721.9265 - Reaction product of dichlorobenzidine and substituted alkylamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9265 Reaction product of dichlorobenzidine and... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of...

  16. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkylphenol... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10058 Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

  17. 40 CFR 721.9265 - Reaction product of dichlorobenzidine and substituted alkylamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9265 Reaction product of dichlorobenzidine and... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of...

  18. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  19. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylphenol... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10058 Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

  20. 40 CFR 721.9285 - Reaction products of formalin (37%) with amine C12.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9285 Reaction products of formalin (37%) with amine C12. (a) Chemical... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction products of formalin...

  1. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, reaction products...

  2. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of alkane-diol...

  3. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde reaction products...

  4. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Soybean oil, epoxidized,...

  5. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10679 Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl...

  6. 40 CFR 721.10464 - Fatty acid, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10464 Fatty acid, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction products...

  7. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene...

  8. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy...

  9. 40 CFR 721.2625 - Reaction product of alkane-diol and epichlorohydrin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2625 Reaction product of alkane-diol and epichlorohydrin. (a) Chemical... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of alkane-diol...

  10. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylphenyl... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10059 Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

  11. 40 CFR 721.2582 - Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylene diamine... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2582 Reaction product of alkylene diamine, MDl, substituted carbomonocyclic amine and alkylamine (generic)....

  12. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylphenol... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10058 Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

  13. 40 CFR 721.10251 - Fatty acids, reaction products with alkanolamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10251 Fatty acids, reaction products with alkanolamine (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, reaction products...

  14. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.524 Alcohols, C6-12, ethoxylated, reaction product... chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with maleic... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohols, C6-12, ethoxylated,...

  15. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.524 Alcohols, C6-12, ethoxylated, reaction product... chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with maleic... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohols, C6-12, ethoxylated,...

  16. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes.

    PubMed

    Karlsson, Rasmus K B; Cornell, Ann

    2016-03-01

    Chlorine gas and sodium chlorate are two base chemicals produced through electrolysis of sodium chloride brine which find uses in many areas of industrial chemistry. Although the industrial production of these chemicals started over 100 years ago, there are still factors that limit the energy efficiencies of the processes. This review focuses on the unwanted production of oxygen gas, which decreases the charge yield by up to 5%. Understanding the factors that control the rate of oxygen production requires understanding of both chemical reactions occurring in the electrolyte, as well as surface reactions occurring on the anodes. The dominant anode material used in chlorate and chlor-alkali production is the dimensionally stable anode (DSA), Ti coated by a mixed oxide of RuO2 and TiO2. Although the selectivity for chlorine evolution on DSA is high, the fundamental reasons for this high selectivity are just now becoming elucidated. This review summarizes the research, since the early 1900s until today, concerning the selectivity between chlorine and oxygen evolution in chlorate and chlor-alkali production. It covers experimental as well as theoretical studies and highlights the relationships between process conditions, electrolyte composition, the material properties of the anode, and the selectivity for oxygen formation. PMID:26879761

  17. Linked strategy for the production of fuels via formose reaction

    PubMed Central

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  18. Linked strategy for the production of fuels via formose reaction.

    PubMed

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C(9)-C(15) branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  19. Comparison of Complementary Reactions in the Production of Mt

    SciTech Connect

    Nelson, Sarah; Gregorich, Kenneth; Dragojevic, Irena; Ellison, Paul; Garcia, Mitch Andre; Gates, Jacklyn; Stavsetra, Liv; Ali, Mazhar; Nitsche, Heino

    2009-01-21

    The new reaction 208Pb(59Co,n)266Mt was studied using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. A cross section of 7.7+5.2-3.3 pb was measured at a compound nucleus excitation energy of 14.9 MeV. The measured decay properties of 266Mt and its daughters correspond well with existing data. We compare this experimental result to transactinide compound nucleus formation model predictions, and the previously studied 209Bi(58Fe,n)266Mt reaction.

  20. Comparison of complementary reactions in the production of Mt

    SciTech Connect

    Nelson, S. L.; Dragojevic, I.; Ellison, P. A.; Garcia, M. A.; Gates, J. M.; Nitsche, H.; Gregorich, K. E.; Dvorak, J.; Stavsetra, L.; Ali, M. N.

    2009-02-15

    The new reaction {sup 208}Pb({sup 59}Co,n){sup 266}Mt was studied using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. A cross section of 7.7{sub -3.3}{sup +5.2} pb was measured at a compound nucleus excitation energy of 14.9 MeV. The measured decay properties of {sup 266}Mt and its daughters correspond well with existing data. We compare this experimental result to transactinide compound nucleus formation model predictions, and the previously studied {sup 209}Bi({sup 58}Fe,n){sup 266}Mt reaction.

  1. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  2. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  3. [Fluorescence enhancement of flavoxate hydrochloride in alkali solution and its application in pharmaceutical analysis].

    PubMed

    Li, Wen-hong; Sun, Chong-mei; Wei, Yong-ju

    2015-10-01

    Fluorescence enhancement reaction of flavoxate hydrochloride (FX) in strong alkali solution was studied, the mechanism of the reaction was investigated, and a novel fluorimetric method for analysis of FX in drug sample was established. FX has no intrinsic fluorescence, but it can slowly produce fluorescence in strong alkali solution. Heating can promote the fluorescence enhancement reaction. In 3D fluorescence spectra of the decomposition product of FX, two fluorescence peaks, located respectively at excitation wavelengths λex/ emission wavelength λem =223/410 nm, and 302/410 nm, were observed. Using quinine sulfate as a reference, fluorescence quantum yield of the decomposition product was measured to be 0.50. The structural characteriza- tion and spectral analysis of the decomposition product reveal that ester bond hydrolysis reaction of FX is firstly occurred during heating process, forming 3-methylflavone-8-carboxylic acid (MFA), then a cleavage reaction of the γ-pyrone ring of MFA occurred, producing α, β-unsaturated ketone. This product includes adjacent hydroxyl benzoic acid group in its molecule, which can form intramolecular hydrogen bond under alkaline condition, so that increase the conjugate degree and enhance the rigidity of the molecule, and thereby cause fluorescence enhancement. Based on this fluorescence enhancement reaction, a fluorimetric method was proposed for the determination of FX. A linear calibration curve covered the concentration range 0.020 3-0.487 µg · mL. The regression equation was I(F) = 23.9 + 5357.3 c, with correlation coefficient r = 0.999 7 (n = 8), detection limit D = 1.1 ng · mL(-1). The method was applied to the analysis of FX tablets, with a spiked recovery rate of 100.2%. The reliability of the method was verified by a UV-spectrophotometric method. PMID:26837181

  4. Utility of spectral measurements of secondary reaction products

    SciTech Connect

    Heidbrink, W.E.

    1986-02-01

    The spectra of 15 MeV protons and 14 MeV neutrons produced in the burnup of 0.8 MeV THe ions and 1 MeV tritons through the d(THe,p) and d(t,n) fusion reactions contain information on the velocity distributions of the energetic THe ions and tritons. 11 refs., 2 figs.

  5. Enhancing Research Productivity in Counseling Psychology: Reactions to Three Perspectives

    ERIC Educational Resources Information Center

    Betz, Nancy E.

    2005-01-01

    The present reaction responds to the three research-related core articles in the Scientific Forum of the May 2005 issue of "The Counseling Psychologist." I agree that too few of our studies are based on theories or models. Using the nomological network, I suggest how research ideas can more readily be depicted to allow model and theory testing. I…

  6. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  7. Difficulties in Interpreting Alkali Metal Trends at the Senior Chemistry Level.

    ERIC Educational Resources Information Center

    de Berg, Kevin

    2001-01-01

    Explores the reasons for the differences in alkali metal reactivity in water in terms of thermodynamics rather than ionization trends. Shows that differences in alkali metal reactivity with water are more appropriately explained in terms of the kinetics of the reactions. (MM)

  8. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  9. Effect of an allophanic soil on humification reactions between catechol and glycine: Spectroscopic investigations of reaction products

    NASA Astrophysics Data System (ADS)

    Fukushima, Masami; Miura, Akitaka; Sasaki, Masahide; Izumo, Kenji

    2009-01-01

    Adduction of amino acids to phenols is a possible humification reaction pathway [F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, second ed., Wiley, New York, 1994, pp. 188-211; M.C. Wang, P.M. Huang, Sci. Total Environ. 62 (1987) 435; M.C. Wang, P.M. Huang, Soil Sci. Soc. Am. J. 55 (1991) 1156; M.C. Wang, P.M. Huang, Geoderma 112 (2003) 31; M.C. Wang, P.M. Huang, Geoderma 124 (2005) 415]. To elucidate the reaction kinetics and products of abiotic humification, the effects of an allophanic soil on the adduction of amino acids to phenols were investigated using catechol (CT) and glycine (Gly) as a model phenol and amino acid, respectively. An aqueous solution containing CT and Gly (pH 7.0) in the presence of allophanic soil was incubated for 2 weeks, and the kinetics of the humification reactions were monitored by analysis of absorptivity at 600 nm ( E600). A mixture of CT and Gly in the absence of allophanic soil was used as a control. The E600 value increased markedly in the presence of allophanic soil. In addition, unreacted CT was detected in the control reaction mixture, but not in the allophane-containing reaction mixture. Under the sterilized conditions, absorbance at 600 nm for the control reaction mixture was significantly smaller than that for the allophanic soil-containing reaction mixture, which indicates there was no microbial participation during incubation. These results indicate that the allophanic soil effectively facilitated humification reactions between CT and Gly. The reaction mixtures were acidified and humic-like acid (HLA) was isolated as a precipitate. The elemental composition, acidic functional group contents, molecular weight, FT-IR, solid-state CP-MAS 13C NMR, and 1H NMR spectra of the purified HLAs were analyzed. The results of these analyses indicate that the nitrogen atom of Gly binds to the aromatic carbon of CT in the HLA products.

  10. Effects of hydrolysis and carbonization reactions on hydrochar production.

    PubMed

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  11. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    NASA Astrophysics Data System (ADS)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  12. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    PubMed Central

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-01-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field. PMID:27377532

  13. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction.

    PubMed

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-01-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton's second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field. PMID:27377532

  14. High-temperature interactions of alkali vapors with solids during coal combustion and gasification

    SciTech Connect

    Punjak, W.A.

    1988-01-01

    A temperature and concentration programmed reaction method is used to investigate the mechanism by which organically bound alkali is released from carbonaceous substrates. Vaporization of the alkali is preceded by reduction of oxygen-bearing groups during which CO is generated. A residual amount of alkali remains after complete reduction. This residual level is greater for potassium, indicating that potassium has stronger interactions with graphitic substrates that sodium. Other mineral substrates were exposed to high temperature alkali chloride vapors under both nitrogen and simulated flue gas atmospheres to investigate their potential application as sorbents for the removal of alkali from coal conversion flue gases. The compounds containing alumina and silica are found to readily adsorb alkali vapors and the minerals kaolinite, bauxite and emathlite are identified as promising alkali sorbents. The fundamentals of alkali adsorption on kaolinite, bauxite and emathlite are compared and analyzed both experimentally and through theoretical modeling. The experiments were performed in a microgravimetric reactor system; the sorbents were characterized before and after alkali adsorption using scanning Auger microscopy, X-ray diffraction analysis, mercury porosimetry and atomic emission spectrophotometry. The results show that the process is not a simple physical condensation, but a complex combination of several diffusion steps and reactions.

  15. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  16. The effects of acid and alkali modification on the adsorption performance of fuller's earth for basic dye.

    PubMed

    Hisarli, G

    2005-01-01

    The objective of this work was to prepare modified adsorbents from fuller's earth (FE) by acid and alkali treatment for enhancement cationic dye adsorption. Toluidine blue (TB) was selected as adsorbate for evaluating the adsorption performance of fuller's earth samples, which was affected significantly by acid and alkali modification. The adsorption of TB was studied by visible spectra. The absorption band of the monomer at low loading of TB in FE suspension with respect to its maximum in aqueous solution is red-shifted, which is related to accessibility of dye interlamellar space in the presence of positively charged surface sites. Since all surfaces are negatively charged under experimental conditions, this effect has not been observed in acid- and alkali-treated FE suspensions. It was seen that the adsorption capacity of alkali-treated surface (FEAl) for TB was higher than these of acid-treated adsorbent (FEAc) and FE. Scanning electron micrographs (SEM) and X-ray diffraction (XRD) and fluorescence (XRF) spectra were applied to analyze the structure of the raw and modified FE samples. Absence of any identifiable amount of a crystalline compound in the solid reaction products after acid treatment was confirmed by XRD and SEM, whereas the crystalline form of FEAl was preserved. Experimental data for high-concentration regions were well described by Freundlich and Langmuir adsorption equations. The thermodynamic parameters were estimated for FE, FEAc, and FEAl by using temperature dependence of adsorption equilibrium constants. PMID:15567375

  17. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.

    PubMed

    Yliniemi, Juho; Pesonen, Janne; Tiainen, Minna; Illikainen, Mirja

    2015-09-01

    Recovered fuel-biofuel fly ash from a fluidized bed boiler was alkali-activated and granulated with a sodium-silicate solution in order to immobilise the heavy metals it contains. The effect of blast-furnace slag and metakaolin as co-binders were studied. Leaching standard EN 12457-3 was applied to evaluate the immobilisation potential. The results showed that Ba, Pb and Zn were effectively immobilised. However, there was increased leaching after alkali activation for As, Cu, Mo, Sb and V. The co-binders had minimal or even negative effect on the immobilisation. One exception was found for Cr, in which the slag decreased leaching, and one was found for Cu, in which the slag increased leaching. A sequential leaching procedure was utilized to gain a deeper understanding of the immobilisation mechanism. By using a sequential leaching procedure it is possible fractionate elements into watersoluble, acid-soluble, easily-reduced and oxidisable fractions, yielding a total 'bioavailable' amount that is potentially hazardous for the environment. It was found that the total bioavailable amount was lower following alkali activation for all heavy metals, although the water-soluble fraction was higher for some metals. Evidence from leaching tests suggests the immobilisation mechanism was chemical retention, or trapping inside the alkali activation reaction products, rather than physical retention, adsorption or precipitation as hydroxides. PMID:26054963

  18. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  19. Eco-friendly processing in enzymatic xylooligosaccharides production from corncob: Influence of pretreatment with sonocatalytic-synergistic Fenton reaction and its antioxidant potentials.

    PubMed

    Kawee-Ai, Arthitaya; Srisuwun, Aungkana; Tantiwa, Nidtaya; Nontaman, Wimada; Boonchuay, Pinpanit; Kuntiya, Ampin; Chaiyaso, Thanongsak; Seesuriyachan, Phisit

    2016-07-01

    Delignification can be considered as a feasible process to pretreat lignocellulosic biomass in xylooligosaccharides production after the performance and efficiency has been improved through a few modifications. This study compared various pretreatment strategies such as Fenton, sonocatalytic, and sonocatalytic-synergistic Fenton employed on corncob in order to expose lignin content and saccharides to enhance the xylooligosaccharides yield by enzymatic hydrolysis. The dissolution of lignin and xylooligosaccharides production of corncob was enhanced by ultrasound assisted TiO2 and Fenton reaction. The corncob pretreated with a sonocatalytic-synergistic Fenton reaction gave the highest release of the lignin concentration level (1.03g/L), dissolution level (80.25%), and xylooligosaccharides content (46.45mg/g substrate). A two-step pretreatment processes consisting of the alkali treatment (pretreatment) and sonocatalytic-synergistic Fenton process (posttreatment) illustrated that subsequent enzymatic hydrolysis could be enhanced considerably. The release of the lignin concentration and xylooligosaccharides content were 33.20g/L and 174.81mg/g substrate, respectively. The antioxidant potential of xylooligosaccharides showed significant differences regarding the amount of xylooligosaccharides and the phenolic compounds produced. PMID:26964939

  20. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  1. The reaction of cobaloximes with hydrogen: Products and thermodynamics

    DOE PAGESBeta

    Estes, Deven P.; Grills, David C.; Norton, Jack R.

    2014-11-26

    In this study, a cobalt hydride has been proposed as an intermediate in many reactions of the Co(dmgBF₂)₂L₂ system, but its observation has proven difficult. We have observed the UV–vis spectra of Co(dmgBF₂)₂L₂ (1) in CH₃CN under hydrogen pressures up to 70 atm. A Co(I) compound (6), with an exchangeable proton, is eventually formed. We have determined the bond dissociation free energy and pKa of the new O–H bond in 6 to be 50.5 kcal/mol and 13.4, respectively, in CH₃CN, matching previous reports.

  2. Reaction kinetics and product distributions in photoelectrochemical cells

    SciTech Connect

    Koval, C.A.

    1992-01-01

    Hot electron reaction studies at p-InP/CH[sub 3]CN interface revealed essential/desirable features for redox systems used to investigate hot carriers in photoelectrocehmical cells. Reduction of dibromoethylbenzene (DBEB) in presence of metallocene couples is being studied using rotating rink disk electrodes of n-and p-InP disks and Pt rings. At highly doped p-InP electrodes, reduction of DBEB can be very efficient (>30%). A minielectrochemical cell was used to investigate electron transfer at nonilluminated n-WSe[sub 2]/dimethylferrocene[sup +/0] interfaces.

  3. Production of heavy actinides in incomplete fusion reactions

    NASA Astrophysics Data System (ADS)

    Antonenko, N. V.; Cherepanov, E. A.; Iljinov, A. S.; Mebel, M. V.

    1994-10-01

    We present preliminary results of calculations by the phenomenological model of the estimated yield of some heavy actinide isotopes. It is assumed that these isotopes are produced as a result of multinucleon transfers followed by neutrons and charged particle emission A.S. Iljinov and E.A. Cherepanov (1980). The yield P(sub Z, N)(E*) of primary excited actinides is found using the model of N.V. Antonenko and R.V. Jolos (1991). Absolute cross-sections for different binary reaction channels are obtained by summing the cross-sections for all subchannels with an appreciable yield according to J. Wilczynski et al. (1980).

  4. Process for chemical reaction of amino acids and amides yielding selective conversion products

    DOEpatents

    Holladay, Jonathan E.

    2006-05-23

    The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

  5. LABORATORY STUDY OF LIMESTONE REGENERATION IN DUAL ALKALI SYSTEMS

    EPA Science Inventory

    The report describes a series of open- and closed-loop laboratory bench scale experiments which were carried out to study parameters which affect the reaction of limestone with dual alkali flue gas desulfurization system process liquors. It gives details of several sets of operat...

  6. Optical model methods of predicting nuclide production from spallation reactions

    NASA Technical Reports Server (NTRS)

    Ramsey, C. R.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1998-01-01

    Quantum mechanical optical model methods for calculating isotope production cross sections from the spallation of heavy nuclei by high-energy protons are developed from a modified abrasion-ablation collision formalism. The abrasion step is treated quantum-mechanically as a knockout process which leaves the residual prefragment nucleus in an excited state. In ablation the prefragment deexcites to produce the final fragment. The excitation energies of the prefragments are estimated from a combination of liquid drop and frictional-spectator interaction considerations. Estimates of elemental and isotopic production cross sections are in good agreement with recently published cross section measurements.

  7. Miscible viscous fingering involving production of gel by chemical reactions

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hoshino, Kenichi

    2015-11-01

    We have experimentally investigated miscible viscous fingering with chemical reactions producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and aluminum ion (Al3 +) solution were used as the more and less viscous liquids, respectively. In another system, SPA solution and ferric ion (Fe3 +) solution were used as the more and less viscous liquids, respectively. In the case of Al3 +, displacement efficiency was smaller than that in the non-reactive case, whereas in the case of Fe3 +, the displacement efficiency was larger. We consider that the difference in change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We discuss relationship between the VF patterns and the rheological measurement.

  8. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  9. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  10. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  11. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  12. Reactions between beta-lactoglobulin and genipin: kinetics and characterization of the products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we present the first detailed report of the reaction kinetics studies and the characterization of the products from the endothermic reactions between beta-lactoglobulin and genipin. The effects of concentration, temperature, and pH were examined. In the temperature range studied, th...

  13. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  14. PRODUCTION OF ORGANIC NITRATES FROM HYDROXYL AND NITRATE RADICAL REACTION WITH PROPYLENE

    EPA Science Inventory

    Measurements of the gas-phase production rates of alpha-nitratoacetone, propylene glycol dinitrate, 2-hydroxy propyl nitrate, and 2-nitrato propyl alcohol (2-NPA) in a C3H6/N2O5/air dark reaction and a C3H6/NOX/air irradiation are reported. The probable operative reaction mechani...

  15. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetaldehyde, substituted-, reaction... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  16. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction...

  17. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  18. 40 CFR 721.10662 - Acetaldehyde, substituted-, reaction products with 2-butyne-1, 4-diol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, reaction products with 2-butyne-1, 4-diol (generic). (a) Chemical substance and significant new uses... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetaldehyde, substituted-, reaction... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  19. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction...

  20. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  1. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction...

  2. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrofluoric acid, reaction...

  3. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrofluoric acid, reaction...

  4. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction...

  5. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction...

  6. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrofluoric acid, reaction...

  7. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tall oil fatty acids,...

  8. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  9. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Tall oil fatty acids,...

  10. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  11. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Tall oil fatty acids,...

  12. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tall oil fatty acids,...

  13. 40 CFR 721.4461 - Hydrofluoric acid, reaction products with octane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4461 Hydrofluoric acid, reaction products with octane... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluoric acid, reaction...

  14. 40 CFR 721.4385 - Hydrofluoric acid, reaction products with heptane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4385 Hydrofluoric acid, reaction products with heptane. (a) Chemical... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrofluoric acid, reaction...

  15. 40 CFR 721.9460 - Tall oil fatty acids, reaction products with polyamines, alkyl substituted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9460 Tall oil fatty acids, reaction... reporting. (1) The chemical substance identified generically as tall oil fatty acids, reaction products with... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Tall oil fatty acids,...

  16. Structures of the reaction products of the AZADO radical with TCNQF4 or thiourea

    PubMed Central

    Suzuki, Hideto; Kawahara, Yuta; Akutsu, Hiroki; Yamada, Jun-ichi

    2013-01-01

    Summary While an addition product was formed by the reaction of AZADO (2-azaadamantane N-oxyl) with TCNQF4 (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), the reaction of AZADO with thiourea provided an inclusion compound, in which AZADO molecules are incorporated in cylindrical channels formed by thiourea molecules. PMID:23946847

  17. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by reacting the dyes, either alone or in combination, with a vinyl alcohol/methyl methacrylate copolymer,...

  18. Use of Moessbauer spectroscopy to study reaction products of polyphenols and iron compounds

    SciTech Connect

    Gust, J. ); Suwalski, J. )

    1994-05-01

    Moessbauer spectroscopy was used to study parameters of the reaction products of iron compounds (Fe[sup III]) and polyphenols with hydroxyl (OH) groups in ortho positions. Polyphenols used in the reaction were catechol, pyrogallol, gallic acid, and oak tannin. The Fe-containing compounds were hydrated ferric sulfate (Fe[sub 2][SO[sub 4

  19. Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added.

    PubMed

    Feng, Chunying; Zou, Shaolan; Liu, Cheng; Yang, Huajun; Zhang, Kun; Ma, Yuanyuan; Hong, Jiefang; Zhang, Minhua

    2016-05-01

    Low-cost technologies to overcome the recalcitrance of cellulose are the key to widespread utilization of lignocellulosic biomass for ethanol production. Efficient enzymatic hydrolysis of cellulose requires the synergism of various cellulases, and the ratios of each cellulase are required to be regulated to achieve the maximum hydrolysis. On the other hand, engineering of cellulolytic Saccharomyces cerevisiae strains is a promising strategy for lignocellulosic ethanol production. The expression of cellulase-encoding genes in yeast would affect the synergism of cellulases and thus the fermentation ability of strains with exogenous enzyme addition. However, such researches are rarely reported. In this study, ten endoglucanase and β-glucosidase co-expressing S. cerevisiae strains were constructed and evaluated by enzyme assay and fermentation performance measurement. The results showed that: (1) maximum ethanol titers of recombinant strains exhibited high variability in YPSC medium (20 g/l peptone, 10 g/l yeast extract, 100 g/l acid- and alkali-pretreated corncob) within 10 days. However, they had relatively little difference in USC medium (100 g/l acid- and alkali-pretreated corncob, 0.33 g/l urea, pH 5.0). (2) Strains 17# and 19#, with ratio (CMCase to β-glucosidase) of 7.04 ± 0.61 and 7.40 ± 0.71 respectively, had the highest fermentation performance in YPSC. However, strains 11# and 3# with the highest titers in USC medium had a higher ratio of CMCase to β-glucosidase, and CMCase activities. These results indicated that nutrition, enzyme activities and the ratio of heterologous enzymes had notable influence on the fermentation ability of cellulase-expressing yeast. PMID:27038956

  20. NMR Studies of Biomass and its Reaction Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass refers to biological material derived from living or recently living organisms, such as wood, agricultural products and wastes, and alcohol fuels. An increasingly popular R&D approach is to convert biomass into industrial polymers or chemicals. NMR is an excellent technique for the character...

  1. REACTION PRODUCTS FROM THE CHLORINATION OF SEAWATER. CHAPTER 34

    EPA Science Inventory

    Much of the present information on the products formed when seawater is chlorinated is based on observations of laboratory experiments in which chlorine was added to seawater to stimulate conditions of electricity generating plants. Results are reported for a field study at the P...

  2. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  3. Diesel lubricant composition containing 5-amino-triazole-succinic anhydride reaction product

    SciTech Connect

    Sung, R.L.; Zoleski, B.H.

    1981-03-17

    A diesel crankcase lubricant is described. It contains a lubricating oil base and the reaction product of a hydrocarbyl succinic anhydride. The hydrocarbyl radical has from 12 to 30 carbon atoms and 5-amino-triazole.

  4. Production of Printed Indexes of Chemical Reactions. I. Analysis of Functional Group Interconversions

    ERIC Educational Resources Information Center

    Clinging, R.; Lynch, M. F.

    1973-01-01

    A program is described which identifies functional group interconversion reactions, hydrogenations, and dehydrogenations in a data base containing structures encoded as Wiswesser Line Notations. Production of the data base is briefly described. (17 references) (Authors)

  5. Dynamical coupled-channels study of meson production reactions from EBAC@Jlab

    SciTech Connect

    Hiroyuki Kamano

    2011-10-01

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  6. Dynamical coupled-channels study of meson production reactions from EBACatJLab

    SciTech Connect

    Kamano, Hiroyuki

    2011-10-24

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  7. Extraction of Nucleon Resonances From Global Analysis of Meson Production Reactions at EBAC

    SciTech Connect

    Hiroyuki Kamano

    2011-10-01

    We report the current status of exploring the dynamical aspect of the excited nucleon states through the comprehensive coupled-channels analysis of meson production reactions at the Excited Baryon Analysis Center of Jefferson Lab.

  8. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  9. Enzymatic browning reactions in apple and apple products.

    PubMed

    Nicolas, J J; Richard-Forget, F C; Goupy, P M; Amiot, M J; Aubert, S Y

    1994-01-01

    This review examines the parameters of enzymatic browning in apple and apple products that is, phenolic compounds, polyphenoloxidases, and other factors (ascorbic acid and peroxidases), both qualitatively and quantitatively. Then the relationships between intensity of browning and the browning parameters are discussed, including a paragraph on the methods used for browning evaluation. Finally, the different methods for the control of browning are presented. PMID:8011143

  10. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  11. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of ethoxylated...

  12. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of ethoxylated...

  13. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of ethoxylated...

  14. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of ethoxylated...

  15. 40 CFR 721.9280 - Reaction product of ethoxylated fatty acid oils and a phenolic pentaerythritol tetraester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9280 Reaction product of... new uses subject to reporting. (1) The chemical substance identified generically as a reaction product... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of ethoxylated...

  16. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  17. 40 CFR 721.5560 - Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz[c...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6-oxide. 721.5560 Section 721... Formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with 6H-dibenz oxaphosphorin-6... identified as formaldehyde, polymer with (chloromethyl) oxirane and phenol, reaction products with...

  18. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  19. Effect of Maillard reaction products on oxidation products in ground chicken breast.

    PubMed

    Miranda, L T; Rakovski, C; Were, L M

    2012-02-01

    Three amino acid-sugar solutions were adjusted to pH 8.0, heated and lyophilized prior to addition to ground chicken breast (GCB). GCB with no additives, GCB with 0.01% BHT, GCB with 0.1 or 0.2mg/g glucose heated with arginine, valine, or histidine were prepared. Thiobarbituric acid reactive substances (TBARS), volatiles determined by gas chromatography, and Hunter L*, a* and b* values were monitored over nine days. Multiple linear regression models were used to determine the effects of the studied factors on the corresponding outcome variables. a* values of GCB ranged from 1.60 to 4.90 over nine days of storage. While Maillard reaction products (MRP) lowered oxidation compared to control, no significant difference in TBARS between MRP solutions heated for 8 or 24h was found. Further, 0.1mg/g heated glucose-valine mixture decreased aldehydes up to 72.87%. Therefore, shelf-life of GCB could be extended using 0.1 or 0.2mg/g MRP. PMID:21871740

  20. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  1. Investigation of photochemical reaction products of glucose formed during direct UV detection in CE.

    PubMed

    Schmid, Thomas; Himmelsbach, Markus; Buchberger, Wolfgang W

    2016-04-01

    In CE, saccharides are accessible to direct UV detection due to a photochemical reaction in the detection window of the separation capillary resulting in the formation of UV absorbing substances. Employing a CE method that allows long in-capillary irradiation with subsequent UV and MS detection, the present study could identify several reaction products of glucose. Among these were UV absorbing substances so far unknown to be formed during direct UV detection with the chemical formulas C4 H6 O2 , C5 H6 O4 , C5 H8 O3, and C6 H8 O5 . Investigations of the impact of the irradiation time revealed differences between these reaction products suggesting differing reaction mechanisms especially for the smallest products. More detailed information could be obtained by experiments with isotope-labeled substrates performed to determine the parts of glucose that are converted to the particular reaction products. In addition, structural formulas for the reaction products were suggested based on HPLC-MS/MS measurements of off-line irradiated glucose solutions which revealed the existence of functional groups such as carboxylic acid or aldehyde groups. PMID:26257208

  2. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.

    PubMed

    Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-12-01

    This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction. PMID:24045173

  3. Reaction Mechanism and Product Branching Ratios of the CH + C3H6 Reaction: A Theoretical Study.

    PubMed

    Ribeiro, Joao Marcelo; Mebel, Alexander M

    2016-03-24

    The mechanism of CH(X(2)Π) reaction with propene has been studied with ab initio CCSD(T)-F12/CBS//B3LYP/6-311G(d,p) calculations of the C4H7 potential energy surface and RRKM/master equation calculations of unimolecular rate constants for the various isomerization and dissociation steps available to the C4H7 radicals. Product branching ratios were calculated and were found to strongly depend on the initial chemically activated C4H7 complex formed in a barrierless entrance channel. If the reaction is initiated via either CH addition to the double bond in propene or CH insertions into the terminal sp(2) C-H or single C-C bonds, then 1,3-butadiene + H are predicted to be the dominant products, ethene + C2H3 radical are minor but non-negligible products, and a small amount of 1,2-butadiene + H is also produced. The reaction then proceeds through a key CH3CHCH(•)CH2 intermediate, which loses an H atom to form either 1,3- or 1,2-butadiene or isomerizes to (•)CH2CH2CHCH2 and then dissociates to ethene + C2H3 radical. If CH inserts into a C-H bond in the CH3 group the (•)CH2CH2CHCH2 complex is formed directly and then the major reaction products are predicted to be ethene + C2H3 radical and 1,3-butadiene + H. Finally, if CH inserts into the middle sp(2) C-H bond, a branched CH3C((•)CH2)CH2 complex is produced, which predominantly decomposes to allene + CH3 radical. A comparison of the calculated reaction mechanism with available experimental data indicates that the CH addition entrance channel is favorable, in which case the computed branching ratios are in agreement with the experimental result of Loison and Bergeat, who measured the H elimination branching ratio of 78 ± 10%. However, the computed branching ratios quantitatively disagree with the experimental data by Trevitt et al., who observed a nearly 100% yield of the C4H6 + H products and also larger yields of 1,2-butadiene and 1-butyne than the calculations predict. The deviation of the theoretical results

  4. Reactions of oriented molecules.

    PubMed

    Brooks, P R

    1976-07-01

    Beams of oriented molecules have been used to directly study geometrical requirements in chemical reactions. These studies have shown that reactivity is much greater in some orientations than others and demonstrated the existence of steric effects. For some reactions portions of the orientation results are in good accord with traditional views of steric hindrance, but for others it is clear that our chemical intuition needs recalibrating. Indeed, the information gained from simultaneously orienting the reactants and observing the scattering angle of the products may lead to new insights about the detailed mechanism of certain reactions. Further work must be done to extend the scope and detail of the studies described here. More detailed information is needed on the CH(3)I reaction and the CF(3)I reaction. The effects of alkyl groups of various sizes and alkali metals of various sizes are of interest. In addition, reactions where a long-lived complex is formed should be studied to see if orientation is important. Finally, it would be of interest to apply the technique to the sort of reactions that led to our interest in the first place: the S(N)2 displacements in alkyl halides where the fascinating Walden inversion occurs. PMID:17793988

  5. One pion production in neutrino reactions: Including nonresonant background

    SciTech Connect

    Lalakulich, O.; Leitner, T.; Buss, O.; Mosel, U.

    2010-11-01

    We investigate neutrino-induced one pion production on nucleons. The elementary neutrino-nucleon cross section is calculated as the sum of the leading Delta pole diagram and several background diagrams obtained within the nonlinear sigma model. This approach does not introduce any new adjustable parameters, which allows unambiguous predictions for the observables. Considering electroproduction experiments as benchmark, the model is shown to be applicable up to pion-nucleon invariant mass W<1.4 GeV and provides a good accuracy. With respect to the total one pion cross section, the model predicts the background at the level of 10% for the p{pi}{sup +}, 30% for p{pi}{sup 0}, and 50% for n{pi}{sup +} final states. The results are compared with experimental data for various differential cross sections. Distributions with respect to muon-nucleon and muon-pion invariant masses are presented for the first time. The model describes the data quite well, with the discrepancies being of the same order as those between different data sets.

  6. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J. R.

    2016-05-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OHrad) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OHrad generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OHrad was removed. This suggests that OHrad radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures.

  7. Limonene ozonolysis in the presence of nitric oxide: Gas-phase reaction products and yields

    PubMed Central

    Ham, Jason E.; Harrison, Joel C.; Jackson, Stephen R.; Wells, J.R.

    2016-01-01

    The reaction products from limonene ozonolysis were investigated using the new carbonyl derivatization agent, O-tert-butylhydroxylamine hydrochloride (TBOX). With ozone (O3) as the limiting reagent, five carbonyl compounds were detected. The yields of the carbonyl compounds are discussed with and without the presence of a hydroxyl radical (OH•) scavenger, giving insight into the influence secondary OH radicals have on limonene ozonolysis products. The observed reaction product yields for limonaketone (LimaKet), 7-hydroxyl-6-oxo-3-(prop-1-en-2-yl)heptanal (7H6O), and 2-acetyl-5-oxohexanal (2A5O) were unchanged suggesting OH• generated by the limonene + O3 reaction does not contribute to their formation. The molar yields of 3-isopropenyl-6-oxo-heptanal (IPOH) and 3-acetyl-6-oxoheptanal (3A6O) decreased by 68% and >95%; respectively, when OH• was removed. This suggests that OH• radicals significantly impact the formation of these products. Nitric oxide (NO) did not significantly affect the molar yields of limonaketone or IPOH. However, NO (20 ppb) considerably decreased the molar reaction product yields of 7H6O (62%), 2A5O (63%), and 3A6O (47%), suggesting NO reacted with peroxyl intermediates, generated during limonene ozonolysis, to form other carbonyls (not detected) or organic nitrates. These studies give insight into the transformation of limonene and its reaction products that can lead to indoor exposures. PMID:27346977

  8. IN VIVO FORMATION OF HALOGENATED REACTION PRODUCTS FOLLOWING PERORAL SODIUM HYPOCHLORITE

    EPA Science Inventory

    To date the principal concern of the disinfection of potable water has centered on the formation of halogenated organic reaction products and the adverse health effects that these products may have. However, an additional area for concern relating to water disinfection is the pot...

  9. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  10. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    PubMed

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  11. Reaction Product Identification in Extreme Chemical Environments by Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pate, Brooks

    Molecular rotational spectroscopy has several advantages for detection of reaction intermediates and products under extreme laboratory conditions. Rotational spectroscopy has high sensitivity to the molecular structure and provides high spectral resolution in low pressure environments. Furthermore, quantum chemistry provides accurate estimates of the spectroscopic parameters. As a result, rotational spectroscopy can identify molecular species in complex reaction mixtures without the need for chromatographic separation and without the need for a previously recorded ``library spectrum'' of the molecule. The application of chirped pulse Fourier transform rotational spectroscopy methods for the identification of molecules of astrochemical interest formed in pulsed discharge sources will be described including recent advances for high-throughput mm-wave spectroscopy. The set of reaction products created in the experiment can provide insight into the reaction mechanism. Reactions involving the CN radical will be discussed. These reactions can be barrierless making them candidates for interstellar gas reactions. The possibility that interstellar cyanomethanimine is produced by gas phase radical-neutral reactions instead of surface chemistry on grain-supported ices will be discussed using recent spatially resolved chemical images in Sagittarius B2 observed with the Jansky Very Large Array. This work supported by NSF CHE 1213200.

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  14. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  16. Biodiesel production from integration between reaction and separation system: reactive distillation process.

    PubMed

    da Silva, Nívea de Lima; Santander, Carlos Mario Garcia; Batistella, César Benedito; Filho, Rubens Maciel; Maciel, Maria Regina Wolf

    2010-05-01

    Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. It is biodegradable, non-inflammable, non-toxic, and produces lesser carbon monoxide, sulfur dioxide, and unburned hydrocarbons than petroleum-based fuel. The purpose of the present work is to present an efficient process using reactive distillation columns applied to biodiesel production. Reactive distillation is the simultaneous implementation of reaction and separation within a single unit of column. Nowadays, it is appropriately called "Intensified Process". This combined operation is especially suited for the chemical reaction limited by equilibrium constraints, since one or more of the products of the reaction are continuously separated from the reactants. This work presents the biodiesel production from soybean oil and bioethanol by reactive distillation. Different variables affect the conventional biodiesel production process such as: catalyst concentration, reaction temperature, level of agitation, ethanol/soybean oil molar ratio, reaction time, and raw material type. In this study, the experimental design was used to optimize the following process variables: the catalyst concentration (from 0.5 wt.% to 1.5 wt.%), the ethanol/soybean oil molar ratio (from 3:1 to 9:1). The reactive column reflux rate was 83 ml/min, and the reaction time was 6 min. PMID:20221864

  17. Systematic Study of Technetium Production by Proton-Induced Reactions on Molybdenum

    NASA Astrophysics Data System (ADS)

    Lamere, Edward; Gilardy, Gwenaelle; Meisel, Zach; Moran, Michael; Skulski, Michael; Couder, Manoel

    2015-10-01

    Recent shortages in the world-wide supply of 99mTc have sparked interest in developing alternative production methods which do not rely on fission based 99Mo. The direct production of 99mTc from proton induced reactions on enriched 100Mo targets is one such approach. With this approach, 99mTc must be chemically extracted from the irradiated target and therefore radiopharmaceuticals will contain a mixture of all Tc-species produced from the proton bombardment. Commercial viability of cyclotron-produced 99mTc will depend on a number of factors including, production yield, radiochemical purity, and specific activity. Reactions on trace impurities in the targets has been shown to impact these factors dramatically. Precise cross-section measurements for not just the main reaction, 99mTc(p,2n), but for all Mo + p reactions that lead to Tc or Mo species are required for proper assessment of this 99mTc production technique. We will introduce a systematic study of proton-induced reactions on 92, 94-98, 100 Mo currently being performed at the University of Notre Dame. First results of 96Mo + p reactions will be presented. NRC-HQ-12-G-38-0073.

  18. Quantum Chemical Study of the Reaction of C+ with Interstellar Ice: Predictions of Vibrational and Electronic Spectra of Reaction Products

    NASA Astrophysics Data System (ADS)

    Woon, David E.

    2015-06-01

    The C+ cation (CII) is the dominant form of carbon in diffuse clouds and an important tracer for star formation in molecular clouds. We studied the low energy deposition of C+ on ice using density functional theory calculations on water clusters as large as 18 H2O. Barrierless reactions occur with water to form two dominant sets of products: HOC + H3O+ and CO- + 2H3O+. In order to provide testable predictions, we have computed both vibrational and electronic spectra for pure ice and processed ice clusters. While vibrational spectroscopy is expected to be able to discern that C+ has reacted with ice by the addition of H3O+ features not present in pure ice, it does not provided characteristic bands that would discern between HOC and CO-. On the other hand, predictions of electronic spectra suggest that low energy absorptions may occur for CO- and not HOC, making it possible to distinguish one product from the other.

  19. Investigation of terpinolene + ozone or terpinolene + nitrate radical reaction products using denuder/filter apparatus

    NASA Astrophysics Data System (ADS)

    Harrison, Joel C.; Wells, J. R.

    2013-12-01

    Terpinolene's (1-methyl-4-(propan-2-ylidene)cyclohexene) reaction with ozone or the nitrate radical was investigated using a denuder/filter apparatus in order to characterize gas-phase and particulate reaction products. Identification of the reaction products (i.e., aldehydes, ketones, dicarbonyls and carboxylic acids) was made using two derivatization methods; O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) to derivatize the carbonyl products or 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) and 2,2,2-trifluoroethylamine hydrochloride (TFEA) to derivatize the carboxylic acid products. Proposed carbonyl products for ozonolysis of terpinolene are: 4-methylcyclohex-3-en-1-one, 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, methyl glyoxal, 3-oxobutanal, and 6-oxo-3-(propan-2-ylidene)heptanal. Proposed carbonyl products for nitrate radical reaction of terpinolene are: 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, methyl glyoxal, and 4-oxopentanal. No carboxylic acid products were detected with either oxidizing reactant.

  20. Investigation of terpinolene + ozone or terpinolene + nitrate radical reaction products using denuder/filter apparatus

    PubMed Central

    Harrison, Joel C.; Wells, J.R.

    2015-01-01

    Terpinolene’s (1-methyl-4-(propan-2-ylidene)cyclohexene) reaction with ozone or the nitrate radical was investigated using a denuder/filter apparatus in order to characterize gas-phase and particulate reaction products. Identification of the reaction products (i.e., aldehydes, ketones, dicarbonyls and carboxylic acids) was made using two derivatization methods; O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) to derivatize the carbonyl products or 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride (EDC) and 2,2,2-trifluoroethylamine hydrochloride (TFEA) to derivatize the carboxylic acid products. Proposed carbonyl products for ozonolysis of terpinolene are: 4-methylcyclohex-3-en-1-one, 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, methyl glyoxal, 3-oxobutanal, and 6-oxo-3-(propan-2-ylidene)heptanal. Proposed carbonyl products for nitrate radical reaction of terpinolene are: 2-hydroxy-4-methylcyclohex-3-en-1-one, glyoxal, methyl glyoxal, and 4-oxopentanal. No carboxylic acid products were detected with either oxidizing reactant. PMID:26527171

  1. Degradation of (14)C-labeled few layer graphene via Fenton reaction: Reaction rates, characterization of reaction products, and potential ecological effects.

    PubMed

    Feng, Yiping; Lu, Kun; Mao, Liang; Guo, Xiangke; Gao, Shixiang; Petersen, Elijah J

    2015-11-01

    Graphene has attracted considerable commercial interest due to its numerous potential applications. It is inevitable that graphene will be released into the environment during the production and usage of graphene-enabled consumer products, but the potential transformations of graphene in the environment are not well understood. In this study, (14)C-labeled few layer graphene (FLG) enabled quantitative measurements of FLG degradation rates induced by the iron/hydrogen peroxide induced Fenton reaction. Quantification of (14)CO2 production from (14)C-labeled FLG revealed significant degradation of FLG after 3 days with high H2O2 (200 mmol L(-1)) and iron (100 μmol L(-1)) concentrations but substantially lower rates under environmentally relevant conditions (0.2-20 mmol L(-1) H2O2 and 4 μmol L(-1) Fe(3+)). Importantly, the carbon-14 labeling technique allowed for quantification of the FLG degradation rate at concentrations nearly four orders of magnitude lower than those typically used in other studies. These measurements revealed substantially faster degradation rates at lower FLG concentrations and thus studies with higher FLG concentrations may underestimate the degradation rates. Analysis of structural changes to FLG using multiple orthogonal methods revealed significant FLG oxidation and multiple reaction byproducts. Lastly, assessment of accumulation of the degraded FLG and intermediates using aquatic organism Daphnia magna revealed substantially decreased body burdens, which implied that the changes to FLG caused by the Fenton reaction may dramatically impact its potential ecological effects. PMID:26210029

  2. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  3. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  4. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    SciTech Connect

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  5. Attempt to confirm superheavy element production in the 48Ca +238U reaction

    SciTech Connect

    Gregorich, K.E.; Loveland, W.; Peterson, D.; Zielinski, P.M.; Nelson, S.L.; Chung, Y.H.; Dullmann, Ch.E.; Folden III, C.M.; Aleklett,K.; Eichler, R.; Hoffman D.C.; Omtvedt, J.P.; Pang, G.K.; Schwantes,J.M.; Soverna, S.; Sprunger, P.; Sudowe, R.; Wilson, R.E.; Nitsche, H.

    2005-03-24

    An attempt to confirm production of superheavy elements in the reaction of 48Ca beams with actinide targets has been performed using the 238U(48Ca,3n)283112 reaction. Two 48Ca projectile energies were used, that spanned the energy range where the largest cross sections have been reported for this reaction. No spontaneous fission events were observed. No alpha decay chains consistent with either reported or theoretically predicted element 112 decay properties were observed. The cross section limits reached are significantly smaller than the recently reported cross sections.

  6. Production of exotic isotopes in complete fusion reactions with radioactive beams

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Zubov, A. S.; Adamian, G. G.; Antonenko, N. V.; Heinz, S.

    2013-11-01

    The isotopic dependence of the complete fusion (capture) cross section is analyzed in the reactions 130,132,134,136,138,140,142,144,146,148,150Xe+48Ca with stable and radioactive beams. It is shown for the first time that the very neutron-rich nuclei 186-191W can be reached with relatively large cross sections by complete fusion reactions with radioactive ion beams at incident energies near the Coulomb barrier. A comparison between the complete fusion and fragmentation reactions for the production of neutron-rich W and neutron-deficient Rn isotopes is performed.

  7. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  8. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  9. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10485 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction products of alcohols,...

  10. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction... chemical substance identified generically as Formaldehyde, reaction products with an alkylated phenol and... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, reaction products...

  11. 40 CFR 721.10485 - Reaction products of alcohols, alkyl alcohols, amino alcohols and methanol sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10485 Reaction products of... significant new uses subject to reporting. (1) The chemical substance identified generically as reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction products of alcohols,...

  12. Product energy distributions and energy partitioning in O atom reactions on surfaces

    NASA Technical Reports Server (NTRS)

    Halpern, Bret; Kori, Moris

    1987-01-01

    Surface reactions involving O atoms are likely to be highly exoergic, with different consequences if energy is channeled mostly to product molecules or surface modes. Thus the surface may become a source of excited species which can react elsewhere, or a sink for localized heat deposition which may disrupt the surface. The vibrational energy distribution of the product molecule contains strong clues about the flow of released energy. Two instructive examples of energy partitioning at surfaces are the Pt catalyzed oxidations: (1) C(ads) + O(ads) yields CO* (T is greater than 1000 K); and (2) CO(ads) + O(gas) yields CO2* (T is approx. 300 K). The infrared emission spectra of the excited product molecules were recorded and the vibrational population distributions were determined. In reaction 1, energy appeared to be statistically partitioned between the product CO and several Pt atoms. In reaction 2, partitioning was non-statistical; the CO2 asymmetric stretch distribution was inverted. In gas reactions these results would indicate a long lived and short lived activated complex. The requirement that Pt be heated in O atoms to promote reaction of atomic O and CO at room temperature is specifically addressed. Finally, the fraction of released energy that is deposited in the catalyst is estimated.

  13. The vinyl + NO reaction : determining the products with time-resolved Fourier transform spectroscopy.

    SciTech Connect

    Osborn, David L; Zou, Peng; Klippenstein, Stephen J.

    2005-01-01

    We have studied the vinyl + NO reaction using time-resolved Fourier transform emission spectroscopy, complemented by electronic structure and microcanonical RRKM rate coefficient calculations. To unambiguously determine the reaction products, three precursors are used to produce the vinyl radical by laser photolysis: vinyl bromide, methyl vinyl ketone, and vinyl iodide. The emission spectra and theoretical calculations indicate that HCN + CH{sub 2}O is the only significant product channel for the C{sub 2}H{sub 3} + NO reaction near room temperature, in contradiction to several reports in the literature. Although CO emission is observed when vinyl bromide is used as the precursor, it arises from the reaction of NO with photofragments other than vinyl. This conclusion is supported by the absence of CO emission when vinyl iodide or methyl vinyl ketone is used. Prompt emission from vibrationally excited NO is evidence of the competition between back dissociation and isomerization of the initially formed nitrosoethylene adduct, consistent with previous work on the pressure dependence of this reaction. Our calculations indicate that production of products is dominated by the low energy portion of the energy distribution. The calculation also predicts an upper bound of 0.19% for the branching ratio of the H{sub 2}CNH + CO channel, which is consistent with our experimental results.

  14. Dynamics of reactive ultracold alkali polar molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Bohn, John; Petrov, Alexander; Kotochigova, Svetlana

    2011-05-01

    Recently, ultracold polar molecules of KRb have been created. These molecules are chemically reactive and their lifetime in a trap is limited. However, their lifetime increases when they are loaded into a 1D optical lattice in the presence of an electric field. These results naturally raise the question of manipulating ultracold collisions of other species of alkali dimer molecules, with an eye toward both novel stereochemistry, as well as suppressing unwanted reactions, to enable condensed matter applications. In this talk, we report on a comparative study between the bi-alkali polar molecules of LiNa, LiK, LiRb, LiCs which have been predicted to be reactive. We compute the isotropic C6 coefficients of these systems and we predict the elastic and reactive rate coefficients when an electric field is applied in a 1D optical lattice. We will discuss the efficacy of evaporative cooling for each species. This work was supported by a MURI-AFOSR grant.

  15. Antioxidant effect of non-enzymatic browning reaction products on linoleic acid

    SciTech Connect

    Kim, N.S.K.

    1987-01-01

    In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effect on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.

  16. Dietary Maillard reaction products and their fermented products reduce cardiovascular risk in an animal model.

    PubMed

    Oh, N S; Park, M R; Lee, K W; Kim, S H; Kim, Y

    2015-08-01

    This study examined the effects of Maillard reaction products (MRP) and MRP fermented by lactic acid bacteria on antioxidants and their enhancement of cardiovascular health in ICR mouse and rat models. In previous in vitro studies, the selected lactic acid bacteria were shown to significantly affect the activity of MRP. The expression of genes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) related to antioxidant activity was upregulated by Maillard-reacted sodium caseinate (cMRP), and cMRP fermented by Lactobacillus fermentum H9 (F-cMRP) synergistically increased the expression of catalase and superoxide dismutase when compared with the high-cholesterol-diet group. Bleeding time, the assay for determination of antithrombotic activity, was significantly prolonged by Maillard-reacted whey protein concentration (wMRP) and wMRP fermented by Lactobacillus gasseri H10 (F-wMRP), similar to the bleeding time of the aspirin group (positive control). In addition, the acute pulmonary thromboembolism-induced mice overcame severe body paralysis or death in both the wMRP and the F-wMRP groups. In the serum-level experiment, cMRP and F-cMRP significantly reduced the serum total and low-density lipoprotein cholesterol levels and triglycerides but had only a slight effect on high-density lipoprotein cholesterol. The levels of aspartate transaminase and alanine transaminase also declined in the cMRP and F-cMRP intake groups compared with the high-cholesterol-diet group. In particular, F-cMRP showed the highest reducing effects on triglycerides, aspartate transaminase, and alanine transaminase. Moreover, the expression of cholesterol-related genes in the F-cMRP group demonstrated greater effects than for the cMRP group in the level of cholesterol 7 α-hydroxylase (CYP7A1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and low-density lipoprotein receptors compared with the high-cholesterol-diet group. The protective role of cMRP and F-cMRP in the high

  17. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  18. Possibility of production of neutron-rich isotopes in transfer-type reactions at intermediate energies

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Lukyanov, S. M.; Penionzhkevich, Yu. E.

    2008-08-15

    The production cross sections of neutron-rich isotopes of Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, and Ti in the multinucleon transfer reactions {sup 48}Ca(64 MeV/nucleon, 140 MeV/nucleon) + {sup 181}Ta and {sup 48}Ca(142 MeV/nucleon) + {sup nat}W are estimated. A good agreement of the calculated results with the available experimental data confirms the mechanism of multinucleon transfer at almost peripheral collisions at intermediate energies. The global trend of production cross section with the charge (mass) number of target in reactions with {sup 48}Ca beam is discussed for the future experiments.

  19. A Quantum State-Resolved Insertion Reaction: O((1)D) + H(2)(J = 0) --> OH((2) product operator product operator product operator, v, N) + H((2)S).

    PubMed

    Liu; Lin; Harich; Schatz; Yang

    2000-09-01

    The O((1)D) + H(2) --> OH + H reaction, which proceeds mainly as an insertion reaction at a collisional energy of 1.3 kilocalories per mole, has been investigated with the high-resolution H atom Rydberg "tagging" time-of-flight technique and the quasiclassical trajectory (QCT) method. Quantum state-resolved differential cross sections were measured for this prototype reaction. Different rotationally-vibrationally excited OH products have markedly different angular distributions, whereas the total reaction products are roughly forward and backward symmetric. Theoretical results obtained from QCT calculations indicate that this reaction is dominated by the insertion mechanism, with a small contribution from the collinear abstraction mechanism through quantum tunneling. PMID:10968786

  20. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  1. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    PubMed

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems. PMID:25310385

  2. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis.

    PubMed

    Onakpoya, Igho J; Heneghan, Carl J; Aronson, Jeffrey K

    2016-07-01

    We have systematically identified medicinal products withdrawn worldwide because of adverse drug reactions, assessed the level of evidence used for making the withdrawal decisions, and explored the patterns of withdrawals over time. We searched PubMed, the WHO database of withdrawn products, and selected texts. We included products that were withdrawn after launch from 1950 onwards, excluding non-human and over-the-counter medicines. We assessed the levels of evidence on which withdrawals were based using the Oxford Center for Evidence Based Medicine Levels of Evidence. Of 353 medicinal products withdrawn from any country, only 40 were withdrawn worldwide. Anecdotal reports were cited as evidence for withdrawal in 30 (75%) and deaths occurred in 27 (68%). Hepatic, cardiac, and nervous system toxicity accounted for over 60% of withdrawals. In 28 cases, the first withdrawal was initiated by the manufacturer. The median interval between the first report of an adverse drug reaction that led to withdrawal and the first withdrawal was 1 year (range 0-43 years). Worldwide withdrawals occurred within 1 year after the first withdrawal in any country. In conclusion, the time it takes for drugs to be withdrawn worldwide after reports of adverse drug reactions has shortened over time. However, there are inconsistencies in current withdrawal procedures when adverse drug reactions are suspected. A uniform method for establishing worldwide withdrawal of approved medicinal products when adverse drug reactions are suspected should be developed, to facilitate global withdrawals. Rapid synthesis of the evidence on harms should be a priority when serious adverse reactions are suspected. PMID:26941185

  3. Kinetic and product distribution analysis of the reaction of atomic hydrogen with vinyl chloride

    SciTech Connect

    Barat, R.B.; Bozzelli, J.W.

    1992-03-19

    An elementary reaction mechanism has been developed to model the experimentally observed loss of vinyl chloride by reaction with atomic hydrogen, as well as the observed products. At the low-pressure, room temperature experimental conditions the consumption of C{sub 2}H{sub 3}Cl by reaction with H occurs primarily by nonipso attack by H on the =CH{sub 2} group to form (CH{sub 3}C{center_dot}HCl){sup {double_dagger}}. This energized complex then undergoes an H shift to form (C{center_dot}H{sub 2}CH{sub 2}Cl){sup {double_dagger}}, which decomposes to form Cl + CH{sub 2}=CH{sub 2}. Collisional stabilization of the original adduct is also important. Abstraction of Cl by H is negligible in these conditions. The authors` mechanism is based on quantum Rice-Ramsperger-Kassel (QRRK) analysis of the reactions of the energized adducts from the separately considered ipso and nonipso additions. The authors also utilized transition-state theory for the isomerization reaction, evaluated with literature rate constants and barriers. The authors extend the QRRK calculations to higher pressures and temperatures for use by the modeling community. A mechanistic pathway is presented to explain the formation of the various reaction products observed. 26 refs., 13 figs., 7 tabs.

  4. Kinetics and Product Yields of the Gas-Phase Reactions of Isoprene Hydroxynitrates and Isoprene Carbonynitrates

    NASA Astrophysics Data System (ADS)

    Abdelhamid, A.; Addala, R.; Vizenor, N.; Scruggs, A.; Tyndall, G. S.; Orlando, J. J.; Le, T.; Cardenas, E.; Maitra, S.; Hasson, A. S.

    2013-12-01

    Isoprene nitrates are formed in the troposphere from the reactions of isoprene with OH in the presence of NOx during the day and with NO3 during the night. Depending on their subsequent reactions, these compounds may be reservoirs or sinks for NOx, and may contribute to secondary organic aerosol formation. In this work, two isoprene hydroxynitrates (CH2=CHC(ONO2)(CH3)CH2OH, 1,2-IHN and CH2OHCH(ONO2)C(CH3)=CH2, 4,3-IHN ) and one isoprene carbonyl nitrate (CH2=CHC(ONO2)(CH3)CHO, ICN)) were synthesized. The kinetics and product yields from their reaction with O3, OH, NO3 and Cl were then investigated in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. Measured rate coefficients are consistent with reaction with OH and NO3 as the major chemical sinks for these compounds. Measured product yields imply that NOx is not released from these compounds in their reactions with atmospheric oxidants.

  5. The calcium-alkali syndrome.

    PubMed

    Arroyo, Mariangeli; Fenves, Andrew Z; Emmett, Michael

    2013-04-01

    The milk-alkali syndrome was a common cause of hypercalcemia, metabolic alkalosis, and renal failure in the early 20th century. It was caused by the ingestion of large quantities of milk and absorbable alkali to treat peptic ulcer disease. The syndrome virtually vanished after introduction of histamine-2 blockers and proton pump inhibitors. More recently, a similar condition called the calcium-alkali syndrome has emerged as a common cause of hypercalcemia and alkalosis. It is usually caused by the ingestion of large amounts of calcium carbonate salts to prevent or treat osteoporosis and dyspepsia. We describe a 78-year-old woman who presented with weakness, malaise, and confusion. She was found to have hypercalcemia, acute renal failure, and metabolic alkalosis. Upon further questioning, she reported use of large amounts of calcium carbonate tablets to treat recent heartburn symptoms. Calcium supplements were discontinued, and she was treated with intravenous normal saline. After 5 days, the calcium and bicarbonate levels normalized and renal function returned to baseline. In this article, we review the pathogenesis of the calcium-alkali syndrome as well as the differences between the traditional and modern syndromes. PMID:23543983

  6. Rate and product measurements for the reactions of OH with I/sub 2/ and ICl at 298 K: separation of gas-phase and surface reaction components

    SciTech Connect

    Loewenstein, L.M.; Anderson, J.G.

    1985-12-05

    The kinetic behavior of OH with I/sub 2/ and ICl is reported within the context of a series of radical-halogen reactions to investigate the mechanism of such reactions through studies of reactivity trends. Atomic I and Cl products of the title reactions are measured by resolved resonance fluorescence vapor lamps. IO and ClO are detected by chemically converting them, using NO, to I and Cl, respectively. The rate constant of the reaction H + ICl has been measured at 298 K; its only product channel is I + HCl. Magnitudes of the rate constants of these OH reactions substantiate the reactivity trends in the OH-halogen system based on an electron-transfer mechanism from the highest occupied molecular orbital of the halogen to the lowest unoccupied orbital of the hydroxyl. The rapidity of the OH + I/sub 2/ reaction makes it a possible source of HOI for photochemical studies. 31 references, 11 figures, 2 tables.

  7. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution

    PubMed Central

    2015-01-01

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: “free” (uncomplexed) CN radicals, and “solvated” CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 1010 M–1 s–1 and transient vibrational spectra in the C=N and C=O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 109 M–1 s–1 obtained from the rise in the HCN product v1(C=N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN–CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  8. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution.

    PubMed

    Dunning, Greg T; Preston, Thomas J; Greaves, Stuart J; Greetham, Gregory M; Clark, Ian P; Orr-Ewing, Andrew J

    2015-12-17

    Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still. PMID:26192334

  9. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition.

    PubMed

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  10. Food Processing and Maillard Reaction Products: Effect on Human Health and Nutrition

    PubMed Central

    Tamanna, Nahid; Mahmood, Niaz

    2015-01-01

    Maillard reaction produces flavour and aroma during cooking process; and it is used almost everywhere from the baking industry to our day to day life to make food tasty. It is often called nonenzymatic browning reaction since it takes place in the absence of enzyme. When foods are being processed or cooked at high temperature, chemical reaction between amino acids and reducing sugars leads to the formation of Maillard reaction products (MRPs). Depending on the way the food is being processed, both beneficial and toxic MRPs can be produced. Therefore, there is a need to understand the different types of MRPs and their positive or negative health effects. In this review we have summarized how food processing effects MRP formation in some of the very common foods. PMID:26904661

  11. Characterization of the products formed by the reaction of trichlorocyanuric acid with 2-propanol.

    PubMed

    Sandercock, P Mark L; Barnett, Julie S

    2009-11-01

    We report a recent investigation into the death of a cat that was initially thought to involve intentionally burning the animal via the use of an ignitable liquid. The exposure of the animal to flame was ruled out. Instead, forensic investigation revealed the intentional mixing together of a common outdoor swimming pool chlorinator, trichlorocyanuric acid (TCCA), and 2-propanol (aka, isopropyl alcohol or rubbing alcohol). The reaction of these two chemicals resulted in the formation of cyanuric acid residue, hydrochloric acid, and the evolution of a significant volume of chlorine gas. Further alpha-chlorination side reactions also occurred between 2-propanol and TCCA to produce a variety of chlorinated 2-propanone species that were detected on the submitted evidence. The identification of the products of both the main reaction and the side reactions allowed the authors to determine what chemicals were originally mixed together by the culprit. PMID:19818110

  12. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  13. Expected production of new exotic α emitters 108Xe and 112Ba in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Kalandarov, Sh. A.; Adamian, G. G.; Antonenko, N. V.; Wieleczko, J. P.

    2016-05-01

    The production cross sections of neutron-deficient isotopes Xe-110108 and Ba-114112 in the complete fusion reactions Ni,5658+54Fe and Ni,5658+58Ni with stable and radioactive beams are studied with the dinuclear system model. The calculated results are compared with the available experimental data. The optimal beam energies and corresponding maximum production cross sections of new isotopes 108Xe and 112Ba are predicted.

  14. [Vigilance for veterinary medicinal products: reports of adverse reactions in the year 2012].

    PubMed

    Müntener, C R; Bruckner, L; Kupper, J; Althaus, F R; Schäublin, M

    2013-11-01

    197 adverse reactions of Swissmedic-authorized veterinary medicinal products were reported during the year 2012 (2011: 167). Species and drug classes remain unchanged over the years: most of the reports related to reactions following the use of antiparasitic products (37.6 %), antiinfectives (15.7 %) or non-steroidal antiinflammatory drugs (11.7 %) in companion animals (94 dogs and 53 cats) followed by cattle/calves (29). Additionally, 45 cases transmitted by the Swiss Toxicological Information Centre in Zürich were processed. We discuss a paradoxical reaction under the potential influence of acepromazine as well as a modified protocol for treating permethrin intoxication in cats. Finally, the vaccinovigilance program received 95 declarations following the application of various vaccines, mainly to dogs or cats. PMID:24168771

  15. Detection and analysis of polymerase chain reaction products by mass spectrometry

    SciTech Connect

    Hurst, G.B., Doktycz, M.J., Britt, P.F., Vass, A.A., Buchanan, M.V.

    1997-02-01

    This paper describes recent and ongoing efforts to overcome some of the obstacles to more routine and robust application of MALDI-TOF to analysis of polymerase chain reaction products and other information- bearing nucleic acid molecules. Methods for purifying nucleic acid samples are described, as is the application of delayed extraction TOF mass spectrometry to analysis of short oligonucleotides.

  16. THE OZONE REACTION WITH BUTADIENE: FORMATION OF TOXIC PRODUCTS. (R826236)

    EPA Science Inventory

    Abstract

    The formation yields of acrolein, 1,2-epoxy-3-butene and OH radicals have been measured from reaction of ozone with 1,3-butadiene at room temperature and atmosphere pressure. 1,3,5-Trimethyl benzene was added to scavenge OH radicals in measurements of product ...

  17. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dimer acid/rosin amidoamine...

  18. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acid/rosin amidoamine...

  19. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dimer acid/rosin amidoamine...

  20. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dimer acid/rosin amidoamine...

  1. 40 CFR 721.9484 - Dimer acid/rosin amidoamine reaction product (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9484 Dimer acid/rosin amidoamine reaction product (generic). (a... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acid/rosin amidoamine...

  2. Production of hydrogen bromide by bromine-methane reactions at elevated temperature.

    SciTech Connect

    Bradshaw, Robert W.; Larson, Richard S.

    2003-05-01

    Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

  3. The reaction product of hydrogen and electro-refined plutonium observed by in situ electron microscopy

    NASA Astrophysics Data System (ADS)

    Brierley, M.; Knowles, J. P.; Preuss, M.

    2016-02-01

    Electro-refined plutonium was reacted with hydrogen within the preparation chamber of a Field Emission Gun Scanning Electron Microscope and in situ images were obtained. The plutonium hydride reaction product was observed to have precipitated at the oxide metal interface as angular particulates (ca 2 μm in length) and was also present within micro cracks intersecting the surface.

  4. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. Alkali metal control over N-N cleavage in iron complexes.

    PubMed

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  8. Alkali Metal Control over N–N Cleavage in Iron Complexes

    PubMed Central

    2015-01-01

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber–Bosch process, there is still ambiguity about the number of Fe atoms involved during the N–N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe–N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N–N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N–N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2. PMID:25412468

  9. Polyol-acid anhydride-n-alkyl-alkylene diamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.; Jenkins, R.H. Jr.

    1987-02-17

    A fuel composition for an internal combustion engine comprising: (a) a major portion of a liquid hydrocarbon fuel and (b) a minor amount, as a deposit inhibitor additive, of a reaction product of a process comprising: (i) reacting a dibasic acid anhydride with a polyol, thereby forming an ester of maleic acid; (ii) reacting the ester of maleic acid with an N-alkyl-alkylene diamine, thereby forming the reaction product; and (iii) recovering the reaction product.

  10. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  11. Products of the gas-phase reactions of O{sub 3} with alkenes

    SciTech Connect

    Atkinson, R.; Tuazon, E.C.; Aschmann, S.M.

    1995-12-01

    Selected products of the gas-phase reactions of a series of alkenes (1-pentene, 1-hexene, 1-heptene, 1-octene, 2,3-dimethyl-l-butene, cyclopentene and 1-methylcyclohexene) with O{sub 3} have been identified and quantified by gas chromatography and in situ Fourier transform infrared absorption spectroscopy. Because OH radicals are formed in these O{sub 3} reactions, experiments were carried out in the presence of sufficient cyclohexane or n-octane to scavenge > 90 % of the OH radicals formed. OH radical formation yields from the O{sub 3}-alkene reactions were derived from the amounts of cyclohexanone and cyclohexanol formed in O{sub 3}-alkene-cyclohexane-air mixtures. The molar yields of the carbonyls products R{sub 1}C(O)R{sub 2} plus HCHO from the O{sub 3} reactions with the five 1-alkenes (R{sub 1}R{sub 2}C=CH{sub 2}) studied were 1.1 {plus_minus} 0.1, as expected from the presently accepted reaction mechanism.

  12. Statistical product-state distributions for ultracold exoergic reactions in external fields

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martinez, Maykel Leonardo; Bonnet, Laurent; Larregaray, Pascal

    2014-05-01

    The first ultracold chemistry experiments were recently performed at JILA, Colorado. Using an ultracold gas of KRb molecules, the group demonstrated strong effects on reaction rates due to quantum statistics, external electric fields, and reduced dimensionality/orientation. While Quéméner and Bohn provided the theoretical interpretation of the observed loss rates, Idziaszek and coworkers, and Gao have developed simple quantum models for reaction rates and identified different universality classes. The most important open question is that of product-state distributions. These are very sensitive to the details of the reaction dynamics and could lead to a deeper understanding of the underlying physics. A priori, a rigorous description of these reactions can be derived from the quantum-mechanical formalism of Tscherbul and Krems. Yet, as argued by Mayle et al., the huge number of rovibrational states involved makes such approach impractical for most cases of current experimental interest. I will discuss our efforts in deriving statistical product-state distributions for ultracold exoergic reactions in external fields. These can be used as benchmarks for the funding assumptions of the theory and provide tests for the statistical arguments of Mayle et al. MLGM acknowledges support from FP7/2007-2013, grant No. 330623.

  13. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    PubMed

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures. PMID:7045641

  14. Study of reactions with neutron production in pp and pd collisions at 1 GeV

    SciTech Connect

    Baturin, V.N.; Koptev, V.P.; Maev, E.M.; Makarov, M.M.; Nelyubin, V.V.; Sulimov, V.V.; Khanzadeev, A.V.; Shcherbakov, G.V.

    1980-02-01

    Absolute doubly differential cross sections for production of neutrons of energy 350--1000 MeV on bombardment of hydrogen and deuterium with 1-GeV protons have been measured at angles 4, 7.5, 11.3, and 13.2/sup 0/. The neutron energy was determined by the time-of-flight method with utilization of the time microstructure of the accelerator beam. Cross sections for neutron production in reactions with meson production were obtained. It is noted that the dominant process in these reactions is the formation of the triangle-open(1232) isobar in the intermediate state. Cross sections for quasielastic knockout of neutrons from deuterium were determined. The contribution of spin-dependent amplitudes to the pn..-->..np charge-exchange cross section was estimated an an angle 0/sup 0/.

  15. Thermonuclear breakup reactions of light nuclei. II - Gamma-ray line production and other applications

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal

    1989-01-01

    The main consequence of nuclear breakup reactions in high-temperature plasmas is shown to be to reduce the production of the gamma-ray lines, due to the breakup of these species at high temperature. Results of the emissivities of all the relevant gamma-ray lines are discussed. It is shown that the magnitude of the breakup effect on the line emissivities depends strongly on temperature, but more importantly on the plasma density and on the available time for the ion processes. Other effects considered include the production of neutrons (from the breakup of helium) and its consequences (such as the production of gamma rays from n-capture reactions and dynamical effects in accretion disk plasmas).

  16. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase.

    PubMed

    Chen, S X; Schopfer, P

    1999-03-01

    Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously. PMID:10103001

  17. Investigation of the use of Maillard reaction inhibitors for the production of patatin-carbohydrate conjugates.

    PubMed

    Seo, Sooyoun; Karboune, Salwa

    2014-12-17

    Selected Maillard reaction inhibitors, including aminoguanidine, cysteine, pyridoxamine, and sodium bisulfite, were evaluated for their effect on the production of carbohydrate conjugated proteins with less cross-linking/browning. Patatin (PTT), a major potato protein, was glycated with galactose, xylose, galactooligosaccharides, xylooligosaccharides, galactan, and xylan under controlled conditions. The effectiveness of the inhibitors to control the glycation reaction was assessed by monitoring the glycation extent, the protein cross-linking, and the formation of dicarbonyl compounds. Sodium bisulfite was the most effective inhibitor for PTT-galactose and PTT-xylan reaction systems (reaction control ratios of 210.0 and 12.8). On the other hand, aminoguanidine and cysteine led to the highest reaction control ratios for the PTT-xylose/xylooligosaccharide (160.0 and 143.0) and PTT-galactooligosaccharides/galactan (663.0 and 71.0) reaction systems, respectively. The use of cysteine and aminoguanidine as inhibitors led to 1.7-99.4% decreases in the particle size distribution of the PTT conjugates and to 0.4-9.3% increases in their relative digestibility, per 5% blocked lysine. PMID:25400165

  18. Ozone deposition velocities, reaction probabilities and product yields for green building materials

    NASA Astrophysics Data System (ADS)

    Lamble, S. P.; Corsi, R. L.; Morrison, G. C.

    2011-12-01

    Indoor surfaces can passively remove ozone that enters buildings, reducing occupant exposure without an energy penalty. However, reactions between ozone and building surfaces can generate and release aerosols and irritating and carcinogenic gases. To identify desirable indoor surfaces the deposition velocity, reaction probability and carbonyl product yields of building materials considered green (listed, recycled, sustainable, etc.) were quantified. Nineteen separate floor, wall or ceiling materials were tested in a 10 L, flow-through laboratory reaction chamber. Inlet ozone concentrations were maintained between 150 and 200 ppb (generally much lower in chamber air), relative humidity at 50%, temperature at 25 °C and exposure occurred over 24 h. Deposition velocities ranged from 0.25 m h -1 for a linoleum style flooring up to 8.2 m h -1 for a clay based paint; reaction probabilities ranged from 8.8 × 10 -7 to 6.9 × 10 -5 respectively. For all materials, product yields of C 1 thru C 12 saturated n-aldehydes, plus acetone ranged from undetectable to greater than 0.70 The most promising material was a clay wall plaster which exhibited a high deposition velocity (5.0 m h -1) and a low product yield (

  19. Effects of Reaction Product During Hydrogenation of Si Surfaces in HF Solution

    NASA Astrophysics Data System (ADS)

    Sugita, Yoshihiro; Watanabe, Satoru

    1998-03-01

    The reaction between the H-terminated Si surfaces and H2SiF6 solution, which is a reaction product of the dissolving SiO2 in the HF solution, was examined. The H2SiF6 solution selectively oxidized the mono-hydride on Si and degraded the hydrophobicity of the surface, while the di-hydride on Si remained stable in the solution. These results explained the crystal orientation dependence of the oxide removal from the Si surface.

  20. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.