Science.gov

Sample records for alkali silicate glass

  1. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  2. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  3. Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Lammert, Heiko; Heuer, Andreas

    2005-12-01

    The mixed-alkali effect in the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed-alkali slow down longer residence times and an increased probability of correlated backjumps are identified. The slow down is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.

  4. Heat capacity, glass transition temperature, size of cooperatively rearranging regions, and network connectivity of sodium silicate and alkali borate glasses

    SciTech Connect

    Borisova, N.V.; Ushakov, V.M.; Shultz, M.M.

    1994-07-01

    The radius of cooperatively rearranging domains at the glass transition in sodium silicate glasses and the number of bridging oxygen atoms in these domains are assessed within the framework of the kinetic theory of thermal fluctuations. The tendencies of the heat capacity, T{sub g}, and the cooperative rearrangement scale with the alkali oxide concentration in sodium silicate and alkali borate glasses are compared. The points of similarity and distinctions between them are revealed.

  5. Thermal history effects on electrical relaxation and conductivity for potassium silicate glass with low alkali concentrations

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.

    1993-01-01

    Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).

  6. Alkali Silicate Glass Coatings for Mitigating the Risks of Tin Whiskers

    NASA Astrophysics Data System (ADS)

    Hillman, Dave; Wilcoxon, Ross; Lower, Nate; Grossman, Dan

    2015-12-01

    Alkali silicate glass (ASG) coatings were investigated as a possible method for inhibiting tin whisker initiation and growth. The aqueous-based ASG formulations used in this study were deposited with equipment and conditions that are typical of those used to apply conventional conformal coatings. Processes for controlling ASG coating properties were developed, and a number of ASG-based coating combinations were applied to test components with pure tin surfaces. Coatings were applied both in a laboratory environment at Rockwell Collins and in a manufacturing environment at Plasma Ruggedized Solutions. Testing in elevated humidity/temperature environments and subsequent inspection of the test articles identified coating combinations that inhibited tin whisker growth as well as other material combinations that actually accelerated tin whisker growth. None of the coatings evaluated in this study, including conventional acrylic and Parylene conformal coatings, completely prevented the formation of tin whiskers. Two of the coatings were particularly effective at reducing the risks of whisker growth, albeit through different mechanisms. Parylene conformal coating almost, but not completely, eliminated whisker formation, and only a few tin whiskers were found on these surfaces during the study. A composite of ASG and alumina nanoparticles inhibited whisker formation to a lesser degree than Parylene, but did disrupt whisker growth mechanisms so as to inhibit the formation of long, and more dangerous, tin whiskers. Additional testing also demonstrated that the conformal coatings had relatively little effect on the dielectric loss of a stripline test structure operating at frequencies over 30 GHz.

  7. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  8. Silicate species of water glass and insights for alkali-activated green cement

    SciTech Connect

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  9. Silicate species of water glass and insights for alkali-activated green cement

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-01

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (˜14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance (29Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO2 footprint cements, i.e. materials based on industrial waste or by-products.

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Thermal cycle stability and chemical compatibility

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Thomsen, E. C.; Williams, R. T.; Choi, J.-P.; Canfield, N. L.; Bonnett, J. F.; Stevenson, J. W.; Shyam, A.; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass containing ∼17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700 and 850 °C using back pressures ranging from 1.4 to 6.8 kPa (0.2-1.0 psi). Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  11. On the structure of defect centers in γ-irradiated alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    Cases, R.; Griscom, D. L.

    1984-02-01

    An EPR study after room temperature γ-irradiation on potassium silicate glasses of two chemical compositions and different 17O and 29Si isotopic enrichments has been carried out. Isochronal anneal experiments on 17O-enriched samples have confirmed the model for the trapped-hole center HC 1 as comprising a trapped hole on a pure 2p π orbital of a single nonbridging oxygen. Besides the well known HC 1 and HC 2 EPR spectra, new resonances have been isolated and identified as due to three types of oxygen-related defects (interstitial O 2- ions; O 2- bonded to the glass network; and interstitial ozonide ions O 3-). Using 29Si-enriched samp simulations a 370 G doublet has been demonstrated to arise from an E'-like defect for which a tentative model is given. The formation of all these defects by irradiation depends on chemical composition of the glass.

  12. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  13. Multilevel Tunnelling Systems and Fractal Clustering in the Low-Temperature Mixed Alkali-Silicate Glasses

    PubMed Central

    2013-01-01

    The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO2)1−x(K2O)x and (SiO2)1−x(Na2O)x glasses indicate the need for a suitable extension of the 2LS-STM. We show that—not only for the magnetic effects, but also for the mixed glasses in the absence of a field—the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. PMID:23861652

  14. Multilevel tunnelling systems and fractal clustering in the low-temperature mixed alkali-silicate glasses.

    PubMed

    Jug, Giancarlo; Paliienko, Maksym

    2013-01-01

    The thermal and dielectric anomalies of window-type glasses at low temperatures (T < 1 K) are rather successfully explained by the two-level systems (2LS) standard tunneling model (STM). However, the magnetic effects discovered in the multisilicate glasses in recent times, magnetic effects in the organic glasses, and also some older data from mixed (SiO₂)(1-x) (K₂O)(x) and (SiO₂)(1-x) (Na₂O)(x) glasses indicate the need for a suitable extension of the 2LS-STM. We show that--not only for the magnetic effects, but also for the mixed glasses in the absence of a field--the right extension of the 2LS-STM is provided by the (anomalous) multilevel tunnelling systems (ATS) proposed by one of us for multicomponent amorphous solids. Though a secondary type of TS, different from the standard 2LS, was invoked long ago already, we clarify their physical origin and mathematical description and show that their contribution considerably improves the agreement with the experimental data. In spite of dealing with low-temperature properties, our work impinges on the structure and statistical physics of glasses at all temperatures. PMID:23861652

  15. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  16. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  17. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Thomsen, E. C.; Choi, J.-P.; Stevenson, J. W.

    2012-01-01

    An alkali silicate glass (SCN-1) is being evaluated as a candidate sealant for solid oxide fuel cell (SOFC) applications. The glass contains about 17 wt.% alkalis (K + Na) and has low glass transition and softening temperatures. It remains vitreous and compliant after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealant. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with yttria stabilized zirconia (YSZ) coating during short term testing. In this study, the compliant glass was further evaluated in a more realistic way in that the sealed couples were first isothermally aged for 1000 h followed by thermal cycling. High temperature leakage was measured. Chemical compatibility was also investigated with powder mixtures to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results. Overall the compliant sealing glass showed desirable chemical compatibility with YSZ coated metallic interconnect of minimum reaction and hermetic behavior at 700-750 °C in dual environment.

  18. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  19. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  20. Effects of ionization on silicate glasses. [Silicate glasses

    SciTech Connect

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  1. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  2. Redox equilibria of multivalent ions in silicate glasses

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.

    1977-01-01

    Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.

  3. Alkali-Activated Aluminium-Silicate Composites as Insulation Materials for Industrial Application

    NASA Astrophysics Data System (ADS)

    Dembovska, L.; Bajare, D.; Pundiene, I.; Bumanis, G.

    2015-11-01

    The article reports on the study of thermal stability of alkali-activated aluminium- silicate composites (ASC) at temperature 800-1100°C. ASC were prepared by using calcined kaolinite clay, aluminium scrap recycling waste, lead-silicate glass waste and quartz sand. As alkali activator, commercial sodium silicate solution modified with an addition of sodium hydroxide was used. The obtained alkali activation solution had silica modulus Ms=1.67. Components of aluminium scrap recycling waste (aluminium nitride (AlN) and iron sulphite (FeSO3)) react in the alkali media and create gases - ammonia and sulphur dioxide, which provide the porous structure of the material [1]. Changes in the chemical composition of ASC during heating were identified and quantitatively analysed by using DTA/TG, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of ASC was determined by XRD. The density of ASC was measured in accordance with EN 1097-7. ASC with density around 560 kg/m3 and heat resistance up to 1100°C with shrinkage less than 5% were obtained. The intended use of this material is the application as an insulation material for industrial purposes at elevated temperatures.

  4. Compositional dependence of in vitro response to commercial silicate glasses

    NASA Astrophysics Data System (ADS)

    Jedlicka, Amy B.

    Materials are often incorporated into the human body, interacting with surrounding fluids, cells and tissues. The reactions that occur between a material and this surrounding biological system are not fundamentally understood. Basic knowledge of material biocompatibility and the controlling processes is lacking. This thesis examines material biocompatibility of a series of silicate-based glasses on a primary level determining cell response to material composition and durability. The silicate glass system studied included two BioglassRTM compositions with known biologically favorable response, two fiberglass compositions, with demonstrated 'not-unfavorable' in vitro response, a ternary soda-lime-silicate glass, a binary alkali silicate glass, and pure silica. Chemical durability was analyzed in three different fluids through solution analysis and material characterization. In vitro response to the substrates was observed. Cell behavior was then directly correlated to the material behavior in cell culture medium under the same conditions as the in vitro test, yet in the absence of cells. The effect of several physical and chemical surface treatments on substrates with predetermined biocompatible behavior was subsequently determined. The chemically durable glasses with no added B2O3 elicited similar cell response as the control polystyrene substrate. The addition of B2O3 resulted in polygonal cell shape and restricted cell proliferation. The non-durable glasses presented a dynamic surface to the cells, which did not adversely affect in vitro response. Extreme dissolution of the binary alkali silicate glass in conjunction with increased pH resulted in unfavorable cell response. Reaction of the Bioglass RTM compositions, producing a biologically favorable calcium-phosphate surface film, caused enhanced cell attachment and spreading. Surface energy increase due to sterilization procedures did not alter cellular response. Surface treatment procedures influencing substrate

  5. Alkali-metal silicate binders and methods of manufacture

    NASA Technical Reports Server (NTRS)

    Schutt, J. B. (Inventor)

    1979-01-01

    A paint binder is described which uses a potassium or sodium silicate dispersion having a silicon dioxide to alkali-metal oxide mol ratio of from 4.8:1 to 6.0:1. The binder exhibits stability during both manufacture and storage. The process of making the binder is predictable and repeatable and the binder may be made with inexpensive components. The high mol ratio is achieved with the inclusion of a silicon dioxide hydrogel. The binder, which also employs a silicone, is in the final form of a hydrogel sol.

  6. Radiation Effects on Transport and Bubble Formation in Silicate Glasses

    SciTech Connect

    Trifunac, A.D.; Shkrob, I.A.; Werst, D.W.

    2001-12-31

    Using advanced magnetic resonance spectroscopies and small-cluster modeling, atomic structure of radiation-induced point defects in alkali borate, silicate, and borosilicate glasses is fully characterized. It is shown that in boron-containing glasses, most of these point defects are electrons/holes trapped by cation/anion vacancies, such as O1 - - O3 + valence-alternation pairs. In microscopically phase-separated borosilicate glasses, radiation-induced defects are found to cluster at the interface between the borate and silicate phases. Reaction and diffusion dynamics of defect-annealing interstitial hydrogen atoms in boron and silica oxide glasses are studied. The yield of radiolytic O2 is estimated. This oxygen is shown to be the final product of triplet exciton decay. Plausible mechanisms for the oxygen bubble formation are put forward. Two practical conclusions relevant for the EMSP mission are made: First, the yield of radiolytic oxygen is shown to be too low to interfere with the storage of vitrified radioactive waste in the first 10 Kyr. Second, microscopic phase separation is demonstrated to increase both the chemical and radiation stability of borosilicate glass.

  7. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  8. The structure of alkali silicate gel by total scattering methods.

    SciTech Connect

    Benmore, C. J.; Monteiro, P. J. M.; X-Ray Science Division; Univ. of California at Berkeley

    2010-01-01

    The structure of the alkali silicate gel (ASR) collected from the galleries of Furnas Dam in Brazil was determined by a pair distribution function (PDF) analysis of high energy X-ray diffraction data. Since this method is relatively new to concrete structure analysis a detailed introduction on the PDF method is given for glassy SiO{sub 2}. The bulk amorphous structure of the dam material is confirmed as no Bragg peaks are observed in the scattered intensity. The real space results show that the local structure of the amorphous material is similar to kanemite (KHSi{sub 2}O{sub 5}:3H{sub 2}O) however the long range layer structure of the crystal is broken up in the amorphous state, so that ordering only persists of the length scale of a few polyhedra. The silicate layer structure is a much more disordered than predicted by molecular dynamics models. The X-ray results are consistent with the molecular dynamics model of Kirkpatrick et al. (2005) [1] which predicts that most of the water resides in pores within the amorphous network rather than in layers. The total scattering data provide a rigorous basis against which other models may also be tested.

  9. Ion-implantation damage in silicate glasses

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.

    Ion implantation is a rapid technique for simulating damage induced by alpha recoil nuclei in nuclear waste forms. The simulation has been found to be quite good in TEM comparisons with natural alpha decay damage in minerals, but leach rate differences have been observed in glass studies and were attributed to dose rate differences. The similarities between ion implantation and recoil nuclei as a means of producing damage suggest that insights into the long term behavior of glass waste forms can be obtained by examination of what is known about ion implantation damage in silicate glasses. This paper briefly reviews these effects and shows that leaching results in certain nuclear waste glasses can be understood as resulting from plastic flow and track overlap. Phase separation is also seen to be a possible consequence of damage induced compositional changes.

  10. Lead-silicate glass optical microbubble resonator

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald; Chormaic, Síle Nic

    2015-02-01

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 105 (single-stem) and 7 × 106 (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  11. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  12. Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.

    PubMed

    Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S

    2015-07-01

    Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts. PMID:26047056

  13. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  14. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    PubMed

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. PMID:25280692

  15. A Calculation of Spatial Range of Colloidal Silicic Acid Deposited Downstream from the Alkali Front

    NASA Astrophysics Data System (ADS)

    Niibori, Yuichi; Iijima, Kazuki; Tamura, Naoyuki; Mimura, Hitoshi

    A high alkali domain spreads out due to the use of cement materials for the construction of the repository of radioactive wastes. Sudden change of pH at this alkali front produces colloidal silicic acid (polymeric silicic acid) in addition to the deposition of supersaturated monomeric silicic acid onto the fracture surface of flow-pathway. The colloidal silicic acid also deposits with relatively small rate-constant in the co-presence of solid phase. Once the flow-path surface is covered with the amorphous silica, the surface seriously degrades the sorption behavior of radionuclides (RNs). Therefore, so far, the authors have examined the deposition rates of supersaturated silicic acid. This study summarized the deposition rate-constants defined by the first-order reaction equation under various conditions of co-presence of amorphous silica powder. Then, using the smallest rate-constant (1.0×10-12 m/s in the co-presence of calcium ions of 1 mM) and a simulation code, COLFRAC-MRL, the spatial range of colloidal silicic acid deposited downstream from the alkali front was estimated. The results suggested the clogging caused by the deposition of colloidal silicic acid in flow-path. The altered spatial range in the flow-path was limited to around 30 m in fracture and to several centimeters in rock matrix.

  16. Temperature dependence of elastic properties in alkali borate binary glasses

    NASA Astrophysics Data System (ADS)

    Kawashima, Mitsuru; Matsuda, Yu; Kojima, Seiji

    2011-05-01

    The elastic properties of alkali borate glasses, xM 2O·(100 - x)B 2O 3 (M = Li, Na, K, Rb, Cs, x = 14, 28), have been investigated by Brillouin scattering spectroscopy from room temperature up to 1100 °C. Above the glass transition temperature, Tg, the longitudinal sound velocity, VL, decreases markedly on heating. Such significant changes of the elastic properties result from the breakdown of the glass network above Tg. Alkali borate family with the same x shows the similar behavior in the temperature variations of VL up to around Tg. The absorption coefficient, αL, increases gradually above Tg. With the increase of the size of an alkali ion, the slope of VL just above Tg decreases. Since the fragility is related to the slope, the present results suggest that the fragility of alkali borate glasses increases as the size of alkali ion decreases. Such an alkali dependence of the fragility is discussed on the basis of the fluctuation of the boron coordination number.

  17. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Borsella, E.; Dal Vecchio, A.; Garcı̀a, M. A.; Sada, C.; Gonella, F.; Polloni, R.; Quaranta, A.; van Wilderen, L. J. G. W.

    2002-01-01

    Copper-alkali ion exchange is used for doping superficial layers of different silicate glasses (commercial soda-lime and BK7) with copper ions. Spectroscopic and time-resolved photoluminescence properties of the obtained systems are studied in the range of 80-294 K. Analysis indicates the presence of Cu+ ions located in distorted octahedral sites, and a different position of the triplet electronic levels for the two glass matrices. The luminescence decay-time signal is simulated by a biexponential behavior, interpreted on the basis of a four-level scheme.

  18. Raman Analysis of Perrhenate and Pertechnetate in Alkali Salts and Borosilicate Glasses

    SciTech Connect

    Gassman, Paul L.; McCloy, John S.; Soderquist, Chuck Z.; Schweiger, Michael J.

    2014-01-03

    Sodium borosilicate glasses containing various concentrations of rhenium or technetium were fabricated, and their vibrational spectra studied using a Raman microscope. Spectra were interpreted with reference to new high resolution measurements of alkali pertechnetates and perrhenates NaReO4, KReO4, NaTcO4, and KTcO4. At low concentrations of ReO4- or TcO4-, glass spectra show weak peaks superimposed on a dominant spectrum of glass characteristic of silicate and borate network vibrations. At high concentrations, sharp peaks characteristic of crystal field splitting and C4h symmetry dominate the spectra of glasses, indicating alkali nearby tetrahedral Re or Tc. Often peaks indicative of both the K and Na pertechnetates/ perrhenates are evident in the Raman spectrum, with the latter being favored at high additions of the source chemical, since Na is more prevalent in the glass and ion exchange takes place. These results have significance to immobilization of nuclear waste containing radioactive 99Tc in glass for ultimate disposal.

  19. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  20. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  1. Alkali-lead-iron phosphate glass and associated method

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  2. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  3. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.

    PubMed

    Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu Raman; Pascual, Maria J; Kim, Hae-Won; Ferreira, José M F

    2012-01-01

    An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO(2)-P(2)O(5)-CaF(2) along the diopside (CaMgSi(2)O(6))-fluorapatite (Ca(5)(PO(4))(3)F)-tricalcium phosphate (3CaO·P(2)O(5)) join. The silicate network in all the investigated glasses is predominantly coordinated in Q(2) (Si) units, while phosphorus tends to remain in an orthophosphate (Q(0)) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite formation on their surface within 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis and hot-stage microscopy, respectively while the crystalline phase evolution in resultant glass-ceramics has been studied in the temperature range of 800-900°C using powder X-ray diffraction and scanning electron microscopy. The alkaline phosphatase activity and osteogenic differentiation for glasses have been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as-designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/glass-ceramic scaffolds. PMID:21925626

  4. Interpretation of the IR spectra of alkali borate glasses

    SciTech Connect

    Chekhovskii, V.G.

    1985-11-01

    This paper describes methods of interpretation of the IR spectra of alkali borate glasses. In view of the difficulties which are encountered in a strict interpretation of the IR spectra of crystalline oxygen-containing compounds with complex anions, semiempirical methods of interpretation are commonly used. The existence of glasses of groups with an atomic (ionic) arrangement close to that in the crystalline compounds makes it possible to a certain extent to use the spectra of crystalline compounds in the interpretation of the IR spectra of glasses. The alkali borate glass systems were chosen for this study because the information on their structure is the most detailed by comparison with other borate glasses. IR spectrospcopy showed that the spectral regions in which fundamental asymmetrical stretching vibrations in BO/sub 3/ and BO/sub 4/ polyhedra occur, in most cases, are fairly clearly defined independently of the combined or separate presence of these polyhedra. It is proposed that the bands in the IR spectra of sodium and lithium borate glasses be assigned to vibrations mostly localized on specific fragments of polyborate groups present in the glasses. The data from IR spectroscopy confirms that tetraborate groups are present in lithium borate glasses.

  5. Vibrational spectra and the structure of alkali borate glasses

    SciTech Connect

    Kolesova, V.A.

    1986-11-01

    This paper presents systematic data on the IR-absorption spectra of lithium borate glasses. Lithium borate glasses were synthesized from Li/sub 2/CO/sub 3/ and H/sub 3/BO/sub 3/ in Pt crucibles at temperatures from 800 to 1050 C. It was possible in the lithium borate system to obtain glasses continuing significantly more M/sub 2/O than the glasses in the sodium or potassium borate system. An analysis of the data on Raman spectra of alkali borate glasses suggests that the addition of M/sub 2/O to a B/sub 2/O/sub 3/ glass produces network disorder, the replacement of the boroxyl rings by rings of another configuration and the formation of BO/sub 4/ tetrahedra.

  6. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  7. Synthesis and studies on microhardness of alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Subhashini, Bhattacharya, Soumalya; Shashikala, H. D.; Udayashankar, N. K.

    2014-04-01

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi2O+yNa2O+80B2O3 (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li2O and Na2O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO4/2)- into (BO3/2)-. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  8. Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation

    SciTech Connect

    Goel, Ashutosh; Kapoor, Saurabh; Rajagopal, Raghu R.; Pascual, Maria J.; Kim, Hae-Won; Ferreira, Jose M.

    2011-08-25

    An alkali-free series of bioactive glasses has been designed and developed in the glass system CaO-MgO-SiO2-P2O5-CaF2 along diopside (CaMgSi2O6) – fluorapatite [Ca5(PO4)3F] – tricalcium phosphate (3CaO•P2O5) join. The silicate network in all the investigated glasses is predominantly coordinated in Q2 (Si) units while phosphorus tends to remain in orthophosphate (Q0) environment. The in vitro bioactivity analysis of glasses has been made by immersion of glass powders in simulated body fluid (SBF) while chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Some of the investigated glasses exhibit hydroxyapatite (HA) formation on their surface with in 1-12 h of their immersion in SBF solution. The sintering and crystallization kinetics of glasses has been investigated by differential thermal analysis (DTA) and hot-stage microscopy (HSM), respectively while the crystalline phase evolution in resultant glass-ceramics (GCs) has been studied in the temperature range of 800-900 oC using powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The cell growth and osteogenic differentiation for glasses has been studied in vitro on sintered glass powder compacts using rat bone marrow mesenchymal stem cells. The as designed glasses are ideal candidates for their potential applications in bone tissue engineering in the form of bioactive glasses as well as glass/GC scaffolds.

  9. Durability of Silicate Glasses: An Historical Approach

    SciTech Connect

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  10. Compositional dependence of Judd-Ofelt parameters in silicate, borate, and phosphate glasses

    SciTech Connect

    Takebe, Hiromichi; Nageno, Yoshikazu; Morinaga, Kenji

    1995-05-01

    Judd-Ofelt parameters {Omega}{sub t} with t = 2, 4, 6 for the rare-earth ions Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Er{sup 3+}, and Tm{sup 3+} in alkali and/or alkaline-earth silicate, borate, and phosphate glasses have been determined. The variations of {Omega}{sub t} with the number of 4{line_integral} electrons of the rare-earth ions are demonstrated, and factors affecting the Judd-Ofelt parameters {Omega}{sub 6} are discussed. The intensity parameter {Omega}{sub 6} depends on the ionic packing ratio of the glass host by changing modifier type in silicate and borate glasses, and it is independent of that in a series of borate glasses as a function of modifier content and phosphate glasses. The peak wavenumber of the transitions whose intensities are determined mainly by the {Omega}{sub 6} < {parallel}U{sup (6)}{parallel}>{sup 2} term-where <{parallel}U{sup (6)}{parallel}> is one of the reduced matrix elements--shift systematically with the values of {Omega}{sub 6} for all the rare-earth ions.

  11. Origin and consequences of silicate glass passivation by surface layers

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-02-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal.

  12. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  13. Origin and consequences of silicate glass passivation by surface layers.

    PubMed

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  14. Mixed alkali effect in glasses containing MnO2

    NASA Astrophysics Data System (ADS)

    Reddy, M. Sudhakara; Rajiv, Asha; Veeranna Gowda, V. C.; Chakradhar, R. P. S.; Reddy, C. Narayana

    2013-02-01

    Glass systems of the composition xLi2O-(25-x)K2O-70(0.4ZnO+0.6P2O5)+5MnO2 (x = 4,8,12,16 and 20 mol %) have been prepared by melt quenching technique. The thermal and mechanical properties of the glasses have been evaluated as a function of mixed alkali content. Glass transition temperature and Vickers's hardness of the glasses show a pronounced deviation from linearity at 12 mol% Li2O. Theoretically estimated elastic moduli of the glasses show small positive deviations from linearity. MAE in these properties has been attributed to the localized changes in the glass network. The absorption spectra of Mn2+ ions in these glasses showed strong broad absorption band at 514 nm corresponding to the transition 6A1g(S)→4T1g(G), characteristic of manganese ions in octahedral symmetry. The fundamental absorption edge in UV region is used to study the optical transitions and electronic band structure. From UV absorption edge, optical band gap energies have been evaluated. Band gap energies of the glasses have exhibited MAE and shows minimum value for 12 mol% Li2O glass.

  15. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  16. RADIATION EFFECTS ON TRANSPORT AND BUBBLE FORMATION IN SILICATE GLASSES

    EPA Science Inventory

    The objective of the research is to discover the molecular details of chemistry induced by -, γ-, and neutron-irradiation of silicate glasses. The ionization and ballistic effects of radiation will be studied from the viewpoint of defect formation and transport properties. D...

  17. Using petroleum hydrocarbons for thermochemical treatment of silicate glasses

    SciTech Connect

    Gorokhovskii, A.V.; Polyakov, K.V.

    1987-11-01

    The authors investigate the use of vaporized gasoline as a reagent in the surface treatment of silicate glasses for the purpose of enhancing the chemical and temperature stability of the glasses during their use as catalysts in heterogeneous catalysis processes. The performance of the treatment is found to increase proportionately with aluminum and boron oxide content in the glasses tested. The use of the gasoline fraction is assessed against ethylene and is found to be economically superior. It is recommended that the original gasoline fraction, as opposed to the final ethylated product, be used, in order to eliminate the presence of toxic lead compounds in the vapor.

  18. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-01-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  19. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    SciTech Connect

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A; Vuono, Daniel J

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.

  20. A-thermal elastic behavior of silicate glasses

    NASA Astrophysics Data System (ADS)

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-01

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm-1 in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si4+ ions by Al3+ and Na+ ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.

  1. A-thermal elastic behavior of silicate glasses.

    PubMed

    Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique

    2016-02-24

    Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties. PMID:26815634

  2. Carbonate-silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Dawson, J. Barry

    2012-11-01

    Phenocrysts of garnet, pyroxene and nepheline in peralkaline nephelinite from the Nasira parasitic cones at Oldoinyo Lengai contain quenched immiscible silicate (peralkalinity = 2-13) and Na-Ca-carbonate melts. Their bulk compositions further define the limits of liquid immiscibility for peralkaline carbonated nephelinite magmas and confirm this process was operative at Oldoinyo Lengai during older stages of activity. Groundmass glasses in Nasira nephelinites are peralkaline (peralkalinity = 5.5-9.5) but less evolved than melt inclusion glasses (peralkalinity = 8-13) in nepheline phenocrysts, implying that these magmas are hybrids formed by magma mixing. Groundmass glass in diverse peralkaline combeite nephelinite ash clasts with and without melilite and/or wollastonite formed in the January-June 2008 eruptions of Oldoinyo Lengai are also exceptionally peralkaline. Two trends in their compositions are evident: (1) increasing peralkalinity from 6 to 10 with SiO2 decreasing from 42 to 33 wt.%; (2) increasing peralkalinity from 6 to 16 with SiO2 decreasing from 45 to 40 wt.%. All recent glasses are considered to be more evolved than groundmass glass in Nasira combeite nephelinite. These data indicate that several varieties of nephelinite exist at Oldoinyo Lengai. Their parental magmas are considered to have been initially enriched in alkalis during partial melting of their metasomatized asthenospheric sources and further by subsequent assimilation, or re-solution, of previously exsolved natrocarbonatite melt in the magma chamber(s) underlying Oldoinyo Lengai. On this basis, none of the bulk compositions of peralkaline stage II lavas at Oldoinyo Lengai, including Nasira, are considered to represent those of liquids as their compositions are determined by rheological factors (phenocryst accumulation; cumulate disruption) and assimilation processes. The formation of combeite is considered to be a consequence of natrocarbonatite melt assimilation.

  3. Entropy and structure of silicate glasses and melts

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Hemingway, B.S.

    1993-01-01

    Low-temperature adiabatic Cp measurements have been made on NaAlSi2O6, MgSiO3, Ca3Al2Si3O12 and Ca1.5Mg1.5Al2Si3O12 glasses. Above about 50 K, these and previous data show that the heat capacity is an additive function of composition to within ??1% throughout the investigated glassforming part of the system CaO-MgO-Al2O3-SiO2. In view of the determining role of oxygen coordination polyhedra on the low-temperature entropy, this is interpreted as indicating that Si and Al are tetrahedrally coordinated in all these glasses, in agreement with structural data; whereas Ca and Mg remain octahedrally coordinated. In contrast, heat capacities and entropies are not additive functions of composition for alkali aluminosilicates, indicating increases in the coordination numbers of alkali elements from about six to nine when alumina is introduced. A thermochemical consequence of additivity of vibrational entropies of glasses is that entropies of mixing are essentially configurational for calcium and magnesium aluminosilicate melts. For alkali-bearing liquids, it is probable that vibrational entropies contribute significantly to entropies of mixing. At very low temperatures, the additive nature of the heat capacity with composition is less well followed, likely as a result of specific differences in medium-range order. ?? 1993.

  4. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  5. Intrinsic Impurities in Glass Alkali-Vapor Cells

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.; Jau, Y.-Y.; Happer, W.

    2007-07-01

    We report NMR measurements of metallic Cs133 in glass cells. The solid-liquid phase transition was studied by observing the NMR peaks arising from these two phases; surprisingly, many cells yielded two additional NMR peaks below the melting point. We attribute these signals to two distinct impurities which can dissolve in the liquid alkali metal and affect its chemical shift. Intentional contamination of cesium cells with O2 confirms this hypothesis for one peak. The other contaminant remains unknown but can appear in evacuated cells. Similar effects have been seen in Rb87 cells.

  6. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-05-01

    Tellurite glasses have historically been shown to host large concentrations of halides. They are here considered for the first time as a waste form for immobilizing chloride wastes, such as may be generated in the proposed molten alkali salt electrochemical separations step in nuclear fuel reprocessing. Key properties of several tellurite glasses are determined to assess acceptability as a chloride waste form. TeO2 glasses with other oxides (PbO, Al2O3 + B2O3, WO3, P2O5, or ZnO) were fabricated with and without 10 mass% of a simulated (non-radioactive) mixed alkali, alkaline-earth, and rare earth chloride waste. Measured chemical durability is compared for the glasses, as determined by the product consistency test (PCT), a common standardized chemical durability test often used to validate borosilicate glass waste forms. The glass with the most promise as a waste form is the TeO2-PbO system, as it offers good halide retention, a low sodium release (by PCT) comparable with high-level waste silicate glass waste forms, and a high storage density.

  7. Bismuth-doped Mg - Al silicate glasses and fibres

    SciTech Connect

    Bufetov, Igor' A; Vel'miskin, V V; Galagan, B I; Denker, B I; Sverchkov, S E; Semjonov, S L; Firstov, Sergei V; Shulman, I L; Dianov, Evgenii M

    2012-09-30

    This paper compares the optical properties of bulk bismuth-doped Mg - Al silicate glasses prepared in an iridium crucible to those of optical fibres prepared by the powder-in-tube method and having a core identical in composition to the glasses. The bulk glasses and fibres are shown to be similar in luminescence properties. The optical loss in the fibres in their IR luminescence band is about one order of magnitude lower than that in the crucible-melted glasses. The level of losses in the fibres and their luminescence properties suggest that such fibres can be made to lase near 1.15 {mu}m. (optical fibres, lasers and amplifiers. properties and applications)

  8. Fluorescence properties of Eu3+-doped alumino silicate glasses

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Kuhn, Stefan; Tiegel, Mirko; Rüssel, Christian

    2014-11-01

    Alumino silicate glasses of a very broad range of molar compositions doped with 1 ṡ 1020 Eu3+ cm-3 (about 0.2 mol% Eu2O3) were prepared. As network modifier oxides Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, ZnO, PbO, Y2O3 and La2O3 have been used. All glasses show relatively broad fluorescence excitation and emission spectra. For most glasses only a weak effect of the glass composition on the excitation and emission spectra is observed. Although the glasses should be structurally similar, notable differences are found for the fluorescence lifetimes. These increase steadily with decreasing mean atomic weight, decreasing refractive index and decreasing optical basicity of the glasses, which may be explained by local field effects. An exception from this rule are the strontium, barium and potassium containing glasses, which show significantly increased fluorescence lifetimes despite of their high refractive index, optical basicity and molecular weight. The non mono-exponential fluorescence decay curves as well as the fluorescence spectra indicate a massive change in the local surroundings of the doped rare earth ions for these glasses.

  9. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  10. Steps toward interstellar silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition

    NASA Astrophysics Data System (ADS)

    Jaeger, C.; Mutschke, H.; Begemann, B.; Dorschner, J.; Henning, Th.

    1994-12-01

    Although extrasolar silicates were detected more than 25 years ago, important questions concerning chemical composition, material properties, and grain structure are still without reliable answers. The most important of these questions are listed at the beginning of this paper because they play decisive roles as guide-posts for the silicate research program of the Jena laboratory astrophysics group. This paper communicates the first results of this program aimed at a closer mineralogical characterization of the interstellar/circumstellar silicates that have been observed in different types of objects. In this first approach, pyroxene glass samples, the cation content of which reflects mean cosmic proportions of the four most abundant metals, have been prepared and analytically characterized. They are expected to be good candidates for matching the silicate spectra of star-forming regions and young stellar objects (YSOs). For the pyroxene glass, optical constants from 250 nm to 500 micrometers have been determined. Particles having sizes within the Rayleigh limit show broad bands peaking at 9.5 and 18.8 micrometers. For the sake of comparison, a crystalline sample of the same composition was also measured. Its narrow bands are positioned at 9.4, 10.5, 11.1, 13.7, 15.6, 18.1, 19.5, 26.5, 29.5, 37.5, and 49 micrometers in agreement with expectations for a chemical composition corresponding to hypersthene. In addition to the vibration bands weak crystal field bands at 1 and 2 micrometers due to Fe(2+) have also been detected for the pyroxene glass. If these bands were detectable in interstellar and circumstellar sources they would offer a unique possibility of discriminating the pyroxene-type from the olivine-type silicates. The FIR absorption coefficient measured for the glass sample turned out to be proportional to lambda-2. The centroids of the 10 and 19 micrometer bands of the pyroxene glass satisfactorily match those observed in the Orion Trapezium and massive

  11. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOEpatents

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  12. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  13. The nature, fabrication, and applications of photosensitive, bulk, germano-silicate glass

    NASA Astrophysics Data System (ADS)

    Heaney, Alan Douglas

    2000-08-01

    The photosensitive nature of germano-silicate glass is widely used to create fiber-optic devices. This thesis examines the cause of photosensitivity in germano- silicate glass. The results of this research elucidate the role that germanium oxygen deficient defects play in the photosensitivity of hydrogen-loaded, germano-silicate glass. We find that defects are not vital to the photosensitivity of hydrogen-loaded, germano-silicate glass but they do enhance the effect. Quantitative measurements show that germanium oxygen deficient defects promote the formation of OH, GeH, and GeH2 when hydrogen-loaded, germano-silicate glass is exposed to ultraviolet light. A sol-gel process for fabricating germano-silicate glass in bulk samples has been developed. The sol-gel process produces high-quality, germano-silicate glass which can be tailored to contain defects or be relatively free of defects. Control over the glass defect concentration allows us to use sol-gel derived glass for comparative studies of the photosensitive process and for device applications. The unique properties of germano-silicate glass make it a likely choice for use in optical applications. To prove the feasibility of bulk devices, chirped-pulse amplification is demonstrated using gratings written in bulk germano-silicate glass.

  14. Silicate melt inclusions and glasses in lunar soil fragments from the Luna 16 core sample

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1972-01-01

    More than 2000 fragments were studied microscopically, and electron microprobe analyses were made of 39 selected areas, from a few square mm of polished surface, through 75- to 425-??m fragments of lunar soil from two samples of the Luna 16 core. The silicate melt inclusions and glasses differ in important details from those observed earlier in the Apollo samples. Melt inclusions in olivine contain epitaxially oriented daughter crystals, but also show a similar epitaxy around the outside of the crystals not observed in previous lunar samples. Melt inclusions in ilmenite suggest trapping at successive stages in a differentiation sequence. There is abundant evidence for late-stage silicate liquid immiscibility, with melt compositions similar but not identical to those from Apollo 11 and 12. A comparison of the alkali ratio of any given bulk rock analysis with that of its late-stage, high-silica melt shows gross differences for different rocks. This is pertinent to understanding late-stage differentiation processes. Glass fragments and spherules exhibit a wide range of crystallization textures, reflecting their wide range of compositions and cooling histories. No significant differences were found between the two portions of core examined (Zones A and D). ?? 1972.

  15. SON68 glass dissolution driven by magnesium silicate precipitation

    NASA Astrophysics Data System (ADS)

    Fleury, Benjamin; Godon, Nicole; Ayral, André; Gin, Stéphane

    2013-11-01

    Experimental results are reported on the effect of magnesium silicate precipitation on the mechanisms and rate of borosilicate glass dissolution. Leaching experiments with SON68 glass, a borosilicate containing no Mg, were carried out in initially deionized water at 50 °C with a glass-surface-area-to-solution-volume ratio of 20,000 m-1. After 29 days of alteration the experimental conditions were modified by the addition of Mg to trigger the precipitation of Mg-silicate. Additional experiments were conducted to investigate the importance of other parameters such as pH or dissolved silica on the mechanisms of precipitation of Mg-silicates and their consequences on the glass dissolution rate. Mg-silicates precipitate immediately after Mg is added. The amount of altered glass increases with the quantity of added Mg, and is smaller when silicon is added in solution. A time lag is observed between the addition of magnesium and the resumption of glass alteration because silicon is first provided by partial dissolution of the previously formed alteration gel. It is shown that nucleation does not limit Mg-silicate precipitation. A pH above 8 is necessary for the phase to precipitate under the investigated experimental conditions. On the other hand the glass alteration kinetics limits the precipitation if the magnesium is supplied in solution at a non-limiting rate. The concentration of i in solution was analyzed as well as that of boron. The quantity of i released from the glass is estimated with the assumption that i and B are released congruently at the glass dissolution front. The remained quantity of the element i is then supposed to be in the gel or in the secondary phase. In this paper, we do not make a difference between gel and hydrated glass using the same word 'gel' whereas Gin et al. [40] makes this difference. Recent papers [40,41] discussed about different key issues related to the passivation properties of the alteration layer including the hydrated glass

  16. Spectroscopic investigations of Nd(3+)-doped alkali chloroborophosphate glasses.

    PubMed

    Moorthy, L R; Rao, T S; Jayasimhadri, M; Radhapathy, A; Murthy, D V R

    2004-09-01

    Optical absorption spectra were studied in wavelength region 400-900 nm for the Nd(3+)-doped alkali (R = Li, Na and K) chloroborophosphate glasses at room temperature. The energy level scheme of the 4f(3) electron configuration was deduced from the observed energy level data using a parametrized Hamiltonian (H(F1)) model which includes 20 free-ion interaction parameters. Reasonable correlation was obtained between the experimental and calculated energy levels. The Judd-Ofelt model for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters Omega(2), Omega(4) and Omega(6) for each glass. Using these parameters, the total radiative transition rates (A(T)), non-radiative relaxation rates (W(NR)), branching ratios (beta(R)), integrated cross-sections for the stimulated emission (Sigma), excited state emission intensities (f(ESE)) and excited state absorption intensities (f(ESA)) have been theoretically calculated for certain excited Nd(3+) fluorescent levels. From the results obtained, the conclusion is made about the possibility of using these glasses as laser media. PMID:15294227

  17. High thermal neutron flux effects on structural and macroscopic properties of alkali-borosilicate glasses used as neutron guide substrate

    NASA Astrophysics Data System (ADS)

    Boffy, R.; Peuget, S.; Schweins, R.; Beaucour, J.; Bermejo, F. J.

    2016-05-01

    The behaviour of four alkali-borosilicate glasses under homogeneous thermal neutron irradiation has been studied. These materials are used for the manufacturing of neutron guides which are installed in most facilities as devices to transport neutrons from intense sources such as nuclear reactors or spallation sources up to scientific instruments. Several experimental techniques such as Raman, NMR, SANS and STEM have been employed in order to understand the rather different macroscopic behaviour under irradiation of materials that belong to a same glass family. The results have shown that the remarkable glass shrinking observed for neutron doses below 0.5 ·1018 n/cm2 critically depends upon the presence of domains where silicate and borate network do not mix.

  18. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    SciTech Connect

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  19. Sound velocity and structure measurement of silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Kono, Y.; Wang, Y.; Park, C.; Yu, T.; Jing, Z.; Shen, G.

    2012-12-01

    The degree of polymerization in silicate melt/glass is one of the most important parameters to understand the magma behavior. For silicate melts at ambient pressure, the degree of polymerization is highly related to composition, which is quantitatively described by a ratio of non-bridging oxygen (NBO) to tetrahedrally cation (T). In particular, the NBO/T is widely used to obtain viscosity information of various silicate melts and discuss the magma mobility in the Earth's interior. Several viscometry studies reported that polymerized melts showed much higher values of viscosity than those of depolymerized ones. Interestingly, it should be noted that the pressure dependence of the high viscosity of polymerized melts was shown to be negative. This gives important questions of the compression effect on the degree of polymerization and its effects on properties of silicate melts. In this study, we have measured the sound velocity of polymerized glass (jadeite and albite glass: NBO/T=0) and depolymerized glass (diopside glass: NBO/T=2) at pressures up to 10 GPa by using ultrasonic technique and synchrotron radiation with a Paris-Edinburgh press. We have also obtained the X-ray structure factor, S(Q), of these glasses by using energy-dispersive X-ray diffraction method in order to understand structural changes in the intermediate-range order with pressure. All experiments were conducted using a Paris-Edinburgh press, which is installed at the HPCAT 16-BM-B beamline, Advanced Photon Source (APS). High pressure sound velocity measurements were carried out using the ultrasonic pulse-echo-overlap method. Radiography images taken by CCD camera allowed us to calculate the sample length under high pressure. Pressure was determined by the equation of state of gold, which was located below the sample. The scattered X-rays were detected using a Ge solid state detector (Ge-SSD) with a 4096 multi-channel analyzer. Ultrasonic signals were generated and received by a LiNbO3 transducer

  20. Nickel speciation in multi-oxydes components silicate glasses: new UV-VIS-NIR spectroscopic results and geochemical implications

    NASA Astrophysics Data System (ADS)

    Antoine, Bénard; Laurence, Galoisy; Georges, Calas

    2010-05-01

    Silicate glasses are usually considered as good analogues for natural melts and thus frequently synthesized to study their structural properties. The optical spectra of Nickel are well constrained in crystal phases [1]. Only recent studies permit real advances of Ni speciation in glasses [2, 3]. In alkali and alkaline-earth silicate glasses, Ni2+is always found as predominantly [5]Ni2+ with some minor [4]Ni2+, whereas in borosilicate and borate glasses with the same network modifying cations, Nickel could be observed as [4]Ni2+, [5]Ni2+ and/or [6]Ni2+, depending on the glass composition and especially on the proportion and nature of alkali/ alkaline-earth cations. The short-range structure of a new large compositional range of Ni-doped (1000 ppm) multi-oxides silicate glasses has been investigated by UV-VIS-NIR spectroscopy. The glasses were synthesized to study the separate and combined influences of alkali (K, Na), alkaline-earth elements (Ca, Mg) and Al on Ni speciation. First, our spectral results on non-magnesian system confirm a high [4]Ni2+ content in silico-potassic (11.5 to 28.7 wt.% K2O) glasses compared to the predominance of [5]Ni2+ (± [4]Ni2+) in purely silico-sodic glasses (15 to 27.5 wt.% Na2O) and a mixing of variable proportions of [4]Ni2+ and [5]Ni2+ in mixed chemical compositions (Si-K-Ca and Si-Na-Ca with each element varying independently from ~10 to ~25 wt.%). Mixed Si-K-Ca glasses (fixed ~10 wt.% K2O and 9.1 to 26.4 wt.% CaO) show significant [5]Ni2+ spectral band appearance with the increase of Ca concentration. At constant Ca (~10 wt.% CaO) and variable K (14.3 to 29.7 wt.% K2O), [4]Ni2+ spectral band intensities remain predominant. Na rich silicate glasses always favor [5]Ni2+while, for high K concentration, Ni2+ is mainly found as [4]Ni2+. This behaviour of Ni2+ as a function of glass composition is coherent with [4]Ni2+ being predominant in presence of large charge compensating, low field strength cations such as K. In that case, Ni2

  1. Enzyme stabilization by glass-derived silicates in glass-exposed aqueous solutions

    USGS Publications Warehouse

    Ives, J.A.; Moffett, J.R.; Arun, P.; Lam, D.; Todorov, T.I.; Brothers, A.B.; Anick, D.J.; Centeno, J.; Namboodiri, M.A.A.; Jonas, W.B.

    2010-01-01

    Objectives: To analyze the solutes leaching from glass containers into aqueous solutions, and to show that these solutes have enzyme activity stabilizing effects in very dilute solutions. Methods: Enzyme assays with acetylcholine esterase were used to analyze serially succussed and diluted (SSD) solutions prepared in glass and plastic containers. Aqueous SSD preparations starting with various solutes, or water alone, were prepared under several conditions, and tested for their solute content and their ability to affect enzyme stability in dilute solution. Results: We confirm that water acts to dissolve constituents from glass vials, and show that the solutes derived from the glass have effects on enzymes in the resultant solutions. Enzyme assays demonstrated that enzyme stability in purified and deionized water was enhanced in SSD solutions that were prepared in glass containers, but not those prepared in plastic. The increased enzyme stability could be mimicked in a dose-dependent manner by the addition of silicates to the purified, deionized water that enzymes were dissolved in. Elemental analyses of SSD water preparations made in glass vials showed that boron, silicon, and sodium were present at micromolar concentrations. Conclusions: These results show that silicates and other solutes are present at micromolar levels in all glass-exposed solutions, whether pharmaceutical or homeopathic in nature. Even though silicates are known to have biological activity at higher concentrations, the silicate concentrations we measured in homeopathic preparations were too low to account for any purported in vivo efficacy, but could potentially influence in vitro biological assays reporting homeopathic effects. ?? 2009 The Faculty of Homeopathy.

  2. Tin-containing silicates: alkali salts improve methyl lactate yield from sugars.

    PubMed

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian M; Fristrup, Peter; Holm, Martin S; Taarning, Esben

    2015-02-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the catalyst or directly to the solvent mixture to achieve the highest reported yield of methyl lactate (ca. 75 %) from sucrose at 170 °C in methanol. The beneficial effect of adding alkali to the reaction media applies not only to highly defect-free Sn-Beta prepared through the fluoride route, but also to materials prepared by post-treatment of dealuminated commercial Beta zeolites, as well as ordered mesoporous stannosilicates, in this case Sn-MCM-41 and Sn-SBA-15. These findings open the door to the possibility of using other preparation methods or different Sn-containing silicates with equally high methyl lactate yields as Sn-Beta. PMID:25605624

  3. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  4. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  5. Pockels effect of silicate glass-ceramics: Observation of optical modulation in Mach–Zehnder system

    PubMed Central

    Yamaoka, Kazuki; Takahashi, Yoshihiro; Yamazaki, Yoshiki; Terakado, Nobuaki; Miyazaki, Takamichi; Fujiwara, Takumi

    2015-01-01

    Silicate glass has been used for long time because of its advantages from material’s viewpoint. In this paper, we report the observation of Pockels effect by Mach–Zehnder interferometer in polycrystalline ceramics made from a ternary silicate glass via crystallization due to heat-treatment, i.e., glass-ceramics. Since the silicate system is employed as the precursor, merits of glass material are fully utilized to fabricate the optical device component, in addition to that of functional crystalline material, leading us to provide an electro-optic device, which is introducible into glass-fiber network. PMID:26184722

  6. Study of Luminescence Characteristics of Trivalent Terbium in Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Mike S.; Armagan, Guzin; Winfree, William P.

    1995-01-01

    An important use of silicate glasses doped with terbium oxide (Tb2O3) is their use as fiber optic sensors for high-resolution imaging applications requiring the detection of x-rays (e.g. tomography and radiography). The x-ray radiation is absorbed by the glass, producing electron-hole pairs (excitons). The excitons migrate through the glass matrix and then recombine, emitting characteristic Tb(3+) luminescence in the optical wavelength region. This emission is due to forbidden transitions of 4f electrons and therefore has a long decay time. Long decay time is undesirable when imaging transient events since it results in blurring in time of the images. It has been reported elsewhere that in crystals Tb(3+) ions can act both as luminescence centers and as fluorescence traps. These traps can capture excitons and delay their recombination. This delayed fluorescence is seen as a long lived, secondary component to the luminescence decay curve, or afterglow. Such a secondary decay component to the luminescence decay of Tb(3+) has been observed before in soda glass following pulsed optical excitation. In order to determine the conditions under which afterglow occurs, an understanding of the material's luminescent properties is required.

  7. DNA adsorption onto calcium aluminate and silicate glass surfaces.

    PubMed

    Carlson, Krista; Flick, Lisa; Hall, Matthew

    2014-05-01

    A common technique for small-scale isolation of genomic DNA is via adsorption of the DNA molecules onto a silica scaffold. In this work, the isolation capacities of calcium aluminate based glasses were compared against a commercially available silica scaffold. Silica scaffolds exhibit a negative surface at the physiological pH values used during DNA isolation (pH 5-9), while the calcium aluminate glass microspheres exhibit a positive surface charge. Isolation data demonstrates that the positively charged surface enhanced DNA adsorption over the negatively charged surface. DNA was eluted from the calcium aluminate surface by shifting the pH of the solution to above its IEP at pH 8. Iron additions to the calcium aluminate glass improved the chemical durability without compromising the surface charge. Morphology of the glass substrate was also found to affect DNA isolation; 43-106 μm diameter soda lime silicate microspheres adsorbed a greater quantity of genomic DNA than silica fibers with an average diameter of ∼2 μm. PMID:24309135

  8. Lifetime Predictions of a Titanium Silicate Glass with Machined Flaws

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly

    2003-01-01

    A dynamic fatigue study was performed on a Titanium Silicate glass to assess its susceptibility to delayed failure and to compare the results with those of a previous study. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions. The material strength and lifetime was seen to increase due to the removal of residual stress through grinding and polishing. Influence on time-to-failure is addressed for the case with and without residual stress present. Titanium silicate glass otherwise known as ultra-low expansion (ULE)* glass is a candidate for use in applications requiring low thermal expansion characteristics such as telescope mirrors. The Hubble Space Telescope s primary mirror was manufactured from ULE glass. ULE contains 7.5% titanium dioxide which in combination with silica results in a homogenous glass with a linear expansion coefficient near zero. delayed failure . This previous study was based on a 230/270 grit surface. The grinding and polishing process reduces the surface flaw size and subsurface damage, and relieves residual stress by removing the material with successively smaller grinding media. This results in an increase in strength of the optic during the grinding and polishing sequence. Thus, a second study was undertaken using samples with a surface finish typically achieved for mirror elements, to observe the effects of surface finishing on the time-to-failure predictions. An allowable stress can be calculated for this material based upon modulus of rupture data; however, this does not take into account the problem of delayed failure, most likely due to stress corrosion, which can significantly shorten lifetime. Fortunately, a theory based on fracture mechanics has been developed enabling lifetime predictions to be made for brittle materials susceptible to delayed failure. Knowledge of the factors governing the rate of subcritical flaw growth in a given environment enables the development of

  9. Glass formation, properties, and structure of soda-yttria-silicate glasses

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.

    1991-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  10. Low Velocity Sphere Impact of a Soda Lime Silicate Glass

    SciTech Connect

    Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G; Vuono, Daniel J

    2011-10-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.

  11. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  12. Micromechanical properties of silicate glass films on sapphire substrates

    SciTech Connect

    Zagrebelny, A.V.; Carter, C.B.

    1998-12-31

    The deformation of thin layers of glass on crystalline materials has been examined using newly developed experimental methods for nanomechanical testing. Continuous films of anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}), celsian (BaAl{sub 2}Si{sub 2}O{sub 8}), and monticellite (CaMgSiO{sub 4}) were deposited onto Al{sub 2}O{sub 3} surfaces by pulsed-laser deposition (PLD). Mechanical properties such as Young`s modulus and hardness were probed with a high-resolution depth-sensing indentation instrument. Nanomechanical testing, combined with AFM in-situ imaging of the deformed regions, allowed force-displacement measurements and imaging of the same regions of the specimen before and immediately after indentation. Emphasis has been placed on examining how changes in the glass composition, residual stress introduced into the films, effect of film`s heat-treatment, and the effect of substrate crystallographic orientation will affect the mechanical properties of silicate-glass films.

  13. Alkali-aggregate reactivity of typical siliceious glass and carbonate rocks in alkali-activated fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Lu, Duyou; Liu, Yongdao; Zheng, Yanzeng; Xu, Zhongzi; Shen, Xiaodong

    2013-08-01

    For exploring the behaviour of alkali-aggregate reactivity (AAR) in alkali-activated geopolymeric materials and assessing the procedures for testing AAR in geopolymers, the expansion behaviour of fly ash based geopolymer mortars with pure silica glass and typical carbonate rocks were studied respectively by curing at various conditions, i.e. 23°C and 38°C with relative humidity over 95%, immersed in 1M NaOH solution at 80°C. Results show that, at various curing conditions, neither harmful ASR nor harmful ACR was observed in geopolymers with the criteria specified for OPC system. However, with the change of curing conditions, the geopolymer binder and reactive aggregates may experience different reaction processes leading to quite different dimensional changes, especially with additional alkalis and elevated temperatures. It suggests that high temperature with additional alkali for accelerating AAR in traditional OPC system may not appropriate for assessing the alkali-aggregate reactivity behaviour in geopolymers designed for normal conditions. On the other hand, it is hopeful to control the dimensional change of geopolymer mortar or concrete by selecting the type of aggregates and the appropriate curing conditions, thus changing the harmful AAR in OPC into beneficial AAR in geopolymers and other alkali-activated cementitious systems.

  14. Hydrolysis kinetics of lead silicate glass in acid solution

    NASA Astrophysics Data System (ADS)

    Rahimi, Rafi Ali; Sadrnezhaad, Sayed Khatibuleslam; Raisali, Gholamreza; Hamidi, Amir

    2009-06-01

    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO 3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy obtained for hydrolysis reaction was Qche = 56.07 kJ/mole. The diffusion coefficient of the Pb ions from the gel layer was determined by using its concentration in solution and in LSG. The shrinkage of the sample and the gel layer thickness during dissolution process were determined.

  15. Antimony and silicon environments in antimony silicate glasses

    SciTech Connect

    Mee, M.; Davies, B.C.; Orman, R.G.; Thomas, M.F.; Holland, D.

    2010-09-15

    Antimony silicate glasses, of general formula xSb{sub 2}O{sub 3}.(1-x)SiO{sub 2} (0.1{<=}x{<=}0.78), have been prepared by melt-quenching and their structures studied using {sup 29}Si MAS NMR spectroscopy, {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb{sup 5+} in concentrations, which increase linearly with x to give a value of {approx}10% when x=0.78. {sup 121}Sb Moessbauer spectra show Moessbauer shifts and quadrupole splittings consistent with Sb{sup 3+} in a [:SbO{sub 3}] trigonal pyramid, similar to that in crystalline Sb{sub 2}O{sub 3}. A broad band in the Raman spectrum at {approx}410 cm{sup -1} is due to the vibrations of such a unit. The dependence of the silicon Q{sup n} speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO{sub 3}] units such as are found in valentinite. - Graphical abstract: Antimony silicate glasses have been shown to contain Sb{sup 3+} in [:SbO{sub 3}] trigonal pyramid units using {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. {sup 29}Si magic-angle-spinning NMR has shown silicon Q{sup n} speciation which can be interpreted as formation of rings of 4 [:SbO{sub 3}] units such as are found in valentinite.

  16. Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.

    2016-07-01

    We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  17. Modifier cation effects on (29)Si nuclear shielding anisotropies in silicate glasses.

    PubMed

    Baltisberger, Jay H; Florian, Pierre; Keeler, Eric G; Phyo, Pyae A; Sanders, Kevin J; Grandinetti, Philip J

    2016-07-01

    We have examined variations in the (29)Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O·4.81 SiO2, Rb2O·3.96 SiO2, Rb2O·2.25 SiO2, K2O·4.48 SiO2, Na2O·4.74 SiO2, BaO·2.64 SiO2, and SrO·2.36 SiO2, using natural abundance (29)Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the (29)Si nuclear shielding anisotropy of Q((3)) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu(2+) as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of (29)Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure. PMID:27187210

  18. Internal friction of hydrated soda-lime-silicate glasses.

    PubMed

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-01

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) < 0.25 wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α. PMID:24206315

  19. Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.

    PubMed

    Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi

    2015-12-28

    A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect. PMID:26723583

  20. Structure of glasses containing transition metal ions. Progress report, February 1, 1979-January 31, 1980

    SciTech Connect

    White, W B; Furukawa, T; Tsong, I S.T.; Fox, K; Herman, J S; Houser, C; Nelson, C

    1980-02-01

    New normal coordinate calculations were used to relate the vibrational frequencies of silicate glasses to Si-O force constants. These appear to account for the observed frequency shifts with degree of silica polymerization. Raman spectroscopy has been used to elucidate the structure of sodium borosilicate glasses and of sodium aluminosilicate glasses. Structures of compositionally complex glasses can be understood if spectra are measured on many glasses spaced at small compositional intervals. Optical absorption spectra were used to investigate the structural setting of iron in alkali silicate glasses. Research on the alkali-hydrogen exchange in alkali silicate glasses was completed and additional work on ternary glasses is under way. A series of appendices present completed work on the structural investigations of alkali borosilicate glasses, on the structural setting of transition metal ions in glasses, and on the diffusion of hydrogen in alkali silicate glasses.

  1. Photoelectron, nuclear gamma-ray and infrared absorption spectroscopic studies of neptunium in sodium silicate glass

    SciTech Connect

    Veal, B.W.; Carnall, W.T.; Dunlap, B.D.; Mitchell, A.W.; Lam, D.J.

    1986-04-01

    The valence state of neptunium ions in sodium silicate glasses prepared under reducing and oxidizing conditions has been investigated by the x-ray photoelectron, Moessbauer and optical absorption spectroscopic techniques. Results indicate that the Np ions are tetravalent in glasses prepared under reducing conditions and pentavalent in glasses prepared under oxidizing conditions.

  2. Effect of alkali addition on DC conductivity and thermal properties of vanadium-bismo-borate glasses

    SciTech Connect

    Khasa, S. Dahiya, M. S.; Agarwal, A.

    2014-04-24

    The DC Conductivity and Differential Thermal Analysis of glasses with composition (30−x)Li{sub 2}O⋅xV{sub 2}O{sub 5}⋅20Bi{sub 2}O{sub 3}⋅50B{sub 2}O{sub 3}(x=15, 10, 5) has been carried out in order to study the effect of replacing the Transition Metal Oxide (TMO) with alkali oxide. A significant increase in the DC conductivity has been observed with increase in alkali content. Again the thermal measurements have shown the decrease in both glass transition temperature (T{sub g}) and crystallization temperature (T{sub x}). The Glass Stability (GS) and Glass Forming Ability (GFA) have also been calculated and these also were found to decrease with increase in alkali oxide content at the cost of TMO.

  3. Ultrasonic characterization of silicate glasses, polymer composites and hydrogels

    NASA Astrophysics Data System (ADS)

    Lee, Wan Jae

    In many applications of material designing and engineering, high-frequency linear viscoelastic properties of materials are essential. Traditionally, the high-frequency properties are estimated through the time-temperature superposition (WLF equation) of low-frequency data, which are questionable because the existence of multi-phase in elastomer compounds. Moreover, no reliable data at high frequencies over MHz have been available thus far. Ultrasound testing is cost-effective for measuring high-frequency properties. Although both ultrasonic longitudinal and shear properties are necessary in order to fully characterize high-frequency mechanical properties of materials, longitudinal properties will be extensively explored in this thesis. Ultrasonic pulse echo method measures longitudinal properties. A precision ultrasonic measurement system has been developed in our laboratory, which allows us to monitor the in-situ bulk and/or surface properties of silicate glasses, polymer composites and even hydrogels. The system consists of a pulse-echo unit and an impedance measurement unit. A pulse echo unit is explored mainly. First, a systematic procedure was developed to obtain precise water wavespeed value. A calibration curve of water wavespeed as a function of temperature has been established, and water wavespeed at 23°C serves as a yardstick to tell whether or not a setup is properly aligned. Second, a sound protocol in calculating attenuation coefficient and beam divergence effects was explored using three kinds of silicate glass of different thicknesses. Then the system was applied to four composite slabs, two slabs for each type of fiberglass reinforced plastics, phenolic and polyester manufactured under different processing conditions: one was made by the normal procedures and the other with deliberate flaws such as voids, tapes and/or prepared at improper operation temperature and pressure. The experiment was conducted under the double blind test protocol. After

  4. Alkali aluminosilicate melts and glasses: structuring at the middle range order of amorphous matter

    NASA Astrophysics Data System (ADS)

    Le Losq, C.; neuville, D. R.

    2012-12-01

    Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviours. It is well known that several parameters impact strongly these properties, such as for instance the temperature, pressure, chemical composition and volatiles concentration, finally influencing eruptive behaviour of volcanoes. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts, like for instance the Vesuvius (Italy) or Erebus (Antartica) magmas. In an oncoming paper in Chemical Geology (Le Losq and Neuville, 2012), we have communicated results of the study of mixing Na-K in tectosilicate melts containing a high concentration of silica (≥75mol%). In the present communication, we will enlarge this first point of view to tectosilicate melts presenting a lower silica concentration. We will first present our viscosity data, and then the Adam and Gibbs theory that allows theoretically modelling Na-K mixing in aluminosilicate melts by using the so-called "mixed alkali effect". On the basis of the rheological results, the Na-K mixing cannot be explained with the ideal "mixed alkali effect", which involves random exchange of Na-K cationic pairs. To go further and as rheological properties are directly linked with structural properties, we will present our first results obtained by Raman and NMR spectroscopy. These last ones provide important structural pieces of information on the polymerization state of glasses and melts, and also on the environment of tetrahedrally coordinated cations. Rheological and structural results all highlight that Na and K are not randomly distributed in aluminosilicate glasses and melts networks. Na melts present a network with some channels and a non-random distribution of Al and Si. K networks are different. They also present a non-random distribution of Al and Si, but in two sub

  5. Investigation Of Dispersive Conductivity And Dielectric Losses In Barium Bismuth Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Ahlawat, Neetu; Sanghi, Sujata; Agarwal, Ashish; Ahlawat, Navneet; Aghamkar, Praveen; Monica

    2011-12-01

    Barium bismuth silicate glasses (BBS glasses) with composition were prepared by normal melt quench technique. The dispersive conductivity and dielectric losses in these glasses were investigated by impedance spectroscopy. The analyses of ac conductivity spectra show a crossover from ion hopping conductivity to nearly constant loss (NCL) contribution in all the glasses. The variations in dielectric constant ɛ*(ω) = ɛ'(ω)-íɛ″(ω) with frequency and temperature indicate an increase in electrode polarization, which reduces the dipolar relaxation effects in these glasses. The increased concentration of BaO in the glass composition reduces the dielectric losses in the present glasses.

  6. Increases in leach rate due to possible cracking in silicate glasses

    SciTech Connect

    Sang, J.C.; Barkatt, A.; Talmy, I.G.; Norr, M.K.

    1993-12-31

    Comparative studies of two multi-component silicate glasses have confirmed the observation that glasses with a relatively low SiO{sub 2} + AlO{sub 3/2} content may exhibit temporary increases in leach rate during the initial stages of their exposure to water. SEM studies of the leached glass surfaces strongly support the assumption that this phenomenon is due to cracking of the leached glass and a consequent increase of the exposed surface area.

  7. Alkali ion migration between stacked glass plates by corona discharge treatment

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Keiga; Suzuki, Toshio; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Harada, Kenji; Nishii, Junji

    2015-05-01

    Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  8. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry

    NASA Astrophysics Data System (ADS)

    Ichikawa, Shintaro; Nakamura, Toshihiro

    2014-06-01

    A micro glass bead technique was developed to assay precious siliceous samples for geochemical and archeological analyses. The micro-sized (approximately 3.5 mm in diameter and 0.8 mm in height) glass beads were prepared by mixing and fusing 1.1 mg of the powdered sample and 11.0 mg of the alkali lithium tetraborate flux for wavelength-dispersive X-ray fluorescence determination of major oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, and total Fe2O3). The preparation parameters, including temperature and agitation during the fusing process, were optimized for the use of a commercial platinum crucible rather than a custom-made crucible. The procedure allows preparation of minute sample amounts of siliceous samples using conventional fusing equipment. Synthetic calibration standards were prepared by compounding chemical reagents such as oxides, carbonates, and diphosphates. Calibration curves showed good linearity with r values > 0.997, and the lower limits of detection were in the 10s to 100s of μg g- 1 range (e.g., 140 μg g- 1 for Na2O, 31 μg g- 1 for Al2O3, and 8.9 μg g- 1 for MnO). Using the present method, we determined ten major oxides in igneous rocks, stream sediments, ancient potteries, and obsidian. This was applicable to siliceous samples with various compositions, because of the excellent agreement between the analytical and recommended values of six geochemical references. This minimal-scale analysis may be available for precious and limited siliceous samples (e.g., rock, sand, soil, sediment, clay, and archeological ceramics) in many fields such as archeology and geochemistry.

  9. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The

  10. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    SciTech Connect

    Alias, Nor Hayati Abdullah, Wan Shafie Wan Isa, Norriza Mohd Isa, Muhammad Jamal Md Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-02-12

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures.

  11. On the Electron Paramagnetic Resonance Studies in Mixed Alkali Borate Glasses

    SciTech Connect

    Padmaja, G.; Reddy, T. Goverdhan; Kistaiah, P.

    2011-10-20

    Mixed alkali effect in oxide based glasses is one of the current research activity and studies on the behavior of spectroscopic parameters in these systems are quite important to understand the basic nature of this phenomenon. EPR studies of mixed alkali glasses Li{sub 2}O-K{sub 2}O-ZnO-B{sub 2}O{sub 3} doped with Fe{sup 3+} and Mn{sup 2+} were carried out at room temperature. The EPR spectra show typical resonances of d{sup 5} system (Fe{sup 3+} and Mn{sup 2+}) in all the measured glass specimens. Evaluated hyperfine constant, number of paramagnetic centers and paramagnetic susceptibility values show deviation from the linearity with the progressive substitution of the Li ion with K in glass network.

  12. Electrical conduction in alkali borate glasses; a unique dependence on the concentration of modifier ions

    NASA Astrophysics Data System (ADS)

    Doweidar, H.; Moustafa, Y. M.; El-Damrawi, G. M.; Ramadan, R. M.

    2008-01-01

    The electrical conduction of Li2O-B2O3, Na2O-B2O3 and K2O-B2O3 glasses seems, at first sight, to be dominated by the activation energy. Regardless of the size of the alkali ion, there is a unique dependence of conductivity, at a certain temperature, on the alkali-alkali distance and thus on N (the number of ions per cm3). The linear dependence of logσ on N-3/2 for all types of alkali ions reveals that N is the basic parameter that determines the conductivity at a certain temperature. A derived semi-empirical relation can be used to calculate the conductivity as a function of N and temperature.

  13. Modifier interaction and mixed-alkali effect in bond constraint theory applied to ternary alkali metaphosphate glasses

    NASA Astrophysics Data System (ADS)

    Poletto Rodrigues, Bruno; Deubener, Joachim; Wondraczek, Lothar

    2016-05-01

    Introducing an interaction parameter γ, we implement modifier interaction and the mixed-alkali effect into bond constraint theory, and apply this extension for simplistic property prediction on ternary phosphate glasses. The severity of the mixed alkali effect results from the interplay of two simultaneous contributions: Bond constraints on the modifier species soften or stiffen with decreasing or increasing γ, respectively. When the modifier size is not too dissimilar the decrease in γ reflects that the alkali ions can easily migrate between different sites, forcing the network to continuously re-accommodate for any subsequent distortions. With increasing size difference, migration becomes increasingly difficult without considerable network deformation. This holds even for smaller ions, where the sluggish dynamics of the larger constituent result in blocking of the fast ion movement, leading to the subsequent increase in γ. Beyond a certain size difference in the modifier pair, a value of γ exceeding unity may indicate the presence of steric hindrance due to the large surrounding modifiers impeding the phosphate network to re-accommodate deformation.

  14. Structure and topology of soda-lime silicate glasses: implications for window glass.

    PubMed

    Laurent, O; Mantisi, B; Micoulaut, M

    2014-11-01

    The structural and topological properties of soda-lime silicate glasses of the form (1-2x)SiO2-xNa2O-xCaO are studied from classical molecular dynamics using a Buckingham type potential. Focus is made on three compositions (x = 6%, 12%, and 18%) which are either silica-rich or modifier-rich. We compare the results to available experimental measurements on structural properties and find that the simulated pair correlation function and total structure factor agree very well with available experimental measurements from neutron diffraction. The detail of the structural analysis shows that the Na and Ca coordination numbers tend to evolve with composition, and with increasing modifier content, changing from 5.0 to 5.6 and from 4.0 to 5.0 for Ca and Na, respectively. The analysis from topological constraints shows that the picture derived on a heuristic basis using classical valence rules remains partially valid. Ultimately, typical elastic phases are identified from the application of rigidity theory, and results indicate that the 6% system is stressed-rigid, whereas the modifier-rich composition (18%) is flexible. These results receive support from a full analysis of the vibrational density of states showing the low-energy bands at E < 20 meV increase as the system becomes flexible, providing another indirect signature of the presence of rigid to flexible transitions in this archetypal glass. Consequences for window glass are discussed under this perspective. PMID:25295377

  15. The effect of inversion of matrix and inclusions composition in liquation phospho-silicate glasses.

    PubMed

    Sitarz, M

    2011-08-15

    Silico-phosphate glasses of XCaPO(4)-SiO(2) and XCaPO(4)-AlPO(4)-SiO(2) (X=Na(+) and/or K(+)) system have been the subject of the presented investigations. Glasses belonging to those systems are characterized by a liquation phenomenon-spherical amorphous inclusions dispersed in an amorphous matrix. Thorough EDX investigations have shown that introduction of aluminum ions into the structure of phospho-silicate glasses results in inversion of matrix and inclusions composition, when XCaPO(4) exceeds 25-35% mol. Such a substantial influence of aluminum ions on phospho-silicate glasses texture as well as matrix and inclusions composition (inversion) must be a result of structural changes. (27)Al MAS NMR research stated that aluminum ions in structures of XCaPO(4)-AlPO(4)-SiO(2) phospho-silicate glasses always acts as a glass-forming ion-i.e. aluminum always occupies fourfold coordinated sites. (23)Na and (31)P MAS NMR research has shown that the inversion of matrix and inclusions composition, brought about by introduction of aluminum ions into the structure of phospho-silicate glasses, is an outcome of a change in phosphorous and alkaline ions coordination. PMID:20864392

  16. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.

    PubMed

    Hu, Biao; Zhao, Shuangshuang; Zhang, Shuhao

    2015-01-01

    In the disposal of electronic waste, cathode ray tube (CRT) funnel glass is an environmental problem of old television sets. Removal of the lead from CRT funnel glass can prevent its release into the environment and allow its reuse. In this research, we reference the dry progress productive technology of sodium silicate, the waste CRT glass was dealt with sodium silicate frit melted and sodium silicate frit dissolved. Adding a certain amount of Na ₂CO₃to the waste CRT glass bases on the material composition and content of it, then the specific modulus of sodium silicate frit is obtained by melting progress. The silicon, potassium and sodium compounds of the sodium silicate frit are dissolved under the conditions of high temperature and pressure by using water as solvent, which shows the tendency that different temperature, pressure, liquid-solid ratio and dissolving time have effect on the result of dissolving. At 175°C(0.75MPa), liquid-solid ratio is 1.5:1, the dissolving time is 1h, the dissolution rate of sodium silicate frit is 44.725%. By using sodium sulfide to separate hydrolysis solution and to collect lead compounds in the solution, the recovery rate of lead in dissolving reached 100% and we can get clean sodium silicate and high purity of lead compounds. The method presented in this research can recycle not only the lead but also the sodium, potassium and other inorganic minerals in CRT glass and can obtain the comprehensive utilization of leaded glass. PMID:25946963

  17. Non-linear temperature variation of resistivity in graphene/silicate glass nanocomposite

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Singha, Achintya; Chakravorty, Dipankar

    2013-09-01

    Graphene/glass nanocomposite was synthesized by gelation of the glass in a solution with dispersed graphene sheets. Electrical transport measurements were carried out on pellets formed by cold pressing of composite powders. Resistivity showed a nonlinear increase as a function of temperature in the range 300-400 K. This has been explained as arising due to the phonon spectra of the glass affecting the movement of electrons in graphene. Raman studies confirmed the presence of phonons in the silicate glass phase. The dielectric relaxation spectra of the composites at different temperatures are consistent with the above mechanism of the electron-glass phonon interaction.

  18. NMR studies of bond arrangements in alkali phosphate glasses

    SciTech Connect

    Alam, T.M.; Brow, R.K.

    1998-01-01

    Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.

  19. Interfacial interactions between an alkali-free borosilicate viscous sealing glass and aluminized ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Kim, Cheol-Woon; Brow, Richard K.

    2014-03-01

    An alkali-free, alkaline earth borosilicate glass (designated G73) has been developed as a viscous sealant for use with solid oxide fuel cells (SOFC). In this work, the interfacial interactions that occur between this viscous sealant and aluminized ferritic stainless steel (SS441) under SOFC operational conditions are described. YSZ/glass/aluminized SS441 sandwich seals were held at 800 °C in air for up to 1000 h, and the interfaces were analyzed using analytical scanning electron microscopy (ASEM). Interfacial reactions were also characterized by X-ray diffraction (XRD) analyses of heat-treated mixtures of glass and alumina powders. The results show that the glass reacted with aluminum from the steel to form BaAl2Si2O8 crystals at the glass/metal interface and that the aluminum concentration in the aluminized steel was significantly depleted with time.

  20. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  1. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  2. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  3. Silicate glass alteration enhanced by iron: origin and long-term implications.

    PubMed

    Michelin, A; Burger, E; Rebiscoul, D; Neff, D; Bruguier, F; Drouet, E; Dillmann, P; Gin, S

    2013-01-15

    Silicate glasses are used as containment matrices for deep geological disposal of nuclear waste arising from spent fuel reprocessing. Understanding the dissolution mechanisms of glasses in contact with iron, an element present in large amounts in the immediate environment (overpack, claystone, etc.) would be a major breakthrough toward predicting radionuclide release in the geosphere after disposal. Two different reacted glass-iron interfaces-a short-term nuclear system and a long-term archeological system-were examined using a multiscale and multianalytical approach including, for the first time on samples of this type, STXM under synchrotron radiation. Comparisons revealed remarkable similarities between the two systems and shed light on Fe-Si interactions, including migration of iron within a porous gel layer and precipitation of Fe-silicates that locally increase short-term glass alteration and are sustainable over the long-term. PMID:23237387

  4. Iron modified structural and optical spectral properties of bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Parmar, Rajesh; Kundu, R. S.; Punia, R.; Aghamkar, P.; Kishore, N.

    2014-10-01

    Iron bismuth silicate glasses have been successfully synthesized by melt quenching technique. The amorphous nature of the glass samples is ascertained by the XRD patterns. The values of density, molar volume and crystalline volume have been measured and are found to decrease with increase in iron content. The glass transition temperature measured using Differential Scanning Calorimetry (DSC) also varies with increase in Fe2O3 content. The Raman and FTIR spectra of the studied glass system taken at room temperature suggests that Fe2O3 modifies the structure of bismuth silicate glasses and it acts as both network modifier as well as network former. Bismuth also plays the role of both network modifier (BiO6 octahedra) as well as network former (BiO3 pyramids) and SiO2 exists in SiO4 tetrahedral structural units with two non-bridging oxygens. The Hydrogenic excitonic model is found to be applicable to the studied glass compositions. The variation in Urbach energy value observed for the studied glass samples suggests the possibility of increase in the number of glass defects. The metallization criterion for the synthesized glass samples is determined and found to be in the range 0.30-0.38.

  5. Abnormal acoustic wave velocities in basaltic and (Fe,Al)-bearing silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu

    2014-12-01

    We have measured acoustic VP and VS velocities of (Fe,Al)-bearing MgSiO3 silicate glasses and an Icelandic basalt glass up to 25 GPa. The velocity profiles of the (Fe,Al)-bearing and basaltic silicate glasses display decreased VP and VS with minima at approximately 5 and 2 GPa, respectively, which could be explained by the mode softening in the aluminosilicate networks. Our results represent the first observation of such velocity softening extending into the chemically complex basaltic glass at a relatively low transition pressure, which is likely due to its degree of polymerization, while the Fe and Al substitutions reduce sound velocities in MgSiO3 glass. If the velocity softening in the basaltic and silicate glasses can be used as analogs for understanding melts in Earth's interior, these observations suggest that the melt fraction needed to account for the velocity reduction in the upper mantle low-velocity zone may be smaller than previously thought.

  6. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    SciTech Connect

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel Delevoye, Laurent

    2008-02-15

    Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

  7. Optical and structural analysis of lead bismuth silicate glasses

    SciTech Connect

    Bhardwaj, S.; Shukla, R.; Sanghi, S.; Agarwal, A.; Pal, I.

    2011-12-12

    Glasses having compositions 20PbO(79.5-x)Bi{sub 2}O{sub 3}xSiO{sub 2} (x = 10,30,50) doped with 0.5 mole% of Nd{sup 3+} ions were prepared by melt quench technique. The spectroscopic properties of the glasses were investigated using optical absorption and fluorescence spectra. The structural investigations of these glasses were carried out by recording the IR spectra. The variation of {Omega}{sub 2} with Bi{sub 2}O{sub 3} content has been attributed to changes in the asymmetry of the ligand field at the rare earth ion site and to the changes in the rare earth oxygen covalency. Heavy metal oxide glasses have been used as potential candidate in solid state laser, solar concentrators, optical detector, optical fiber and fluorescent display devices.

  8. Coupled ion redistribution and electronic breakdown in low-alkali boroaluminosilicate glass

    SciTech Connect

    Choi, Doo Hyun; Randall, Clive Furman, Eugene Lanagan, Michael

    2015-08-28

    Dielectrics with high electrostatic energy storage must have exceptionally high dielectric breakdown strength at elevated temperatures. Another important consideration in designing a high performance dielectric is understanding the thickness and temperature dependence of breakdown strengths. Here, we develop a numerical model which assumes a coupled ionic redistribution and electronic breakdown is applied to predict the breakdown strength of low-alkali glass. The ionic charge transport of three likely charge carriers (Na{sup +}, H{sup +}/H{sub 3}O{sup +}, Ba{sup 2+}) was used to calculate the ionic depletion width in low-alkali boroaluminosilicate which can further be used for the breakdown modeling. This model predicts the breakdown strengths in the 10{sup 8}–10{sup 9 }V/m range and also accounts for the experimentally observed two distinct thickness dependent regions for breakdown. Moreover, the model successfully predicts the temperature dependent breakdown strength for low-alkali glass from room temperature up to 150 °C. This model showed that breakdown strengths were governed by minority charge carriers in the form of ionic transport (mostly sodium) in these glasses.

  9. Precipitation of Secondary Phases from the Dissolution of Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    2004-01-01

    Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.

  10. Structural, dielectric and AC conductivity properties of Co2+ doped mixed alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Madhu, B. J.; Banu, Syed Asma; Harshitha, G. A.; Shilpa, T. M.; Shruthi, B.

    2013-02-01

    The Co2+ doped 19.9ZnO+5Li2CO3+25Na2CO3+50B2O3 (ZLNB) mixed alkali zinc borate glasses have been prepared by a conventional melt quenching method. The structural (XRD & FT-IR), dielectric and a.c. conductivity (σac) properties have been investigated. Amorphous nature of these glasses has been confirmed from their XRD pattern. The dielectric properties and electrical conductivity (σac) of these glasses have been studied from 100Hz to 5MHz at the room temperature. Based on the observed trends in the a.c. conductivities, the present glass samples are found to exhibit a non-Debye behavior.

  11. Manganese modified structural and optical properties of bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Berwal, Neelam; Punia, R.; Kishore, N.

    2015-06-01

    Glass system with compositions xMnO2-(60-x) Bi2O3-40SiO2 have been synthesized by standard melt quench technique. X-ray diffraction patterns confirm the amorphous nature of as-prepared glass samples. The values of density have been measured and molar volume determined is found to decrease with increase in MnO2 content. Theoretical calculations of crystalline volume (Vc) have also been made. The glass transition temperature (Tg) determined using differential scanning calorimetry (DSC) is observed to increase with increase in MnO2 content. The structural analysis has been carried out using FTIR and Raman spectroscopy. In the present glass system, MnO2 acts as network modifier and exists in MnO6 structural units. Bismuth acts both as network former with BiO3 pyramidal units as well as network modifier with BiO6 octahedral units in the present glass system. SiO2 exists in form of SiO4 tetrahedral structural units with two non-bridging oxygens (NBO's). The optical band gap energy (Eg) has been estimated from Tauc's plot for direct transitions, it decreases with increase in manganese content.

  12. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report

    SciTech Connect

    Epstein, S.; Stolper, E.

    1992-03-01

    The focus of this project is the combined appication of infrared spectroscopy and stable isotope geochemistry to the study of hydrogen-bearing species dissolved in silicate melts and glasses. We are conducting laboratory experiments aimed at determining the fractionation of D and H between melt species (OH and H{sub 2}O) and hydrous vapor and the diffusivities of these species in glasses and melts. Knowledge of these parameters is critical to understanding the behavior of hydrogen isotopes during igneous processes and hydrothermal processes. These results also could be valuable in application of glass technology to development of nuclear waste disposal strategies.

  13. Near infrared emission for erbium-doped calcium aluminum silicate glass

    NASA Astrophysics Data System (ADS)

    Lihui, Huang; Xingren, Liu; Baojiu, Chen; Jiuling, Lin

    2001-09-01

    In this work, erbium-doped calcium aluminum silicate (CAS) glass has been synthesized by solid-state reaction. Intense emission at 1534 nm, corresponding to the 4I13/2→ 4I15/2 transition of the Er 3+ ion, was observed upon both 488 nm Ar + laser and 978 nm diode laser excitations at room temperature. The luminescence mechanisms in the glass are discussed. These results indicate this glass is a promising laser material with its high chemical durability and thermal stability.

  14. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    NASA Astrophysics Data System (ADS)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  15. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    NASA Astrophysics Data System (ADS)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-01

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.

  16. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE PAGESBeta

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  17. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    PubMed Central

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-01-01

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications. PMID:27443508

  18. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals.

    PubMed

    Wang, Yifeng; Jove-Colon, Carlos F; Kuhlman, Kristopher L

    2016-01-01

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications. PMID:27443508

  19. Enthalpies of Mixing in Sodium Silicate Glasses and Relevance to Adam-Gibbs Theory

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Jarry, P.; Toplis, M.; Richet, P.

    2003-12-01

    Solution calorimetric measurements have been made in 20.1 wt % hydrofluoric acid at 50° C on binary Na2O-SiO2 glasses ranging in composition from 0 to 50 mol % Na2O. The initial calorimetric data for compositions between 20 and 50 mol % Na2O were highly variable, determined later to be due to the development of Na carbonate on the glass surfaces. However, additional measurements using minimally-ground specimens that had been remelted shortly before the calorimetric dissolutions produced highly reproducible results. After adjustment of the data for glass transition temperature (Richet et al., 1984, J. Amer. Ceram. Soc.), the results show nearly linear ("ideal") behavior of the heats of solution between 50 % Na2O and 30-35 % Na2O. However, positive enthalpies of mixing (Hex) are evident in the compositional region between 0 and 30-35 mol % Na2O, with maximum magnitudes of Hex on the order of 5 kJ/mol relative to 0 and 35 % Na2O end members. Within the framework of the Adam-Gibbs theory of structural relaxation, viscosity and heat capacity data may be combined to determine configurational entropies of silicate glasses. When applied to sodium silicate glasses (Toplis, 2001, Chemical Geology), positive entropies of mixing (Sex) are calculated for compositions between 0 and 30 mole % Na2O, a compositional region where liquid immiscibility also is known to occur (Haller et al., 1974, J. Amer. Ceram. Soc.) and where Gibbs free energies of mixing (Gex) therefore must be positive. Because positive entropies of mixing contribute negatively (-TSex) to Gex, the observed immiscibility requires positive enthalpies of mixing (Hex) in the silicic part of the compositional range. The present study confirms such positive enthalpies of mixing and supports the usefulness of Adam-Gibbs theory for the prediction of viscosity/entropy behavior of silicate glasses and liquids.

  20. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for

  1. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion.

    PubMed

    Hellmann, Roland; Cotte, Stéphane; Cadel, Emmanuel; Malladi, Sairam; Karlsson, Lisa S; Lozano-Perez, Sergio; Cabié, Martiane; Seyeux, Antoine

    2015-03-01

    Silicate glasses are durable solids, and yet they are chemically unstable in contact with aqueous fluids-this has important implications for numerous industrial applications related to the corrosion resistance of glasses, or the biogeochemical weathering of volcanic glasses in seawater. The aqueous dissolution of synthetic and natural glasses results in the formation of a hydrated, cation-depleted near-surface alteration zone and, depending on alteration conditions, secondary crystalline phases on the surface. The long-standing accepted model of glass corrosion is based on diffusion-coupled hydration and selective cation release, producing a surface-altered zone. However, using a combination of advanced atomic-resolution analytical techniques, our data for the first time reveal that the structural and chemical interface between the pristine glass and altered zone is always extremely sharp, with gradients in the nanometre to sub-nanometre range. These findings support a new corrosion mechanism, interfacial dissolution-reprecipitation. Moreover, they also highlight the importance of using analytical methods with very high spatial and mass resolution for deciphering the nanometre-scale processes controlling corrosion. Our findings provide evidence that interfacial dissolution-reprecipitation may be a universal reaction mechanism that controls both silicate glass corrosion and mineral weathering. PMID:25559424

  2. Ion Microprobe Studies of Iodine Contents in Silicate Glasses and in Semarkona Chondrules

    NASA Astrophysics Data System (ADS)

    Goswami, J. N.; Sahijpal, S.; Swindle, T. D.; Musselwhite, D. S.; Grossman, J. N.

    1993-07-01

    Isotopic studies of electronegative elements (e.g. H, C, O, S, I, etc.) by the ion microprobe is best done in the negative secondary mode as the negative ion yields for these elements are much higher compared to their positive ion yields. However, analysis of non-conducting solids (e.g., silicates) in the negative secondary mode is beset with the problem of sample charging. In addition, for heavy elements like iodine, the problem of molecular interferences is also difficult to resolve. We have used a normal incidence electron gun, that generates a cloud of low energy electron near the sample surface, to overcome the problem of sample charging. The problem of molecular interferences was effectively removed by the energy filtering technique, commonly used for trace element studies [1]. Since the normal energy filtering procedure that involves introduction of appropriate offset to the sample high voltage cannot be followed in the negative secondary mode, we have introduced offset to the electrostatic analyzer (ESA) voltage, to achieve the required energy filtering. A silicon sample was analyzed to calibrate ESA voltage offset with sample voltage offset. We have initially analyzed silicon samples and a set of silicate glasses doped with iodine (0.1 to 1.5% by weight) to check for optimum conditions for measurement of low iodine concentration (

  3. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  4. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1995-05-01

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  5. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications.

    PubMed

    Lee, Yl Kwon; Lee, Jin Seok; Heo, Jong; Im, Won Bin; Chung, Woon Jin

    2012-08-01

    Phosphor-in-glass (PiG) typed robust color converters were fabricated using Pb-free silicate glasses for high-power white LED applications. SiO2-B2O3-RO(R=Ba,Zn) glass powder showed good sintering behavior and high visible transparency under the sintering condition of 750 °C for 30 min without noticeable interaction with phosphors. By simply changing the thickness of the PiG plate or mixing ratio of glass to Y3Al5O12:Ce3+ phosphor, CIE chromaticity coordinates of the LED can be easily controlled. Enhanced thermal quenching property of PiG compared to phosphor with conventional silicone resin suggests its prominent feasibility for high-power/high-brightness white LEDs. PMID:22859157

  6. Water as a dense icelike component in silicate glasses

    PubMed

    Richet; Polian

    1998-07-17

    Density and Brillouin-scattering measurements of hydrous andesite glasses at ambient conditions showed that dissolved water has a concentration-independent partial molar volume of 12 +/- 0.5 cubic centimeters per mole and a bulk modulus of 18 +/- 3 gigapascals. Dissolved as hydroxyl ions or as molecular water, water has volume properties similar to those of ice VII, the densest form of ice. These properties point to hydrogen bonding as an important factor in water dissolution, and they indicate that changes of water speciation are driven by the entropy and not by the volume of the system. Water in a concentration greater than 1 percent by weight also causes a marked decrease of the shear modulus of the glass. PMID:9665879

  7. Cauchy's dispersion equation reconsidered : dispersion in silicate glasses.

    SciTech Connect

    Smith, D. Y.; Inokuti, M.; Karstens, W.; Physics; Univ. of Vermont; St. Michael's College

    2002-01-01

    We formulate a novel method of characterizing optically transparent substances using dispersion theory. The refractive index is given by a generalized Cauchy dispersion equation with coefficients that are moments of the uv and ir absorptions. Mean dispersion, Abbe number, and partial dispersion are combinations of these moments. The empirical relation between index and dispersion for families of glasses appears as a consequence of Beer's law applied to the uv spectra.

  8. Er3+/Yb3+-codoped soda-lime silicate glasses: a case study

    NASA Astrophysics Data System (ADS)

    Berneschi, Simone; Bettinelli, Marco; Brenci, Massimo; Calzolai, Roberto; Chiasera, Alessandro; Ferrari, Maurizio; Nunzi Conti, Gualtiero; Pelli, Stefano; Sebastiani, Sergio; Speghini, Adolfo; Zheng, Jie; Righini, Giancarlo C.

    2004-06-01

    Silicate glasses are among the best hosts for rare-earth ions, especially for the development of integrated optic amplifiers and lasers, due to their chemical robustness and adaptability to different waveguide fabrication processes. We performed a detailed study of a set of six experimental soda-lime silicate glasses, all having approximately the same base composition but doped with different percentages of Er3+ and Yb3+ ions. Judd-Ofelt analysis was performed on these glasses and the calculated radiative lifetimes were compared with the experimental ones. Planar waveguides were fabricated by using ion-exchange technology, and a new analytical function was used to fit the index profile of the waveguides. Luminescence and Raman spectroscopy was performed on most waveguide samples, and upconversion emission was evaluated. Channel waveguide insertion losses were reduced by using annealing processes, and net gain around 1535 nm was obtained. The gain, so far, is limited, but we are confident to be able to further increase the amplifier performances. Meanwhile, we are also developing a new type of silicate glass doped with alumina in order to increase the gain bandwidth.

  9. The role of alkalis in the solubility of H2O and CO2in silicate melts

    NASA Astrophysics Data System (ADS)

    Vetere, F.; Behrens, H.; Botcharnikov, R. E.; Holtz, F.; Fanara, S.

    2013-12-01

    In order to investigate the role of alkalis on the behavior of H2O and CO2 in magmatic systems, the solubility of volatiles in phonotephritic melts was investigated experimentally and compared to other melt compositions. The investigated compositions have Na2O/K2O ratios (in wt %) of 0.26 (Ab1, natural phonotephrite from Alban Hills, Italy), 0.98 (Ab2) and 3.82 (Ab3). Experiments were run at 1250°C and 500 MPa in an internally heated gas pressure vessel. The mole fraction of water (XH2O) in the fluid phase composed of H2O and CO2 varied in the range from 0 to 1. For the calibration of carbon-related IR bands in glasses, the total carbon content of synthesized glass standards was measured by combustion and subsequent IR spectroscopy using an ELTRA CS800 analyzer. Karl Fischer Titration method was used to quantify the H2O content of the glasses. Absorption spectra were recorded in the mid-infrared (MIR) using a Bruker IFS88 FTIR spectrometer coupled with an IR-ScopeII microscope. CO2 is bounded in the investigated glasses as CO32- exclusively and its concentration was quantified by the peak height of the 1430 cm-1 band. A drastic change was observed in the absorption coefficients, ɛ, with values of 294 × 35, 329 × 40 and 244 × 23 L/(mol cm) , for Ab1, Ab2, and Ab3, respectively, so that the highest ɛ value is related to the Na-rich composition. There is no evident effect of the Na/K ratio on the concentrations of dissolved H2O and CO2 in the melts. The solubility of CO2 and H2O in those melts at 500 MPa is 0.95 wt % CO2 and 10.07 wt% H2O for XH2O of 0 and 1, respectively. Results are compared with the existing literature data and models and confirm the very high solubility of CO2 in phonotephritic melts [1]. Our experimental data indicate that the melt composition in terms of alkali contents influences significantly the extinction coefficient values for CO2 and that appropriate coefficients must be selected to estimate accurately the amount of dissolved CO2 in

  10. Glass Forming Ability of Sub-Alkaline Silicate Melts

    NASA Astrophysics Data System (ADS)

    Vetere, F. P.; Iezzi, G.; Behrens, H.; Holtz, F.; Ventura, G.; Misiti, V.; Mollo, S.; Perugini, D.

    2014-12-01

    The glass forming ability (GFA) and critical cooling rate (Rc) of six natural sub-alkaline melts from basalt to rhyolite (i.e., B100, B80R20, B60R40, B40R60, B20R80, and R100) have been quantified through cooling-induced solidification experiments of 9000, 1800, 180, 60, 7 and 1 °C/h conducted at ambient pressure and air buffering conditions, in a temperature range between 1300 °C (superliquidus region) and 800 °C (glass transition region), The phase proportion in each run-product was determined by image analysis on about 500 BS-SEM microphotographs. The phase assemblage consists of glass, clinopyroxene, spinel, and plagioclase with the occurrence of sporadic olivine, orthopyroxene and melilite. Both the glass and crystalline fractions are well correlated with the composition of residual melt. Generally, the amount of crystals decreases with increasing cooling rate. However, some exceptions occurs showing no correlations or even opposite trends. For the example of, Al2O3 and CaO in clinopyroxenes from B100, B80R20, B60R40 and B40R60, their concentrations scale as a function of both cooling rate and the degree of clinopyroxene crystallization. The value of Rc changes of 5 order of magnitude from <1 to ~9000 °C/h when the melt composition changes from R100 to B100, respectively. The most important Rc variations are measured between B80R20 and B60R40, levelling off towards B100. This trend scales with NBO/T (non bridging oxygen per tetrahedron) and can be modelled by the following master sigmoid equation: Rc = a / 1+e-(NBO/T-xo/b), where a, b and xo are fitting parameters equal to 9214, 0.040 and 0.297, respectively. Our data can be used to retrieve the solidification conditions of aphyric, degassed and oxidised lavas. Indeed, the relationship between crystal content and cooling kinetics suggests that the solidification path is more complex than previously assumed and strongly non-linear. This finding has also implications to design glass-ceramics based on natural

  11. Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.

    2008-12-01

    Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the

  12. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    NASA Astrophysics Data System (ADS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C. H. M.; Hyatt, Neil C.

    2013-05-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle-glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers' hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H2/N2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle-glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  13. Crystallization of neodymium-rich phases in silicate glasses developed for nuclear waste immobilization

    NASA Astrophysics Data System (ADS)

    Caurant, D.; Majerus, O.; Loiseau, P.; Bardez, I.; Baffier, N.; Dussossoy, J. L.

    2006-08-01

    Glass-ceramics containing neodymium-rich crystalline phases can be obtained by crystallization of silicate glasses (nucleation + crystal growth heat treatments) or by controlled cooling of melts. Such materials could be envisaged as durable matrices for conditioning minor actinides- and Pu-rich nuclear wastes if the partitioning ratio of the wastes between crystalline phase and residual glass is high (principle of double containment barrier). In radioactive waste forms, Nd would be partially substituted by actinides and neutron absorbers (Gd). In this work, two silicate glass compositions leading to efficient nucleation and crystallization of either zirconolite (Ca 1- xNd xZrTi 2- xAl xO 7, x < 1) or apatite (Ca 2Nd 8Si 6O 26) in their bulk were studied as potential waste forms. The effect of the method used to prepare glass-ceramics (controlled cooling from the melt or nucleation + crystal growth from the glass) on both the microstructure and the structure of the neodymium-rich crystalline phase was studied. The highest number of zirconolite or apatite crystals in the bulk was obtained using the nucleation + crystal growth method. However, the percentage of neodymium incorporated in zirconolite crystals remained too small to make realistic the use of such materials for the conditioning of actinides in comparison with more durable bulk ceramics.

  14. Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates

    NASA Astrophysics Data System (ADS)

    Ayadi, A.; Stiti, N.; Benhaoua, F.; Boumchedda, K.; Lerari, Y.

    2011-01-01

    The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products ← waste products← finished products). The investigations have shown that grinding waste glass to particle size less than 0.1 mm and adding 1% of Ca CO3 content provide production of material with the following properties: particle density 0,5 g/cm3, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850° C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal (λ = 0,031 W/m° C) and acoustic (R = 15 dB).

  15. Elaboration And Characterization Of Foam Glass Based On Cullet With Addition Of Soluble Silicates

    SciTech Connect

    Ayadi, A.; Stiti, N.; Benhaoua, F.; Boumchedda, K.; Lerari, Y.

    2011-01-17

    The politics of the energy saving and of the acoustic comfort buildings is at the heart of the research of new compounds permitting to improve the materials performance actually commercialised. With this aim in view, we'll purpose to elaborate a porous material (foam glass) with addition of soluble silicates (up to 40%) of which the principal material is the waste glass in order to recycle it and improving the present laws about the waste products in closed circuit: (Finished products (leftarrow) waste products (leftarrow) finished products). The investigations have shown that grinding waste glass to particle size less than 0.1 mm and adding 1% of Ca CO{sub 3} content provide production of material with the following properties: particle density 0,5 g/cm{sup 3}, strength 17,50 MPa and water adsorption 95%, the temperature for foaming ranges were determined at 850 deg. C. The microstructures are homogenous, with pore sizes up to 2 mm. The addition of soluble silicates (up to 40%) has resulted in the foam glass of very high porosity. The foam glass is counted among the new glass products meeting certain requirements sought comfort in the building industry in particular (thermal and acoustic insulation). The product obtained present of excellent properties thermal ({lambda} = 0,031 W/m deg. C) and acoustic (R = 15 dB).

  16. Redox dynamics in multicomponent, iron-bearing silicate melts and glasses: Application to the float-glass processing of high-temperature silicate glassmelts

    NASA Astrophysics Data System (ADS)

    Cook, Glen Bennett

    Processing high-strain-point glasses by the float process is challenged by the relative thermochemical properties of glassmelts and the liquid-metal float medium. As the chemical reaction between the glassmelt and the float metal involves dynamic reduction of the glassmelt, this research has examined the constraints on high-temperature float processing of glassmelts by combining metal-alloy/oxide reaction thermodynamics and Wagnerian kinetic models for redox reactions in silicate melts. The dynamic response of Fe-bearing, p-type (polaronic) semiconducting amorphous silicates to a chemical potential gradient of oxygen has been shown to be rate-limited by the chemical diffusion of network-modifying cations. The persistence of this mechanism to very low Fe concentrations in Fe-doped magnesium aluminosilicate glasses was proven with Rutherford backscattering spectroscopy. Three glasses, with 0.1, 0.5, and 1.25 mol. % FeO were reacted with air at temperatures from 710-845sp°C. For all compositions and temperatures, oxidation was dominated by network modifier diffusion; an activation energy of 475 kJ*molsp{-1} characterized the process. Chemical dynamics in a high-temperature float environment were characterized on liquid-liquid reaction couples between two low-Fe sodium-aluminoborosilicate (NABS) glassmelts (0.01 and 0.08 mol. % FeO) and Au-30Sn and Au-28Ge (atomic basis) alloys. Experiments were performed in the temperature range 1250-1450sp°C for 30 min; wavelength-dispersive and Rutherford backscattering spectroscopies were employed. These exothermic liquid-metal alloys display large negative deviations from ideal solution behavior, with significantly depressed chemical activities. Diffusion of Sn or Ge in the NABS glassmelts (depth and concentration) was limited at all temperatures to levels comparable to conventional soda-lime (NCS) float glass (˜2 min on pure Sn at 1100sp°C). Incorporation of Sn or Ge was reduced significantly in the higher-Fe-content NABS

  17. Specific heat and transport {open_quotes}anomalies{close_quotes} in mixed alkali glasses

    SciTech Connect

    Green, P.F.; Brow, R.K.; Hudgens, J.J.

    1998-11-01

    We show that changes in the relative mole fractions of Li{sub 2}O and Na{sub 2}O in alkali metaphosphate glasses lead to {open_quotes}anomalies{close_quotes} in the specific heat and structural relaxations. The heat capacity change between the liquid and glassy states, {Delta}c{sub p}(T{sub g}), at the calorimetric glass transition temperature, T{sub g}, exhibits a minimum when the mole fractions of Li{sub 2}O and Na{sub 2}O are comparable. Moreover, systematic changes in the temperature dependence of the viscosity, {eta}, i.e., changes in the {open_quotes}fragility{close_quotes} of the system, accompany these changes in mole fraction. This observed dependence of the {open_quotes}fragility{close_quotes} on the mixed alkali ion composition occurs in the absence of apparent changes in the covalent network connectivity which normally accounts for this behavior in glasses. {copyright} {ital 1998 American Institute of Physics.}

  18. Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE

    USGS Publications Warehouse

    Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.

    1997-01-01

    The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.

  19. Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Deva Prasad Raju, B.; Madhukar Reddy, C.

    2012-06-01

    Lead containing alkali fluoroborate glasses (LAFB) with molar composition of 20PbO + 5CaO + 5ZnO + 10AF + 59B2O3 + 1Eu2O3 (where A = Li, Na and K) were prepared and investigated by the TG-DTA, FT-Raman, optical absorption, fluorescence and decay curve analysis. The influence of alkali content on the structure of borate glasses was investigated by FT-Raman spectroscopy. The thermal properties of the glasses have been studied by TG-DTA analysis. Judd-Ofelt intensity parameters are derived from the absorption spectra and also from the emission spectra under various constraints. The effect of thermalization on the oscillator strengths of the absorption transitions originating from the ground (7F0) and the first excited (7F1) states of Eu3+ ions have been discussed. The J-O intensity parameters obtained by applying thermal correction to 7F0 → 5D2 and 7F6 absorption oscillator strengths were used to calculate the various spectroscopic properties. The predicted values of radiative lifetime (τR) and luminescence intensity branching ratio (βR) are compared with the measured values for 5D0 level. The decay profiles were found to be single exponential in all the three glasses. The spectroscopic properties confirm the potentiality of present LAFB glasses doped with Eu3+ ions as laser host materials to produce an intense red luminescence at 612 nm corresponding to 5D0 → 7F2 emission level and have significant importance in the development of emission rich optical systems.

  20. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  1. Optical properties and structure of beryllium lead silicate glasses

    SciTech Connect

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  2. High-temperature, high-pressure hydrothermal synthesis, characterization, and structural relationships of mixed-alkali metals uranyl silicates

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Hsin; Liu, Hsin-Kuan; Chang, Wen-Jung; Tzou, Der-Lii; Lii, Kwang-Hwa

    2016-04-01

    Three mixed-alkali metals uranyl silicates, Na3K3[(UO2)3(Si2O7)2]·2H2O (1), Na3Rb3[(UO2)3(Si2O7)2] (2), and Na6Rb4[(UO2)4Si12O33] (3), have been synthesized by high-temperature, high-pressure hydrothermal reactions at 550 °C and 1440 bar, and characterized by single-crystal X-ray diffraction, photoluminescence, and thermogravimetric analysis. Compound 1 and 2 are isostructural and contain layers of uranyl disilicate. The smaller cation, Na+, is located in the intralayer channels, whereas the larger cations, K+ and Rb+, and water molecule are located in the interlayer region. The absence of lattice water in 2 can be understood according to the valence-matching principle. The structure is related to that of a previously reported mixed-valence uranium(V,VI) silicate. Compound 3 adopts a 3D framework structure and contains a unique unbranched dreier fourfold silicate chain with the structural formula {uB,41∞}[3Si12O33] formed of Q2, Q3, and Q4 Si. The connectivity of the Si atoms in the Si12O3318- anion can be interpreted on the basis of Zintl-Klemm concept. Crystal data for compound 1: triclinic, P-1, a=5.7981(2) Å, b=7.5875(3) Å, c=12.8068(5) Å, α=103.593(2)°, β=102.879(2)°, γ=90.064(2)°, V=533.00(3) Å3, Z=1, R1=0.0278; compound 2: triclinic, P-1, a=5.7993(3) Å, b=7.5745(3) Å, c=12.9369(6) Å, α=78.265(2)°, β=79.137(2)°, γ=89.936(2)°, V=546.02(4) Å3, Z=1, R1=0.0287; compound 3: monoclinic, C2/m, a=23.748(1) Å, b=7.3301(3) Å, c=15.2556(7) Å, β=129.116(2)°, V=2060.4(2) Å3, Z=2, R1=0.0304.

  3. The structural role of manganese ions in soil active silicate-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Szumera, Magdalena

    2014-08-01

    Silicate-phosphate glasses of SiO2sbnd P2O5sbnd K2Osbnd MgOsbnd CaO system containing manganese ions were synthesized by the melt-quenching technique and were investigated to obtain information about the influence of Mn-cations on the glass structure and their chemical activity. Structural properties were studied using X-ray method, FTIR and Raman spectroscopies. The chemical activity of analyzed glasses in the 2 wt.% citric acid solution was measured by chemical analysis (ICP-AES, EDS) and SEM observations. It has been found that increasing amount of MnO2 in the structure of investigated glasses causes their gradual depolymerization. This process is more apparent in the case of the silico-oxygen subnetwork than phospho-oxygen one. This is related to increasing amounts of SiO4 tetrahedra containing two nonbridging oxygen atoms in silico-oxygen subnetwork. It has been also found that the presence of “weaker” chemical bonds of Sisbnd Osbnd Mn type in comparison to Sisbnd Osbnd Ca and Sisbnd Osbnd Mg bonds is responsible for the increase in solubility of the analyzed silicate-phosphate glasses in conditions simulating natural soil environment.

  4. Sub-critical crack growth in silicate glasses: Role of network topology

    SciTech Connect

    Smedskjaer, Morten M.; Bauchy, Mathieu

    2015-10-05

    The presence of water in the surrounding atmosphere can cause sub-critical crack growth (SCCG) in glasses, a phenomenon known as fatigue or stress corrosion. Here, to facilitate the compositional design of more fatigue-resistant glasses, we investigate the composition dependence of SCCG by studying fourteen silicate glasses. The fatigue curves (V-K{sub I}) have been obtained by indentation experiments through measurements of the crack length as a function of post-indentation fatigue duration. Interestingly, we find that the fatigue resistance parameter N is generally improved by increasing the alumina content and is thereby found to exhibit a fairly linear dependence on the measured Vickers hardness H{sub V} for a wide range of N and H{sub V} values. This finding highlights the important role of network topology in governing the SCCG in silicate glasses, since hardness has been shown to scale linearly with the number of atomic constraints. Our results therefore suggest that glasses showing under-constrained flexible networks, which feature floppy internal modes of deformation, are more readily attacked by water molecules, thus promoting stress corrosion and reducing the fatigue resistance.

  5. Iron in Silicate Glasses: Systematic Analysis of Pre-Edge And Xanes Features

    SciTech Connect

    Farges, F.; Rossano, S.; Wilke, M.; Lefrere, Y.; Brown, G.E., Jr.; /SLAC, SSRL

    2006-10-27

    A large number (67) of silicate glasses containing variable amounts of iron oxide were studied by high-resolution XANES spectroscopy at the Fe K-edge to determine an accurate method to derive redox information from pre-edge features. The glass compositions studied mimic geological magmas, ranging from basaltic to rhyolitic, dry and hydrous, with variable quench rates. The studied glasses also include more chemically simple calco-sodic silicate glass compositions. The Fe contents range from 30 wt.% to less than 2000 ppm. For most of the series of composition studied, the pre-edge information varies linearly with redox, even under high-resolution conditions. The average coordination of Fe(II) is often similar to its Fe(III) counterpart except in highly polymerized glasses because of the strong influence exerted by the tetrahedral framework on iron's sites. Natural volcanic glasses (from various volcanoes around the world) show similar variations. The average coordination of Fe(II) is often comprised between 4.5 and 5. Fe(III) shows larger variations in coordination (4 to 6, depending on composition). Bond valence models are proposed to predict the average coordination of Fe based on composition. Molecular dynamics simulations (Born-Mayer-Huggins) potentials were carried out on some compositions to estimate the magnitude of disorder effects (both static and thermal) in the XAFS analysis. XANES calculations based on the MD simulations and FEFF 8.2 show large variations in the local structures around Fe. Also, 5-coordinated Fe(III) is found to be an important moiety in ferrisilicate glasses. For Fe(II), discrepancies between glass and melt are larger and are related to its greater structural relaxation at T{sub g}. Also, a strong destructive interference between network formers and modifiers explain the relatively weak intensity of the next-nearest neighbors contributions in the experimental spectra.

  6. Tm-doped silicate glass fibre lasers: the foundation technology for high-power mid-infrared light generation

    NASA Astrophysics Data System (ADS)

    Jackson, S. D.

    2011-02-01

    The Tm-doped silicate glass fibre laser that operates in the 2 micron region of the spectrum is fast becoming a mature technology with output powers already exceeding 1 kW. In this paper, I will review a number of current and future experiments that involve lasers pumped with the output from Tm-doped silicate glass fibre lasers including linear systems e.g., the optical excitation of rare earth ions and nonlinear systems e.g., Raman fibre lasers.

  7. Kinetics of iron redox reaction in silicate melts: A high temperature Xanes study on an alkali basalt

    NASA Astrophysics Data System (ADS)

    Cochain, B.; Neuville, D. R.; de Ligny, D.; Roux, J.; Baudelet, F.; Strukelj, E.; Richet, P.

    2009-11-01

    In Earth and Materials sciences, iron is the most important transition element. Glass and melt properties are strongly affected by iron content and redox state with the consequence that some properties (i.e. viscosity, heat capacity, crystallization...) depend not only on the amounts of Fe2+ and Fe3+, but also on the coordination state of these ions. In this work we investigate iron redox reactions through XANES experiments at the K-edge of iron. Using a high-temperature heating device, pre-edge of XANES spectra exhibits definite advantages to make in-situ measurements and to determine the evolution of redox state with time, temperature and composition of synthetic silicate melts. In this study, new kinetics measurements are presented for a basalt melt from the 31,000-BC eruption of the Puy de Lemptegy Volcano in France. These measurements have been made between 773 K and at superliquidus temperatures up to 1923 K.

  8. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    PubMed Central

    Cheng, Shaodong; Yang, Guang; Zhao, Yanqi; Peng, MingYing; Skibsted, Jørgen; Yue, Yuanzheng

    2015-01-01

    Transmission electron microscopy and related analytical techniques have been widely used to study the microstructure of different materials. However, few research works have been performed in the field of glasses, possibly due to the electron-beam irradiation damage. In this paper, we have developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which the fraction of BO4 tetrahedra can be obtained by fitting the experimental data with linear combinations of the reference spectra. The BO4 fractions (N4) obtained by EELS are consistent with those from 11B MAS NMR spectra, suggesting that EELS can be an alternative and convenient way to determine the N4 fraction in glasses. In addition, the boron speciation of a CeO2 doped potassium borosilicate glass has been analyzed by using the time-resolved EELS spectra. The results clearly demonstrate that the BO4 to BO3 transformation induced by the electron beam irradiation can be efficiently suppressed by doping CeO2 to the borosilicate glasses. PMID:26643370

  9. Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses

    NASA Astrophysics Data System (ADS)

    Mohan, Shaweta; Thind, Kulwant Singh

    2016-07-01

    Neodymium doped cadmium alkali borate glasses having composition 20CdOsbnd 20R2Osbnd 59.5H3BO3sbnd 0.5Nd2O3; (R = Li, Na and K) were prepared by conventional melt-quenching technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The physical properties such as density, refractive index, molar volume, rare earth ion concentration etc. were determined. Optical absorption and fluorescence spectra were recorded. The Judd-Ofelt theory was applied on the optical absorption spectra of the glasses to evaluate the three phenomenological intensity parameters Ω2, Ω4 and Ω6. These parameters were in turn used to predict the radiative properties such as the radiative transition probability (A), radiative lifetime (τR) and branching ratio (βR) for the fluorescent levels of Nd3+ ion in the present glass series. The lasing efficiency of the prepared glasses has been characterized by the spectroscopic quality factor (Ω4/Ω6), the value of which is in the range of 0.2-1.5, typical for Nd3+ in different laser hosts. The variation of Ω2 with the change in alkali oxide has been attributed to the changes in the asymmetry of the ligand field at the rare earth ion site. The shift of the hypersensitive bands, study of the oscillator strengths and the variation of the spectral profile of the transition 4I9/2 → 4F7/2 + 4S3/2 indicate a maximum covalency of Ndsbnd O bond for glass with potassium ions. From the fluorescence spectra, peak wavelength (λp), effective line widths (Δλeff) and stimulated emission cross-section (σp) have been obtained for the three transitions 4F3/2 → 4I9/2,4F3/2 → 4I11/2 and4F3/2 → 4I13/2 of Nd3+ ion. The relatively high values of σp obtained for Nd3+ in present glass system suggest that these materials can be considered as suitable candidates for laser applications. The glass with potassium ions shows the highest value of the stimulated emission cross-section.

  10. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    PubMed

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium. PMID:26099346

  11. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  12. Novel alkaline earth silicate sealing glass for SOFC, Part II: sealing and interfacial microstructure

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Gow, Robert N.

    2007-07-10

    This is the second part of a study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). Part I of the study addresses the effect of NiO on glass forming, thermal, and mechanical properties, and is presented in the preceding paper. In this paper (Part II), candidate composite glass with 10v percent NiO was tested for sealing standard coupons of Ni/YSZ anode-supported YSZ electrolyte bilayer and metallic interconnect Crofer22APU at various temperatures. Samples sealed at the highest temperature (1050 degrees C) showed hermetic seal after fully reduction and 10 thermal cycles. The interfacial microstructure characterization showed no distinct reactions at the interfaces of glass/YSZ or glass/metal, though some segregation of Ni was found along the glass/metal interface. Possible reactions were discussed. Overall the composite glass with 10v percent NiO appeared to be a good candidate for SOFC sealing.

  13. Novel alkaline earth silicate sealing glass for SOFC. Part II. Sealing and interfacial microstructure

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Gow, Robert N.

    This is the second part of a study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). Part I of the study addresses the effect of NiO on glass forming, thermal, and mechanical properties, and is presented in the preceding paper. In this paper (part II), candidate composite glass with 10 vol.% NiO was tested for sealing standard coupons of Ni/YSZ anode-supported YSZ electrolyte bilayer and metallic interconnect Crofer22APU at various temperatures. Samples sealed at the highest temperature (1050 °C) showed hermetic seal after fully reduction and 10 thermal cycles. The interfacial microstructure characterization showed no distinct reactions at the interfaces of glass/YSZ or glass/metal, though some segregation of Ni was found along the glass/metal interface. Possible reactions were discussed. Overall the composite glass with 10 vol.% NiO appeared to be a good candidate for SOFC sealing.

  14. Erbium doping into silicate glasses to form luminescent optical layers for photonics applications

    NASA Astrophysics Data System (ADS)

    Salavcova, Linda; Mackova, Anna; Oswald, Jiri; Svecova, Blanka; Janakova, Stanislava; Spirkova, Jarmila; Mika, Martin

    2007-05-01

    Here we summarise results of our research on the Er-containing thin surface layers in the silicate glasses and on the effect of the layers’ composition on their luminescence properties (emission at 1535 nm) in the wavelength region widely used in photonics. The optical layers were fabricated by Er3+ (melt)⇔Li+/Na+ (glass substrate) ion exchange in the specially designed Li2O containing silicate glasses using various conditions (including annealing of the samples) to obtain a set of layers with diverse distribution of the Er3+ ions. Changes in the chemical composition of the prepared layers were suggested to avoid the concentration quenching effect and to improve their luminescence properties; special attention was paid to presence of hydrogen in the layers that may decrease the emission intensity. Rutherford Backscattering Spectroscopy and Elastic Recoil Detection were used to obtain detailed information on migration of erbium and hydrogen through the glass matrix, respectively. Photoluminescence spectra of the fabricated samples were measured (excitation at 980 nm) to examine the desired emission around 1535 nm.

  15. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Williams, Thomas J.; Candela, Philip A.; Piccoli, Philip M.

    Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The Kaqm/meltH,Na and Kaqm/meltH,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of Kaqm/meltH,Na and Kaqm/meltH,K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: Kaqv/meltH,Na(vapor/melt)=26(+/-1.3) at 100 MPa (800 °C), and 19( +/- 7.0) at 50 MPa (850 °C) Kaqv/meltH,K=14(+/-1.1) at 100 MPa (800 °C), and 24(+/-12) at 50 MPa (850 °C) Kaqb/meltH,b(brine/melt)= 1.6(+/-0.7) at 100 MPa (800 °C), and 3.9(+/-2.3) at 50 MPa (850 °C) and Kaqb/meltH,K=2.7(+/-1.2) at 100 MPa (800 °C) and 3.8(+/-2.3) at 50 MPa (850 °C). Values for Kaqv/meltH,K and Kaqb/meltH,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point.

  16. Fluorescence investigation of Ho3+ in Yb3+ sensitized mixed-alkali bismuth gallate glasses.

    PubMed

    Lin, H; Zhang, Y Y; Pun, E Y B

    2008-12-15

    Efficient 2.0 microm infrared and visible upconversion emissions have been observed in Ho3+/Yb3+ co-doped mixed-alkali bismuth gallate (LKBBG) glasses having a maximum-phonon energy of 673 cm(-1). The Judd-Ofelt parameters Omega2, Omega4 and Omega6 of Ho3+ indicate that there is a high asymmetry and strong covalent environment in LKBBG glasses. The large absorption and emission cross-sections of Yb3+ confirm that it is a suitable sensitizer for capturing and transferring pump energy to Ho3+. The emission cross-section profile for the 5I7-->5I8 transition is derived using the reciprocity method and the peak value is 5.54 x 10(-21)cm2, which is much larger than the value in fluorozircoaluminate glasses. LKBBG glasses exhibit low maximum-phonon energy and large refractive index, and it is possible to achieve an effective 1.66 microm U-band emission of Ho3+ under 900 nm laser radiation. PMID:18586553

  17. An alkali-free barium borosilicate viscous sealing glass for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Crouch, Ray; Baird, Rob

    2014-12-01

    An alkali-free, alkaline earth borosilicate glass (designated G102) has been developed as a viscous sealant for use with solid oxide fuel cells (SOFCs). The glass possesses the requisite viscosity, electrical resistivity, and thermal and chemical stability under SOFC operating conditions to act as a reliable sealant. Sandwich seals between aluminized stainless steel and a YSZ/NiO-YSZ bilayer survived 148 thermal cycles (800 °C to room temperature) in both oxidizing and reducing atmospheres at a differential pressure of ∼3.4 kPa (0.5 psi) without failure. For sandwich seals that were held at 800 °C for up to 2280 h in air, G102 resisted crystallization, there were limited interactions at the G102/YSZ interface, but BaAl2Si2O8 crystals formed at the glass/metal interface because of the reaction between the glass and the aluminized steel. Sandwich seals that were intentionally cracked by thermal shock resealed to became hermetic upon reheating to temperatures as low as 744 °C.

  18. Local Structures around Si, Al and Na in Hydrated Silicate Glasses

    SciTech Connect

    Farges, Francois; Wispelaere, Sidoine de; Rossano, Stephanie; Munos, Manuel; Wilke, Max; Flank, Anne-Marie; Lagarde, Pierre

    2007-02-02

    XANES spectra were collected at the Si-, Al-, and Na K-edge in hydrous silicate glasses to understand the effect of water on the local structure around these cations. Around network forming Si and Al, no drastic changes are observed. Around Na, the dissolution of water creates more ordered environments in Al-bearing glasses and less ordered environment in Al-free glasses. Ab-initio XANES calculations were undertaken to understand the structural origins for these features. Based on these results, a bond valence model was refined that considers not only the present XANES experiments and models but also NMR information. The double percolation model refined explains, among others, the explosive properties of water-bearing hydrous melts, at the origin of a number of cataclysmic eruptions in subduction zones.

  19. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  20. Effect of Swift Heavy Ion Irradiation on Lithium Zinc Silicate Glasses: A Photoluminescence Study

    SciTech Connect

    Jogad, M. S.; Jogad, R. M.; Sudarsan, V.; Krishna, P. S. R.; Kothiyal, G. P.

    2011-07-15

    Lithium zinc silicate glasses with and without copper were prepared by melt-quench method and their luminescence characteristics after swift heavy ion irradiation has been investigated. Based on these studies it is established that both these glasses contain colour centres and the luminescence from such centres get significantly quenched once these samples get irradiated with 100 MeV swift heavy Ag{sup +} ions with a fluence of 10{sup 13} ions/cm{sup 2} at room temperature. Trapping of the charge carriers by the increased defect concentration brought about by irradiation is responsible for the decrease in the luminescence intensity from the irradiated samples. Copper in these glasses mainly exists as Cu{sup +} ions as revealed by the broad emission around 500 nm.

  1. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-01

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. PMID:25049172

  2. Spectral studies of erbium doped soda lime silicate glasses in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Sharma, Y. K.; Surana, S. S. L.; Singh, R. K.; Dubedi, R. P.

    2007-02-01

    Optical absorption and photoluminescence spectra of Er 3+ doped soda lime silicate glasses of the composition (in wt.%) 68.94SiO 2-22.55Na 2O-1.91CaO-4.96K 2O-0.85B 2O 3-0.29As 2O 3- xEr 2O 3 where x = 0.0, 0.2, 0.3 and 0.5 have been studied in the UV-VIS/NIR regions. From the measured intensities of the various absorption bands of these glasses, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. Judd-Ofelt theory has been successfully applied to characterize the absorption and luminescence spectra of these glasses. From this theory various radiative properties like spontaneous emission probability, radiative life time, fluorescence branching ratio and stimulated emission cross-section for various emission bands of these glasses in the visible and NIR spectral regions have been determined and reported. An attempt has been made to through some light on the environment of Er 3+ in this glass system. Radiative properties of fluorescence band at ˜1.54 μm suggest the suitability of this glass system for broadband amplifier in the third telecom window.

  3. On the Coordination of Actinides and Fission Products in Silicate Glasses

    SciTech Connect

    Haddi, Anne; Farges, Francois; Trocellier, Patrick; Curti, Enzo; Harfouche, Messaoud; Brown, Gordon E.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    The local structure around Th, U, Ce and Nd in leached silicate glasses was examined using XAFS spectroscopy at their L3 edges and also at the K edge of Fe, Co, Ni, Zr and Mo. Pellets of inactive borosilicate glasses with a simplified or a complex composition were leached statically at 90 C, at pH buffered to 0 or 6 for 28 days (surface/volume, S/V, ratios of 0.1 cm{sup -1}). These glasses are compared to another SON68 sample (denoted ''SP1'' in this paper) that was statically leached for 12 years under similar conditions, except for a higher S/V of 12 cm{sup -1} and a higher unconstrained pH of 9.6. The speciation of Fe, Co, Ni, Zr and Mo in the simple and the complex unleached are similar. In the statically leached glasses, the speciation of these transition metals is mostly identical to in the unleached glasses, except in the gels formed at the surface of the glasses leached at low pH, where large speciation differences are observed. Surface precipitates, especially for Fe (as ferrihydrite), Mo (possibly sidwillite) and Th (as ThO{sub 2}) were detected. Finally, the drying of the gels considerably affects the metal speciation by enhancing metal polymerization.

  4. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Florian, Pierre; Henderson, Grant S.; Massiot, Dominique

    2014-02-01

    Because of their importance in both the geosciences and the glass-making industry, alkali aluminosilicate melts have been the focal point of many past studies, but despite progress many problems remain unresolved, such as the complex behaviour of the thermodynamic properties of aluminium-rich alkali silicate melts. This paper presents a study of Na2O-Al2O3-SiO2 glasses and melts, containing 75 mol% SiO2 and different Al/(Al + Na) ratios. Their structure has been investigated by using Raman spectroscopy, as well as, 23Na, 27Al and 29Si 1D MAS NMR spectroscopy. Results confirm the role change of Na+ cations from network modifier to charge compensator in the presence of Al3+ ions. In addition, polymerization increases with increase of the Al/(Al + Na) ratio. These structural changes explain the observed variations in the viscosity of these melts. The viscosity data in turn allow us to calculate the configurational entropy of melts at the glass transition temperature [the Sconf(Tg)]. The variations of the Sconf(Tg) are strongly nonlinear, with sharp increases and decreases depending on the Al/(Al + Na) ratio. More importantly, a strong increase of the Sconf(Tg) is observed when a few Al2O3 is added to sodium silicate melt. A strong decrease is observed after crossing the tectosilicate join, when Al/(Al + Na) > 0.5 and when Al3+ ions are present in fivefold coordination, Al[5], in the glass. Furthermore, in situ27Al NMR spectra of the peraluminous melt show a clear increase of the Al[5] concentration with increasing temperature. When considered in combination with melt fragility and heat capacity, our data demonstrate that Al[5] is clearly a transient unit at high temperature in highly polymerized tectosilicate and peraluminous melts. However, when present in glasses, Al[5] increases the stability of the aluminosilicate network, hence the Tg of glasses. This could be explained by the ability of Al[5] to carry threefold coordinated oxygen atoms in its first coordination

  5. Silicate all-solid photonic crystal fibers with a glass high index contrast

    NASA Astrophysics Data System (ADS)

    Buczynski, Ryszard; Pysz, Dariusz; Kujawa, Ireneusz; Fita, Piotr; Pawlowska, Monika; Nowosielski, J.; Radzewicz, Czeslaw; Stepien, Ryszard

    2007-05-01

    An all-solid photonic crystal fiber can be developed using two thermally matched glasses with one glass forming the background, and the other the lattice of inclusions. Optical properties of all-solid holey fibers (SOHO) are sensitive to the photonic cladding configuration, much the same as PCFs with air holes, and strongly depend on dispersion properties of the materials used. When a high index contrast between the glasses is assured photonic crystal fiber can effectively guide light with photonic band gap mechanism. This can be easily achieved when multicomponent soft glass is used for fiber fabrication. We report on new developments of F2/NC-21 silicate all-glass PCFs. F2 is a commercially available glass (Schott Inc.) with a high concentration of lead-oxide (PbO=45.5%) and the refractive index n D=1.619. It can be used both as the background material and as a material for micro-rods (inclusions). A borosilicate glass (B IIO 3=26.0%) NC-21 glass has been synthesized in-house at IEMT. NC21 has the index n D=1.533 and was used as the material for micro-rods (inclusions) or as a background glass in the structures. The two selected glasses have a high index contrast equal to 0,084 at 1,55μm wavelength. In this report we present new results on optimization of the filling factor d/Λ and reduction of the lattice pitch Λ necessary to obtain efficient guidance at 1.55 μm. The numerical analysis of SOHO F2/NC21 fibers has been carried out using a full-vector mode solver based on the plane-wave expansion method. In our paper we report on photonic crystal fibers with two guiding mechanisms: an effective index with a high index core (low index inclusions made of NC21 glass and F2 used as a background glass) and a photonic band gap with a low index core (high index inclusions made of F2 glass and NC21 used as a background glass).

  6. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  7. Long-term stable, low-temperature remote silicate phosphor thick films printed on a glass substrate.

    PubMed

    Kim, Jun Sik; Kwon, Oh Hyeon; Jang, Jin Woo; Lee, Sung Hyun; Han, Sung Jun; Lee, Joo Hong; Cho, Yong Soo

    2015-04-13

    A critical step in providing better phosphor solution for white light emitting diode (LED) is to utilize inexpensive silicate phosphors with strong thermal stability. Here, we demonstrate yellow silicate phosphor-embedded glass thick films with a high luminous efficacy of ∼32 lm/W at 200 mA as a nonconventional remote-phosphor approach. The simple screen-printing process of a paste consisting of (Ba,Sr,Ca)₂SiO₄:Eu²⁺ phosphor and a low softening point glass creates a planar remote structure on a regular soda lime silicate glass with controllable film thickness and location (top vs bottom) of the phosphor layer. The glass matrix provides promising densification and adhesion with the substrate at the optimal low temperature of 410 °C, with the long-term stability in luminous efficacy over 500 h of operation. The proposed phosphor structure has important implications to overcome current limitations as phosphors. PMID:25761285

  8. Control of chromaticity by phosphor in glasses with low temperature sintered silicate glasses for LED applications.

    PubMed

    Lee, Yl Kwon; Kim, Yoon Hwa; Heo, Jong; Im, Won Bin; Chung, Woon Jin

    2014-07-15

    Phosphor-in-glass (PiG) color converters for LED applications were fabricated with a mixture of phosphors, Y₃Al₅O₁₂:Ce³⁺ (yellow) and CaAlSiN₃:Eu²⁺ (red). The low sintering temperature (550°C) of SiO₂-Na₂O-RO (R=Ba, Zn) glass powder enabled the inclusion of CaAlSiN₃:Eu²⁺ (red) phosphor which cannot be embedded with conventional glass powders for PiGs. By simply varying the mixing ratio of glass to phosphors as well as the ratio of yellow to red phosphors, the facile control of the CIE chromaticity coordinates and correlated color temperature of the LED following the Planckian locus has been achieved. Phosphors were well distributed within the glass matrix without noticeable reactions, preserving the enhanced thermal quenching property of the PiG compared to those with silicone resins, for LEDs. PMID:25121657

  9. Influence of glass composition and alteration solution on leached silicate glass structure: A solid-state NMR investigation

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; Gaillard, Marina; Jollivet, Patrick; Charpentier, Thibault

    2006-05-01

    A multinuclear solid-state NMR investigation of the structure of the amorphous alteration products (so called gels) that form during the aqueous alteration of silicate glasses is reported. The studied glass compositions are of increasing complexity, with addition of aluminum, calcium, and zirconium to a sodium borosilicate glass. Two series of gels were obtained, in acidic and in basic solutions, and were analyzed using 1H, 29Si, and 27Al MAS NMR spectroscopy. Advanced NMR techniques have been employed such as 1H- 29Si and 1H- 27Al cross-polarization (CP) MAS NMR, 1H double quantum (DQ) MAS NMR and 27Al multiple quantum (MQ) MAS NMR. Under acidic conditions, 29Si CP MAS NMR data show that the repolymerized silicate networks have similar configuration. Zirconium as a second nearest neighbor increases the 29Si isotropic chemical shift. The gel porosity is influenced by the pristine glass composition, modifying the silicon-proton interactions. From 1H DQ and 1H- 29Si CP MAS NMR experiments, it was possible to discriminate between silanol groups (isolated or not) and physisorbed molecular water near Si (Q 2), Si (Q 3), and Si (Q 4) sites, as well as to gain insight into the hydrogen-bonding interaction and the mobility of the proton species. These experiments were also carried out on heated samples (180 °C) to evidence hydrogen bonds between hydroxyl groups on molecular water. Alteration in basic media resulted in a gel structure that is more dependent on the initial glass composition. 27Al MQMAS NMR data revealed an exchange of charge compensating cations of the [AlO 4] - groups during glass alteration. 1H- 27Al CP MAS NMR data provide information about the proximities of these two nuclei and two aluminum environments have been distinguished. The availability of these new structural data should provide a better understanding of the impact of glass composition on the gel structure depending on the nature of the alteration solution.

  10. Time Evolution of Radiation-Induced Luminescence in Terbium-Doped Silicate Glass

    NASA Technical Reports Server (NTRS)

    West, Michael S.; Winfree, William P.

    1996-01-01

    A study was made on two commercially available terbium-doped silicate glasses. There is an increased interest in silicate glasses doped with rare-earth ions for use in high-energy particle detection and radiographic applications. These glasses are of interest due to the fact that they can be formed into small fiber sensors; a property that can be used to increase the spatial resolution of a detection system. Following absorption of radiation, the terbium ions become excited and then emit photons via 4f-4f electronic transitions as they relax back to the ground state. The lifetime of these transitions is on the order of milliseconds. A longer decay component lasting on the order of minutes has also been observed. While radiative transitions in the 4f shell of rare-earth ions are generally well understood by the Judd-Olfelt theory, the pr'esence of a longer luminescence decay component is not. Experimental evidence that the long decay component is due, in part, to the thermal release of trapped charge carriers will be presented. In addition, a theoretical model describing the time evolution of the radiation-induced luminescence will be presented.

  11. Gallium-containing phospho-silicate glasses: synthesis and in vitro bioactivity.

    PubMed

    Franchini, Mirco; Lusvardi, Gigliola; Malavasi, Gianluca; Menabue, Ledi

    2012-08-01

    A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x=1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga(3+) concentration measured in solution is ~6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome. PMID:24364938

  12. Compositional investigation of ∼2 μm luminescence of Ho{sup 3+}-doped lead silicate glass

    SciTech Connect

    Liu, Xueqiang; Huang, Feifei; Gao, Song; Wang, Xin; Hu, Lili; Chen, Danping

    2015-11-15

    Graphical abstract: Ho{sup 3+}-doped lead silicate glass with lowest maximum phonon energy possesses highest ∼2 μm luminescence intensity. - Highlights: • With increment of lead oxide, maximum phonon energy in lead silicate glass decreased. • ∼2 μm luminescent intensity of Ho{sup 3+} increased with increment of lead oxide. • Lowest lead oxide content glass possesses highest quantum efficiency due to low maximum phonon energy. - Abstract: Lead silicate glass samples with varying lead oxide content were prepared in this study, and their luminescent properties were examined and analyzed. It was found that with increasing lead oxide content, the maximum phonon energies of the glass samples decreased, while their spontaneous transition probabilities first increased and then decreased. The influence of the spontaneous transition rate, A{sub 10}, and the multi-phonon relaxation rate, W{sub 10}, on the sample luminescent properties was analyzed using rate equations. As a result, it was found that with increasing lead oxide content, W{sub 10}/A{sub 10} decreased, while the quantum efficiency increased. Thus, the luminescent intensity at ∼2 μm increased in the glass samples with increased lead oxide content. The high luminescent intensity and long lifetime indicate that silicate glasses containing high levels of lead oxide could potentially be used in ∼2 μm lasers.

  13. Optical waveguides in Er3+/Yb3+-codoped silicate glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Fu, Li-Li; Zhu, Xu-Feng; Guo, Hai-Tao; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-07-01

    In this work, a planar waveguide was fabricated by proton implantation in Er3+/Yb3+-codoped silicate glasses with energies of (500 + 550) keV and fluences of (1 + 2) × 1016 ions/cm2. The end-face coupling method was employed to determine whether the light could be confined in the waveguide or not. The prism coupling technique was applied to measure the guided mode spectrum and the intensity calculation method was used to construct the refractive index profile. With the profile, a near-field intensity distribution was calculated by the finite difference beam propagation method. The obtained results may be helpful in developing integrated optical devices.

  14. Preparations of PbSe quantum dots in silicate glasses by a melt-annealing technique

    NASA Astrophysics Data System (ADS)

    Ma, D. W.; Cheng, C.; Zhang, Y. N.; Xu, Z. S.

    2014-11-01

    Silicate glass containing PbSe quantum dots (QDs) has important prospective applications in near infra-red optoelectronic devices. In this study, single-stage and double-stage heat-treatment methods were used respectively to prepare PbSe QDs in silicate glasses. Investigation results show that the double-stage heat-treatment is a favorable method to synthesize PbSe QDs with strong photoluminescence (PL) intensity and narrow full weight at half maximum (FWHM) in PL peak. Therefore, the method to prepare PbSe QDs was emphasized on the double-stage heat-treatment. Transmission electron microscopy measurements show that the standard deviations of the average QD sizes from the samples heat-treated at the development temperature of 550 °C fluctuate slightly in the range of 0.6-0.8 nm, while this deviation increases up to 1.2 nm for the sample with the development temperature of 600 °C. In addition, the linear relationship between the QD size and holding time indicates that the crystallization behavior of PbSe QDs in silicate glasses is interface-controlled growth in early stage of crystallization. The growth rates of PbSe QDs are determined to be 0.24 nm/h at 550 °C and 0.72 nm/h at 600 °C. In short, the double-stage heat-treatment at 450 °C for 20 h followed by heat-treatment at 550 °C for 5 h is a preferred process for the crystallization of PbSe QDs in silicate glass. Through this treatment, PbSe QDs with a narrow size dispersion of 5.0 ± 0.6 nm can be obtained, the PL peak from this sample is highest in intensity and narrowest in FWHM among all samples, and the peak is centered on 1575 nm, very close to the most common wavelength of 1550 nm in fiber-optic communication systems.

  15. Spectra of Fe-Ti silicate glasses - Implications to remote-sensing of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Nolet, D. A.; Burns, R. G.; Flamm, S. L.; Besancon, J. R.

    1979-01-01

    Optical spectra of synthetic Fe-Ti silicate glasses and the temperature variations of the spectral features were investigated. The spectra are assigned to absorptions due to crystal field (CF) transitions in Ti(3+), Fe(2+) in octahedral coordination, and Fe(2+) in tetrahedral coordination, and to metal-metal and oxygen-metal charge transfer (CT) transitions which contribute to the near ultraviolet absorption edge. Temperature variations of the optical bands have been studied to explore implications for remote sensing. Caution is urged in the use of the absorption edge as a measure of TiO2 concentrations on planetary surfaces and in regolith samples.

  16. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  17. In vitro behavior of silicate glass coatings on Ti6A14V.

    PubMed

    Saiz, E; Goldman, M; Gomez-Vega, J M; Tomsia, A P; Marshall, G W; Marshall, S J

    2002-09-01

    The in vitro response in simulated body fluid (SBF) of silicate glass coatings on Ti6A14V was evaluated. Glasses belonging to the SiO2-CaO-MgO-Na2O-K2O-P2O5 system were used to prepare 50-70 m thick coatings on Ti6Al4V, employing a simple enameling technique. Glasses with silica content higher than 55 wt% can be used to prepare coatings that do not crack or delaminate and exhibit good adhesion to the alloy. It has been found that coatings with silica content lower than 60 wt% are more susceptible to corrosion and precipitate carbonated hydroxyapatite on their surface during in vitro tests. However, these coatings have a higher thermal expansion than the metal and are under tension. After 2 months in SBF cracks grow in the coating that reach the glass/metal interface and initiate delamination. Glasses with silica content higher than 60 wt% are more resistant to corrosion and have lower thermal expansion. These coatings do not crack but they do not precipitate apatite even after 2 months in SBF. PMID:12109700

  18. In vitro behavior of silicate glass coatings on Ti6Al4V

    SciTech Connect

    Saiz, Eduardo; Goldman, Marni; Gomez-Vega, Jose M.; Tomsia, Antoni P.; Marshall, Grayson W.; Marshall, Sally J.

    2002-01-09

    The in vitro response in simulated body fluid (SBF) of silicate glass coatings on Ti6Al4V was evaluated. Glasses belonging to the SiO2-CaO-MgO-Na2O-K2O-P2O5 system were used to prepare 50-70 (mu)m thick coatings on Ti6Al4V, employing a simple enameling technique. Glasses with silica content higher than 55 wt percent can be used to prepare coatings that do not crack or delaminate and exhibit good adhesion to the alloy. It has been found that coatings with silica content lower than 60 wt percent are more susceptible to corrosion and precipitate carbonated hydroxyapatite on their surface during in vitro tests. However, these coatings have a higher thermal expansion than the metal and are under tension. After 2 months in SBF cracks grow in the coating that reach the glass/metal interface and initiate delamination. Glasses with silica content higher than 60 wt percent are more resistant to corrosion and have lower thermal expansion. These coatings do not crack but they do not precipitate apatite, even after 2 months in SBF.

  19. NMR studies of Phase Transitions in Alkali Metal Films on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2006-05-01

    We report NMR spectra of thin ^87Rb films on glass in an investigation of the ``curing'' process which is commonly observed in alkali cells. The cells were cycled in temperature over a range of 5 C to 170 C and the rubidium solid-liquid phase transition was studied. The spectra of these two phases are resolvable at 9.4 T because of their different Knight shifts. Hysteresis in the observed phases confirmed reports of a curing phenomenon, and after time a supercooled liquid Rb peak could be detected at temperatures far below the predicted freezing point of 39 C. Moreover, a third NMR peak was observed at temperatures below the melting point whose frequency varied with temperature and spanned the solid and liquid frequency ranges. To our knowledge, this is the first study to characterize this additional resonance. We have also performed analogous measurements on ^133Cs films.

  20. Phosphor in glass with Eu3+ and Pr3+-doped silicate glasses for LED color conversion

    NASA Astrophysics Data System (ADS)

    Park, Hyun-A.; Lee, Yl Kwon; Im, Won Bin; Heo, Jong; Chung, Woon Jin

    2015-03-01

    Phosphor-in-glasses (PiGs) with rare earth (RE) doped SiO2-B2O3-RO glasses were prepared by embedding YAG:Ce3+ as the yellow phosphor. Eu3+ and Pr3+ were used to dope the glass, varying their concentrations in order to provide red emissions for possible chromaticity-control of white-light emitting diodes (WLEDs). The glass-to-phosphor mixing ratio was also varied to find the proper combination for color-controlled white LEDs. PiGs with RE-doped glasses were sintered at 750 °C and polished to 250 μm in thickness for blue LED color conversion. The photoluminescence spectra of the PiGs were monitored after they were mounted on commercial blue LED chips. Variation of color coordination, color rendering index and correlated color temperature were observed due to red emissions from the doped RE-ions. The spectral contribution of Eu3+ and Pr3+ ions to white LEDs under 450 nm LED excitation was discussed. The spatial distribution of phosphors within the glass matrix, and their possible interaction, was inspected by SEM. The thermal quenching effect was also investigated.

  1. Concentration dependence of spectroscopic properties and energy transfer analysis in Nd3+ doped bismuth silicate glasses

    NASA Astrophysics Data System (ADS)

    Tian, Cong; Chen, Xi; Shuibao, Yu

    2015-10-01

    A detailed investigation on 1.06 μm spectroscopic properties as a function of Nd3+ ions concentration in bismuth silicate glasses is reported. Judd-Ofelt analysis indicated that Nd2O3 has no substantial influence on glass structure. Based on the Judd-Ofelt intensity parameters, several radiative properties such as radiative transition probability, radiative lifetime, branching ratio and emission cross-section of Nd3+ ions have been derived. The 1.06 μm emission intensity increases firstly and then attains maximum at 0.5 mol% Nd2O3 and decreases with further increase of dopant concentration. The luminescence quenching behavior at higher Nd3+ concentration has been ascribed to the hopping migration assisted cross relaxation mechanism. The high emission cross section (2.33 × 10-20 cm2) and large quantum efficiency (90.7%) suggests their potential for compact 1.06 μm lasers applications.

  2. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  3. Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Quaranta, Alberto; Cattaruzza, Elti; Gonella, Francesco; Rampazzo, Giancarlo

    A multivariate analysis is used for the identification of the spectral features in Ion Beam Induced Luminescence (IBIL) spectra of soda-lime silicate glasses doped with silver by Ag+-Na+ ion exchange. Both Principal Component Analysis and multivariate analysis were used to characterize time-evolving IBIL spectra of Ag-doped glasses, by means of the identification of the number and of the wavelength positions of the main luminescent features and the study of their evolution during irradiation. This method helps to identify the spectral features of the samples spectra, even when partially overlapped or less intense. This analysis procedure does not require additional input such as the number of peaks.

  4. Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses.

    PubMed

    Valotto, Gabrio; Quaranta, Alberto; Cattaruzza, Elti; Gonella, Francesco; Rampazzo, Giancarlo

    2012-09-01

    A multivariate analysis is used for the identification of the spectral features in Ion Beam Induced Luminescence (IBIL) spectra of soda-lime silicate glasses doped with silver by Ag(+)-Na(+) ion exchange. Both Principal Component Analysis and multivariate analysis were used to characterize time-evolving IBIL spectra of Ag-doped glasses, by means of the identification of the number and of the wavelength positions of the main luminescent features and the study of their evolution during irradiation. This method helps to identify the spectral features of the samples spectra, even when partially overlapped or less intense. This analysis procedure does not require additional input such as the number of peaks. PMID:22571943

  5. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Mamoru

    2015-11-01

    In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

  6. Correlation of XANES features with the scintillation efficiencies of Ce doped alkaline earth lithium silicate glasses

    SciTech Connect

    Blanchard, D.L.; Sunberg, D.S.; Craig, R.A.; Bliss, M.; Weber, M.J.

    1994-11-01

    Cerium-activated, lithium-silicate glasses are widely used as thermal neutron detectors because of their versatility, robustness and low cost. The glasses convert the energy of the neutrons to visible light pulses that may be counted. This process, scintillation, is generally thought to be composed of three steps: ionization, energy transfer, and luminescence. If defects are present, they can trap the excitations, altering the scintillation output. These features have been discussed previously. The presence of magnesium in these glasses increases scintillation efficiency, but as previously observed the effect drops by a factor greater than 2.5 with substitution through the series of alkaline earths. Here, cerium activated glasses of composition 20Li{sub 2}O{center_dot}15MO{center_dot}64.4SiO{sub 2}{center_dot}0.6Ce{sub 3}O{sub 3} (where m is Mg, Ca, Sr, or Ba) exhibit scintillation efficiencies that vary by more than a factor of 2.5 with the alkaline earth. Previous work has suggested a correlation between the microstructure of these glasses and scintillation efficiency. Measurements of the Ce L{sub III} x-ray absorption edge in the Mg, Ca and Sr glasses display a feature near the absorption edge that is suggestive of the presence of Ce{sup 4+}. The area of this peak is, in fact, correlated with the scintillation efficiency of the glass. The amount of Ce{sup 4+} indicated by the intensity of this feature is, however, too high to be a permanent population. The authors suspect that the feature is a transient phenomenon related to creation of Ce{sup 4+} and trapped electrons due to photoionization by the x-ray beam.

  7. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas.

    PubMed

    Murakami, Motohiko; Goncharov, Alexander F; Hirao, Naohisa; Masuda, Ryo; Mitsui, Takaya; Thomas, Sylvia-Monique; Bina, Craig R

    2014-01-01

    The possible presence of dense magmas at Earth's core-mantle boundary is expected to substantially affect the dynamics and thermal evolution of Earth's interior. However, the thermal transport properties of silicate melts under relevant high-pressure conditions are poorly understood. Here we report in situ high-pressure optical absorption and synchrotron Mössbauer spectroscopic measurements of iron-enriched dense silicate glasses, as laboratory analogues for dense magmas, up to pressures of 85 GPa. Our results reveal a significant increase in absorption coefficients, by almost one order of magnitude with increasing pressure to ~50 GPa, most likely owing to gradual changes in electronic structure. This suggests that the radiative thermal conductivity of dense silicate melts may decrease with pressure and so may be significantly smaller than previously expected under core-mantle boundary conditions. Such dark magmas heterogeneously distributed in the lower mantle would result in significant lateral heterogeneity of heat flux through the core-mantle boundary. PMID:25384573

  8. In situ high-temperature infrared emissivity spectroscopy of silicate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; de Sousa Meneses, Domingos; Montouillout, Valerie; Echegut, Patrick

    2011-03-01

    Glasses and glass-ceramics are materials of widespread application in industry, building, photonics, microelectronics and medicine. Glass-ceramics are obtained by controlled glass crystallization, and many efforts have been done in the last years to better understand the structural changes occurring in this process. Here we show that in situ infrared emissivity spectroscopy is also a suitable technique for this purpose and a wide spectral and temperature range could be accessed (25-16000 cm-1 and 400-1700 K, respectively). We use a home-made instrument composed of two spectrometers, and a CO2 laser for locally heat the glass samples up to the melt. A dielectric function model was applied to fit the experimental data and compute the materials optical properties. We show that using new decomposition procedure quantitative information on the distribution of the Qn tetrahedral units (n being the number of bridging oxygen) can be obtained. The results at room temperature are in good agreement with recent molecular dynamics simulations. The major changes occur during quartz crystallization, with a remarkable increase of Q4 units. Supported by ANR Postre.

  9. Investigation of the structural environment of Ta in a silicate glass and water system under high P–T conditions

    SciTech Connect

    Mayanovic, Robert A.; Yan, Hao; Anderson, Alan J.; Solferino, Giulio

    2013-05-01

    In situ Ta L3-edge XAS measurements have been made from a Ta (~ 1400 ppm)-bearing peraluminous silicate glass + H2O system to 960 °C and ~ 0.6 GPa. A white-line doublet separated by ~ 4 eV occurs in the Ta L3-edge XANES and results from octahedral crystal field splitting of the Ta 5d levels due to the local structure surrounding Ta coordinated by Qn-species (n = number of bridging oxygen atoms shared between SiO4 and AlO4 units) in the silicate glass/melt + H2O system. The XANES spectra measured from the hydrous silicate glass/melt and from the silicate-rich aqueous fluid have been analyzed using multi-peak fitting techniques. The white-line doublet intensity varies with increasing P–T conditions of the silicate glass/melt + water system, indicating a shift in the electronic density of states in the vicinity of quasi bound Ta 5d states probed by the 2p3/2 core photoelectron. Ab initio modeling of the XANES indicates that water dissolution causes distortion of local structure surrounding the 6-fold coordinated Ta–Qn clusters in the hydrous silicate glass/melt and in the silicate-rich aqueous fluid. Calculation of the angular-momentum projected density of states (l-DOS) shows that the upper doublet level quasi-bound d-DOS is steadily reduced with increasing distortion of the local structure surrounding Ta–Qn clusters.

  10. Unusual anti-thermal degradation of bismuth NIR luminescence in bismuth doped lithium tantalum silicate laser glasses.

    PubMed

    Tan, Linling; Wang, Liping; Peng, Mingying; Xu, Shanhui; Zhang, Qinyuan

    2016-08-01

    For application of bismuth laser glasses in either fiber amplifier or laser, their performance stability in long run should be understood especially in extreme conditions. However, so far, there are few reports on it. Here, we found, after the cycle experiments on heating and cooling, that the proper increase of lithium content in lithium tantalum silicate laser glass can lead to unusual anti-thermal degradation of bismuth NIR luminescence, which completely differs from the scenario in germanate glass. FTIR, 29Si MAS NMR spectra, absorption and dynamic photoluminescence spectra are employed to unravel how this happens. The results illustrate that it should be due to the decrease of polymerization of silicate glass network, which in turn allows the regeneration at 250°C, and therefore, the content increase of bismuth NIR emission centers. In the meanwhile, we noticed though Bi luminescence can be thermally quenched its peak does not shift along with temperature, which seldom appears in laser materials. The unique property might guarantee the unshift of Bi fiber laser wavelength once such glass was made into fiber devices even as the environmental temperature changes. The role of lithium is discussed in the evolution of glass structures, the suppression of glass heterogeneity, and the thermal stability of Bi luminescence, and it should be helpful to design homogeneous silicate laser glass with outstanding thermal stability. PMID:27505827

  11. A Raman model for determining the chemical composition of silicate glasses

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Morgavi, Daniele; Hess, Kai-Uwe; Neuville, Daniel R.; Perugini, Diego; Dingwell, Donald B.

    2015-04-01

    Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light which provides information about molecular vibrations of the investigated sample. Since the discovery of the Raman Effect (1928) in scattered light from liquids, the Raman investigation has been extended to a large number of substances at different pressure-temperature conditions. Recently, the Raman instrument setup has rapidly grown thanks to the progress in development of lasers, charge coupled devices and confocal systems (see Neuville et al. 2014 for a review). Here we present the first Raman model able to determine the chemical composition of silicate glasses. In this study we combine chemical analysis from magma mixing experiments between remelted basaltic and rhyolitic melts, with a high spatial resolution Raman spectroscopy investigation; we focus on tracking the evolution of the Raman spectrum with chemical composition of silicate glasses. The mixing process is driven by a recently-developed apparatus that generates chaotic streamlines in the melts (Morgavi et al., 2013), mimicking the development of magma mixing in nature. From these experiments we obtained a glassy filament with a chemical composition ranging from a basalt to a rhyolite. Raman and microprobe measurements have been performed on a filament of ~1000 μm diameter, every 2.5-20 μm. The evolution of the acquired Raman spectra with the measured chemical composition has been parametrized by combining both the Raman spectra of the basaltic and rhyolitic end-members. Using the developed Raman model we have been able to determine the chemical composition (mol% of SiO2, Al2O3, FeO, CaO, MgO, Na2O and K2O) of the investigated filament. Additionally, the proposed Raman model has been successfully tested using external remelted natural samples; reference glasses (Jochum et al., 2000), a remelted basalt, andesite from Etna and Montserrat respectively. Finally, as the Raman spectrum depends on the

  12. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements.

    PubMed

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph

    2015-07-01

    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement. PMID:25627650

  13. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Florian, Pierre; Henderson, Grant S.; Massiot, Dominique

    2014-02-01

    Because of their importance in both the geosciences and the glass-making industry, alkali aluminosilicate melts have been the focal point of many past studies, but despite progress many problems remain unresolved, such as the complex behaviour of the thermodynamic properties of aluminium-rich alkali silicate melts. This paper presents a study of Na2O-Al2O3-SiO2 glasses and melts, containing 75 mol% SiO2 and different Al/(Al + Na) ratios. Their structure has been investigated by using Raman spectroscopy, as well as, 23Na, 27Al and 29Si 1D MAS NMR spectroscopy. Results confirm the role change of Na+ cations from network modifier to charge compensator in the presence of Al3+ ions. In addition, polymerization increases with increase of the Al/(Al + Na) ratio. These structural changes explain the observed variations in the viscosity of these melts. The viscosity data in turn allow us to calculate the configurational entropy of melts at the glass transition temperature [the Sconf(Tg)]. The variations of the Sconf(Tg) are strongly nonlinear, with sharp increases and decreases depending on the Al/(Al + Na) ratio. More importantly, a strong increase of the Sconf(Tg) is observed when a few Al2O3 is added to sodium silicate melt. A strong decrease is observed after crossing the tectosilicate join, when Al/(Al + Na) > 0.5 and when Al3+ ions are present in fivefold coordination, Al[5], in the glass. Furthermore, in situ27Al NMR spectra of the peraluminous melt show a clear increase of the Al[5] concentration with increasing temperature. When considered in combination with melt fragility and heat capacity, our data demonstrate that Al[5] is clearly a transient unit at high temperature in highly polymerized tectosilicate and peraluminous melts. However, when present in glasses, Al[5] increases the stability of the aluminosilicate network, hence the Tg of glasses. This could be explained by the ability of Al[5] to carry threefold coordinated oxygen atoms in its first coordination

  14. Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass

    NASA Astrophysics Data System (ADS)

    Sailaja, B.; Joyce Stella, R.; Thirumala Rao, G.; Jaya Raja, B.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2015-09-01

    Glass of 20ZnO-15 Li2O-15 Na2O-49.9 B2O3 doped with 0.1 mol% of Sm3+ (ZLNB) was prepared by the melt quenching technique. Physical properties were studied and analysed. The XRD studies confirm the amorphous nature of sample. The FT-IR spectral investigation discloses the BO3, BO4 groups, H and OH bonds. Optical absorption and emission spectra were recorded and characterized. Judd-Ofelt theory was applied to f ↔ f transitions to evaluate Judd-Ofelt intensity parameters (Ωλ). The oscillator strengths and bonding parameters were determined from absorption spectra. The trend observed was Ω4 > Ω6 > Ω2. High value of Ω4 reveals higher rigidity and covalency around the Sm3+ ion. Low value of Ω2 implies ionic nature of ligands and site symmetry around Sm3+ ion. luminescence data and Judd-Ofelt parameters Ωλ (λ = 2, 4, and 6) were used to evaluate various radiative probabilities like spontaneous radiative emission probabilities (AR), radiative lifetime (τR) and branching ratios (βR) stimulated emission cross section (σe) and CIE colour coordinates were measured, CCT temperature evaluated and the values were used to ascertain potential laser transitions at the optimum mixed alkali effect observed for the glass sample prepared. The preparedness of the material as the efficient laser active material is examined.

  15. Thorium and cerium chemical behaviour in ion-irradiated alkali-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Haddi, A.; Poissonnet, S.; Bonnaillie, P.; Serruys, Y.

    2006-08-01

    Simple alkali-borosilicate glasses containing SiO2-B2O3-Li2O-Na2O and only one or two transition metal oxides (CeO2 and/or ThO2) have been synthesized by melting the stoichiometric powder mixture at 1100 °C in a platinum crucible. Thorium and cerium were used as chemical analogs of minor actinides (Pu and Am). Th is a purely tetravalent element, although Ce can be tetravalent or trivalent. Glass samples were submitted to aqueous leaching tests at 90 °C in deionised water for one week, with or without having previously been ion-irradiated. The irradiation experiments were conducted in the nuclear energy loss regime. Kr ions supplied by a 1 MV electrostatic Van de Graaff accelerator, were used to produce displacement cascades in the first hundreds of nanometers beneath the sample's surfaces. The leached samples were then characterized by scanning electron microscopy (SEM), electron microprobe analysis (EMA) and ion beam analytical (IBA) methods: Rutherford backscattering spectrometry and elastic recoil detection analysis (RBS and ERDA), proton-induced X-ray or gamma ray emission (PIXE and PIGE). Th and Ce are shown to be enriched in the near surface region of leached glasses due to the extremely low solubility of their hydroxides. The effect of surface damage on the chemical behaviour of Th and Ce is then detailed. The possibility for Ce(IV) to be reduced as Ce(III) during ion-irradiation just before leaching and its consequences on the relative solubility of corresponding chemical species is discussed in terms of hydroxide solubility thermodynamical equilibria.

  16. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    SciTech Connect

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  17. Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties

    NASA Astrophysics Data System (ADS)

    Paje, S. E.; García, M. A.; Villegas, M. A.; Llopis, J.

    2001-09-01

    Effects of silver ion-exchange on optical absorption (OA) and photoluminescence (PL) spectra of a cerium doped soda-lime-silicate glass at room temperature are investigated. The optical spectra are described in terms of the characteristic transitions 4f↔5d originated in Ce 3+ ions placed mainly in two different sites of the glass network. As Ag + ions are introduced into the cerium doped glass, they are reduced to elementary silver (Ag 0) which are favoured by the reaction Ce 3++Ag +→Ce 4++Ag 0. Then, the number of Ce 3+ ions decrease inversely with depth from the surface contrarily to Ce 4+ ions does, and elementary silver diffuses and aggregates to form nanoparticles. As a consequence of these changes, the OA spectra of exchanged samples increase substantially in the UV range and the luminescence decreases significantly. The high sensitivity of PL together with deconvolution analysis of spectra, however, allows us to detect changes in the excitation and emission spectra from the earlier stages of ion-exchange. This indicates that during the ion-exchange we deal with fast processes (much shorter than 1 min). In fact, transmission electron microscopy observations of samples from the glass exchanged for a short time as 1 min at 325°C show the presence of a scanty number of silver nanoparticles, which confirms this point. Furthermore, with increasing the length of time of ion-exchange, PL spectra exhibit a progressive red shift indicative in part of a covalence increment in the oxygen-cerium coordinated bonding. We observe no luminescence from Ag + ions and other silver molecular species in contrast with other preliminary PL studies on silver ion-exchange in soda-lime-silicate glasses free of cerium. The effect is discussed on the basis of a supplementary increase in the number of Ce 4+ ions mainly due to the reaction Ce 3++Ag +→Ce 4++Ag 0, which prevents efficiently the luminescence of the silver centers.

  18. Chromium speciation in oxide-type compounds: application to minerals, gems, aqueous solutions and silicate glasses

    NASA Astrophysics Data System (ADS)

    Farges, François

    2009-09-01

    Cr K-edge XANES spectra were obtained for a variety of Cr-bearing model compounds containing Cr(II), Cr(III), Cr(IV), Cr(V) and Cr(VI), in which the Cr-site symmetry is D4h, Oh and Td. The centroid position of the pre-edge feature is a better indicator of the Cr valence than the edge position. In Cr-rich oxides, higher-energy transitions must be excluded in order to refine a robust valence for Cr. The pre-edge for chromates is not unique and varies as a function of the CrO4 2- moiety distortion, which is often related to Cr-polymerization (monochromate vs. dichromate). Both the analogy with the Mn K-pre-edge information and ab initio FEFF calculations of the pre-edge feature for Cr(III) and Cr(VI) confirm the experimental trends. This methodology is applied to the Cr K-edge pre-edge feature collected in gems (emerald, spinel and ruby), the layered minerals fuchsite and kämmererite, two Cr-bearing aqueous solutions and a set of sodo-calcic silicate glasses used for bottling sparkling white wine. In emerald and fuchsite, the Cr-site is differently distorted than its ruby or spinel counterpart. In a Cr(III)-bearing aqueous solution and sodo-calcic glass, no evidence for Cr(III) with Td and C3v symmetry is detected. However, minor amounts of chromate moieties (most likely monomeric) are detected in a glass synthesized in air. Preliminary spectra for the wine bottle glass suggest that only trace amounts of chromates might possibly be present in these glasses.

  19. Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses.

    PubMed

    Eichelbaum, Maik; Rademann, Klaus; Hoell, Armin; Tatchev, Dragomir M; Weigel, Wilfried; Stößer, Reinhard; Pacchioni, Gianfranco

    2008-04-01

    We report the chemistry and photophysics of atomic gold and silver particles in inorganic glasses. By synchrotron irradiation of gold-doped soda-lime silicate glasses we could create and identify unambiguously the gold dimer as a stable and bright luminescing particle embedded in the glassy matrix. The gold dimer spectra coincide perfectly with rare gas matrix spectra of Au(2). The glass matrix is, however, stable for years, and is hence perfectly suited for various applications. If the irradiated gold-doped sample is annealed at 550 degrees C a bright green luminescence can be recognized. Intense 337 nm excitation induces a decrease of the green luminescence and the reappearance of the 753 nm Au(2) emission, indicating a strong interrelationship between both luminescence centers. Time-dependent density functional theory (TD-DFT) calculations indicate that the green luminescence can be assigned to noble metal dimers bound to silanolate centers. These complexes are recognized as the first stages in the further cluster growth process, which has been investigated with small-angle x-ray scattering (SAXS). In silver-doped glasses, Ag(0) atoms can be identified with electron paramagnetic resonance (EPR) spectroscopy after synchrotron activation. Annealing at 300 degrees C decreases the concentration of Ag(1), but induces an intense white light emission with 337 nm excitation. The white luminescence can be decomposed into bands that are attributed to small silver clusters such as Ag(2), Ag(3) and Ag(4), and an additional band matching the green emission of gold-doped glasses. PMID:19636156

  20. Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses

    NASA Astrophysics Data System (ADS)

    Eichelbaum, Maik; Rademann, Klaus; Hoell, Armin; Tatchev, Dragomir M.; Weigel, Wilfried; Stößer, Reinhard; Pacchioni, Gianfranco

    2008-04-01

    We report the chemistry and photophysics of atomic gold and silver particles in inorganic glasses. By synchrotron irradiation of gold-doped soda-lime silicate glasses we could create and identify unambiguously the gold dimer as a stable and bright luminescing particle embedded in the glassy matrix. The gold dimer spectra coincide perfectly with rare gas matrix spectra of Au2. The glass matrix is, however, stable for years, and is hence perfectly suited for various applications. If the irradiated gold-doped sample is annealed at 550 °C a bright green luminescence can be recognized. Intense 337 nm excitation induces a decrease of the green luminescence and the reappearance of the 753 nm Au2 emission, indicating a strong interrelationship between both luminescence centers. Time-dependent density functional theory (TD-DFT) calculations indicate that the green luminescence can be assigned to noble metal dimers bound to silanolate centers. These complexes are recognized as the first stages in the further cluster growth process, which has been investigated with small-angle x-ray scattering (SAXS). In silver-doped glasses, Ag0 atoms can be identified with electron paramagnetic resonance (EPR) spectroscopy after synchrotron activation. Annealing at 300 °C decreases the concentration of Ag1, but induces an intense white light emission with 337 nm excitation. The white luminescence can be decomposed into bands that are attributed to small silver clusters such as Ag2, Ag3 and Ag4, and an additional band matching the green emission of gold-doped glasses.

  1. Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif

    2016-04-01

    Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.

  2. Further Investigations of the Effect of Replacing Lithium by Sodium on Lithium Silicate Scintillating Glass Efficiency

    SciTech Connect

    Bliss, Mary; Aker, Pamela M.; Windisch, Charles F.

    2012-02-15

    Ce3+ doped lithium (6Li) silicate glasses are thermal neutron detectors. Prior work showed that when sodium (Na) is substituted for Li the scintillation efficiency, under beta particle stimulation, increased and then decreased as the sodium (Na) content was increased [1]. When all the 6Li was replaced by Na no scintillation was observed. Raman spectra, acquired using a visible excitation source provided no evidence of anomalous behavior. SEM microscopy did show some phase separation, but there was no obvious correlation with the scintillation efficiency. We have reexamined these glass samples using deep UV Raman excitation which reduces fluorescence interference. The newly acquired spectra show evidence of phase separation in the glasses. Specifically we see a peak at 800 cm-1 Raman shift which can be assigned to a vitreous silica moiety that results from phase separation. There is a strong correlation between this peak's area, the scintillation efficiency, and the Na content. The observed trend suggests that phase separation enhances scintillation and addition of Na reduces the amount of phase separation. We also see evidence of at least two defect structures that can be tentatively assigned to a three-membered ring structure and an oxygen vacancy. The latter is fairly strongly correlated with enhanced scintillation efficiency.

  3. Photo-acoustic spectroscopy and quantum efficiency of Yb{sup 3+} doped alumino silicate glasses

    SciTech Connect

    Kuhn, Stefan Tiegel, Mirko; Herrmann, Andreas; Rüssel, Christian; Engel, Sebastian; Wenisch, Christoph; Gräf, Stephan; Müller, Frank A.; Körner, Jörg; Seifert, Reinhard; Yue, Fangxin; Klöpfel, Diethardt; Hein, Joachim; Kaluza, Malte C.

    2015-09-14

    In this contribution, we analyze the effect of several preparation methods of Yb{sup 3+} doped alumino silicate glasses on their quantum efficiency by using photo-acoustic measurements in comparison to standard measurement methods including the determination via the fluorescence lifetime and an integrating sphere setup. The preparation methods focused on decreasing the OH concentration by means of fluorine-substitution and/or applying dry melting atmospheres, which led to an increase in the measured fluorescence lifetime. However, it was found that the influence of these methods on radiative properties such as the measured fluorescence lifetime alone does not per se give exact information about the actual quantum efficiency of the sample. The determination of the quantum efficiency by means of fluorescence lifetime shows inaccuracies when refractive index changing elements such as fluorine are incorporated into the glass. Since fluorine not only eliminates OH from the glass but also increases the “intrinsic” radiative fluorescence lifetime, which is needed to calculate the quantum efficiency, it is difficult to separate lifetime quenching from purely radiative effects. The approach used in this contribution offers a possibility to disentangle radiative from non-radiative properties which is not possible by using fluorescence lifetime measurements alone and allows an accurate determination of the quantum efficiency of a given sample. The comparative determination by an integrating sphere setup leads to the well-known problem of reabsorption which embodies itself in the measurement of too low quantum efficiencies, especially for samples with small quantum efficiencies.

  4. MAS-NMR studies of lithium aluminum silicate (LAS) glasses and glass-ceramics having different Li{sub 2}O/Al{sub 2}O{sub 3} ratio

    SciTech Connect

    Ananthanarayanan, A.; Kothiyal, G.P.; Montagne, L.; Revel, B.

    2010-01-15

    Emergence of phases in lithium aluminum silicate (LAS) glasses of composition (wt%) xLi{sub 2}O-71.7SiO{sub 2}-(17.7-x)Al{sub 2}O{sub 3}-4.9K{sub 2}O-3.2B{sub 2}O{sub 3}-2.5P{sub 2}O{sub 5} (5.1<=x<=12.6) upon heat treatment were studied. {sup 29}Si, {sup 27}Al, {sup 31}P and {sup 11}B MAS-NMR were employed for structural characterization of both LAS glasses and glass-ceramics. In glass samples, Al is found in tetrahedral coordination, while P exists mainly in the form of orthophosphate units. B exists as BO{sub 3} and BO{sub 4} units. {sup 27}Al NMR spectra show no change with crystallization, ruling out the presence of any Al containing phase. Contrary to X-ray diffraction studies carried out, {sup 11}B (high field 18.8 T) and {sup 29}Si NMR spectra clearly indicate the unexpected crystallization of a borosilicate phase (Li,K)BSi{sub 2}O{sub 6}, whose structure is similar to the aluminosilicate virgilite. Also, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium metasilicate (Li{sub 2}SiO{sub 3}) and quartz (SiO{sub 2}) were identified in the {sup 29}Si NMR spectra of the glass-ceramics. {sup 31}P NMR spectra of the glass-ceramics revealed the presence of Li{sub 3}PO{sub 4} and a mixed phase (Li,K){sub 3}PO{sub 4} at low alkali concentrations. - Graphical Abstract: The {sup 11}B MAS-NMR spectra of lithium aluminum silicate (LAS) glass-ceramics indicating the formation of Li/KBSiO{sub 6} phase. This phase is isostructural with virgilite and cannot be distinguished in X-ray diffractograms.

  5. The research of properties of Eu3+-doped cadmium aluminium silicate glass

    NASA Astrophysics Data System (ADS)

    Chen, Yue-e.; Hou, Lan-tian; Song, Zhao-yuan

    2008-11-01

    We have prepared (40SiO2-14Al2O3-(40-x) CdO-2Li2O-2K2O-2Na2O -x Eu2O3) cadmium aluminium silicate glasses doped with europium by high temperature solid-state reaction method. The absorption spectra, excitation spectra, emission spectra are obtained. With the increase of Eu2O3, the absorption peaks are founded increasing to the best doped concentration and then reducing, which is nonlinear relationship. The charge-transfer band is moved to 320 nm due to the addition of Cd2+. We can see that the ratio of peak in 591 nm and 615 nm is 0.6-0.75 in general, and is unrelated to doped concentration. By changing concentration of Eu3+.We can adjust and mix different intensity of light according to the demand.

  6. Optical and spectroscopic properties of soda lime alumino-silicate glasses doped with erbium and silver

    NASA Astrophysics Data System (ADS)

    Carmo, A. P.; Bell, M. J. V.; Da Costa, Z. M.; Anjos, V.; Barbosa, L. C.; Chillcce, E. F.; Giehl, J. M.; Pontuschka, W. M.

    2011-10-01

    Spectroscopic properties of Ag/Er co-doped soda lime silicate glasses have been studied with the aim of assessing the effective role of silver as a sensitizer for erbium. Changes in spectroscopic properties of Er 3+ as a function of silver addition to the base composition have been measured. Transmission electron microscopy (TEM), absorption as well as photoluminescence measurements in the visible and infrared spectral region, particularly 4I 13/2 → 4I 15/2 transition of the Er 3+ ion were performed; excitation wavelengths in the range from 325 to 808 nm were used. Enhancement of the Er 3+ luminescence at 1.54 μm was observed when Ag was added.

  7. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    NASA Astrophysics Data System (ADS)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  8. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers.

    PubMed

    Zhao, Yanqi; Wondraczek, Lothar; Mermet, Alain; Peng, Mingying; Zhang, Qinyuan; Qiu, Jianrong

    2015-05-01

    Compared to rare-earth doped glasses, bismuth-doped glasses hold promise for super-broadband near-infrared (NIR) photoemission and potential applications in optical amplification. However, optically active bismuth centers are extremely sensitive to the properties of the surrounding matrix, and also to processing conditions. This is strongly complicating the exploitation of this class of materials, because functional devices require a very delicate adjustment of the redox state of the bismuth species, and its distribution throughout the bulk of the material. It also largely limits some of the conventional processing routes for glass fiber, which start from gas phase deposition and may require very high processing temperature. Here, we investigate the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from melt-derived germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, however, alkali addition also leads to increasing mean-field basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity. PMID:25969328

  9. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  10. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sakamaki, Tatsuya; Kono, Yoshio; Wang, Yanbin; Park, Changyong; Yu, Tony; Jing, Zhicheng; Shen, Guoyin

    2014-04-01

    X-ray diffraction and ultrasonic velocity measurements of three silicate glasses (in jadeite, albite, and diopside compositions) show a sharp contrast in pressure-induced changes in structure and elasticity. With increasing pressure to around 6 GPa, polymerized glasses (jadeite and albite) display large shift in the first sharp diffraction peak (FSDP) in the structure factor, S(Q), to higher-Q values, indicating rapid shrinkage in the intermediate-range ordered (IRO) structure. Above 6 GPa, the shift of FSDP decelerates, suggesting that shrinkage in the IRO structure has been largely completed and the structure evolution is now dominated by the diminution of the interstitial volume in a more densely packed arrangement. Associated with this structural change, sound velocities increase with pressure above 6 GPa. In contrast, the depolymerized diopside glass exhibits smaller changes in the pressure dependence for both sound velocities and FSDP positions. Compared to the polymerized glasses, the velocities are faster and the positions of FSDP appear at higher-Q under the same experimental conditions. The results suggest that the depolymerized diopside glass has an initially denser IRO structure compared to that of the polymerized glasses, and there are no sufficient interstitial voids to shrink. The different behaviors between polymerized and depolymerized glasses are apparently related to the initial linkage of tetrahedra and the pressure-induced structural reactions. These results suggest that under compression up to 10 GPa, the degree of polymerization is a major factor affecting the IRO network structure and the sound velocity of silicate glasses.

  11. Structural implications of water dissolution in haplogranitic glasses from NMR spectroscopy: influence of total water content and mixed alkali effect

    NASA Astrophysics Data System (ADS)

    Schmidt, B. C.; Riemer, T.; Kohn, S. C.; Holtz, F.; Dupree, R.

    2001-09-01

    To study the effects of total water content and alkali substitution on the structure of aluminosilicate glasses, two series of glasses belonging to the ternary system Quartz (Qz)-Albite (Ab)-Orthoclase (Or) were synthesized and investigated with nuclear magnetic resonance (NMR) spectroscopy. Series I consisted of seven glasses with normative composition Ab 39Or 32Qz 29 (AOQ) and water contents ranging from 0 to 6 wt%. Series II consisted of dry and hydrous glasses (˜2.0 wt% H 2O) with five compositions along the join Qz 37Ab 63-Qz 34Or 66 (AQ-OQ) varying the alkali content (Na/K) at constant Si/Al ratio. All glasses were investigated with 1H, 23Na, 27Al and 29Si magic angle spinning (MAS) NMR. 29Si MAS spectra of AOQ glasses showed no change upon hydration, suggesting little variation of the Si environments although the large linewidth of the 29Si signal may hide the presence of some Si Q 3-OH. The isotropic chemical shift (δ iso) of 27Al showed no change upon hydration, regardless of the amount of dissolved water. The 27Al mean quadrupolar coupling constant (C q) decreased with increasing water content, indicating a general increase of symmetry of the charge distribution around Al, which suggests the absence of significant amounts of Al Q 3-OH. Nonetheless, the evolution of C q upon hydration suggests a correlation with OH concentration in the quenched glass. The evolution of 23Na isotropic chemical shifts upon hydration appears to be correlated with total water content or with the concentration of dissolved H 2O molecules. In general, the NMR data are consistent with the water solubility model of Kohn et al. (1989), involving the exchange of charge balancing cations by protons. However, in addition to the presence of molecular water, 1H-NMR results showed at least two types of OH groups of which one may be related to Al-OH. Although the small intensity of this signal indicates that only a minor fraction of OH groups is present in this species, it demonstrates

  12. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Tilocca, Antonio; Dhuna, Vikram; Bhatia, Gaurav; Dhuna, Kshitija; Ferreira, José M F

    2014-07-01

    We investigated the structure-property relationships in a series of alkali-free phosphosilicate glass compositions co-doped with Zn(2+) and Sr(2+). The emphasis was laid on understanding the structural role of Sr(2+) and Zn(2+) co-doping on the chemical dissolution behavior of glasses and its impact on their in vitro bioactivity. The structure of glasses was studied using molecular dynamics simulations in combination with solid state nuclear magnetic resonance spectroscopy. The relevant structural properties are then linked to the observed degradation behavior, in vitro bioactivity, osteoblast proliferation and oxidative stress levels. The apatite-forming ability of glasses has been investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy-energy-dispersive spectroscopy after immersion of glass powders/bulk in simulated body fluid (SBF) for time durations varying between 1h and 14 days, while their chemical degradation has been studied in Tris-HCl in accordance with ISO 10993-14. All the glasses exhibit hydroxyapatite formation on their surface within 1-3h of their immersion in SBF. The cellular responses were observed in vitro on bulk glass samples using human osteosarcoma MG63 cell line. The dose-dependent cytoprotective effect of glasses with respect to the concentration of zinc and strontium released from the glasses is also discussed. PMID:24709542

  13. A Multi-spectroscopic Investigation of Sulphur Speciation in Silicate Glasses and Slags

    SciTech Connect

    Bingham, P.; Connelly, A; Hand, R; Hyatt, N; Northrup, P; Alonso Mori, R; Glatzel, P; Kavcic, M; Zitnik, M; et al.

    2010-01-01

    Sulphur K-edge x-ray absorption near-edge structure (XANES), sulphur K{sub {alpha}} and K{sub {beta}} high resolution x-ray emission spectroscopies (XES), electron paramagnetic resonance (EPR) and optical absorption spectroscopies have been used to study the speciation of sulphur in a range of soda-lime-silica glasses and silicate slags. Several inorganic standards with known sulphur oxidation states and structural environments have also been analysed. Results confirm that the average oxidation state of sulphur in glasses decreases, as expected, in the order (colourless>light olive>dark olive>light amber>dark amber). This behaviour is consistent with decreasing S{sup 6+}/{Sigma}S ratio, which has been quantified by linear combination fitting of XES S K{alpha} spectra, and with analysed sulphur contents which exhibit a characteristic relationship with oxygen partial pressure, pO{sub 2}. A combination of S{sup 6+}, S{sup 5+}, S{sup 4+} and more reduced sulphur species has been detected in olive and amber glasses. The S{sup 4+} and S{sup 5+} species are most evident in olive-coloured glasses produced under moderately reducing conditions that coincide with minimum sulphur solubilities. The reduced form of sulphur, present in all reduced glasses, is interpreted as being present as S{sup 2-} on the basis of XANES, XES, EPR and optical measurements. An alternative interpretation of the data is that there is a continuum of less strongly reduced species, primarily S{sup +} and S{sup 2+}; this interpretation has less merit. In this paper we show that the established relationship that describes sulphur redox only in terms of S{sup 6+} and S{sup 2-}, and which states that only these two species co-exist over a narrow, moderately reducing range of pO{sub 2}, does not fully describe the behaviour of S in the industrial, non-equilibrated glasses studied. Hence this relationship requires slight modification for non-equilibrated systems to explain the existence of intermediate

  14. Size Scaling of Tensile Failure Stress in a Soda-Lime-Silicate Float Glass

    SciTech Connect

    Wereszczak, Andrew A; Kirkland, Timothy Philip; Ragan, Meredith E; Strong, Kevin T; Lin, Hua-Tay; Patel, P

    2010-01-01

    The (tensile) strength-size scaling of a float soda-lime silicate glass was studied using biaxial flexure and Hertzian ring crack initiation testing. The examined Weibull effective areas spanned ~ 0.4 to 48,000 mm2. Both the air- and tin-sides were tested. The air side was stronger than the tin side as others have observed; however, the differences in their characteristic strengths decreased with decreasing effective area, and their strengths converged for effective areas smaller than ~ 100 mm2. The failure stress at the smallest effective area examined for the tin-side was ~ 500% greater than that at the largest effective area while that difference was ~ 250% for the air- side. A Weibull modulus change at ~ 100 mm2 suggests different strength-limiting flaw types were dominant below and above that effective area. These results reinforce the importance to interpret and use tensile strength of glass in context to how much of its area is being tensile stressed.

  15. Compressibility of hydrated and anhydrous sodium silicate-based liquids and glasses, as analogues for natural silicate melts, by Brillouin scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachev, Sergey Nikolayevich

    A mathematical formalism was tested on compressibility studies of water, before applying it to the high pressure-temperature compressibility studies of hydrated and anhydrous sodium silicate-based liquids and glasses. The hypersonic sound velocity, refractive index and attenuation coefficient obtained using Brillouin light scattering spectroscopy technique were in agreement with literature data. From the measured sound velocities, the pressure dependence of the bulk moduli and density of liquid water were calculated, using Vinet equation of state. The formalism was extended to the Brillouin scattering studies of the elastic properties of alkaline-calcium silica hydrogels and float glass, which exhibits a dramatic increase in the pressure dependence of longitudinal velocity and a discontinuity in the compressibility at about 6 GPa. It is demonstrated that an apparent second-order transition to a new amorphous phase can form via the abrupt onset of a new compressional mechanism, which may be triggered by a shift in polymerization of the glass or an onset of a change in coordination of silicon. Brillouin scattering measurements were carried out on an aqueous solution of Na2O-2SiO2 and anhydrous Na2O-2SiO 2 glass and liquid at high P-T conditions. The "modified" platelet scattering geometry has allowed a determination of the longitudinal velocity independently from refractive index, and hence the adiabatic compressibility and density of liquids as a function of pressure and temperature. The observed increase in density of the melt and glass phases formed at high P-T conditions is likely associated with structural effects. The large values of KS' of the liquid phase illustrate that the means of compaction of the liquid differs substantially from that of the glass, and that the liquid is able to access a wider range of compaction mechanisms. The measured bulk modulus of Na2O-2SiO2 aqueous solution is closer to values of silicate melts than to that of end-member water at

  16. Paleointensities of silicic volcanic glass: Influence of emplacement rotations and devitrivication (Invited)

    NASA Astrophysics Data System (ADS)

    Ferk, A.; Leonhardt, R.; von Aulock, F. W.; Hess, K.; Dingwell, D. B.; Tuffen, H.

    2010-12-01

    A paleomagnetic study on natural silicic volcanic glass from three different geological settings is presented. The glass transition temperature and natural cooling rates were determined by relaxation geospeedometry. Paleointensity determinations were performed with a modified Thellier technique using checks for alteration and domain state. Additionally, measurements of the anisotropy of the thermoremanence and the magnetic cooling rate dependency were included into the measurement protocol of each specimen. Rock magnetic investigations show that the main remanence carriers are low-titanium titanomagnetites that are within or close to the single domain range. At two geological settings, a 750 kyr old outcrop on Tenerife, Spain and a lava flow at the probably 95 kyr old Blahnukur in Iceland, different degrees of hydration were present. Obtaining good quality paleointensity data was impossible as thermal alteration was observed in all measurements. Systematic changes of paleomagnetic alteration indices within the profiles suggest the presence of a chemical remanence which was acquired during devitrifiction of parts of the flow. Samples from the third geological setting, 2000 yr old obsidians from Tenerife, unblock at about 400°C and are characterized by extraordinary thermal stability. Paleointensity determinations are of very good quality. The samples are characterized by strong magnetic anisotropy and the anisotropy of thermoremanence requires intensity corrections of up to 30% for individual specimens. Emplacement rotations/movements during TRM acquisition of the glass flow while cooling are present in this site. At a squeezing structure this effect is verified using paleodirections, which move further and further away from average site direction when approaching the side borders and thus the faster cooled parts of the squeezing structure. Thus the anisotropy tensor of the magnetic minerals is rotating while cooling in a (widely) constant magnetic field. This

  17. Ionic transport in mixed-alkali glasses: hop through the distinctly different conduction pathways of low dimensionality

    NASA Astrophysics Data System (ADS)

    Rim, Young-Hoon; Kim, Mac; Kim, Jeong Eun; Yang, Yong Suk

    2013-02-01

    A feature common to various solids, including single-alkali (SA) and mixed-alkali (MA) glasses, is a frequency-dependent ionic conductivity that shows the power law and the linear behavior with frequency. In spite of the advances made, the origin of this behavior continues to be controversial. We report our measurements of the conductivity of a series of MA borate glasses (Li1-xAx)2B4O7 (A = Na, K, Rb, Cs; 0 ⩽ x ⩽ 1.0) in the frequency range of 100 Hz-15 MHz and in the temperature range from 300 K to less than the glass transition temperature Tg . Using a self-similar spatial structure model, we show that the real process of ionic transport in the SA and the MA glass systems can be described by the fractional kinetic equations containing non-integer integration/differentiation operators. In the procedure of a systematic deduction of the ionic transport in glass systems, we obtained two important insights. Firstly, the time-dependent conductivity σ(t) ˜ exp (t/τ c)α reproduces the empirical expression of mean square displacement of the mobile ions ˜tα as a first approximation of ions moving through the fractal pathway and leads to the universal power-law behavior at frequency scales. Secondly, the modified fractional Rayleigh equation with a repulsive interaction provides a quantitative explanation for experimental findings on the SA and the MA glasses. Investigations on the power-law exponent β in the SA and the MA borate glasses indicate that the ions move through the different branches of the fractal structured conduction pathways due to the structural character, associated with a site mismatch effect, and Coulomb blockade by the randomly distributed ions.

  18. Effect of Li 2O content on physical and structural properties of vanadyl doped alkali zinc borate glasses

    NASA Astrophysics Data System (ADS)

    Raghavendra Rao, T.; Rama Krishna, Ch.; Udayachandran Thampy, U. S.; Venkata Reddy, Ch.; Reddy, Y. P.; Sambasiva Rao, P.; Ravikumar, R. V. S. S. N.

    2011-05-01

    The effect of Li 2O content in vanadyl doped 20ZnO+ xLi 2O+(30- x)Na 2O+50B 2O 3 (5≤ x≥25) glasses has been studied with respect to their physical and structural properties. The absence of sharp peaks in XRD spectra of these glass samples confirms the amorphous nature. The physical parameters like density, refractive index, ionic concentration and electronic polarizability vary non-linearly with x mol% depending on the diffusivities of alkali ions. EPR and optical absorption spectra reveal that the resonance signals are characteristics of VO 2+ ions in tetragonally compressed octahedral site. Spin-Hamiltonian, crystal field, tetragonal field and bonding parameters are found to be in good agreement with the other reported glass systems. The tetragonal distortion ( g⊥- g∥) and Dt reveals that their values vary non-linearly with Li 2O content and reaches a minimum at x=10 mol%. An anomaly of character has been observed in all the properties of vanadyl doped glass systems, which gives a clear indication of mixed alkali effect.

  19. Characterization of Cr3+ doped mixed alkali ions effect in zinc borate glasses - Physical and spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Rama Sundari, G.; Pushpa Manjari, V.; Raghavendra Rao, T.; Satish, D. V.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Ravikumar, R. V. S. S. N.

    2014-06-01

    The physical and structural properties of Cr3+ doped 19.9 ZnO + xLi2O + (30 - x) Na2O + 50B2O3 (5 ⩽ x ⩽ 25) (ZLNB) glasses have been studied. Powder X-ray diffraction patterns indicated the amorphous nature of the glass samples. The physical parameters of all the glasses were also evaluated with respect to the composition. They exhibit the non-linearity providing the evidence for mixed alkali ions effect. The infrared spectra of the glasses in the range 400-4000 cm-1 showed the presence of BO3 and BO4 local structures in all the glass systems. No boroxol ring formation was observed in the structure of these glasses. Optical absorption and electron paramagnetic resonance studies were carried out at room temperature. From the optical absorption data various optical parameters such as optical band gap, Urbach energy were evaluated. Crystal field and Racah parameters are evaluated from optical absorption spectra. The EPR spectra of Cr3+ doped ZLNB glasses exhibited resonance signals at g = 4.066 and g = 1.9779 characteristic of Cr3+ ions. The evaluated bonding parameters suggest the covalent nature.

  20. Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases

    SciTech Connect

    Fluegel, Alex

    2010-10-01

    Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.

  1. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  2. Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses

    NASA Astrophysics Data System (ADS)

    Hehlen, Markus P.; Cockroft, Nigel J.; Gosnell, T. R.; Bruce, Allan J.

    1997-10-01

    A spectroscopic investigation of an extensive series of Er3+-doped and Er3+,Yb3+-codoped soda-lime-silicate (SL) and aluminosilicate (AS) glasses is presented. Compared to SL glasses, 4f transitions in AS glasses show higher oscillator strengths, larger inhomogeneous broadening, and smaller crystal-field splittings of the respective excited-state multiplets. The Er3+ excited-state relaxation dynamics is adequately described by a combination of the Judd-Ofelt model and the energy-gap law. With the exception of 4I13/2, multiphonon relaxation is dominant for all excited states, making it possible to efficiently pump the 1.55 μm 4I13/2-->4I15/2 emission by excitation of 4I11/2 at around 980 nm. The absolute 4I13/2 luminescence quantum yield, for low 980-nm excitation density (~5 W/cm2), η, is ~0.9 at 0.4 mol % Er2O3 and drops to about 0.65 upon increasing Er2O3 to 1.2 mol %, indicating the onset of energy-transfer processes. Samples with high OH- impurity concentration suffer from significantly higher quenching of 4I13/2 luminescence at higher Er3+ concentrations. Energy migration to the minority of Er3+ ions coordinated to OH-, followed by efficient multiphonon relaxation accounts for this effect. At low excitation densities, the strong near-infrared absorption of Yb3+ in combination with efficient Yb-->Er energy transfer increases the 4I13/2 population density in Yb3+,Er3+-codoped samples by up to 2 orders of magnitude compared to equivalent samples without Yb3+. The dependence of η on Yb3+ codotation of 0.4 mol % Er2O3-doped samples predicts that a minimum of ~0.8 mol % Yb2O3 is required to achieve efficient sensitization of Er3+ by Yb3+. The relative intensities of upconversion luminescence from 4S3/2 and 2H11/2 are used to analyze internal sample heating in detail. Due to the high absorption cross section of Yb3+, increasing the Yb3+ concentration in Yb3+,Er3+-codoped samples of given length increases the absorbed power and subsequently the total density of

  3. Equation of state of refractory silicate glasses and melts by high-pressure x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S.; Wang, Y.; Nishiyama, N.; Rivers, M.; Tangeman, J.

    2005-12-01

    The new high-pressure x-ray tomographic microscope on 13-BM-D at GSECARS-APS/ANL is being used to determine the equation of state of glasses and melts. We demonstrate that the volume of compressed silicate glass microspheres can be measured accurately to constrain the bulk modulus and its pressure derivative up to ~6 GPa. The pressure generation system consists of two opposing Drickamer anvils compressed within an x-ray-transparent Al containment ring supported by thrust bearings and driven by a 250-ton hydraulic press. This configuration permits the pressure cell to rotate under load, while collecting 360 x-ray radiographs through 180 degrees of rotation. Individual x-ray radiographs are recorded by a CCD camera after conversion to visible light by a YAG scintillator and combined to render the volume using a back-projection algorithm and standard flat/dark field corrections with minimal filtering, following by image processing. Results are reported for two magnesium silicate glasses (33 mol % and 38 mol % SiO2) synthesized by levitation-laser heating. Vitreous forsterite (33 mol % SiO2) compressed to 4.8 GPa shows a 5% reduction in volume, while 38 mol % SiO2 glass compressed to 6.4 GPa shows an 8.7% decrease in volume - corresponding to bulk moduli of 75 and 55 GPa, respectively, for K' of 4. The differences in the compressibility of these magnesium silicate glasses are consistent with the structural differences inferred from neutron and x-ray diffraction studies. Efforts to develop a heating circuit will soon allow the recovery of thermal expansivity, central to efforts to derive a P-V-T equation of state for silicate liquids relevant to the Earth's deep interior.

  4. Effect of iron particle size and volume fraction on the magnetic properties of Fe/silicate glass soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Jiang, Longtao; Liao, Yaqin; Song, Jiabin; Li, Bingqing; Wu, Gaohui

    2015-03-01

    Fe/silicate glass soft magnetic composites (SMC) were fabricated by powder metallurgy with 1000 MPa pressure at room temperature, and then annealed at 700 °C for 90 min. The iron particles distributed uniformly in the composites, and have been separated from each other by a continuous silicate glass insulating layer. Fe/glass interface was well bonded and a quasi-continuous layer Fe3O4 and FeO exited. Very fine crystalline phases Na12Ca3Fe2(Si6O18)2 were formed in silicate glass. Composite containing 57 vol% 75 μm iron particles demonstrated highest resistivity of 7.8×10-3 Ω m. The μm, Bs and Bt increased while Hc of Fe/silicate glass composites decreased with the increase of average size of iron particles. The composite with highest amount (82 vol%) and largest average size (140 μm) of iron particles demonstrated best μm, Bs and Bt and Hc, which were 622, 1.57 T, 1.43 T, 278 A/m, respectively. The composite containing 57 vol% 75 μm iron particles demonstrated minimum core loss of 3.5 W/kg at 50 Hz and 28.1 W/kg at 400 Hz, while the composite containing 82 vol% 140 μm iron particles exhibited maximum core loss of 5.2 W/kg at 50 Hz and 67.7 W/kg at 400 Hz.

  5. Effect of Zn addition on non-resonant third-order optical nonlinearity of the Cu-doped germano-silicate optical glass fiber.

    PubMed

    Ju, Seongmin; Watekar, Pramod R; Jeong, Seongmook; Kim, Youngwoong; Han, Won-Taek

    2012-01-01

    Cu/Zn-codoped germano-silicate optical glass fiber was manufactured by using the modified chemical vapor deposition (MCVD) process and solution doping process. To investigate the reduction effect of Zn addition on Cu metal formation in the core of the Cu/Zn-codoped germano-silicate optical glass fiber, the optical absorption property and the non-resonant third-order optical nonlinearity were measured. Absorption peaks at 435 nm and 469 nm in the Cu/Zn-codoped germano-silicate optical glass fiber were contributed to Cu metal particles and ZnO semiconductor particles, respectively. The effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber was measured to be 1.5097 W(-1) x km(-1) by using the continuous-wave self-phase modulation method. The gamma of the Cu/Zn-codoped germano-silicate optical glass fiber was about four times larger than that of the reference germano-silicate optical glass fiber without any dopants. The increase of the effective non-resonant optical nonlinearity, gamma, of the Cu/Zn-codoped germano-silicate optical glass fiber, can be attributed to the enhanced nonlinear polarization due to incorporated ZnO semiconductor particles and Cu metal ions in the glass network. The Cu/Zn-codoped germano-silicate optical glass fiber showed high nonlinearity and low transmission loss at the optical communication wavelength, which makes it suitable for high-speed-high-capacity optical communication systems. PMID:22524031

  6. Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lesher, Charles E.; Wang, Yanbin; Gaudio, Sarah; Clark, Alisha; Nishiyama, Nori; Rivers, Mark

    2009-05-01

    The volumetric properties of silicate glasses and supercooled liquid are examined at high pressures and temperatures using X-ray computed tomography (CT) and absorption. The high pressure X-ray microtomography (HPXMT) system at the Advanced Photon Source, Argonne National Laboratory (GeoSoilEnvironCARS 13-BM-D beamline) consists of two opposing anvils compressed within an X-ray-transparent containment ring supported by thrust bearings and loaded using a 250-ton hydraulic press. This system permits the pressure cell to rotate under the load, while collecting radiographs through at least 180° of rotation. The 13-BM-D beamline permits convenient switching between monochromatic radiation required for radiography and polychromatic radiation for pressure determination by energy dispersive diffraction. We report initial results on several refractory magnesium silicate glasses synthesized by levitation laser heating. Volume changes during room temperature compression of Mg-silicate glasses with 33 mol% and 38 mol% SiO 2 up to 11.5 GPa give an isothermal bulk moduli of 93-100 GPa for a K' of 1. These values are consistent with ultrasonic measurements of more silica-rich glasses. The volumetric properties of amorphous MgSiO 3 at 2 GPa were examined during annealing up to 1000 °C. We consider the consequences of heating through the glass transition and the implications for thermal expansivity of supercooled liquids at high pressure. Our results illustrate the capabilities of HPXMT for studies of refractory glasses and liquids at high pressure and offer strategies for future studies of liquid densities within the melting interval for magmas in planet interiors.

  7. Volumetric properties of magnesium silicate glasses and supercooled liquid at high pressure by X-ray microtomography

    SciTech Connect

    Lesher, Charles E.; Wang, Yanbin; Gaudio, Sarah; Clark, Alisha; Nishiyama, Nori; Rivers, Mark

    2009-06-01

    The volumetric properties of silicate glasses and supercooled liquid are examined at high pressures and temperatures using X-ray computed tomography (CT) and absorption. The high pressure X-ray microtomography (HPXMT) system at the Advanced Photon Source, Argonne National Laboratory (GeoSoilEnvironCARS 13-BM-D beamline) consists of two opposing anvils compressed within an X-ray-transparent containment ring supported by thrust bearings and loaded using a 250-ton hydraulic press. This system permits the pressure cell to rotate under the load, while collecting radiographs through at least 180{sup o} of rotation. The 13-BM-D beamline permits convenient switching between monochromatic radiation required for radiography and polychromatic radiation for pressure determination by energy dispersive diffraction. We report initial results on several refractory magnesium silicate glasses synthesized by levitation laser heating. Volume changes during room temperature compression of Mg-silicate glasses with 33 mol% and 38 mol% SiO2 up to 11.5 GPa give an isothermal bulk moduli of 93--100 GPa for a K' of 1. These values are consistent with ultrasonic measurements of more silica-rich glasses. The volumetric properties of amorphous MgSiO{sub 3} at 2 GPa were examined during annealing up to 1000 C. We consider the consequences of heating through the glass transition and the implications for thermal expansivity of supercooled liquids at high pressure. Our results illustrate the capabilities of HPXMT for studies of refractory glasses and liquids at high pressure and offer strategies for future studies of liquid densities within the melting interval for magmas in planet interiors.

  8. Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses.

    PubMed

    Gu, Yifei; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E

    2013-11-01

    Previous studies have evaluated the capacity of porous scaffolds composed of a single bioactive glass to regenerate bone. In the present study, scaffolds composed of a mixture of two different bioactive glasses (silicate 13-93 and borate 13-93B3) were created and evaluated for their response to osteogenic MLO-A5 cells in vitro and their capacity to regenerate bone in rat calvarial defects in vivo. The scaffolds, which have similar microstructures (porosity=58-67%) and contain 0, 25, 50 and 100 wt.% 13-93B3 glass, were fabricated by thermally bonding randomly oriented short fibers. The silicate 13-93 scaffolds showed a better capacity to support cell proliferation and alkaline phosphatase activity than the scaffolds containing borate 13-93B3 fibers. The amount of new bone formed in the defects implanted with the 13-93 scaffolds at 12 weeks was 31%, compared to values of 25, 17 and 20%, respectively, for the scaffolds containing 25, 50 and 100% 13-93B3 glass. The amount of new bone formed in the 13-93 scaffolds was significantly higher than in the scaffolds containing 50 and 100% 13-93B3 glass. While the 13-93 fibers were only partially converted to hydroxyapatite at 12 weeks, the 13-93B3 fibers were fully converted and formed a tubular morphology. Scaffolds composed of an optimized mixture of silicate and borate bioactive glasses could provide the requisite architecture to guide bone regeneration combined with a controllable degradation rate that could be beneficial for bone and tissue healing. PMID:23827095

  9. Study of fluorine in silicate glass with 19F nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Douglass, D. C.; Csencsits, R.; Walker, K. L.

    1986-07-01

    We report an application of nuclear magnetic resonance (NMR) spectroscopy to the study of fluorine-doped silicate glass prepared by the modified chemical vapor deposition process, prior to drawing the rod into fibers. The silica contains 1.03-wt. % fluorine, as determined by the calibrated intensity of the 19F NMR spectrum. The isotropic chemical shift of the 19F spectrum shows that fluorine bonds only to silicon; there is no evidence of oxyfluorides. Analysis of the distribution of nuclear dipolar couplings between fluorine nuclei reveals that the relative populations of silicon monofluoride sites [Si(O-)3F] and species having near-neighbor fluorines, such as silicon difluoride sites [Si(O-)2F2], are nearly statistically random. That is, to a good approximation, the fluorine substitutes randomly into the oxygen sites of the silica network. There is no evidence of local clusters of fluorine sites, silicon trifluoride sites [Si(O-)F3], or silicon tetrafluoride (SiF4).

  10. Diffusion of helium isotopes in silicate glasses and minerals: Implications for petrogenesis and geochronology. Doctoral thesis

    SciTech Connect

    Trull, T.W.

    1989-06-01

    Helium diffusivities in basaltic glasses at seafloor temperatures are about 10 to the -16th power sq cm/s suggesting only very low concentration samples will be compromised, and that U/He geochronology of submarine basalts may be feasible. Helium diffusivities at magmatic temperatures are 10 to the -11th power, to 10 to the -8th power sq cm/s in silicate minerals, too low to regionally homogenize helium in the mantle. Helium exchange rates limit xenolith origin depths and transport times. Faster He diffusion in pyroxene than olivine allows diffusive loss to be evaluated. Diffusivities of {sup 3}He produced by cosmic rays in surface rocks are less than 10 to the -20th power sq cm/s in olivine and quartz, suggesting exposure dating will not be limited by helium loss for ages up to 10,000,000 years. Similar conclusions were found for U/{sup 4}He dating of quartz. Part of the {sup 3}He/{sup 4}He variability (.01 to 9 R{sub a}) of island arc basalts from the western Pacific reflects post-eruptive helium addition. In unaltered samples, Kavachi submarine volcano has different {sup 3}He/{sup 4}He (6.9 + or - .2 R{sub a}) than the Woodlark Spreading Center (8-9 R{sub a}). A contribution from subducted Pacific lithosphere may explain this and 87 Sr/86 Sr variations.

  11. Gamma irradiated soda lime silicate glasses of different origin: Isothermal light emission

    NASA Astrophysics Data System (ADS)

    Yoshimura, E. M.; Okuno, E.; Suszynska, M.

    2002-05-01

    The isothermal light emission, at temperatures from 30 to 70 °C, from gamma irradiated (9 kGy with 60Co source, at room temperature) soda lime silicate glasses, with different amounts of K, Na and/or Ca in the matrix is presented. This emission was not expected in view of the thermoluminescent (TL) peak temperatures, commensurate with low probability of emission at temperatures too much below the peak maxima. It was noticed that single or multi-exponential decay functions can be fitted to experimental data for all the samples. The time constants of luminescence decay obtained range from minutes to several hours, depending on sample composition and temperature. For each sample and temperature, there is a tendency of enlargement of the half life of the light emission for longer heating duration. As the TL mechanism of this material is not yet fully understood, the analysis included, correlated with already known results of other techniques, gives a contribution to its comprehension.

  12. Dielectric properties of high-density-plasma fluorinated-silicate glass by doping nitrogen

    SciTech Connect

    Wei, B. J.; Cheng, Y. L.; Wang, Y. L.; Lu, F. H.; Shih, H. C.

    2008-05-15

    Nitrogen-doped fluorinated-silicate-glass (N-FSG) films were prepared by adding N{sub 2} gas to the SiH{sub 4}/SiF{sub 4}/O{sub 2}/Ar gas mixtures using high-density-plasma (HDP) chemical vapor deposition method. When N{sub 2} is increasingly added, the fluorine concentration of the films increases and the dielectric constant decreases from 3.8 to 3.4. In addition, better gap-filling ability is obtained by adding N{sub 2} due to a lowered deposition/(sputtering+etching) (D/S+E) ratio. Moreover, these films were stabilized by a decreased change in dielectric constant after thermal treatment; indicating a significant improvement in the thermal resistivity of the films. It is proposed that the improvement of stability is correlated with the reduction of unstable fluorine bonds in the N-FSG films. Furthermore, the thermal stability of the N-FSG films was also identified by Al wiring delamination check. After annealing, the blister was observed only in non-N{sub 2} FSG film with 5.5% Si-F concentration, while no blisters or delamination were observed when N{sub 2} is introduced into the FSG process. Therefore, the N-FSG film, deposited by HDP-chemical vapor deposition, was a good candidate for the interconnect dielectric application.

  13. Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics.

    PubMed

    Looney, Mark; O'Shea, Helen; Boyd, Daniel

    2013-01-01

    Bioactive and degradable porous bioceramics play an important role in many clinical situations. Porosity is essential to the performance of a material that is proposed to be used as an implantable osseous scaffold. Scaffolds provide a three dimensional support and template to osseous integration and vascularization. Combining the porosity of a scaffold with the ability of the scaffold material to deliver therapeutic ions to the site of implantation goes some way towards developing an ideal bone graft. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics scaffoldswere developed, whose porosity was measured to be between 93% and 96%, which is advantageous in terms of osseous integration and vascularization. The levels of Zn(2+) and Sr(2+) detected as a result of degradation of the crystalline phases were found to be 1.4-600 parts per million (ppm) and 0-583 ppm, respectively. The levels detected correlate well with the levels of Sr(2+) and Zn(2+)ions typically associated with clinical benefits, including antibacterial efficacy, osteoblastic differentiation and impaired osteoclastic resorption. PMID:21926151

  14. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Multiphoton coloration of lead silicate glasses by high-power laser radiation

    NASA Astrophysics Data System (ADS)

    Efimov, O. M.; Matveev, Yu A.; Mekryukov, A. M.

    1994-04-01

    A study was made of the mechanism of the formation of colour centres by the exposure of lead silicate glasses to high-power laser radiation. The long-wavelength mobility edge (>5.8 eV) of charge carriers in these glasses was located well above the fundamental absorption edge (3.5 eV), so that coloration was observed only when the glass matrix experienced multiphoton ionisation. The newly formed colour centres make the main contribution to the change in the transmission directly during the action of nanosecond laser pulses. An estimate was obtained of the three-photon absorption coefficient of TF10 glass at the wavelength of 527 nm.

  15. Bioactive Glass Shell Growth of a Si-Na-Ca-P Layer on Gold Nanoparticles Functionalized with Mercaptopropyltrimethyloxysilane-Silicate

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Kuang; Chen, Szu-Hsien; Li, Wan-Yun; Lai, Chern-Hsiung; Chen, Wen-Cheng

    Calcium phosphate and silicate-modified gold surfaces have potential applications in orthopedic and dental reconstruction, especially when combined with bone cement or dental resins. The aim of this study was to evaluate the formation of a Si-Na-Ca-P glass system nanoshell on functionalized gold nanoparticles. Stable gold nanoparticle suspensions were prepared by controlled reduction of HAuCl4 using the sodium citrate method to obtain a nanogold-mercaptopropyltrimethyloxysilane (MPTS)-silicate-tetraethylothosilicate (TEOS)-capped particle solution. The nanoshells were formed when directly reacted with a 10-4 M calcium phosphate ion solution. The median nanoparticle diameter was observed to be 15 nm. The MPTS-silicate-TEOS-functionalized nanoshell more effectively formed a glass shell as compared with a nonsilicate nanoshell. The changes in the surface morphology and composition were observed by a scanning transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. As seen using EDS, the nanoshell was in a glass phase with CaO-poor layers.

  16. Dissolution mechanism of soda-lime silicate glass and of PNL 76-68 in the presence of dissolved Mg

    SciTech Connect

    Sang, J.C.; Guo, Y.; Barkatt, A.; Adel-Hadadi, M.A.; Marbury, G.S.; Barkatt, A.

    1994-12-31

    Leaching studies were performed on powdered PNL 76-68 glass in de-ionized water in the presence of Mg solute. The results showed that the presence of Mg in the leachant greatly reduced the rate of glass dissolution. The equation Q = kt{sup {alpha}} was used to express the experimental data. In the absence of Mg, {alpha} was about 1, i.e., the amount of glass dissolved was linear with time. In the presence of Mg, {alpha} was close to 0.5, i.e. the extracted amount was proportional to the square root of time. Therefore, the reduction of the dissolution rate of PNL 76-68 glass in the presence of Mg solute could be explained as a result of a change in the glass dissolution mechanism. Comparative leaching studies on bulk soda-lime silicate glass in a sodium borate buffered system (pH 8.1) showed the same results. The presence of Mg in the leachant reduced the rate of glass dissolution. In the absence of Mg, {alpha} was about 1, while in the presence of Mg, {alpha} was 0.5. This change in {alpha} was not caused by changes in pH, and it represents a real change in the glass dissolution mechanism.

  17. Highly silicic compositions on the Moon.

    PubMed

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. PMID:20847267

  18. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  19. Observation of Supercontinuum Generation and Darkening Effect in Bro-Silicate Glass under 800 nm Femtosecond Irradiations

    NASA Astrophysics Data System (ADS)

    Abdolahpour, D.; Jamshidi-Ghaleh, K.

    2007-04-01

    In this paper, we report the experimental observations of supercontinuum generation and darkening effect in bro-silicate glasses under 200 femtosecond pulses at wavelength of 800 nm. The spectrum of supercontinuum emission from the sample is recorded in the UV wavelength range. The length of filamentation or white light and darkening are investigated at different incident laser pulse energies. The begging position of the generated white light and darkening moves inside glass bulk with decreasing of incident pulse energy. The pulse energy threshold for supercontinuum generation and the laser-induced darkening in this material has been measured. By controlling of the laser-induced darkening in borosilicate glasses prepares a promising technique for designing optical devices.

  20. Infrared spectroscopy and hydrogen isotope geochemistry of hydrous silicate glasses. Progress report, June 1, 1996--May 31, 1999

    SciTech Connect

    Epstein, S.; Stolper, E.

    1998-06-01

    This DOE-funded project (DE-FG03-ER13445, 6/1/96-5/31/99) emphasizes study of the behavior of volatiles in magmatic systems. The project is explicitly focused on the combined application of IR spectroscopy, experimental petrology, and stable isotope geochemistry to understanding the behavior and properties of the volatile components dissolved in silicate melts and glasses, although in recent years, our emphasis has broadened to include non-volatile aspects of stable isotope geochemistry. Results obtained during the current grant and previous grant periods confirm that when applied to study of well-chosen synthetic and natural systems, the combination of these approaches and techniques can yield insights of general petrological and volcanological value and of practical value to DOE. In particular, the results of our DOE-funded work has led to a deeper understanding of the physical chemistry of silicate melts as well as specific constraints on the thermal and chemical evolution of high-level magmatic systems of the sort being evaluated as potential geothermal and magmathermal energy sources. Moreover, our work has also contributed to understanding the behavior of H-, C-, and O-bearing species in amorphous and crystalline silicates, including the kinetics of their interactions; we believe these results will contribute to efforts to use silicates in the development of nuclear waste disposal strategies.

  1. Paleomagnetism and Mineralogy of Unusual Silicate Glasses and Baked Soils on the Surface of the Atacama Desert of Northern Chile: A Major Airburst Impact ~12ka ago?.

    NASA Astrophysics Data System (ADS)

    Roperch, P. J.; Blanco, N.; Valenzuela, M.; Gattacceca, J.; Devouard, B.; Lorand, J. P.; Tomlinson, A. J.; Arriagada, C.; Rochette, P.

    2015-12-01

    Unusual silicate glasses were found in northern Chile in one of the driest place on earth, the Atacama Desert. The scoria-type melted rocks are littered on the ground at several localities distributed along a longitudinal band of about 50km. The silicate glasses have a stable natural remanent magnetization carried by fine-grained magnetite and acquired during cooling. At one locality, fine-grained overbank sediments were heated to form a 10 to 20 cm-thick layer of brick-type samples. Magnetic experiments on oriented samples demonstrate that the baked clays record a thermoremanent magnetization acquired in situ above 600°C down to more than 10cm depth and cooled under a normal polarity geomagnetic field with a paleointensity of 40μT. In some samples of the silicate glass, large grains of iron sulphides (troilite) are found in the glass matrix with numerous droplets of native iron, iron sulphides and iron phosphides indicating high temperature and strong redox conditions during melting. The paleomagnetic record of the baked clays and the unusual mineralogy of the silicate glasses indicate a formation mainly by in situ high temperature radiation. Paleomagnetic experiments and chemical analyses indicate that the silicate glasses are not fulgurite type rocks due to lightning events, nor volcanic glasses or even metallurgical slags related to mining activity. The existence of a well-developped baked clay layer indicates that the silicate glasses are not impact-related ejectas. The field, paleomagnetic and mineralogical observations support evidence for a thermal event likely related to a major airburst. The youngest calibrated 14C age on a charcoal sample closely associated with the glass indicates that the thermal event occurred around 12 to 13 ka BP. The good conservation of the surface effects of this thermal event in the Atacama Desert could provide a good opportunity to further estimate the threats posed by large asteroid airbursts.

  2. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  3. Glass Composition-Dependent Silicate Absorption Peaks in FTIR Spectroscopy: Implications for Measuring Sample Thickness and Molecular H2O

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Schipper, C. I.; Stewart, R. B.

    2015-12-01

    Fourier-transform infrared spectroscopy (FTIR) is often used to measure the H2O and CO2 contents of volcanic glasses. A key advantage of FTIR over other analytical techniques is that it can reveal not only total H2O concentration but also H2O speciation, i.e. how much H2O is present as molecular H2O (H2Om) and how much as hydroxyl groups (OH) bound to the silicate network. This H2O speciation data can be used to investigate cooling rate and glass transition temperature of volcanic glasses, and to interpret H2O contents of pyroclasts affected by partial bubble resorption during cooling or secondary hydration after deposition. FTIR in transmitted light requires sample wafers polished on both sides of known thickness. Thickness is commonly measured using a micrometer but this may damage fragile samples and in samples with non-uniform thickness, e.g. vesicular samples, it is difficult to position at the exact location of FTIR analysis. Furthermore, in FTIR images or maps of such samples it is impractical to determine the thickness across the whole of the analysed area, resulting either in only a selection of the collected data being processed quantitatively and the rest being unused, or results being presented in terms of absorbance, which does not account for variations in thickness.It is known that FTIR spectra contain absorption peaks related to the glass aluminosilicate network at wavenumbers of ~2000, ~1830 and ~1600 cm-1 [1]. These have been shown to be proportional to sample thickness at the analysis location for one obsidian composition with up to 0.66 wt% H2O [2]. We test whether this calibration can be applied more widely by analysing a range of synthetic and natural glasses (andesitic to rhyolitic) to examine how the position and relative intensities of the different silicate absorption peaks vary with composition and H2O content. Our data show that even minor differences in composition necessitate a unique calibration. Furthermore, importantly we show how

  4. UV-curable silicate phosphor planar films printed on glass substrate for white light-emitting diodes.

    PubMed

    Jang, Jin Woo; Kim, Jun Sik; Kwon, Oh Hyeon; Lee, Tae Hyeon; Cho, Yong Soo

    2015-08-15

    We suggest a simple way of forming a nonconventional remote phosphor layer for white light-emitting diodes. A printing technology using a paste consisting of yellow (Ba,Sr,Ca)(2)SiO(4):Eu(2+) silicate phosphor and ultraviolet (UV)-curable polymer is applied to form solid planar films on a common soda lime silicate glass substrate through UV radiation. Relative content of the phosphor was adjusted for the best dispersion of the phosphor particles in the polymer matrix with better emission and luminescence performance. As a result, the 70 wt. % phosphor-embedded film has a luminous efficacy of ∼70.1  lm/W at 200 mA. PMID:26274644

  5. Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali - alkaline earth borate glass

    NASA Astrophysics Data System (ADS)

    Deshpande, A. M.; Deshpande, V. K.

    2009-07-01

    Mixed alkali — alkaline earth borate glasses, with the addition of silica and alumina, have been studied for their density, Tg and CTE with a view of exploring the applicability of these glasses in glass to metal sealing applications. It has been observed that silica addition results in an increase in density and Tg while the alumina addition decreases the density and Tg. The variation in CTE exhibits minima with the addition of both, silica and alumina. An attempt is made here to explain the observed variations in the properties on the basis of different mass of the additives, number of non bridging oxygens (NBOs) and other changes in the glass network.

  6. Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber

    PubMed Central

    Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili

    2015-01-01

    We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850

  7. Genesis of recent silicic magmatism in the Medicine Lake Highland, California - Evidence from cognate inclusions found at Little Glass Mountain

    NASA Technical Reports Server (NTRS)

    Mertzman, S. A.; Williams, R. J.

    1981-01-01

    Sparse, granular inclusions of early-formed minerals found within the Little Glass Mountain rhyolite flows in northern California are shown to provide a means of characterizing the physical conditions, at depth, beneath the Medicine Lake Highland during the latest phase of volcanic activity. Mineral compositions, in combination with thermodynamic calculations and experiments, suggest crystalization at a pressure of 5,200 bars within a 966-836 C temperature range; implying that mineral segregation and equilibration occurred at a depth of 15-18 km beneath the surface. In addition, mass balance calculations indicate that the Medicine Lake flow is a close approximation to the parental magma for the latest silicic lavas.

  8. Electrical conductivity of iron-bearing silicate glasses and melts. Implications for the mechanisms of iron redox reactions

    NASA Astrophysics Data System (ADS)

    Malki, M.; Magnien, V.; Pinet, O.; Richet, P.

    2015-09-01

    The electrical conductivity of a series of glasses and melts of the system SiO2-CaO-MgO-M2O-"FeO" (M = Li and Na) and of a borosilicate has been measured from room temperature to about 1820 K. For samples with predominantly reduced iron, the conductivity increases markedly upon addition of Na+ and still more of Li+, which is consistent with the increasing order Mg2+, Na+, Li+ order of cation mobility. For the oxidized samples the conductivity is in contrast almost not affected by the presence of alkali cations, which agrees with the low mobility of alkali cations that are then serving as charge compensators of tetrahedrally coordinated Al3+. The conductivity is higher for oxidized than for reduced samples. As indicated by polarization electrode phenomena and complementary continuous current measurements, this difference is due to an important contribution of electronic conduction caused by electronic charge transfer between iron species that exists in the oxidized samples. The diffusivities of oxygen and divalent cations were then determined from Eyring relationship and the measured conductivities, respectively and compared with the redox diffusivies determined for the same samples. The good agreement found between both kinds of data confirms the controlling role of divalent cations and of oxygen species in the redox kinetics near the glass transition and at high temperatures, respectively. In addition it illustrates that describing melt properties in an integrated manner is becoming possible.

  9. Intense 1.6 μm fluorescence of Nd{sup 3+} doped cadmium bismuth silicate glasses

    SciTech Connect

    Pal, I. Agarwal, A. Sanghi, S.; Bhardwaj, S.; Sanjay

    2014-04-24

    In this work, Judd-Ofelt analysis is applied to rare-earth (RE = Nd{sup 3+}) doped cadmium bismuth silicate (20CdO⋅xSiO{sub 2}⋅(79.5−x)Bi{sub 2}O{sub 3}⋅0.5Nd{sub 2}O{sub 3} (CSBN)) glasses in order to evaluate their potential as well as both glass laser systems and optical materials. The phenomenological Judd-Ofelt parameters (Ω{sub 2}, Ω{sub 4}, Ω{sub 6}) are determined for RE ions with their quality factors and compared with the equivalent parameters for several other hosts. The calculated value of stimulated emission cross-section for {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} has high and varies 14.72×10{sup −20} to 9.66×10{sup −20} cm{sup 2} with Bi{sub 2}O{sub 3} content in the host glass. The results point out that the glass system is good candidate for the development of photonics devices which are operating near infrared spectral range. Further, the FTIR results reveal that the glasses have BiO{sub 6}, SiO{sub 4} and non-bridging oxygen as local structure.

  10. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  11. Structure of Alkali Borate Glasses at High Pressure: B and Li K-Edge Inelastic X-Ray Scattering Study

    SciTech Connect

    Lee, Sung Keun; Eng, Peter J.; Mao, Ho-kwang; Meng, Yue; Shu, Jinfu

    2008-06-16

    We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li{sub 2}B{sub 4}O{sub 7}) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d{sup [4]}B/dP){sub T}. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

  12. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications

  13. The Structural Role of Zr within Alkali Borosilicate Glasses for Nuclear Waste Immobilisation

    SciTech Connect

    A Connelly; N Hyatt; K Travis; R Hand; E Maddrell; R Short

    2011-12-31

    Zirconium is a key constituent element of High Level nuclear Waste (HLW) glasses, occurring both as a fission product and a fuel cladding component. As part of a wider research program aimed at optimizing the solubility of zirconium in HLW glasses, we have investigated the structural chemistry of zirconium in such materials using X-ray Absorption Spectroscopy (XAS). Zirconium K-edge XAS data were acquired from several inactive simulant and simplified waste glass compositions, including a specimen of blended Magnox/UO{sub 2} fuel waste glass. These data demonstrate that zirconium is immobilized as (octahedral) six-fold coordinate ZrO{sub 6} species in these glasses, with a Zr-O contact distance of 2.09 {angstrom}. The next nearest neighbors of the Zr species are Si at 3.42 {angstrom} and possibly Na at 3.44 {angstrom}, no next nearest neighbor Zr could be resolved.

  14. Glass viscosity calculation based on a global statistical modelling approach

    SciTech Connect

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.

  15. Glass corrosion in natural environment

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.

    1989-01-01

    A series of studies of the effects of solutes which appear in natural aqueous environments, specifically Mg and Al, under controlled conditions, permit characterization of the retardation of silicate glass leaching in water containing such solutes. In the case of Mg the interaction with the glass appears to consist of exchange with alkali ions present in the glass to a depth of several microns. The effect of Al can be observed at much lower levels, indicating that the mechanism in the case of Al involves irreversible formation of aluminosilicate species at the glass surface.

  16. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J.W., Jr.

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by

  17. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON

    NASA Astrophysics Data System (ADS)

    Schwöbel, André; Precht, Ruben; Motzko, Markus; Carrillo Solano, Mercedes A.; Calvet, Wolfram; Hausbrand, René; Jaegermann, Wolfram

    2014-12-01

    Lithium phosphorus oxynitride (LiPON) is a solid state electrolyte commonly used in thin film batteries (TFBs). Advanced TFBs face the issue of detrimental electrode-electrolyte interlayer formation, related to the electronic structure of the interface. In this contribution, we study the valence band structure of LiPON using resonant photoemission and synchrotron photoemission with variable excitation energies. The identification of different valence band features is done according to the known valence band features of meta- and orthophosphates. Additionally we compare our results with partial density of states simulations from literature. We find that the valence band structure is similar to the known metaphosphates with an additional contribution of nitrogen states at the top of the valence band. From the results we conclude that synchrotron X-ray photoemission (XPS) is a useful tool to study the valence band structure of nitridated alkali phosphate glasses.

  18. Study of bi-alkali photocathode growth on glass by X-ray techniques for fast timing response photomultipliers

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Demarteau, Marcel; Wagner, Robert; Ruiz-Oses, Miguel; Liang, Xue; Ben-Zvi, Ilan; Attenkofer, Klaus; Schubert, Susanne; Smedley, John; Wong, Jared; Padmore, Howard; Woll, Arthur

    2014-03-01

    Bi-alkali antimonide photocathode is an essential component in fast timing response photomultipliers. Real-time in-situ grazing incidence x-ray diffraction and post-growth x-ray reflectivity measurement were performed to study the photocathode deposition process on glass substrate. Grazing incidence x-ray diffraction patterns show the formation of Sb crystalline, dissolution of crystalline phase Sb by the application of K vapor and reformation of refined crystal textures. XRR result exhibits that the film thickness increases ~ 4.5 times after K diffusion and almost have no change after Cs diffusion. Further investigation is expected to understand the photocathode growth process and provide guidelines for photocathode development.

  19. Glass science tutorial lecture {number_sign}6: The melting of silicate glasses, a review of selected topics

    SciTech Connect

    Swarts, E.L.

    1995-03-01

    This report summarizes a two-day lecture given at Westinghouse Hanford Company in March, 1995 and includes the data used in the presentation. Topics included the special needs of a low-level waste vitrification process, glass melting, mechanisms of the formation of foam, glass refining (bubble removal), and homogenization (reduction of chemical heterogeneity to acceptable levels). 96 refs.

  20. Nucleation and Crystallization as Induced by Bending Stress in Lithium Silicate Glass Fibers

    NASA Technical Reports Server (NTRS)

    Reis, Signo T.; Kim, Cheol W.; Brow, Richard K.; Ray, Chandra S.

    2003-01-01

    Glass Fibers of Li2O.2SiO2 (LS2) and Li2O.1.6SiO2 (LS1.6) compositions were heated near, but below, the glass transition temperature for different times while subjected to a constant bending stress of about 1.2 GPa. The nucleation density and the crystallization tendency estimated by differential thermal analysis (DTA) of a glass sample in the vicinity of the maximum of the bending stress increased relative to that of stress-free glass fibers. LS2 glass fibers were found more resistant to nucleation and crystallization than the Ls1.6 glass fibers. These results are discussed in regards to shear thinning effects on glass stability.

  1. Ring distributions in alkali- and alkaline-earth aluminosilicate framework glasses- a raman spectroscopic study

    USGS Publications Warehouse

    Sharma, S.K.; Philpotts, J.A.; Matson, D.W.

    1985-01-01

    Raman spectra of crystalline polymorphs of a number of tectosilicate minerals having various sizes of smallest rings of TO4 tetrahedra (T = Si, Al) have been investigated to identify the bands that are sensitive indicators of the smallest rings in the network. The information obtained from the Raman spectra of tectosilicate minerals (e.g., SiO2 polymorphs, NaAlSi3O8 (Ab), NaAlSiO4 (Ne), KAlSi3O8 (Or), and KAlSi2O6 (Lc)) is used to interpret the Raman spectra of the isochemical glasses. It is shown that the frequency of the dominant ??s (TOT) band in the spectra of both crystals and glasses is related to the dominant size of TO4 rings in the structure. In agreement with previous X-ray RDF work, it is found that in the glasses of Ab and Jd (NaAlSi2O6) compositions, six-membered rings of TO4 tetrahedra predominate. The Raman spectrum of Or glass, however, indicates that clusters of intermixed four- and six-membered rings of TO4 tetrahedra, similar to those existing in crystalline leucite, are also present in the glass. Raman evidence indicates that four-membered rings of TO4 tetrahedra predominate in the glass of An composition. Similarly, the higher frequency of the ??s (TOT) band in the spectrum of Ne glass as compared with the frequency the ??s (TOT) band in the spectra of crystalline cargenieite and nephelite indicates either an admixture of the four- and six-membered rings or the puckering of six-membered rings in the glass structure. ?? 1985.

  2. Coordination and valence state of transition metal ions in alkali-borate glasses

    NASA Astrophysics Data System (ADS)

    Terczyńska-Madej, A.; Cholewa-Kowalska, K.; Łączka, M.

    2011-10-01

    Borate glasses of the 20R 2O·80B 2O 3 type, where R = Li, Na and K, were colored by doping with transition metal ions (Co, Ni, Cr and Mn). The glasses were obtained by melting at the temperature of 1150 °C. For these glasses optical absorption in UV-VIS-NIR range were recorded. Analysis of the spectra allows to be determined the coordination and oxidation states of the doping transition metal ions. Changes of their coordination or oxidation are presented as a function of the optical basicity Λ after Duffy. Cobalt and nickel are present in examined borate glasses as divalent ions (Co 2+, Ni 2+) in octahedral coordination mainly, but the tetrahedral coordination state of cobalt is also possible. Chromium and manganese are present in the borate glasses in various oxidation state, though Cr 3+ and Mn 3+ ions in the octahedral coordination are probably dominant. A decrease of the electronegativity of the modifiers (Li → Na → K) and an increase of the glass matrix basicity cause a shift of the oxidation/reduction equilibrium towards higher valences of the transition metals (Cr 6+, Mn 3+).

  3. Investigation of Yb3+-doped alumino-silicate glasses for high energy class diode pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Körner, Jörg; Hein, Joachim; Tiegel, Mirko; Kuhn, Stefan; Buldt, Joachim; Yue, Fangxin; Seifert, Reinhard; Herrmann, Andreas; Rüssel, Christian; Kaluza, Malte C.

    2015-05-01

    We present a detailed investigation of different compositions of Yb3+-doped alumino-silicate glasses as promising materials for diode-pumped high-power laser applications at 1030 nm due to their beneficial thermo-mechanical properties. To generate comprehensive datasets for emission and absorption cross sections, the spectral properties of the materials were recorded at temperatures ranging from liquid nitrogen to room temperature. It was found that the newly developed materials offer higher emission cross sections at the center laser wavelength of 1030 nm than the so far used alternatives Yb:CaF2 and Yb:FP-glass. This results in a lower saturation fluence that offers the potential for higher laser extraction efficiency. Fluorescence lifetime quenching of first test samples was analyzed and attributed to the hydroxide (OH) concentration in the host material. Applying a sophisticated glass manufacturing process, OH concentrations could be lowered by up to two orders of magnitude, rising the lifetime and the quantum efficiency for samples doped with more than 6.1020 Yb3+ -ions per cm³. First laser experiments showed a broad tuning range of about 60 nm, which is superior to Yb:CaF2 and Yb:FP-glass in the same setup. Furthermore, measurements of the laser induced damage threshold (LIDT) for different coating techniques on doped substrates revealed the appropriateness of the materials for short pulse high-energy laser amplification.

  4. Novel refractory alkaline earth silicate sealing glasses for planar solid oxide fuel cells

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-07-01

    A novel “refractory” Sr-Ca-Y-B-Si sealing glass (glass-ceramic) was developed for solid oxide fuel cells (SOFCs). The objective was to develop sealing glass with desired thermal properties and minimal interfacial reactions with SOFC components, ceramic electrolyte and metallic interconnect. The current glass was different from conventional sealing glass in that the sealing temperatures were targeted higher (>950 degree C) and hence more refractory. Six glasses were formulated and made by conventional glass-making process. Thermal properties were characterized in the glass state and the sintered (crystallized) state. The effect of formulation on thermal properties was discussed. Candidate glasses were also aged for 1000 to 2000 h at elevated temperatures. Thermal expansion measurements showed minimal change after aging. A candidate glass (YSO-1) was used in sealing ceramic electrolyte to a metallic interconnect from 900 degree C to 1050 degree C in air. The interfacial microstructure was characterized and SrCrO4 was identified near the metal interface. Possible reaction mechanism for the chromate formation was discussed.

  5. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. PMID:20060775

  6. In situ Brillouin study of sodium alumino silicate glasses under pressure

    NASA Astrophysics Data System (ADS)

    Sonneville, C.; De Ligny, D.; Mermet, A.; Champagnon, B.; Martinet, C.; Henderson, G. H.; Deschamps, T.; Margueritat, J.; Barthel, E.

    2013-08-01

    The in situ elastic and plastic behaviors of sodium aluminosilicate glasses with different degrees of depolymerization were analyzed using Brillouin spectroscopy. The observed elastic anomaly progressively vanished with depolymerization. The densification process appears to be different from that observed in pure silica glass. In the plastic regime of densified glasses hysteresis loops were observed and related to modification of the local silicon environment facilitated by the addition of sodium.

  7. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Santos, Luis F.; Ferreira, Jose M.

    2011-03-28

    We report on the structure, apatite-forming ability and physicochemical degradation of glasses along fluorapatite [FA; Ca5(PO4)3F] - diopside (Di; CaMgSi2O6) join. A series of glasses with varying FA/Di ratio have been synthesised by melt-quenching technique. The amorphous glasses could be obtained only for compositions up to 40 wt.% of FA. The detailed structural analysis of glasses has been made by infra-red spectroscopy (FTIR), Raman spectroscopy and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glasses was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h – 28 days. An extensive precipitation of calcite (CaCO3) after immersion in SBF was found in all the glasses which considerably masked the formation of hydroxyapatite [HA; Ca5(PO4)3OH] as depicted by X-ray diffraction (XRD) and FTIR. The possible mechanism favouring formation of calcite instead of HA has been explained on the basis of experimental results obtained for structure of glasses, leaching profile of glass powders in SBF solution and pH variation in SBF solution. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 “Biological evaluation of medical devices – Part 14: Identification and quantification of degradation products from ceramics” in Tris HCl and citric acid buffer. All the FA containing glasses exhibited a weight gain (instead of weight loss) after immersion in citric acid buffer due to the formation of different crystalline products.

  8. Study of a silicate glass doped with Cd-S-Se nanocrystals and optical waveguides formed with Cs-K ion exchange

    NASA Astrophysics Data System (ADS)

    Lipovskii, Andrey A.; Nikonorov, Nikolai V.; Kharchenko, Mikhail V.; Sitnikova, A. A.

    1994-10-01

    Zinc-boron-silicate glass doped with cadmium sulfide-selenide was synthesized, and arising and growth of Cd-S-Se microcrystals in the glass matrix under annealing was studied. The annealing dependant shift of absorption edge of the glass samples was demonstrated. Transmission electron microscopy proved that quantum confinement effect was an origin of the shifts. Growth of the microcrystals was followed by increase of their dispersion. Also the growth led to transformation of structure of the microcrystals from cubical to hexagonal. Cesium-potassium ion exchange in the SDG was applied to optical waveguides formation. Differences of the alkaline ion profiles in the glass samples annealed differently were observed.

  9. Effect of Zn- and Ca-oxides on the structure and chemical durability of simulant alkali borosilicate glasses for immobilisation of UK high level wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Corkhill, Claire L.; Heath, Paul G.; Hand, Russell J.; Stennett, Martin C.; Hyatt, Neil C.

    2015-07-01

    Compositional modification of United Kingdom high level nuclear waste (HLW) glasses was investigated with the aim of understanding the impact of adopting a ZnO/CaO modified base glass on the vitrified product phase assemblage, glass structure, processing characteristics and dissolution kinetics. Crystalline spinel phases were identified in the vitrified products derived from the Na2O/Li2O and the ZnO/CaO modified base glass compositions; the volume fraction of the spinel crystallites increased with increasing waste loading from 15 to 20 wt%. The spinel composition was influenced by the base glass components; in the vitrified product obtained with the ZnO/CaO modified base glass, the spinel phase contained a greater proportion of Zn, with a nominal composition of (Zn0.60Ni0.20Mg0.20)(Cr1.37Fe0.63)O4. The addition of ZnO and CaO to the base glass was also found to significantly alter the glass structure, with changes identified in both borate and silicate glass networks using Raman spectroscopy. In particular, these glasses were characterised by a significantly higher Q3 species, which we attribute to Si-O-Zn linkages; addition of ZnO and CaO to the glass composition therefore enhanced glass network polymerisation. The increase in network polymerisation, and the presence of spinel crystallites, were found to increase the glass viscosity of the ZnO/CaO modified base glass; however, the viscosities were within the accepted range for nuclear waste glass processing. The ZnO/CaO modified glass compositions were observed to be significantly more durable than the Na2O/Li2O base glass up to 28 days, due to a combination of the enhanced network polymerisation and the formation of Ca/Si containing alteration layers.

  10. Colloid formation in copper-implanted fused silica and silicate glasses

    SciTech Connect

    Mazzoldi, P.; Caccavale, F.; Cattaruzza, E.

    1993-12-31

    Copper implantations (90 keV, 5{times}10{sup 16} ions/cm{sup 2}) were made into fused silica, borosilicate glasses and soda-lime glass. The copper distribution has been found to vary according to glass type. The optical absorption band characteristic of the implanted metal optical properties was observed only for copper-implanted fused silica. Absorption for all the other samples was either not observable or was negligibly small, however very small metallic particles are present also in soda-lime glass. Subsequent nitrogen implantation (100 keV, 1.5{times}10{sup 17} ions/cm{sup 2}) completely eliminated the copper-colloid induced absorption in the copper-implanted fused silica, while it facilitated formation of copper-colloids in soda-lime glass.

  11. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane

    2016-01-01

    Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.

  12. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lifan; Liu, Xiao; Chen, Baojie; Bun Pun, Edwin Yue; Lin, Hai

    2012-03-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu3+ (red), Eu2+ (blue) and Tb3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity.

  13. Novel alkaline earth silicate sealing glass for SOFC, Part I: the effect of nickel oxide on the thermal and mechanical properties

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Gow, Robert N.

    2007-06-01

    This is a two-part study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). In this paper (Part I), the effect of NiO on glass forming, thermal, and mechanical properties was studied with two different approaches: glass making and composite glass. In the following paper (Part II), sealing and interfacial microstructure of candidate composite glass with 10v percent NiO will be addressed. In Part I, higher NiO content in the glass resulted in precipitation during the glass making process, and the sintered powder compacts of these glasses showed extensive macro- and micro-cracks. Coefficient of thermal expansion (CTE) showed large decrease for glass with higher NiO contents. On the other hand, glass-based composites showed no fracture even with NiO content as high as 15 percent. The CTE of the composite glass, which increased with increasing NiO content (consistent with the rule of mixtures prediction), could be adjusted to match the CTE of SOFC components. Phase characterization by XRD identified phases of YBO3 and NiO in the glass, which were likely responsible for the poor mechanical and thermal properties for the glass making approach.

  14. Structural investigations of silicate-phosphate glasses containing MoO3 by FTIR, Raman and 31P MAS NMR spectroscopies.

    PubMed

    Szumera, M

    2014-09-15

    Molybdenum is a transition metal (refers to the "d" block of the periodic table) whose atom has an incomplete d sub-shell. It is known that in silicate glasses molybdenum may exist under four oxidation states: Mo6+, Mo5+, Mo4+ and Mo3+, simultaneously molybdenum cations, depending on their content in the glass network, may either be a glass forming component, or act as a modifier. The contemporary literature data show studies conducted mostly on the structure of silicate, phosphate, borate and borosilicate glasses containing molybdenum ions, but not silicate-phosphate glasses. Therefore, the author has undertaken detailed studies using FTIR, Raman and 31P MAS NMR techniques in order to examine the effect of MoO3 addition into the structure of silicate-phosphate glasses from SiO2P2O5K2OCaOMgO system. On the basis of obtained results it was concluded that molybdenum ions in the analysed glasses act as a modifier, which follows from the gradual breakage of oxygen bridges, i.e. POP, SiOSi, and SiOP, and the following formation of connections such as Mo[MoO4]OSi and/or Mo[MoO4]OP. In summary, it is concluded that the increase of MoO3 content (up to 4.4 mol.%) in the structure of glasses of SiO2P2O5K2OMgOCaO system results in weakening of the structure and gradual increase of the degree of silico-oxygen and phosphor-oxygen frameworks depolymerisation. PMID:24759778

  15. Dependence of the mixed alkali effect on temperature and total alkali oxide content in y[xLi{sub 2}O.(1-x)Na{sub 2}O].(1-y)B{sub 2}O{sub 3} glasses

    SciTech Connect

    Gao Yong . E-mail: yonggao@uni-muenster.de

    2005-11-15

    The complex conductivity spectra of mixed alkali borate glasses of compositions y [xLi{sub 2}O.(1-x)Na{sub 2}O].(1-y)B{sub 2}O{sub 3} (with x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0; y=0.1, 0.2, 0.3) in a frequency range between 10{sup -2}Hz and 3MHz and at temperatures ranging from 298 to 573K have been studied. For each glass composition the conductivities show a transition from the dc values into a dispersive regime where the conductivity is found to increase continuously with frequency, tending towards a linear frequency dependence at sufficiently low temperatures. Mixed alkali effects (MAEs) in the dc conductivity and activation energy are identified and discussed. It has been for the first time found that the strength of the MAE in the logarithm of the dc conductivity linearly increases with the total alkali oxide content, y, and the reciprocal temperature, 1/T.

  16. Parasitic amorphous on single-domain crystal: Structural observations of silicate glass-ceramics

    PubMed Central

    Takahashi, Yoshihiro; Yamazaki, Yoshiki; Ihara, Rie; Fujiwara, Takumi

    2013-01-01

    Glass-ceramics (GCs) are materials obtained from the crystallisation of functional phases in glass, and have a structure that the crystallised phase embedded in the glass matrix. Glass-forming oxides are commonly added to the functional phases to improve the stability of precursor glass; however, the issue of glass-ceramics permitting the presence of residual phases resulting from addition is required to be clarified. To elucidate this issue, we prepared ‘perfectly surface-crystallised’ GC consisting of fresnoite-type Sr2TiSi2O8 from a non-stoichiometric glass and performed texture/morphology observations. Numerous SiO2-rich binodal-like nanospheres (~10 nm) were parasitic on the fresnoite single-crystal domains. The parasitic texture is considered to form via the following process: (i) binodal-type phase separation into stoichiometric fresnoite (crystalline matrix) and SiO2-rich phases (amorphous nanoparticles) and (ii) single-domain formation by surface crystallisation in the matrix. Furthermore, in terms of texture, the resulting GC differs from the GCs reported to date, i.e., inverse GC. PMID:23359856

  17. The oxygen coordination of metal ions in phosphate and silicate glasses studied by a combination of x-ray and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Hoppe, U.; Stachel, D.; Beyer, D.

    1995-01-01

    A combination of results from x-ray and neutron diffraction is used to obtain structural information about the metal-oxygen coordination shell in oxide glasses. Two ways to extract structural parameters of the Me-O coordination are presented. The first variant is a direct combination of both distance correlation functions which are considered simultanously in a least-squares fit procedure. On the other hand a suitable difference of the two structure factors is introduced, which do not contain any O-O correlation. The corresponding distance correlation function directly shows the Me-O peak. The samples are metaphosphate glasses with Me = Al, Zn, Mg, Ca, Ba and Na and two sodium silicate glasses (76.5 and 67 mol% silicon dioxide). Four oxygens are found in contact to the Mg ion. But two additional, more distant positions are detected. Thus, the sum of all oxygen atoms in the coordination sphere is 6 rather than 4. The Zn cation is located in a real ZnO4-tetrahedron. The number of oxygens in the environment of the Na ion is of about five both in the metaphosphate glass and in the silicate glasses. But a surprising result is a splitting observed for the Na-O distance peak in case of silicate glasses.

  18. The Elga meteorite - Silicate inclusions and shock metamorphism

    NASA Astrophysics Data System (ADS)

    Osadchii, E. G.; Novikov, G. V.; Baryshnikova, G. V.

    The present investigation is concerned with the silicate inclusions in the Elga meteorite which was found in Yakutia in 1959. Microscopic studies of the silicate inclusions indicate five distinct types with respect to structure, mineralogy, and petrology. Most of the silicate inclusions in the Elga meteorite contain nearly equal amounts of clinopyroxene and K-Na feldspar. The transparent minerals are considered, taking into account K-Na feldspar, alkali glasses, clinopyroxene, orthopyroxene, olivine, whitlockite, fluorapatite, phosphate glasses, tridymite, and rutile. Opaque minerals and alloys found include schreibersite, Fe-Ni-P alloy, Fe-Ni-P-S alloy, troilite, magnetite, and chromite. Structural characteristics related to impact melting are investigated. The mineralogy and structure of the Elga meteorite are found to indicate that it must have had at least two impact events of different intensity early in its history.

  19. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  20. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  1. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    PubMed

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications. PMID:24514181

  2. Investigation of spectroscopic properties, structure and luminescence spectra of Sm3+ doped zinc bismuth silicate glasses.

    PubMed

    Pal, I; Agarwal, A; Sanghi, S; Aggarwal, M P

    2013-01-15

    The glasses with compositions 20ZnO·(79.5-x)Bi2O3·xSiO2·0.5Sm2O3 (10≤x≤50, mol%) have been synthesized using normal melt-quench technique. Optical absorption and fluorescence spectra of the glasses were recorded at ambient temperature. Judd-Ofelt (J-O) theory has been successfully applied to characterize the absorption and luminescence spectra of these glasses. From the measured intensities of absorption bands of these glasses, the Judd-Ofelt parameters, Ωλ (λ=2, 4, 6) have been evaluated. The variation of Ω2 with Bi2O3 content has been attributed to changes in the asymmetry of the ligand field at the rare earth (RE) ion site (due to structural change) and to changes in RE-O covalency, whereas the variation of Ω6 is found to be strongly dependent on nephlauxetic effect. The shift of the hypersensitive band shows that the covalency of the RE-O decreases with decrease in Bi2O3 content in the host glass. Also, using J-O theory various radiative properties like spontaneous emission probability (Arad), radiative life time (τr), fluorescence branching ratio (βr) and stimulated emission cross-section (σ) for various emission bands of these glasses in the visible spectral region have been determined. A close correlation is observed between the Bi2O3 content and the spectroscopic, radiative and structural properties of the prepared glasses. The values of radiative properties indicated that 4G5/2→6H7/2 and 4G5/2→6H9/2 transitions responsible for orange luminescence might be used in the development of materials for LED's and other optical devices in the visible region. PMID:23099163

  3. Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2009-01-01

    Only 13 years after realizing, during a repair of a telegraph cable pulled out from the deep sea, that the depth of the ocean is plentifully populated with a highly diverse fauna and flora, the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges (Hexactinellida). They had been described by Schulze and represent the phylogenetically oldest class of siliceous sponges (phylum Porifera); they are eye-catching because of their distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Soon after, during the German Deep Sea Expedition "Valdivia" (1898-1899), Schulze could describe the largest siliceous hexactinellid sponge on Earth, the up to 3-m high Monorhaphis chuni, which develops the equally largest bio-silica structure, the giant basal spicules (3 mx10 mm). Using these spicules as a model, basic knowledge on the morphology, formation, and development of the skeletal elements could be achieved. They are formed by a proteinaceous scaffold (composed of a 27-kDa protein), which mediates the formation of the siliceous lamellae, into which the proteins are encased. The high number of 800 of 5-10 microm thick lamellae is concentrically arranged around the axial canal. The silica matrix is composed of almost pure silicon oxide, providing it with unusually optophysical properties, which are superior to those of man-made waveguides. Experiments might suggest that the spicules function in vivo as a nonocular photoreception system. In addition, the spicules have exceptional mechanical properties, combining mechanical stability with strength and stiffness. Like demosponges, also the hexactinellids synthesize their silica enzymatically, via the enzyme silicatein (27-kDa protein). It is suggested that these basic insights will surely contribute to a further applied utilization and exploration of silica in bio-material/biomedical science. PMID:19215903

  4. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions.

    PubMed

    Huang, Wenhai; Day, Delbert E; Kittiratanapiboon, Kanisa; Rahaman, Mohamed N

    2006-07-01

    Bioactive glasses with controllable conversion rates to hydroxyapatite (HA) may provide a novel class of scaffold materials for bone tissue engineering. The objective of the present work was to comprehensively characterize the conversion of a silicate bioactive glass (45S5), a borate glass, and two intermediate borosilicate glass compositions to HA in a dilute phosphate solution at 37 degrees Celsius. The borate glass and the borosilicate glasses were derived from the 45S5 glass by fully or partially replacing the SiO(2) with B(2)O(3). Higher B(2)O(3) content produced a more rapid conversion of the glass to HA and a lower pH value of the phosphate solution. Whereas the borate glass was fully converted to HA in less than 4 days, the silicate (45S5) and borosilicate compositions were only partially converted even after 70 days, and contained residual SiO(2) in a Na-depleted core. The concentration of Na(+) in the phosphate solution increased with reaction time whereas the PO(4) (3-) concentration decreased, both reaching final limiting values at a rate that increased with the B(2)O(3) content of the glass. However, the Ca(2+) concentration in the solution remained low, below the detection limit of atomic absorption, throughout the reaction. Immersion of the glasses in a mixed solution of K(2)HPO(4) and K(2)CO(3) produced a carbonate-substituted HA but the presence of the K(2)CO(3) had little effect on the kinetics of conversion to HA. The kinetics and mechanisms of the conversion process of the four glasses to HA are compared and used to develop a model for the process. PMID:16770542

  5. Strontium complexation in aqueous solutions and silicate glasses: Insights from high energy-resolution fluorescence detection X-ray spectroscopy and ab-initio modeling

    NASA Astrophysics Data System (ADS)

    Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina; Jahn, Sandro

    2014-10-01

    Although fluid-melt partitioning of trace elements like Sr, Ba, La, and Y is known to be strongly influenced by the fluid and melt chemical composition, their speciation in silicate-saturated fluids is studied insufficiently at high temperatures and pressures. Here, high energy-resolution fluorescence detection-X-ray absorption spectroscopy (HERFD-XAS) has been applied to investigate the local environment of strontium in crystalline model compounds, silicate glasses, and aqueous solutions. Acquisition of Sr K-edge HERFD-XAS spectra of aqueous solutions of SrCl2 and Sr(OH)2, and three aqueous fluids with dissolved silicate components was done in situ at temperatures to 780 °C and pressures to ∼800 MPa using hydrothermal diamond-anvil cells. Experiments were complemented by theoretical spectroscopy calculations using the finite difference method near edge structure (FDMNES) code. This approach was validated for a number of crystalline model compounds. For the silicate glasses and aqueous solutions (SrCl2 and Sr(OH)2), small clusters were examined. Either symmetric or distorted SrO6 clusters were found to describe Sr complexation in peraluminous or peralkaline glasses. However, small ‘static’ clusters seem not to be fully suited to account for the dynamically changing atomic arrangements in aqueous solutions at high temperature. Therefore, ab-initio molecular dynamics simulations were performed and used as input for modeling of X-ray absorption spectra. Analyses of these simulations indicated [SrCl(H2O)6]+ and Sr(OH)2(H2O)4 as the most likely complexes in the chloride and hydroxide solutions, respectively. Analysis of the spectra of the silicate-rich fluids shows that both melt and fluid composition strongly influence Sr complexation. For the silicate-rich fluids, formation of Sr-Cl complexes occurs at low (Na + K)/Cl and (Si + Al)/(Na + K) ratios in the fluid, whereas Sr hydroxide and possibly silicate complexes (similar to those in the silicate glass) are

  6. Effects of Aqueous Solutions on the Slow Crack Growth of Soda-Lime-Silicate Glass

    NASA Technical Reports Server (NTRS)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth (SCG) parameters of soda-lime-silicate were measured in distilled and saltwater of various concentrations in order to determine if the presence of salt and the contaminate formation of a weak sodium film affects stress corrosion susceptibility. Past research indicates that solvents affect the rate of crack growth; however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the SCG parameters A and n at high concentrations; however, for typical engineering purposes, the effect can be ignored.

  7. Mineralogy of silicate inclusions of the Colomera IIE iron and crystallization of Cr-diopside and alkali feldspar from a partial melt

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroshi; Hsu, Weibiao; Huss, Gary R.

    2003-06-01

    We studied the mineralogy, mineral chemistry, and compositions of 48 interior silicate inclusions and a large K-rich surface inclusion from the Colomera IIE iron meteorite. Common minerals in the interior silicate inclusions are Cr diopside and Na plagioclase (albite). They are often enclosed by or coexist with albitic glasses with excess silica and minor Fe-Mg components. This mineral assemblage is similar to the "andesitic" material found in the Caddo County IAB iron meteorite for which a partial melt origin has been proposed. The fairly uniform compositions of Cr diopside (Ca 44Mg 46Fe 10) and Na plagioclase (Or 2.5Ab 90.0An 7.5 to Or 3.5Ab 96.1An 0.4) in Colomera interior inclusions and the angular boundaries between minerals and metal suggest that diopside and plagioclase partially crystallized under near-equilibrium conditions from a common melt before emplacement into molten metal. The melt-crystal assemblage has been called "crystal mush." The bulk compositions of the individual composite inclusions form an array between the most diopside-rich inclusion and plagioclase. This is consistent only with a simple mechanical mixing relationship, not a magmatic evolution series. We propose a model in which partly molten metal and crystal mush were mixed together by impact on the IIE parent body. Other models involving impact melting of the chondritic source material followed by growth of diopside and plagioclase do not easily explain near equilibrium growth of diopside and Na plagioclase, followed by rapid cooling. In the K-rich surface inclusion, K feldspar, orthopyroxene, and olivine were found together with diopside for the first time. K feldspar (sanidine, Or 92.7Ab 7.2An 0.1 to Or 87.3Ab 11.0An 1.7) occurs in an irregular veinlike region in contact with large orthopyroxene crystals of nearly uniform composition (Ca 1.3Mg 80.5Fe 17.8 to Ca 3.1Mg 78.1Fe 18.9) and intruding into a relict olivine with deformed-oval shape. Silica and subrounded Cr diopside are

  8. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-05-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  9. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-08-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  10. Mixed Alkali Effect in (40-x)K2O-xLi2O-10Na2O-50B2O3 Glasses - Physical and Optical Absorption Studies

    NASA Astrophysics Data System (ADS)

    Samee, M. A.; Ahmmad, Shaikh Kareem; Taqiullah, Sair. Md.; Edukondalu, A.; Bale, Shashidhar; Rahman, Syed

    So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x) K2O-x Li2O -10Na2O-50B2O3.(0≤x≤40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. We report the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the various values of optical band gap (Eo) and Urbach energy (ΔE) have been evaluated. The values of Eo and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The band gap energy based average electronic polarizability of oxide ions αO2-(Eo), optical basicity A(Eo), and Yamashita-Kurosawa’s interaction parameter A(Eo) have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present K2O- Li2O-Na2O-B2O3 glasses are classified as normal ionic (basic) oxides.

  11. Surface signatures of bioactivity: MD simulations of 45S and 65S silicate glasses.

    PubMed

    Tilocca, Antonio; Cormack, Alastair N

    2010-01-01

    The surface of a bioactive (45S) and a bioinactive (65S) glass composition has been modeled using shell-model classical molecular dynamics simulations. Direct comparison of the two structures allowed us to identify the potential role of specific surface features in the processes leading to integration of a bioglass implant with the host tissues, focusing in particular on the initial dissolution of the glass network. The simulations highlight the critical role of network fragmentation and sodium enrichment of the surface in determining the rapid hydrolysis and release of silica fragments in solution, characteristic of highly bioactive compositions. On the other hand, no correlation has been found between the surface density of small (two- and three-membered) rings and bioactivity, thus suggesting that additional factors need to be taken into account to fully understand the role of these sites in the mechanism leading to calcium phosphate deposition on the glass surface. PMID:19725567

  12. Characterization of radiative properties of Nd{sub 2}O{sub 3} doped phosphate and silicate glasses for solid state laser

    SciTech Connect

    Nandi, P. Shukla, R. Goswami, M.; Sudarsan, V.

    2014-04-24

    Nd{sub 2}O{sub 3} doped calcium aluminium phosphate and calcium aluminium silicate glasses prepared to compare their absorption and emission properties. Radiative lifetime of the excited state {sup 4}F{sub 3/2} derived by Judd-Ofelt theory applied to the absorption spectra. Using the photoluminescence spectrometer the steady state emission and relaxation time from excited energy level recorded under green light excitation. Phosphate glass has higher emission cross-section, higher radiative lifetime but less quantum efficiency due to non-radiative quenching through hydroxyl ions compared to silicate glass for Nd{sup 3+}:{sup 4}F{sub 3/2}→{sup 4}I{sub 9/2} emission.

  13. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    PubMed

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system. PMID:27612803

  14. The influence of silver-ion doping using ion implantation on the luminescence properties of Er-Yb silicate glasses

    NASA Astrophysics Data System (ADS)

    Stanek, S.; Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M.; Oswald, J.; Mackova, A.; Malinsky, P.; Spirkova, J.

    2016-03-01

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 1016 cm-2 was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the 4I11/2-4I15/2 transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  15. ∼2 μm fluorescence radiative dynamics and energy transfer between Er{sup 3+} and Tm{sup 3+} ions in silicate glass

    SciTech Connect

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hao, Wei; Hu, Lili; Zhang, Junjie

    2014-03-01

    Graphical abstract: - Highlights: • A Er{sup 3+}/Tm{sup 3+} co-doped silicate glass with good thermal stability (k{sub gl} = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} in STFE glass is 13.39 × 10{sup −40} cm{sup 6}/s. - Abstract: A Er{sup 3+}/Tm{sup 3+} co-doped silicate glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er{sup 3+} and Tm{sup 3+} ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses due to the efficient energy transfer from Er{sup 3+} to Tm{sup 3+} ions. The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} ions can reach as high as 13.39 × 10{sup −40} cm{sup 6}/s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er{sup 3+}/Tm{sup 3+} co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser.

  16. FINAL REPORT. RADIATION EFFECTS ON TRANSPORT AND BUBBLE FORMATION IN SILICATE GLASSES

    EPA Science Inventory

    The purpose of this research is to develop fundamental knowledge of radiation-matter interaction at the atomic level and provide mechanistic insight required for prognostication of the Tera-rad damage in HLW glasses through: a) understanding of the mechanism for radiolytic damage...

  17. Canonical correlation of waste glass compositions and durability, including pH

    SciTech Connect

    Oeksoy, D.; Pye, L.D.; Bickford, D.F.; Ramsey, W.G.

    1993-05-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  18. Canonical correlation of waste glass compositions and durability, including pH

    SciTech Connect

    Oeksoy, D.; Pye, L.D. ); Bickford, D.F.; Ramsey, W.G. )

    1993-01-01

    Control of waste glass durability is a major concern in the immobilization of radioactive and mixed wastes. Leaching rate in standardized laboratory tests is being used as a demonstration of consistency of the response of waste glasses in the final disposal environment. The leaching of silicate and borosilicate glasses containing alkali or alkaline earth elements is known to be autocatalytic, in that the initial ion exchange of alkali in the glass for hydrogen ions in water results in the formation of OH and increases the pH of the leachate. The increased pH then increases the rate of silicate network attack, accelerating the leaching effect. In well formulated glasses this effect reaches a thermodynamic equilibrium when leachate saturation of a critical species, such as silica, or a dynamic equilibrium is reached when the pH shift caused by incremental leaching has negligible effect on pH. This report analyzes results of a seven leach test on waste glasses.

  19. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  20. On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics

    NASA Astrophysics Data System (ADS)

    Bonfanti, Silvia; Jug, Giancarlo

    2015-08-01

    The concentration of paramagnetic trace impurities in glasses can be determined via precise SQUID measurements of the sample's magnetization in a magnetic field. However, the existence of quasi-ordered structural inhomogeneities in the disordered solid causes correlated tunneling currents that can contribute to the magnetization, surprisingly, also at the higher temperatures. We show that taking into account such tunneling systems gives rise to a good agreement between the concentrations extracted from SQUID magnetization and those extracted from low-temperature heat capacity measurements. Without suitable inclusion of such magnetization contribution from the tunneling currents, we find that the concentration of paramagnetic impurities gets considerably over-estimated. This analysis represents a further positive test for the structural inhomogeneity theory of the magnetic effects in the cold glasses.

  1. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    SciTech Connect

    Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji; Funatsu, Shiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji

    2013-08-14

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.

  2. Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; ElBatal, H. A.; EzzElDin, F. M.

    2014-09-01

    Undoped and CoO-doped three binary glass systems, namely sodium borate, sodium silicate and sodium phosphate glasses were prepared by the melt annealing technique. Combined optical and FTIR spectral studies were carried out for the prepared samples before and after being subjected to a gamma dose of 8 Mrad (8 × 104 Gy). Optical spectra of the undoped samples before irradiation reveal strong UV absorption varying in depth with the type of glass and such strong UV spectra are related to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of these three basic glasses. CoO-doped (0.25%) glasses show additional visible absorption spectra which are related to the existence of cobalt in the divalent state (Co)2+ ions which are present in two coordination states, namely the octahedral and tetrahedral forms. The broad visible band of Co2+ ions shows in some instances obvious splitting to three component peaks. Gamma irradiation on undoped glasses causes obvious induced UV-visible bands and their extension depends on the type of glass system. Irradiation of CoO-doped glasses causes an obvious increase of absorption within the visible region. Infrared absorption spectra of the undoped three basic glasses reveal IR vibrational bands which are characteristics to the three specific characteristic structural building units within the borate, silicate and phosphate glasses. The introduction of CoO with the doping level causes minor variations of the IR spectra because of the low doping content together with the presence of cobalt ions in structural modifying sites. Gamma irradiation is observed to cause limited changes within the intensities of some bands in the IR spectra which are attributed to changes in bond lengths and/or bond angles of the structural building units by the irradiation process.

  3. Synthesis and structural studies of multi-component strontium zinc silicate glass-ceramics

    SciTech Connect

    Tiwari, Babita; Pandey, M.; Kothiyal, G. P.; Gadkari, S. C.

    2013-02-05

    Glass having composition 40SrO-10ZnO-40SiO{sub 2}-2B{sub 2}O{sub 3}-2Al{sub 2}O{sub 3}-2TiO{sub 2}-2Cr{sub 2}O{sub 3}-2Y{sub 2}O{sub 3}, (mol %) was prepared by melt-quench technique and converted into glass-ceramics by subjecting it to varying heat treatments. Thermal properties were measured by thermo-mechanical analyzer and differential thermal analyzer. The XRD revealed that initially Sr{sub 2}ZnSi{sub 2}O{sub 7} phase at lower temperature and later SrSiO{sub 3}/Sr{sub 3}Si{sub 3}O{sub 9} phase crystallized. The structural elucidation by Raman spectroscopy shows the presence of mainly Q{sup 1} structural units along with Q{sup 2} and Q{sup 0} units in the base glass. Raman spectra revealed that during crystallization initially crystalline phase having Q{sup 1} structural units (corresponding to Sr{sub 2}ZnSi{sub 2}O{sub 7} phase) are formed and later crystalline phase having Q{sup 2} structural units with 3 member ring type structure crystallizes. Thus, Raman spectroscopy and XRD together confirm that in early stage of crystallization, Sr{sub 2}ZnSi{sub 2}O{sub 7} phase and later Sr{sub 3}Si{sub 3}O{sub 9} phase formed in the glass-ceramics.

  4. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.

    PubMed

    Topçu, Ilker Bekir; Boğa, Ahmet Raif; Bilir, Turhan

    2008-01-01

    Use of waste glass or glass cullet (GC) as concrete aggregate is becoming more widespread each day because of the increase in resource efficiency. Recycling of wastes is very important for sustainable development. When glass is used as aggregate in concrete or mortar, expansions and internal stresses occur due to an alkali-silica reaction (ASR). Furthermore, rapid loss in durability is generally observed due to extreme crack formation and an increase in permeability. It is necessary to use some kind of chemical or mineral admixture to reduce crack formation. In this study, mortar bars are produced by using three different colors of glass in four different quantities as fine aggregate by weight, and the effects of these glass aggregates on ASR are investigated, corresponding to ASTM C 1260. Additionally, in order to reduce the expansions of mortars, 10% and 20% fly ash (FA) as mineral admixture and 1% and 2% Li(2)CO(3) as chemical admixture are incorporated by weight in the cement and their effects on expansion are examined. It is observed that among white (WG), green (GG) and brown glass (BG) aggregates, WG aggregate causes the greatest expansion. In addition, expansion increases with an increase in amount of glass. According to the test results, it is seen that over 20% FA and 2% Li(2)CO(3) replacements are required to produce mortars which have expansion values below the 0.2% critical value when exposed to ASR. However, usages of these admixtures reduce expansions occurring because of ASR. PMID:17570652

  5. High-precision determination of iron oxidation state in silicate glasses using XANES

    SciTech Connect

    Cottrell, Elizabeth; Kelley, Katherine A.; Lanzirotti, Antonio; Fischer, Rebecca A.

    2009-11-04

    Fe K-edge X-ray absorption near-edge structure (XANES) and Moessbauer spectra were collected on natural basaltic glasses equilibrated over a range of oxygen fugacity (QFM - 3.5 to QFM + 4.5). The basalt compositions and fO{sub 2} conditions were chosen to bracket the natural range of redox conditions expected for basalts from mid-ocean ridge, ocean island, back-arc basin, and arc settings, in order to develop a high-precision calibration for the determination of Fe{sup 3+}/{Sigma}Fe in natural basalts. The pre-edge centroid energy, corresponding to the 1s {yields} 3d transition, was determined to be the most robust proxy for Fe oxidation state, affording significant advantages compared to the use of other spectral features. A second-order polynomial models the correlation between the centroid and Fe{sup 3+}/{Sigma}Fe, yielding a precision of {+-} 0.0045 in Fe{sup 3+}/{Sigma}Fe for glasses with Fe{sup 3+}/{Sigma}Fe > 8%, which is comparable to the precision of wet chemistry. This high precision relies on a Si (311) monochromator to better define the Fe{sup 2+} and Fe{sup 3+} transitions, accurate and robust modeling of the pre-edge feature, dense fO{sub 2}-coverage and compositional appropriateness of reference glasses, and application of a non-linear drift correction. Through re-analysis of the reference glasses across three synchrotron beam sessions, we show that the quoted precision can be achieved (i.e., analyses are reproducible) across multiple synchrotron beam sessions, even when spectral collection conditions (detector parameters or sample geometry) change. Rhyolitic glasses were also analyzed and yield a higher centroid energy at a given Fe{sup 3+}/{Sigma}Fe than basalts, implying that major variations in melt structure affect the relationship between centroid position and Fe{sup 3+}/{Sigma}Fe, and that separate calibrations are needed for the determination of oxidation state in basalts and rhyolites.

  6. Photocatalytic effect and Mössbauer study of iron titanium silicate glass prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Takahashi, Yusuke; Kubuki, Shiro; Akiyama, Kazuhiko; Sinkó, Katalin; Homonnay, Zoltán; Kuzmann, Ernő; Nishida, Tetsuaki

    2015-06-01

    A relationship between the photocatalytic effect and the local structure of 50Fe2O3ṡ (50- x)SiO2ṡ xTiO2 glass abbreviated as 50FS xTi prepared by sol-gel method was investigated by 57Fe-Mössbauer spectroscopy (FeMS), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible diffuse reflectance spectroscopy (UV-VIS). Mössbauer spectra of 50FS xTi glass before annealing showed a doublet with the isomer shift ( δ) and quadrupole splitting (Δ) of 0.41±0.01 mm s-1 and 0.75±0.02 mm s-1, indicating that Fe3+ formed FeO6 octahedra ( O h). A comparable δ of 0.36±0.02 mm s-1 and the larger Δ of 0.92±0.02 mm s-1 values were confirmed for 50FS xTi after annealed at 400 ∘ C for 3 h. These results indicates that the coordination number of iron polyhedra decreases from 6 to 4 due to annealing. UV-VIS diffuse reflectance spectra of 50FS10Ti yielded two optical band gap energies ( E g's) of 2.05 eV and 3.55 eV. This result implied that 50FS10Ti has two optical band gaps in the visible area and UV area. A bleaching test performed by 10 mL of MB aqueous solution and 40 mg of powder 50FS10Ti glass sample showed that MB absorbance decreased from 3.16 to 0.43 after UV-visible light irradiation for 2 h with the first order rate constant ( k) of . These results prove that titanium containing iron silicate glass with the composition of 50Fe2O3ṡ40SiO2ṡ10TiO2 has the UV and visible light responsive photocatalytic effect.

  7. Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yu. V.; Rempel, A. A.; Meyer, M.; Pipich, V.; Gerth, S.; Magerl, A.

    2016-08-01

    Small angle X-ray and neutron scattering on Cd and S doped glass annealed at 600 °C shows after the first 12 h nucleation and growth of spherical CdS nanoparticles with a radius of up to 34±4 Å. After the nucleation is completed after 24 h, further growth in this amorphous environment is governed by oriented particle attachment mechanism as found for a liquid medium. Towards 48 h the particle shape has changed into spheroidal with short and long axis of 40±2 Å and 120±2 Å, respectively.

  8. Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses

    NASA Astrophysics Data System (ADS)

    Ruivo, Andreia; Muralha, Vânia S. F.; Águas, Hugo; de Matos, António Pires; Laia, César A. T.

    2014-02-01

    Soda-lime glasses doped with Eu3+ were synthesized using a variety of compositions, namely changing the fraction of CaO or Eu2O3. Those glasses were characterized with several techniques, including ellipsometry, UV-vis-NIR absorption spectroscopy, steady-state photoluminescence spectroscopy and time-resolved luminescence. The compositions' effects on optical properties such as refraction indexes, Eu3+ oscillator strengths and luminescence lifetimes were accessed from the analysis of the experimental results. Judd-Ofelt theory was used to analyze all these aspects, which allow the detection of a mismatch of optical properties from absorption and emission spectroscopy. This mismatch was confirmed from the time-resolved data, showing the existence of two different spectroscopic Eu3+ species. From those results it is concluded that there is evidence for lanthanide aggregation, giving rise to self-quenching effects that may be described through resonance energy transfer mechanisms. The difference between luminescence lifetimes for isolated and aggregated Eu(III) is interpreted as due to different interactions with oxygen in the matrix, namely degree of covalency of the Eu-O bond and point group symmetry of the lanthanide.

  9. Evidence for a tektosilicate structure and dominance of Fe(III) over Fe(II) in silicic volcanic glasses of the Nevada Test Site

    SciTech Connect

    Warren, R.G.

    1983-01-01

    More than 400 individual analyses have been obtained by electron microprobe for silicic glasses in 58 samples of tuff and lava from the Nevada Test Site (NTS). These samples comprise a wide range in chemical and petrographic types, including calc-alkaline and peralkaline rock types, and include most of the volcanic units of the NTS. Locations and brief petrographic descriptions are given for representative samples.

  10. Passivating boron silicate glasses for co-diffused high-efficiency n-type silicon solar cell application

    SciTech Connect

    Engelhardt, Josh Frey, Alexander; Gloger, Sebastian; Hahn, Giso; Terheiden, Barbara

    2015-07-27

    Doping layers commonly have but one function: supplying the dopants to form a doped region within a substrate. This work presents B doping layers/stacks, which at the same time supply dopant atoms, passivate the B-doped crystalline Si surface sufficiently well (j{sub 0E} < 50 fA/cm{sup 2}), and show optical properties suitable for anti-reflective coating. Furthermore, these boron silicate glasses can act as a barrier against parasitic P in-diffusion during a co-diffusion step. The boron emitters diffused from the inductively coupled plasma plasma-enhanced chemical vapor-deposited B containing SiO{sub x} layers are investigated and optimized concerning passivation quality and contact properties for high-efficiency n-type solar Si cell designs. It is shown that even 10 nm thin SiO{sub x}:B films already allow for suitable emitter sheet resistance for screen-printed contacts. Furthermore, SiO{sub x}:B layers presented here allow for iV{sub OC} values of 675 mV and contact resistivity of 1 mΩcm{sup 2} for commercial Ag instead of Ag/Al pastes on the diffused boron emitter passivated with the SiO{sub x}:B layer supporting the contact formation. All of these properties can be achieved within one single B doping layer/stack.

  11. Silicate glass micro and nanospherules generated in explosive eruptions of ultrabasic magmas: Implications for the origin of pelletal lapilli

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Gil Ibarguchi, J. I.

    2015-02-01

    The genesis of spherical ash to lapilli-sized clasts with a central phenocryst or lithic fragment, mantled by a rim of fine-grained juvenile material that includes abundant concentrically arranged prismatic crystals, is interpreted as either: (i) the result of the spinning of a magma bleb with a crystalline kernel in a fluidized system, or (ii) the accretion of small melt droplets to a previously crystallized nucleus in a gas jet. We demonstrate that the rims of pelletal lapilli within tephras of the Cabezo Segura volcano (Calatrava, Spain) are clastic and were formed by the progressive welding of juvenile crystals and silicate glass droplets, and, to a lesser extent, filaments (both melt in origin) around a large crystalline nucleus. Our results support the accretion hypothesis and offer explicit and new images of the melt droplets that were so far considered hypothetical particles. These results indicate also that nanometre-scale juvenile pyroclasts (melt droplets and crystals) can be generated in explosive eruptions of ultrabasic magmas. Those pyroclasts can be subsequently welded together inside a dense gas jet generating pelletal lapilli and ash.

  12. Passivating boron silicate glasses for co-diffused high-efficiency n-type silicon solar cell application

    NASA Astrophysics Data System (ADS)

    Engelhardt, Josh; Frey, Alexander; Gloger, Sebastian; Hahn, Giso; Terheiden, Barbara

    2015-07-01

    Doping layers commonly have but one function: supplying the dopants to form a doped region within a substrate. This work presents B doping layers/stacks, which at the same time supply dopant atoms, passivate the B-doped crystalline Si surface sufficiently well (j0E < 50 fA/cm2), and show optical properties suitable for anti-reflective coating. Furthermore, these boron silicate glasses can act as a barrier against parasitic P in-diffusion during a co-diffusion step. The boron emitters diffused from the inductively coupled plasma plasma-enhanced chemical vapor-deposited B containing SiOx layers are investigated and optimized concerning passivation quality and contact properties for high-efficiency n-type solar Si cell designs. It is shown that even 10 nm thin SiOx:B films already allow for suitable emitter sheet resistance for screen-printed contacts. Furthermore, SiOx:B layers presented here allow for iVOC values of 675 mV and contact resistivity of 1 mΩcm2 for commercial Ag instead of Ag/Al pastes on the diffused boron emitter passivated with the SiOx:B layer supporting the contact formation. All of these properties can be achieved within one single B doping layer/stack.

  13. Assessment of spectroscopic properties of erbium ions in a soda-lime silicate glass after silver sodium exchange

    NASA Astrophysics Data System (ADS)

    Chiasera, A.; Ferrari, M.; Mattarelli, M.; Montagna, M.; Pelli, S.; Portales, H.; Zheng, J.; Righini, G. C.

    2005-10-01

    Spectroscopic properties of Ag/Er co-doped thin plates of silicate glass were investigated with the aim of assessing the effective role of silver as a sensitizer for erbium. Additive heat treatments in air at different temperatures were performed on both a silver-exchanged and a silver-free plate in order to promote the formation of silver nanoparticles in the former and to refer to the later in the spectroscopic characterization. Absorption as well as photoluminescence and lifetime measurements in the region of the 4I13/2 → 4I15/2 transition of the Er3+ ion were performed; excitation wavelengths in the range from 360 to 750 nm were used. Enhancement of the Er3+ luminescence at 1.53 μm was observed when the excitation wavelength was in the blue region. This spectral range typically coincides with the excitation energy of the surface plasmon resonance of nanometer-sized spherical silver particles.

  14. Phospho-silicate glass gated 4H-SiC metal-oxide-semiconductor devices: Phosphorus concentration dependence

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Ahyi, A. C.; Xu, C.; Morisette, D.; Feldman, L. C.; Dhar, S.

    2016-04-01

    The correlation between phosphorus concentration in phospho-silicate glass (PSG) gate dielectrics and electrical properties of 4H-SiC MOS devices has been investigated. Varying P uptake in PSG is achieved by changing the POCl3 post-oxidation annealing temperature. The density of interface traps (Dit) at the PSG/4H-SiC interface decreases as the amount of interfacial P increases. Most significantly, the MOSFET channel mobility does not correlate with Dit for all samples, which is highly unusual for SiC MOSFETs. Further analysis reveals two types of field-effect mobility (μfe) behavior, depending on the annealing temperature. Annealing at 1000 °C improves the channel mobility most effectively, with a peak value ˜105 cm2 V-1 s-1, and results in a surface phonon scattering limited mobility at high oxide field. On the other hand, PSG annealed at other temperatures results in a surface roughness scattering limited mobility at similar field.

  15. Mechanical properties of silicate glasses exposed to a low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Wiedlocher, David E.; Tucker, Dennis S.; Nichols, Ron; Kinser, Donald L.

    1992-01-01

    The effects of a 5.8 year exposure to low earth orbit environment upon the mechanical properties of commercial optical fused silica, low iron soda-lime-silica, Pyrex 7740, Vycor 7913, BK-7, and the glass ceramic Zerodur were examined. Mechanical testing employed the ASTM-F-394 piston on 3-ball method in a liquid nitrogen environment. Samples were exposed on the Long Duration Exposure Facility (LDEF) in two locations. Impacts were observed on all specimens except Vycor. Weibull analysis as well as a standard statistical evaluation were conducted. The Weibull analysis revealed no differences between control samples and the two exposed samples. We thus concluded that radiation components of the Earth orbital environment did not degrade the mechanical strength of the samples examined within the limits of experimental error. The upper bound of strength degradation for meteorite impacted samples based upon statistical analysis and observation was 50 percent.

  16. Radiation-Induced Centers in Lead Silicate Glasses Irradiated by Stationary and Pulsed Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhidkov, I. S.; Zatsepin, A. F.; Konev, S. F.; Cholakh, S. O.

    2015-08-01

    Radiation-induced centers formed in heavy flint glasses irradiated by electron beams are investigated by the methods of optical and EPR spectroscopy. It is revealed that stable and short-living optical absorption centers of close natures are formed under irradiation by fast electrons. A correlation is established between the stable optical absorption bands and the EPR signals interpreted as signals of the (Pb2+)/h+ hole centers. The shortliving color centers are formed due to short-term distortion of the O-Pb bonds, and the stable centers are formed due to the spatial separation, thermalization, and subsequent stabilization of excited electrons and holes in tails of the localized states. Irradiation by electron beams leads to a change in the spectral characteristics of the fundamental absorption edge and, in particular, of the Urbach energy that determines the degree of structural disorder.

  17. Spectroscopic properties of Er{sup 3+}- and Yb{sup 3+}-doped soda-lime silicate and aluminosilicate glasses

    SciTech Connect

    Hehlen, M.P.; Cockroft, N.J.; Gosnell, T.R.; Bruce, A.J.

    1997-10-01

    A spectroscopic investigation of an extensive series of Er{sup 3+}-doped and Er{sup 3+},Yb{sup 3+}-codoped soda-lime-silicate (SL) and aluminosilicate (AS) glasses is presented. Compared to SL glasses, 4f transitions in AS glasses show higher oscillator strengths, larger inhomogeneous broadening, and smaller crystal-field splittings of the respective excited-state multiplets. The Er{sup 3+} excited-state relaxation dynamics is adequately described by a combination of the Judd-Ofelt model and the energy-gap law. With the exception of {sup 4}I{sub 13/2}, multiphonon relaxation is dominant for all excited states, making it possible to efficiently pump the 1.55 {mu}m {sup 4}I{sub 13/2}{r_arrow}{sup 4}I{sub 15/2} emission by excitation of {sup 4}I{sub 11/2} at around 980 nm. The absolute {sup 4}I{sub 13/2} luminescence quantum yield, for low 980-nm excitation density ({approximately}5W/cm{sup 2}), {eta}, is {approximately}0.9 at 0.4 mol{percent} Er{sub 2}O{sub 3} and drops to about 0.65 upon increasing Er{sub 2}O{sub 3} to 1.2 mol{percent}, indicating the onset of energy-transfer processes. Samples with high OH{sup {minus}} impurity concentration suffer from significantly higher quenching of {sup 4}I{sub 13/2} luminescence at higher Er{sup 3+} concentrations. Energy migration to the minority of Er{sup 3+} ions coordinated to OH{sup {minus}}, followed by efficient multiphonon relaxation accounts for this effect. At low excitation densities, the strong near-infrared absorption of Yb{sup 3+} in combination with efficient Yb{r_arrow}Er energy transfer increases the {sup 4}I{sub 13/2} population density in Yb{sup 3+},Er{sup 3+}-codoped samples by up to 2 orders of magnitude compared to equivalent samples without Yb{sup 3+}. (Abstract Truncated)

  18. Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, & Mössbauer spectroscopies

    SciTech Connect

    Mccloy, John S.; Washton, Nancy M.; Gassman, Paul L.; Marcial, Jose; Weaver, Jamie L.; Kukkadapu, Ravi K.

    2015-02-01

    A spectroscopic study was conducted on 6 complex simulant nuclear waste glasses using multi-nuclear NMR, Raman and Mössbauer spectroscopies to explore the role of glass-forming elements Si, Al, B, along with Na and Fe and to understand their connectivity with the goal of understanding melt structure precursors to deleterious feldspathoid nepheline-like crystals formation. NMR showed the appearance of two sites for Al, Si, and Na in the samples which crystallized significant amounts of nepheline, and B speciation changed, typically resulting in more B(IV) after nepheline crystallization. Raman spectroscopy suggested a major part of the glass structure is composed of metaborate chains or rings, thus significant numbers of non-bridging oxygens and a separation of the borate from the alumino-silicate network. Mössbauer combined with Fe redox chemical measurements showed that Fe plays a minor role in these glasses, mostly as Fe3+, but that iron oxide spinel forms with nepheline in all cases. Models of the glass network, speciation of B, and allocation of non-bridging oxygens were computed. The Yun-Dell-Bray model failed to predict the observed high concentration of NBO necessary to explain the metaborate features in the Raman spectra, and it largely over-estimated B(IV) fraction. The model assuming Na-Al-Si moieties and using experimental B(IV) fraction predicted a large amount of NBO consistent with Raman spectra. An alternative notation for appreciating the glass network is suggested and then used to investigate the changes the glass due to crystallization of sodium nepheline and the residual glass network. From a theoretical standpoint, it may be preferred to picture nuclear waste glasses by the Lebedev theory of glass structure where “microcrystallites” of ordered nuclei (or embryos) exist in the matrix of more disordered glass.

  19. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  20. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  1. Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun

    2005-07-01

    Recent development and advances in solid state NMR, together with theoretical analyses using quantum-chemical calculations and statistical mechanical modeling, have allowed us to estimate and quantify the detailed distributions of cations and anions in model silicate glasses and melts with varying pressure, temperature and composition. How these microscopic, atomic-scale distributions in the melts from NMR and simulations affect the thermodynamic and transport properties relevant to magmatic processes has been extensively explored recently. Here, based on these previous studies, we present a classification scheme to quantify the various aspects of disorder in covalent oxide glasses and melts on scales of less than 1 nm. The scheme includes contributions from both chemical and topological disorder. Chemical disorder can further be divided into [1] connectivity, which quantifies the extent of mixing among framework units (often parameterized by the degree of Al avoidance or phase separation) and the extent of polymerization (mixing between framework and nonframework cations), and [2] nonframework disorder, which denotes the distribution of network-modifying or charge-balancing cations. Topological disorder includes the distribution of bond lengths and angles. We use this framework of disorder quantification to summarize recent progress on the structures of silicate melts and glasses, mainly obtained from 2D triple quantum magic-angle spinning (3QMAS) NMR, as functions of temperature, pressure, and composition. Most glasses and melts studied show a tendency for chemical ordering in connectivity, nonframework disorder and topological disorder at ambient and high pressure. The chemical ordering in framework disorder, a manifestation of energetics in the melts and glasses, contributes to the total negative deviation of activity of oxides from ideal solution in silicate melts (reduced activity). While no definite evidence of clustering among nonframework cations was found

  2. Structure of glasses containing transition metal ions. Progress report, February 1, 1980-January 31, 1981

    SciTech Connect

    White, W.B.; Fox, K.; Herman, J.S.; Houser, C.; Nelson, C.

    1981-01-01

    This research is concerned with the structure and properties of insulator glasses, particularly as these are modified by transition metal ions in solution. This progress report spans a one-year period and describes the status of the work two-thirds into the sixth contract year. Work on the host glasses has been concentrated on the alkali borosilicate, alkali aluminosilicate and alkali-gallia-silicate glasses. The main interest here is the structure setting for aluminum. The optical absorption spectra of nickel and iron in a variety of glasses have been examined. Utilization of luminescence in addition to optical absorption spectra has permitted the identification of several iron arrangements in glass. The investigation of diffusion processes, particularly hydrogen diffusion, by sputter-induced photon spectrometry (SIPS) has moved from qualitative demonstration to quantitative calculation.

  3. Borosilicate glass alteration driven by magnesium carbonates

    NASA Astrophysics Data System (ADS)

    Debure, M.; Frugier, P.; De Windt, L.; Gin, S.

    2012-01-01

    The alteration of simplified synthetic glass, representative of the French reference nuclear glass R7T7, in presence of hydromagnesite has been experimentally investigated and modeled. Magnesium in solution is known to potentially enhance glass alteration; nuclear glass clayed host rocks contain magnesium and can dissolve to maintain the concentration of magnesium in solution. For modeling purposes, it was suitable to study a simple system. Hydromagnesite was therefore chosen as a simple model mineral in order to check the influence of an Mg-rich mineral on glass alteration. Since the models use thermodynamic and kinetic parameters measured in pure water and pH-buffered solutions, changing the solution composition or adding minerals is a key step towards the validation of the modeling assumptions before using the model for predictive purposes. Experiments revealed that glass alteration is enhanced in presence of hydromagnesite. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC reactive transport code. Modeling proved useful both for explaining the mechanisms involved and quantifying the impact on glass alteration: Mg coming from hydromagnesite dissolution reacts with Si provided by the glass in order to form magnesium silicates. This reaction decreases the pH down to neutral conditions where magnesium silicates are more soluble than at the natural alkali pH imposed by glass or hydromagnesite dissolution. The driving force of the magnesium silicate precipitation is eventually the interdiffusion of alkali within the altered amorphous glass layer as this mechanism consumes protons. The model's ability to describe the concentrations of elements in solution and formed solids whatever the glass/hydromagnesite ratio strongly supports the basic modeling hypothesis.

  4. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3. PMID:20544804

  5. The influence of the conditions of ion exchange in CuSO4:Na2SO4 melt on the optical properties of surface layers of silicate glass

    NASA Astrophysics Data System (ADS)

    Demichev, I. A.; Sidorov, A. I.; Nikonorov, N. V.

    2015-08-01

    The influence of the temperature and duration of ion exchange in BK7 silicate glass in CuSO4:Na2SO4 melt on the optical properties of the glass surface layers has been investigated. It is shown that ion exchange occurs from the melt according to the Cu2+ ↔ 2Na+ scheme. Cu2+ ions penetrate the sample to a depth of about 1 µm. Reduction of Cu2+ ions near the glass surface gives rise to the Cu+ ↔ Na+ ion exchange in the glass. Measurements of refractive index profiles in the glass sample subjected to ion exchange have revealed the formation of two waveguides in the sample: near the surface and at a depth of more than 3 µm; the second waveguide is formed by Cu+ ions. It is shown that relatively low temperatures and short durations of ion exchange lead to the formation of copper molecular clusters Cu n in glass. An increase of ion exchange temperature and duration leads to decomposition of molecular clusters with formation of Cu2+ ions.

  6. Influence of ZnO/MgO substitution on sintering, crystallisation, and bio-activity of alkali-free glass-ceramics.

    PubMed

    Kapoor, Saurabh; Goel, Ashutosh; Correia, Ana Filipa; Pascual, Maria J; Lee, Hye-Young; Kim, Hae-Won; Ferreira, José M F

    2015-08-01

    The present study reports on the influence of partial replacement of MgO by ZnO on the structure, crystallisation behaviour and bioactivity of alkali-free bioactive glass-ceramics (GCs). A series of glass compositions (mol%): 36.07 CaO-(19.24-x) MgO-x ZnO-5.61 P2O5-38.49 SiO2-0.59 CaF2 (x=2-10) have been synthesised by melt-quench technique. The structural changes were investigated by solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray diffraction and differential thermal analysis. The sintering and crystallisation behaviours of glass powders were studied by hot-stage microscopy and differential thermal analysis, respectively. All the glass compositions exhibited good densification ability resulting in well sintered and mechanically strong GCs. The crystallisation and mechanical behaviour were studied under non-isothermal heating conditions at 850 °C for 1h. Diopside was the primary crystalline phase in all the GCs followed by fluorapatite and rankinite as secondary phases. Another phase named petedunnite was identified in GCs with ZnO content >4 mol. The proliferation of mesenchymal stem cells (MSCs) and their alkaline phosphatase activity (ALP) on GCs was revealed to be Zn-dose dependent with the highest performance being observed for 4 mol% ZnO. PMID:26042713

  7. Reconstructing Final H2O Contents of Hydrated Rhyolitic Glasses: Insights into H2O Degassing and Eruptive Style of Silicic Submarine Volcanoes

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Tani, K.; Llewellin, E. W.

    2015-12-01

    H2O degassing influences the evolution of magma viscosity and vesicularity during ascent through the crust, and ultimately the eruptive style. Investigating H2O degassing requires data on both initial and final H2O contents. Initial H2O contents are revealed by melt inclusion data, while final H2O contents are found from dissolved H2O contents of volcanic glass. However volcanic glasses, particularly of silicic composition, are susceptible to secondary hydration i.e. the addition of H2O from the surrounding environment at ambient temperature during the time following pyroclast deposition. Obtaining meaningful final H2O data therefore requires distinguishing between the original final dissolved H2O content and the H2O added subsequently during hydration. Since H2O added during hydration is added as molecular H2O (H2Om), and the species interconversion between H2Om and hydroxyl (OH) species is negligible at ambient temperature, the final OH content of the glass remains unaltered during hydration. By using H2O speciation models to find the original H2Om content that would correspond to the measured OH content of the glass, the original total H2O (H2Ot) content of the glass prior to hydration can be reconstructed. These H2O speciation data are obtained using FTIR spectroscopy. In many cases, particularly where vesicular glasses necessitate thin wafers, OH cannot be measured directly and instead is calculated indirectly as OH = H2Ot - H2Om. Here we demonstrate the importance of using a speciation-dependent H2Ot molar absorptivity coefficient to obtain accurate H2Ot and H2O speciation data and outline a methodology for calculating such a coefficient for rhyolite glasses, with application to hydrated silicic pumice from submarine volcanoes in the Japanese Izu-Bonin Arc. Although hydrated pumice from Kurose Nishi and Oomurodashi now contain ~1.0 - 2.5 wt% H2Ot, their pre-hydration final H2O contents were typically ~0.3 - 0.4 wt% H2Ot. Furthermore, we show that pre

  8. Optical and microhardness measurement of lead silicate

    NASA Astrophysics Data System (ADS)

    Jogad, Rashmi M.; Kumar, Rakesh; Krishna, P. S. R.; Jogad, M. S.; Kothiyal, G. P.; Mathad, R. D.

    2013-02-01

    Lead silicate glasses, PbO-SiO2, are interesting because these glasses exhibit thermal, optical, and mechanical properties different than other silicate glasses, and they form a thermally and chemically stable glass over a wide composition range. They are also interesting as PbO acts as glass modifier and as glass former depending on the concentration. In the present work we have prepared lead silicate glasses (xPbO-(1-x).SiO2) by melt quenching. We measured UV absorbance, Vickers hardness, and glass transition for these samples. It is found that band gap is proportional to glass transition.

  9. Energy transfer characteristics of silicate glass doped with Er{sup 3+}, Tm{sup 3+}, and Ho{sup 3+} for ∼2 μm emission

    SciTech Connect

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hu, Lili; Zhang, Junjie

    2013-12-28

    A Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass with good thermal stability is prepared by melt-quenching method. Efficient ∼2 μm emission is observed under 808 nm laser excitation. It is found that the 2.0 μm emission of Ho{sup 3+} can be enhanced under the excitation at 808 nm by incorporating Er{sup 3+} and Tm{sup 3+}. Based on the measurement of absorption spectra, the Judd–Ofelt intensity parameters, radiation emission probability, and branching ratio are calculated to evaluate the spectroscopic properties simultaneously. The maximum value of emission cross section of Ho{sup 3+} is 3.54 × 10{sup −21} cm{sup 2} at 2008 nm. Additionally, the phonon assistance and the micro-parameters in the energy transfer process are quantitatively analyzed by using Dexter model. The energy transfer coefficient from Tm{sup 3+} to Ho{sup 3+} can reach as high as 21.44 × 10{sup −40} cm{sup 6}/s, respectively. The emission property together with good thermal property indicates that Er{sup 3+}/Tm{sup 3+}/Ho{sup 3+} tri-doped silicate glass is a potential kind of laser glass for efficient 2 μm laser.

  10. Energy transfer characteristics of silicate glass doped with Er3+, Tm3+, and Ho3+ for ˜2 μm emission

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Xueqiang; Guo, Yanyan; Hu, Lili; Zhang, Junjie

    2013-12-01

    A Er3+/Tm3+/Ho3+ tri-doped silicate glass with good thermal stability is prepared by melt-quenching method. Efficient ˜2 μm emission is observed under 808 nm laser excitation. It is found that the 2.0 μm emission of Ho3+ can be enhanced under the excitation at 808 nm by incorporating Er3+ and Tm3+. Based on the measurement of absorption spectra, the Judd-Ofelt intensity parameters, radiation emission probability, and branching ratio are calculated to evaluate the spectroscopic properties simultaneously. The maximum value of emission cross section of Ho3+ is 3.54 × 10-21 cm2 at 2008 nm. Additionally, the phonon assistance and the micro-parameters in the energy transfer process are quantitatively analyzed by using Dexter model. The energy transfer coefficient from Tm3+ to Ho3+ can reach as high as 21.44 × 10-40 cm6/s, respectively. The emission property together with good thermal property indicates that Er3+/Tm3+/Ho3+ tri-doped silicate glass is a potential kind of laser glass for efficient 2 μm laser.

  11. Mechanical and microstructural properties of alkali-activated fly ash geopolymers.

    PubMed

    Komljenović, M; Bascarević, Z; Bradić, V

    2010-09-15

    This paper investigates the properties of geopolymer obtained by alkali-activation of fly ash (FA), i.e. the influence of characteristics of the representative group of FA (class F) from Serbia, as well as that of the nature and concentration of various activators on mechanical and microstructural properties of geopolymers. Aqueous solutions of Ca(OH)(2), NaOH, NaOH+Na(2)CO(3), KOH and sodium silicate (water glass) of various concentrations were used as alkali activators. It was established that the nature and concentration of the activator was the most dominant parameter in the alkali-activation process. In respect of physical characteristics of FA, the key parameter was fineness. The geopolymer based on FA with the highest content of fine particles (<43 microm), showed the highest compressive strength in all cases. Regardless of FA characteristics, nature and concentration of the activator, the alkali-activation products were mainly amorphous. The formation of crystalline phases (zeolites) occurred in some cases, depending on the reaction conditions. The highest compressive strength was obtained using sodium silicate. Together with the increase of sodium silicate SiO(2)/Na(2)O mass ratio, the atomic Si/Al ratio in the reaction products was also increased. Under the experimental conditions of this investigation, high strength was directly related to the high Si/Al ratio. PMID:20554110

  12. Estimation of excited-state absorption and photobleaching in Fe²⁺-doped lithium sodium silicate glass under exposure to high-power nanosecond laser pulses.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2015-04-01

    Fe-doped lithium sodium silicate glasses codoped with Sn and C to promote the Fe²⁺ redox state are investigated under simultaneous excitation at the first and third harmonics of a nanosecond Nd:YAG laser. The aim is to evaluate critical parameters associated with the potential use of this material as an optical filter that transmits the third harmonic but blocks the fundamental frequency. Estimations of the excited-state absorption coefficient and photobleaching (reduction of absorption at the fundamental) are provided. The results provide insight on the design and expected operational parameters of this type of Fe-doped materials. PMID:25967187

  13. Through the volcanic-looking glass: using pyroclastic obsidian to image magma degassing and flow in shallow silicic conduits

    NASA Astrophysics Data System (ADS)

    Castro, J. M.; Tuffen, H.; Schipper, C.

    2012-12-01

    Obsidian pyroclasts have been widely used to understand magma degassing processes and conduit flow during Plinian eruptions of silicic magma. Recent observations of active rhyolite volcanoes show that obsidian pyroclasts may also erupt during dominantly effusive activity and this raises the question of how might the crystallization, degassing, and cooling histories differ between parcels of magma that become pyroclastic versus effusive obsidian? As the two disparate, yet coeval eruptive styles require different magma ascent conditions, it follows that glassy pyroclasts should record these differences. Here we report on chemical and textural evidence of degassing and crystallization in glassy bombs, pyroclastic lapilli and obsidian lava collected from the recently active Cordón Caulle and Chaitén volcanoes in southern Chile. Coarse obsidian bombs are abundant at both volcanoes and were erupted during large blasts that accompanied lava effusion. Obsidian lapilli are equally ubiquitous in fall deposits and near-vent tuff cones formed during the initial Plinian phases of activity. Total H2O contents and hydrous speciation was measured on these glassy materials by FTIR. The data show two distinct trends, one corresponding to bombs and glassy lavas and characterized by a relative abundance of molecular water and the other associated with the lapilli glasses having relatively elevated OH-. These speciation patterns can be explained by different cooling histories in parcels of magma that had different ascent speeds and residence times in the conduit. The bomb and lava obsidians appear to form of a single Pressure-Temperature-time (P-T-t) path, one that is offset from the Plinian lapilli to lower ascent and cooling rates. These relations suggest that flow in the volcanic conduit is bifurcated and this allows parcels of magma to rise up quickly and fuel sustained pyroclastic columns while other magma can follow more relaxed ascent trajectories allowing it to become proto

  14. Tunable Luminescent Properties and Concentration-Dependent, Site-Preferable Distribution of Eu(2+) Ions in Silicate Glass for White LEDs Applications.

    PubMed

    Zhang, Xuejie; Wang, Jing; Huang, Lin; Pan, Fengjuan; Chen, Yan; Lei, Bingfu; Peng, Mingying; Wu, Mingmei

    2015-05-13

    The design of luminescent materials with widely and continuously tunable excitation and emission is still a challenge in the field of advanced optical applications. In this paper, we reported a Eu(2+)-doped SiO2-Li2O-SrO-Al2O3-K2O-P2O5 (abbreviated as SLSAKP:Eu(2+)) silicate luminescent glass. Interestingly, it can give an intense tunable emission from cyan (474 nm) to yellowish-green (538 nm) simply by changing excitation wavelength and adjusting the concentration of Eu(2+) ions. The absorption spectra, photoluminescence excitation (PLE) and emission (PL) spectra, and decay curves reveal that there are rich and distinguishable local cation sites in SLSAKP glasses and that Eu(2+) ions show preferable site distribution at different concentrations, which offer the possibility to engineer the local site environment available for Eu(2+) ions. Luminescent glasses based color and white LED devices were successfully fabricated by combining the as-synthesized glass and a 385 nm n-UV LED or 450 nm blue LED chip, which demonstrates the potential application of the site engineering of luminescent glasses in advanced solid-state lighting in the future. PMID:25897869

  15. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    PubMed

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts. PMID:22207607

  16. Compositional dependence of the 1.8 {mu}m emission properties of Tm{sup 3+} ions in silicate glass

    SciTech Connect

    Wang Xin; Fan Sijun; Li Kefeng; Zhang Lei; Wang Shikai; Hu Lili

    2012-11-15

    The compositional dependence of the 1.8 {mu}m emission properties of Tm{sup 3+} ion-doped lead silicate glasses is investigated. Judd-Ofelt parameters are calculated and their variation with different glass modifier ions is obtained. The Judd-Ofelt parameters increase with decreased modifier ionic radius. A large spontaneous emission probability and a large emission cross-section are found to be related with the strength of the modifier ion. Fluorescence spectra are analyzed using rate equations and compared with recorded data. The results are very close, indicating the reliability of this method. Non-radiative probability is deduced by fitting the fluorescence decay curve; it becomes smaller with increased ionic field strength. Energy transfer processes are studied using the extended overlap integral method.

  17. Effect of Er{sub 2}O{sub 3} dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics

    SciTech Connect

    Yongsiri, Ploypailin; Sirisoonthorn, Somnuk; Pengpat, Kamonpan

    2015-09-15

    Highlights: • The KNN–SiO{sub 2} doped Er{sub 2}O{sub 3} glass-ceramics was prepared by incorporation method. • High dielectric constant (458.41 at 100 kHz) and low loss (0.0005) could be obtained. • TEM and SEM confirmed the existence of KNN crystals embedded in glass matrix. • The Er{sub 2}O{sub 3} dopant causes insignificant effect on modifying E{sub g} value. - Abstract: In this study, transparent glass-ceramics from potassium sodium niobate (KNN)-silicate glass system doped with erbium oxide (Er{sub 2}O{sub 3}) were successfully prepared by incorporation method. KNN was added in glass batches as heterogeneous nucleating agent. The KNN powder was mixed with SiO{sub 2} and Er{sub 2}O{sub 3} dopant with KNN and Er{sub 2}O{sub 3} content varied between 70–80 and 0.5–1.0 mol%, respectively. Each batch was subsequently melted at 1300 °C for 15 min in a platinum crucible using an electric furnace. The quenched glasses were then subjected to heat treatment at various temperatures for 4 h. XRD results showed that the prepared glass ceramics contained crystals of KNN solid solution. In contrary, dielectric constant (ϵ{sub r}) and dielectric loss (tan δ) were found to increase with increasing heat treatment temperature. Additionally, optical properties such as absorbance and energy band gap have been investigated.

  18. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    ElBatal, F. H.; Abdelghany, A. M.; ElBatal, H. A.

    2014-03-01

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe3+) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi3+) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi3+ ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  19. Lone-pair distribution and plumbite network formation in high lead silicate glass, 80PbO·20SiO2.

    PubMed

    Alderman, Oliver L G; Hannon, Alex C; Holland, Diane; Feller, Steve; Lehr, Gloria; Vitale, Adam J; Hoppe, Uwe; Zimmerman, Martin v; Watenphul, Anke

    2013-06-14

    For the first time a detailed structural model has been determined which shows how the lone-pairs of electrons are arranged relative to each other in a glass network containing lone-pair cations. High energy X-ray and neutron diffraction patterns of a very high lead content silicate glass (80PbO·20SiO2) have been used to build three-dimensional models using empirical potential structure refinement. Coordination number and bond angle distributions reveal structural similarity to crystalline Pb11Si3O17 and α- and β-PbO, and therefore strong evidence for a plumbite glass network built from pyramidal [PbO(m)] polyhedra (m ~ 3-4), with stereochemically active lone-pairs, although with greater disorder in the first coordination shell of lead compared to the first coordination shell of silicon. The oxygen atoms are coordinated predominantly to four cations. Explicit introduction of lone-pair entities into some models leads to modification of the local Pb environment, whilst still allowing for reproduction of the measured diffraction patterns, thus demonstrating the non-uniqueness of the solutions. Nonetheless, the models share many features with crystalline Pb11Si3O17, including the O-Pb-O bond angle distribution, which is more highly structured than reported for lower Pb content glasses using reverse Monte Carlo techniques. The lone-pair separation of 2.85 Å in the model glasses compares favourably with that estimated in α-PbO as 2.88 Å, and these lone-pairs organise to create voids in the glass, just as they create channels in Pb11Si3O17 and interlayer spaces in the PbO polymorphs. PMID:23657606

  20. Density and compressibility of the molten lunar picritic glasses: Implications for the roles of Ti and Fe in the structures of silicate melts

    NASA Astrophysics Data System (ADS)

    Vander Kaaden, Kathleen E.; Agee, Carl B.; McCubbin, Francis M.

    2015-01-01

    The density and compressibility of four synthetic molten lunar picritic glasses was investigated from 0 to 10 GPa and 1748 to 2473 K. The picritic glasses were collected from the lunar surface during the Apollo missions, and they are hypothesized to have rapidly quenched as glass beads during pyroclastic fire fountain eruptions. The specific melt compositions investigated in the present study are the Apollo 15 green glass Type C (A15C, TiO2 = 0.26 wt%), the Apollo 14 yellow glass (A14Y, TiO2 = 4.58 wt%), the Apollo 17 orange glass 74220-type (A17O TiO2 = 9.12 wt%), and the Apollo 14 black glass (A14B, TiO2 = 16.40 wt%). These glasses are reported to represent primary unfractionated melts, making them a prime candidate for experimental studies into lunar basalt density and compressibility during partial melting of the lunar mantle. Sink-float experiments were conducted on the synthetic molten lunar glass compositions using a piston-cylinder apparatus (P < 2 GPa) and a Walker-style multi-anvil device (P > 2.5 GPa) in order to bracket the density of the melts. New sink-float data are reported for A15C, A14Y, and A17O, which are combined with previously published density and compressibility data on A15C, A17O, and A14B. Although the Ti-rich liquids are highly compressible at lower pressures, they become nearly incompressible at much higher pressures when compared to the molten low-Ti glasses. Consequently, the melts with the most TiO2 (A14B) are the least dense at higher pressures, a reversal of what is seen at lower pressures. This change in density and compressibility is attributed to changes in coordination of Ti and Fe in the silicate melt structure. As Ti4+ abundances in the silicate melt increase, predominantly [IV]Ti4+ and [IV]Fe2+ change to [VI]Ti4+ and [VI]Fe2+ in the melt structure. All of the data from the present study were used to calculate a Birch-Murnaghan equation-of-state (BM-EOS) for each melt composition. The BM-EOS model for each composition was

  1. Effect of MoO3 on electron paramagnetic resonance spectra, optical spectra and dc conductivity of vanadyl ion doped alkali molybdo-borate glasses

    NASA Astrophysics Data System (ADS)

    Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.

    2014-02-01

    Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.

  2. High-silica /greater than 60%/ lunar glasses in an Apollo 14 soil sample - Evidence for silicic lunar volcanism

    NASA Technical Reports Server (NTRS)

    Glass, B. P.

    1976-01-01

    The major-element compositions of 93 low-specific-gravity (less than 2.60) high-silica (greater than 60%) glass particles from a sample of lunar fines (14259,20) were determined by electron microprobe analyses. The size, shape, abundance, mineralogy, and major-element composition of more than 60% of the high-silica glasses is consistent with their being fragments of interstitial glass from mare basalts. However, one group of 30 glasses with between 72% and 78% SiO2 and an average of approximately 2.6% FeO can be distinguished from other high-silica glasses both chemically and petrographically. Glass particles with this composition do not contain crystalline inclusions and are fairly homogeneous not only within a single particle but also from particle to particle. The chemistry and petrology of these glasses suggest that they are not fragments of interstitial glass or shock-melted particles from a 'granitic' source rock. Rather, the homogeneity and lack of crystalline inclusions suggest that this group of high-silica glasses was the product of lunar acidic volcanism.

  3. The development of a potassium-sulfide glass fiber cell and studies on impurities in alkali metal-sulfur cells

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1977-01-01

    Potassium sulfur rechargeable cells, having as the electrolyte the thin walls of hollow glass fibers made from permeable glass, were developed. The cells had short lives, probably due to the construction materials and impurities in the potassium. The effect of the impurities in the analogous NA-S system was studied. Calcium, potassium, and NaOH/oxide impurities caused increased resistance or corrosion of the glass fibers. For long lived cell operation, the Na must contain less than 1 ppm Ca and less than a few ppm of hydroxide/oxide. Up to 150 ppm K can be tolerated. After purification of the Na anolyte, cell lifetimes in excess of 1000 deep charge-discharge cycles or over 8 months on continuous cycling at 10-30 percent depth of discharge were obtained.

  4. Effect of variable valence impurities on the formation of bismuth-related optical centres in a silicate glass

    SciTech Connect

    Galagan, B I; Denker, B I; Lili Hu; Sverchkov, S E; Shulman, I L; Dianov, Evgenii M

    2012-10-31

    We have studied the effect of variable valence impurities (cerium and iron) on the formation of bismuth-related IR luminescence centres and the optical loss between 1000 and 1300 nm in a magnesium aluminosilicate glass. The results demonstrate that additional doping of the glass with ceria leads to effective bleaching in a wide spectral range, including the luminescence range of the bismuth centres. At the same time, ceria reduces the concentration of luminescence centres. Gamma irradiation of the glass bleached by cerium restores the luminescence centres but leads to a background loss in a wide spectral range. Iron is shown to be a very harmful impurity in bismuth-doped active media: even trace levels of iron prevent the formation of bismuth-related active centres in the glass and produce a strong, broad absorption band centred near 1 {mu}m. (luminescence of glasses)

  5. Enamel and Dentin Surface Finishing Influence on the Roughness and Microshear Bond Strength of a Lithium Silicate Glass-Ceramic for Laminate Veneers

    PubMed Central

    Gonzaga, Carla Castiglia; Bravo, Ruth Peggy; Pavelski, Thiago Vinícius; Garcia, Paula Pontes; Correr, Gisele Maria; Leonardi, Denise Piotto; da Cunha, Leonardo Fernandes; Furuse, Adilson Yoshio

    2015-01-01

    Objectives. This study evaluated the influence of cavity surface finishing with diamond burs of different grit mounted on high-speed turbine and ultrasound on the roughness and microshear bond strength (MBS) of a lithium silicate glass-ceramic to enamel and dentin. Methods. Enamel and dentin specimens were divided into seven groups, according to the type of surface finishing: 1200-grit sandpaper (control), two different brands of medium-grit and fine-grit diamond burs in a high-speed turbine; medium-grit and fine-grit CVD (chemical vapor deposition) tips in an ultrasonic device. Roughness parameters (n = 5) and MSBS to a glass-ceramic (n = 10) were determined. Data were analyzed using ANOVA and Tukey's test (α = 5%). Results. Control group showed lower mean roughness readings and groups that used medium-grit diamond burs showed the highest mean roughness values. Regarding MSBS, there was no statistical difference when comparing the groups gritted with the same brand of medium- and fine-grit burs and tips. Conclusions. Cavity surface finishing influenced the roughness parameters and MSBS of a glass-ceramic to enamel and dentin. Medium-grit diamond burs in high-speed turbine showed the highest mean roughness values. Fine-grit CVD tips in ultrasound presented the highest MSBS values for both enamel and dentin. PMID:27347507

  6. L-Edge Xanes Measurements of the Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Sutton, S.; Newville, M.

    2008-01-01

    Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies are inconsistent on whether W occurs as W(4+) or W(6+). It is assumed that W(4+) is the cation valence relevant to core formation. Given the sensitivity to silicate composition of high valence cations, knowledge of the oxidation state of W over a wide range of fO2 is critical to understanding the oxidation state of the mantle and core formation processes. This study seeks to measure the W valence and change in valence state over the range of fO2 most relevant to core formation, around IW-2.

  7. Mixed alkali effect in Li{sub 2}O-Na{sub 2}O-B{sub 2}O{sub 3} glasses containing Fe{sub 2}O{sub 3}-An EPR and optical absorption study

    SciTech Connect

    Sreekanth Chakradhar, R.P. . E-mail: chakra@cgcri.res.in; Yasoda, B.; Rao, J. Lakshmana . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2006-09-14

    This paper reports the interesting results on mixed alkali effect (MAE) in xLi{sub 2}O-(30-x)Na{sub 2}O-69.5B{sub 2}O{sub 3} (5 {<=} x {<=} 28) glasses containing Fe{sub 2}O{sub 3} studied by electron paramagnetic resonance (EPR) and optical absorption techniques. The EPR spectra in these glasses exhibit three resonance signals at g = 7.60, 4.20 and 2.02. The resonance signal at g = 7.60 has been attributed to Fe{sup 3+} ions in axial symmetry sites whereas the resonance signal at g = 4.20 is due to isolated Fe{sup 3+} ions in rhombic symmetry site. The resonance signal at g = 2.02 is due to Fe{sup 3+} ions coupled by exchange interaction. It is interesting to observe that the number of spins participating in resonance (N) and its paramagnetic susceptibility ({chi}) exhibits the mixed alkali effect with composition. The present study also gives an indication that the size of alkali ions we choose in mixed alkali glasses is also an important contributing factor in showing the mixed alkali effect. It is observed that the variation of N with temperature obeys Boltzmann law. A linear relationship is observed between 1/{chi} and T in accordance with Curie-Weiss law. The paramagnetic Curie temperature ({theta} {sub p}) is negative for the investigated sample, which suggests that the iron ions are antiferromagnetically coupled by negative super exchange interactions at very low temperatures. The optical absorption spectra exhibit only one weak band corresponding to the transition {sup 6}A{sub 1g}(S) {sup {yields}} {sup 4}A{sub 1g}(G); {sup 4}E{sub g}(G) at 446 nm which is a characteristic of Fe{sup 3+} ions in octahedral symmetry.

  8. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors.

    PubMed

    Chao, Mu-Rong; Hu, Chiung-Wen; Chen, Jian-Lian

    2016-06-21

    A fluorescence-based sensor that combines the merits of quantum dots (QDs) and molecularly imprinted polymers (MIPs) was first fabricated on a glass substrate via a sol-gel route. Some of the key performance factors, including silane selection, substrate etching, the reaction times of glass silanization and sol-gel polymerization, and the times and methods used for template stripping and loading, were discussed and determined. After fabricating the sensor on either a 3-aminopropyltriethoxysilane (APS) or a 3-mercaptopropyltriethoxysilane (MPS) modified glass substrate, APS showed a much better performance than MPS as both the capping reagent of QDs and the functional monomer of tetracycline-templated MIPs. The APS-QDs on APS-modified glass had a higher imprinted factor (IF = 5.6), a lower LOD (2.1 μM, 3σ), and a more stable signal (2.8%, n = 10 at 70 μM) than those on the MPS-modified glass (IF = 5.2, LOD = 6.5 μM, stability = 6.2%). Furthermore, the recoveries of tetracycline (70 μM) from BSA (133 μg/mL) and FBS (0.66 ppt) by the APS-modified glass were 98% (RSD = 3.5%, n = 5) and 97% (RSD = 5.7%), respectively. For the MPS-modified glass, recoveries of 95% (RSD = 7.2%) and 89% (RSD = 8.7%) were observed at 67 μg/mL of BSA and 0.33 ppt of FBS, respectively. PMID:27188318

  9. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR.

    PubMed

    Martin, Richard A; Twyman, Helen L; Rees, Gregory J; Smith, Jodie M; Barney, Emma R; Smith, Mark E; Hanna, John V; Newport, Robert J

    2012-09-21

    The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2 < r (Å) < 3 region via the difference method has enabled all the nearest neighbour correlations to be deconvolved. The diffraction data provides the first direct experimental evidence of split Na-O nearest-neighbour correlations in these melt quench bioactive glasses, and an analogous splitting of the Li-O correlations. The observed correlations are attributed to the metal ions bonded either to bridging or to non-bridging oxygen atoms. (23)Na triple quantum MAS (3QMAS) NMR data corroborates the split Na-O correlations. The structural sites present will be intimately related to the release properties of the glass system in physiological fluids such as plasma and saliva, and hence to the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimizing material design. PMID:22868255

  10. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  11. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  12. Scintillating glass fiber-optic neutron sensors

    NASA Astrophysics Data System (ADS)

    Abel, K. H.; Arthur, R. J.; Bliss, M.

    1994-04-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers, which, as produced, typically have a transmission length (e(sup -1) length) of greater than 2 meters, are found to undergo aging when subjected to room air. The aging, which is complete in a few weeks, reduces the transmission length to the order of 0.5 meter. Because of the high alkali content of the glass (on the order of 20-30 mole percent lithia), we have attributed this aging to aqueous corrosion at the polymer cladding/glass interface. Changes in transmission with chemical treatment of the surface support the corrosion model. Fiber transmission performance has been preserved by modifying the hot-downdraw to a double crucible to produce glass-on-glass waveguides.

  13. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations

    NASA Astrophysics Data System (ADS)

    Gambuzzi, Elisa; Pedone, Alfonso; Menziani, Maria Cristina; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2014-01-01

    Silicon and aluminium chemical environments in silicate and aluminosilicate glasses with compositions 60SiO2·20Na2O·20CaO (CSN), 60SiO2·20Al2O3·20CaO (CAS), 78SiO2·11Al2O3·11Na2O (NAS) and 60SiO2·10Al2O3·10Na2O·20CaO (CASN) have been investigated by 27Al and 29Si solid state magic angle spinning (MAS) and multiple quantum MAS (MQMAS) nuclear magnetic resonance (NMR) experiments. To interpret the NMR data, first-principles calculations using density functional theory were performed on structural models of these glasses. These models were generated by Shell-model molecular dynamics (MD) simulations. The theoretical NMR parameters and spectra were computed using the gauge including projected augmented wave (GIPAW) method and spin-effective Hamiltonians, respectively. This synergetic computational-experimental approach offers a clear structural characterization of these glasses, particularly in terms of network polymerization, chemical disorder (i.e. Si and Al distribution in second coordination sphere) and modifier cation distributions. The relationships between the local structural environments and the 29Si and 27Al NMR parameters are highlighted, and show that: (i) the isotropic chemical shift of both 29Si and 27Al increases of about +5 ppm for each Al added in the second sphere and (ii) both the 27Al and 29Si isotropic chemical shifts linearly decrease with the reduction of the average Si/Al-O-T bond angle. Conversely, 27Al and 29Si NMR parameters are much less sensitive to the connectivity with triple bridging oxygen atoms, precluding their indirect detection from 27Al and 29Si NMR.

  14. Pressure determination in HDAC experiments, the behavior of isochoric water-silicate systems at high pressure, and implications for melt (glass) inclusion studies

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Anderson, Alan J.

    2015-04-01

    The Hydrothermal Diamond Anvil Cell (HDAC) could be seen as a synthetic fluid inclusion, where the composition of the trapped phase(s) and the type of fluid medium are controlled by the experimentalist. Accurate pressure determination in Hydrothermal Diamond Anvil Cell (HDAC) experiments has proven to be a complex achievement. In this study we employed in-situ visualization of the alpha-beta quartz transformation via laser interferometry for the purpose. This inexpensive and convenient method allowed for an accuracy of less than 30-40 MPa in the pressure range 130-900 MPa, which is relevant for crust and shallower upper mantle investigations. Our experiments with water + haplogranite glass crossed into the undercooled liquid and melt state of the silicate phase, where the pressure medium contains a significant amount of solute. The principal goal of this experimental series was to compare the actual run pressure with that calculated for pure water pressure medium. We found that for runs where the alpha-to-beta transition temperature is ≤ 665 °C run pressure is lower than that computed for pure water. On the contrary, at ~780 °C the pressure in the HDAC is ~100 MPa greater than that estimated using pure water isochore. We employed a simplified model of haplogranite dissolution in water for an isochoric sample chamber to explain the negative sign and the variation of the observed discrepancy between measured and calculated pressure. We suggest that, beyond the change in the intrinsic properties of the fluid phase (e.g., compressibility) with increasing solute concentration, two factors control the P-T path in the HDAC: (1) hydration of the glass prior to the glass transition; and (2) changing volume of the aqueous pressure medium. The latter effects must be considered when investigating hydrothermal isochoric systems where the solid/melt phase is highly soluble in the fluid, such as in the determination of the P-T path during rehomogenization of water-rich melt

  15. Optical and thermal properties of phosphors based on lead-silicate glass for high-power white LEDs

    NASA Astrophysics Data System (ADS)

    Shvaleva, M. A.; Tuzova, Yu. V.; Romanov, A. E.; Aseev, V. A.; Nikonorov, N. V.; Mynbaev, K. D.; Bugrov, V. E.

    2015-11-01

    A study is reported of the properties of a new phosphor material based on a highly refractive leadsilicate glass and microparticles of yttrium-aluminum garnet doped with cerium ions (YAG: Ce3+). The mass percentage fraction of YAG: Ce3+ microparticles in the material was varied from 50 to 90%. The optical properties of the phosphor were examined, as well as its thermal properties when used as a primary optical material in high-power light-emitting diode (LED) units. The results obtained reveal problems of excess heat removal from an LED structure, which appear on passing from phosphor binders based on silicone elastomers to glasses, and demonstrate that the phosphor developed in the study is promising for obtaining warm white light.

  16. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  17. Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system.

    PubMed

    Soundrapandian, Chidambaram; Mahato, Arnab; Kundu, Biswanath; Datta, Someswar; Sa, Biswanath; Basu, Debebrata

    2014-12-01

    Local drug delivery systems to bone have attracted appreciable attention due to their efficacy to improve drug delivery, healing and regeneration. In this paper, development and characterization of new formulations of bioactive glass into a porous scaffold has been reported for its suitability to act as a drug delivery system in the management of bone infections, in vitro. Two new glass compositions based on SiO2-Na2O-ZnO-CaO-MgO-P2O5 system (BGZ and MBG) have been developed which after thorough chemical and phase evaluation, studied for acellular static in vitro bioactivity in SBF. Porous scaffolds made of these glasses have been fabricated and characterized thoroughly for bioactivity study, SEM, XRD, in vitro cytotoxicity, MTT assay and wound healing assay using human osteocarcoma cells. Finally, gatifloxacin was loaded into the porous scaffold by vacuum infiltration method and in vitro drug release kinetics have been studied with varying parameters including dissolution medium (PBS and SBF) and with/without impregnation chitosan. Suitable model has also been proposed for the kinetics. 63-66% porous and 5-50μm almost unimodal porous MBG and BGZ bioactive glass scaffolds were capable of releasing drugs successfully for 43 days at concentrations to treat orthopedic infections. In addition, it was also observed that the release of drug followed Peppas-Korsmeyer release pattern based on Fickian diffusion, while 0.5-1% chitosan coating on the scaffolds decreased the burst release and overall release of drug. The results also indicated that MBG based scaffolds were bioactive, biocompatible, noncytotoxic and exhibited excellent wound healing potential while BGZ was mildly cytotoxic with moderate wound healing potential. These results strongly suggest that MBG scaffolds appear to be a suitable bone drug delivery system in orthopedic infections treatment and as bone void fillers, but BGZ should be handled with caution or studied elaborately in detail further to ascertain

  18. Multiple metasomatic events recorded in Kilbourne Hole peridotite xenoliths: the relative contribution of host basalt interaction vs. silicate metasomatic glass

    NASA Astrophysics Data System (ADS)

    Hammond, S. J.; Yoshikawa, M.; Harvey, J.; Burton, K. W.

    2010-12-01

    Stark differences between bulk-rock lithophile trace element budgets and the sum of the contributions from their constituent minerals are common, if not ubiquitous in peridotite xenoliths [1]. In the absence of modal metasomatism this discrepancy is often attributed to the “catch-all”, yet often vague process of cryptic metasomatism. This study presents comprehensive Sr-Nd isotope ratios for variably metasomatized bulk-rock peridotites, host basalts, constituent peridotite mineral phases and interstitial glass from 13 spinel lherzolite and harzburgite xenoliths from the Kilbourne Hole volcanic maar, New Mexico, USA. Similar measurements were also made on hand-picked interstitial glass from one of the most highly metasomatized samples (KH03-16) in an attempt to unravel the effects of multiple metasomatic events. In all Kilbourne Hole peridotites analysed, hand-picked, optically clean clinopyroxenes preserve a more primitive Sr isotope signature than the corresponding bulk-rock; a pattern preserved in all but one sample for Nd isotope measurements. Reaction textures, avoided during hand-picking, around clinopyroxene grains are evident in the most metasomatized samples and accompanied by films of high-SiO2 interstitial glass. The margins of primary minerals appear partially resorbed and trails of glassy melt inclusions similar in appearance to those previously reported from the same locality [2], terminate in these films. Hand-picked glass from KH03-16 reveals the most enriched 87Sr/86Sr of any component recovered from these xenoliths (87Sr/86Sr = 0.708043 ± 0.00009; [Sr] = 81 ppm). Similarly, the 143Nd/144Nd of the glass is amongst the most enriched of the peridotite components (143Nd/144Nd = 0.512893 ± 0.000012; [Nd] = 10 ppm). However, the host basalt (87Sr/86Sr = 0.703953 ± 0.00012; 143Nd/144Nd = 0.512873 ± 0.000013), similar in composition to nearby contemporaneous Potrillo Volcanic Field basalts [3], contains nearly an order of magnitude more Sr and more

  19. Some properties of lithium aluminium silicate (LAS) glass-ceramics used in glass-ceramic to metal compressive seal for vacuum applications

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, A.; Kumar, R.; Bhattacharya, S.; Shrikhande, V. K.; Kothiyal, G. P.

    2008-05-01

    We report here the preparation of LAS glass-ceramics and some studies on their thermo-physical properties and microstructure, for compressive seals in vacuum applications. Glass of composition 12.6Li2O-71.7SiO2-5.1Al2O3-4.9K2O-3.2B2O3-2.5P2O5 was prepared by the conventional melt quench technique. Based on differential thermal analysis (DTA) data, glass samples were nucleated at 600°C for 2hr and were then crystallized at 800°C for 2-5hr. X-ray diffraction (XRD) spectra showed lithium disilicate to be the major phase. A dwell time of 3hr yielded a sample of good crystallinity. Dilatometric measurements of this sample on a thermo-mechanical analyzer (TMA) measured a thermal expansion coefficient (TEC) of 94.61×10-7°C-1. Glass transition temperature (Tg), and dilatometric softening temperature (Tds) of the sample was recorded as 585°C and 830°C respectively. Considering TEC and Tds compression type seals were prepared with SS304 (TEC = 172×10-7°C-1) housing of length 15mm, outer diameter 30mm and inner diameter 15mm. After pre-heat treatment of the metal components, sealing was carried out under a protective atmosphere of flowing Argon gas. The finished seal was tested for leak tightness on a He leak detector. The seal was capable of withstanding a vacuum of 10-6 Torr; at a leak rate of 10-9 Torr lit s-1. Scanning electron microscopy (SEM) was carried out on LAS before and after fabrication of compressive seal to elucidate the effect of compressive stress and the presence of metal near the interface. We observe a significant difference in microstructure due to compressive stresses of sealing and due to the presence of metal. Energy dispersive analysis of X-rays (EDAX) revealed no interdiffusion of species from glass-ceramic to metal or vice-versa.

  20. Sulfur Isotope Variation in Basaltic Melt Inclusions from Krakatau Revealed by a Newly Developed Secondary Ion Mass Spectrometry Technique for Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Shimizu, N.; Kelley, K. A.; Cheek, L.

    2008-12-01

    Sulfur is a ubiquitous element with variable valance states (S2-, S0, S4+, S6+) allowing for its participation in a wide variety of chemical and biogeochemical processes. However, its potential as an isotopic tracer in magmatic processes has not been fully developed and is crucial to understanding of sulfur recycling in subduction zones and between Earth's major reservoirs, mantle, lithosphere and coupled hydrosphere-atmosphere. Previous studies of silicate glasses and melt inclusions have been hampered by lack of an in situ isotopic measurement technique with spatial resolution of 10 to 100 microns. We have developed a new secondary ion mass spectrometry (SIMS) analytical technique for measurement of 34S/32S ratios in silicate glasses utilizing the IMS 1280 at Woods Hole Oceanographic Institution. A beam of 133Cs+ ions with 13 keV energy and current of 1-2 nA is focused onto a 10 micron spot and rastered over 30 × 30 microns. A Normal Incidence Electron Gun was used to compensate excess charge. The rastered beam is then centered to the optical axis of the machine, and a mechanical aperture is placed on the image plane to limit the area of analysis to the central 15 × 15 microns. The energy slit width was adjusted to 50 eV. A mass resolving power of 5500 was sufficient for eliminating mass interferences. A suite of synthetic and natural glasses with δ34SVCDT values spanning from - 5.6‰ to 18.5‰ with SiO2 from 44-72 weight % were measured. Magnitude of the instrumental mass fractionation (α) for 34S/32S ratios is 0.991 and is constant for all the glasses measured despite their compositions. Precision of individual measurements of 34S/32S ratios is 0.4 ‰, or better. Preliminary δ34S measurements of olivine-hosted basaltic melt inclusions in pre- 1883 basaltic scoria from Krakatau volcano Indonesia vary from -5.6 to 7.9‰ with sulfur concentrations from 490 to 2170 ppm, respectively. Host olivines are Fo77-80 and inclusions generally need minor to no post

  1. Preferential growth orientation of laser-patterned LiNbO{sub 3} crystals in lithium niobium silicate glass

    SciTech Connect

    Komatsu, T.; Koshiba, K.; Honma, T.

    2011-02-15

    Dots and lines consisting of LiNbO{sub 3} crystals are patterned on the surface of 1CuO-40Li{sub 2}O-32Nb{sub 2}O{sub 5}-28SiO{sub 2} (mole ratio) glass by irradiations of continuous-wave Nd:YAG laser (wavelength: {lambda}=1064 nm), diode laser ({lambda}=795 nm), and Yb:YVO{sub 4} fiber laser ({lambda}=1080 nm), and the feature of laser-patterned LiNbO{sub 3} crystal growth is examined from linearly polarized micro-Raman scattering spectrum measurements. LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. The growth direction of an LiNbO{sub 3} along the laser scanning direction is the c-axis. It is proposed that the profile of the temperature distribution in the laser-irradiated region and its change along laser scanning would be one of the most important conditions for the patterning of crystals with a preferential growth orientation. Laser irradiation giving a narrow width is also proposed to be one of the important factors for the patterning of LiNbO{sub 3} crystal lines with homogeneous surface morphologies. -- Graphical abstract: Polarized optical microscope observations for the surface and cross-section of the dot obtained by LD laser ({lambda}=795 nm) irradiations of P=1.4 W and t=20 s in Cu-LNS glass. Schematic model for the orientation of LiNbO{sub 3} crystals at the edge parts of the surface and cross-section of the dot is also shown. Display Omitted Research highlights: > Dots and lines with LiNbO{sub 3} crystals are patterned on the glass surface by laser irradiations. > LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. > The profile of the temperature distribution in the laser-irradiated region is one of the most important conditions for the patterning of highly oriented crystals.

  2. Carbonation of metal silicates for long-term CO.sub.2 sequestration

    DOEpatents

    Blencoe, James G.; Palmer, Donald A.; Anovitz, Lawrence M.; Beard, James S.

    2012-02-14

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  3. Carbonation of metal silicates for long-term CO2 sequestration

    DOEpatents

    Blencoe, James G; Palmer, Donald A; Anovitz, Lawrence M; Beard, James S

    2014-03-18

    In a preferred embodiment, the invention relates to a process of sequestering carbon dioxide. The process comprises the steps of: (a) reacting a metal silicate with a caustic alkali-metal hydroxide to produce a hydroxide of the metal formerly contained in the silicate; (b) reacting carbon dioxide with at least one of a caustic alkali-metal hydroxide and an alkali-metal silicate to produce at least one of an alkali-metal carbonate and an alkali-metal bicarbonate; and (c) reacting the metal hydroxide product of step (a) with at least one of the alkali-metal carbonate and the alkali-metal bicarbonate produced in step (b) to produce a carbonate of the metal formerly contained in the metal silicate of step (a).

  4. Structure and rheological properties in alkali aluminosilicate melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel

    2010-05-01

    Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviors. In this mind, it is very important to understand which parameters influence these properties. Up to now, we know for example that viscosity of silicate melts is dependent of temperature, pressure and chemical composition. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts like haplogranitic rhyolitic alkali magmas. We will first present our viscosity measurements and some modelisation concepts based on the Adam and Gibbs theory. From configurational entropy theory we obtain some macroscopic information's that we can link to the structure of glasses and melts. In this mind, we have investigated them with Raman and NMR spectroscopies. These spectroscopies provide information on speciation and polymerization of glasses and melts. We will present and discuss structural and rheological variations as a function of temperature and chemical change.

  5. Cd1-xMnxTe ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    NASA Astrophysics Data System (ADS)

    Dantas, Noelio Oliveira; de Lima Fernandes, Guilherme; Baffa, Oswaldo; Gómez, Jorge Antônio; Almeida Silva, Anielle Christine

    2014-09-01

    In this study, we synthesized Cd1-xMnxTe ultrasmall quantum dots (USQDs) in SiO2-Na2CO3-Al2O3-B2O3 glass system using the fusion method. Growth of these Cd1-xMnxTe USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn2+) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd1-xMnxTe USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn2+, and confirmed that Mn2+ are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd1-xMnxTe USQDs may allow the control of optical and magnetic properties.

  6. Structure and the physicochemical properties of glasses and glass melts

    NASA Astrophysics Data System (ADS)

    Kucuk, Ahmet

    1999-11-01

    A user friendly experimental procedure (sessile and pendant drop arrangements) and calculation routine were developed to measure the physicochemical properties such as density, surface tension, and volatilization of glasses and glass melts at the temperature range of 500 to 1500°C. The influence of volatilization on the composition, density and surface tension of potassium, sodium silicate and soda lime silica melts at 1400°C was investigated using the sessile and pendant drop arrangements, diffuse reflectance Fourier transform spectrometry and electronic-balance. Volatilization of alkali from the melts was modeled as a combined mechanism that included diffusion of volatile species from bulk to surface and chemical decomposition reaction of alkali oxide on the surface. The surface tension of experimental and commercial glass melts, some containing iron, was measured under various atmospheres including 4%H 2/96%Ar, dry argon, dry air and wet air using the sessile drop and pendant drop arrangements. In general, the surface tension of the melts decreased in the given order: argon, dry air and wet air. OH groups from water vapor in the atmosphere behave as a surface active species according to the Gibbs adsorption equation and form a mono-layer on the surface with certain number of molecules according to the Langmuir adsorption theorem. The number of OH-like molecules in the monolayer is higher for the melts containing high ionic strength ions. Iron containing melts have higher surface tension and density for higher Fe2+/Fe3+ ratios. The presence of four-coordinated Fe3+ ions rather than six-coordinated Fe 2+ in the surface of iron bearing glass melts was found to be energetically more favorable. The structures of potassium and lithium silicate glasses and melts were modeled using the molecular dynamics simulation at 300 K and 1700 K, respectively. Despite of the excellent agreement between modeled and experimentally determined structure in the short range, modeled

  7. Alkali Bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkali bee, Nomia melanderi, is native to deserts and semi-arid desert basins of the western United States. It is a very effective and manageable pollinator for the production of seed in alfalfa (=lucerne) and some other crops, such as onion. It is the world’s only intensively managed ground-n...

  8. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  9. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/ΣFe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to

  11. Optoelectronic properties and interfacial durability of CNT and ITO on boro-silicate glass and PET substrates with nano- and heterostructural aspects

    NASA Astrophysics Data System (ADS)

    Park, Joung-Man; Wang, Zuo-Jia; Kwon, Dong-Jun; DeVries, Lawrence

    2011-02-01

    Nano- and hetero-structures of carbon nanotube (CNT) and indium tin oxide (ITO) can control significantly piezoelectric and optoelectronic properties in Microelectromechanical Systems (MEMS) as sensing and actuator under cyclic loading. Optimized preparing conditions were obtained for multi-functional purpose of the specimen by obtaining the best dispersion and turbidity in the solution. Optical transmittance and electrical properties were investigated for CNT and ITO dipping and spraying coating on boro-silicate glass and polyethylene terephthalate (PET) substrates by electrical resistance measurement under cyclic loading and wettability test. Uniform dip-coating was performed using Wilhelmy plate method due to its simple and convenience. Spraying coating was applied to the specimen additionally. The change in the electrical resistance and optical properties of coated layer were mainly dependent upon the number of dip-coating, the concentration of CNT and ITO solutions, and the surface treatment condition. Electric properties of coating layers were measured using four-point probe method, and surface resistance was calculated using a dual configuration method. Optical transmittance of CNT and ITO coated PET film was also evaluated using UV spectrum. Surface energy and their hydrophilic and hydrophobic properties of CNT and ITO coated substrates were investigated by wettability test via static and dynamic contact angle measurements. As the elapsing time of cyclic loading passed, the stability of surface resistance and thus comparative interfacial adhesion between coated layer and substrates was evaluated to compare the thermodynamic work of adhesion, Wa. As dip-coating number increased, surface resistance of coated CNT decreased, whereas the transmittance decreased step-by-step due to the thicker CNT and ITO networked layer. Nano- and heterostructural effects of CNT and ITO solution on the optical and electrical effects have been studied continuously.

  12. Topological principles of borosilicate glass chemistry.

    PubMed

    Smedskjaer, Morten M; Mauro, John C; Youngman, Randall E; Hogue, Carrie L; Potuzak, Marcel; Yue, Yuanzheng

    2011-11-10

    Borosilicate glasses display a rich complexity of chemical behavior depending on the details of their composition and thermal history. Noted for their high chemical durability and thermal shock resistance, borosilicate glasses have found a variety of important uses from common household and laboratory glassware to high-tech applications such as liquid crystal displays. In this paper, we investigate the topological principles of borosilicate glass chemistry covering the extremes from pure borate to pure silicate end members. Based on NMR measurements, we present a two-state statistical mechanical model of boron speciation in which addition of network modifiers leads to a competition between the formation of nonbridging oxygen and the conversion of boron from trigonal to tetrahedral configuration. Using this model, we derive a detailed topological representation of alkali-alkaline earth-borosilicate glasses that enables the accurate prediction of properties such as glass transition temperature, liquid fragility, and hardness. The modeling approach enables an understanding of the microscopic mechanisms governing macroscopic properties. The implications of the glass topology are discussed in terms of both the temperature and thermal history dependence of the atomic bond constraints and the influence on relaxation behavior. We also observe a nonlinear evolution of the jump in isobaric heat capacity at the glass transition when substituting SiO(2) for B(2)O(3), which can be accurately predicted using a combined topological and thermodynamic modeling approach. PMID:21950415

  13. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2014-11-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionization of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary both can easily be applied to the routine operations of an analytical lab.

  14. Alkali element background reduction in laser ICP-MS

    NASA Astrophysics Data System (ADS)

    Magee, C. W., Jr.; Norris, C. A.

    2015-03-01

    Alkali backgrounds in laser ablation ICP-MS analyses can be enhanced by electron-induced ionisation of alkali contamination on the skimmer cone, reducing effective detection limits for these elements. Traditionally, this problem is addressed by isolating analyses of high-alkali materials onto a designated cone set, or by operating the ICP-MS in a "soft extraction" mode, which reduces the energy of electrons repelled into the potentially contaminated sampling cone by the extraction field. Here we present a novel approach, where we replace the traditional alkali glass tuning standards with synthetic low-alkali glass reference materials. Using this vitreous tuning solution, we find that this approach reduces the amount of alkali contamination produced, halving backgrounds for the heavy alkali elements without any change to analytical procedures. Using segregated cones is still the most effective method for reducing lithium backgrounds, but since the procedures are complimentary, both can easily be applied to the routine operations of an analytical lab.

  15. Ion-implantation-induced stress in glasses: Variation of damage mode efficiency with changes in glass structure

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.

    1988-05-01

    Ion implantation induces lateral stress in glass due to the volume dilatation in the implanted near-surface region. Cantilever-beam experiments allow these quantities to be measured as a function of fluence. For fused silica the stress data for various incident ions are found to scale with atomic collision energy deposition. In sharp contrast, Pyrex (alkali-borosilicate) glass, (1 - x)(Na, K) 2O· xB 2O 3·3SiO 2 glass, and a sodalime (microscope slide) glass, yield stress values which scale with energy deposition into electronic processes. More significantly, this mode of damage production is dominant for the nuclear waste glasses PNL 76-68 and SRP. The void space in fused silica allows room for displaced Si and/or O. For the complex alkali-containing silicates, the interstitial volume is restricted. In the latter case, the probability increases that permanent defects can be formed by ionization-induced bond-breaking and network relaxation. These data imply that alpha-particle ionization energy deposition may be an important factor in nuclear waste glass radiation damage production, but the magnitude of this contribution has not yet been evaluated.

  16. Experimental Modeling of Peridotite Melting with Alkali-Carbonate Fluid at P = 3.9 GPa, T=1250°C

    NASA Astrophysics Data System (ADS)

    Kostyuk, Anastasia; Gorbachev, Nikolay; Nekrasov, Alexey

    2014-05-01

    The close association of alkaline and ultramafic rocks with carbonatites, apatite and sulfide mineralization, as well as features of the melt compositions, tell us about the mantle source and the importance of alkaline-carbonate fluids in the genesis of these rocks. Experimental modeling of formation of alkali silicate, carbonate and sulfide melts was carried out in the system peridotite-alkaline-carbonate fluid (K, Na)2CO3 with additives of apatite, nickel-containing pyrrhotite, ilmenite and zircon as accessory minerals at P= 3.9 GPa and T=1250°C. Composition of coexisting melts, phase relationships, behavior of titanium, phosphorus, sulfur and zircon have been studied in this system. Liquidus association of phlogopite-clinopyroxene-zircon-X-phase (not diagnosed titanium and phosphorus-containing aluminosilicate phase) cemented by intergranular silicate glass with inclusions of carbonate and sulphide phases at partial (10%) melting of peridotite. Morphology, composition and relations of silicate glass, carbonate and sulfide globules indicate the existence of immiscible silicate, carbonate and sulfide melts at the experimental conditions. The composition of the silicate melt is phonolite, carbonate melt - significantly calcium composition with an admixture of alkali metal and silicate components. Solubility of zircon in silicate melt reached up to 0.8 wt.% of ZrO2, in coexisting carbonate melt - up to 1.5 wt.%. Absence of ilmenite and apatite in the experimental samples due to their high solubility in the coexisting phases. Concentration of TiO2 and P2O5 in silicate melt reached 2 wt. %. The concentration of TiO2 in the carbonate melt up to 1.7 wt.% and P2O5 up to 14 wt.%. The sulfur concentration in these melts does not exceed 0.2 wt.%. Concentrators of titanium and phosphorus among liquidus minerals were X-phase and phlogopite - 8 wt.% TiO2 and up to 3 wt.% P2O5 in the X-phase; up to 6 wt.% TiO2 and up to 2.5 wt.% of P2O5 in the phlogopite. The distribution

  17. Viscosity properties of sodium borophosphate glasses

    SciTech Connect

    Gaylord, S.; Tincher, B.; Petit, L. Richardson, K.

    2009-05-06

    The viscosity behavior of (1 - x)NaPO{sub 3}-xNa{sub 2}B{sub 4}O{sub 7} glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na{sub 2}B{sub 4}O{sub 7}. The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO{sub 4} units) to mixed BO{sub 4}/BO{sub 3} structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network.

  18. Integrating Sphere Alkali-Metal Vapor Cells

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William

    2010-03-01

    An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.

  19. The Oxidation State of Tungsten in Iron Bearing and Iron Free Silicate Glasses: Results from W L-Edge Xanes Measurements

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Righter, K.; Sutton S.; Newville, M.; Le, L.

    2007-01-01

    Tungsten is important in constraining core formation of the Earth because this element is a moderately siderophile element (depleted approx. 10 relative to chondrites) and, as a member of the Hf-W isotopic system, it is useful in constraining the timing of core formation. A number of previous experimental studies have been carried out to determine the silicate solubility and metal-silicate partitioning behavior of W, including its concomitant oxidation state. However, results of previous studies (figure 1) are inconsistent on whether W occurs as W(4+) or W(6+).

  20. Mafic intrusion remobilising silicic magma under El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.; Laporte, D.; Marti, J.; Devouard, B.; Cluzel, N.

    2012-04-01

    The 2011 submarine eruption at El Hierro, Canary Islands, has produced volcanic bombs that degas at sea surface, boil seawater and sink when cooled and degassed. At the beginning of the eruption white coloured pumices enveloped in darker coloured spatters floated on land. These composite pumices show evidence of magma mingling with folds and undulations of the darker coloured magma within the white pumice suggesting magma mingling in a viscous regime. The white pumice is highly vesicular and resembles foam. Most of the vesicular structure is made of tightly packed, polygonal bubbles of uniform size (˜ 100 μm), suggesting a single event of homogeneous bubble nucleation. An earlier event of heterogeneous bubble nucleation is indicated by the presence of a few large bubbles developed around tiny quartz crystals. Both the darker and lighter coloured pumices are almost aphyric. A few olivine crystals with perfect euhedral morphology occur within the darker part. Rare olivines of same composition are also found in the white pumice glass but then display somewhat rounded outlines and hopper-type structure. Melt inclusions in olivines of the darker pumice are of the same composition as the enveloping mafic glass, whereas olivines in the mixing boundary layer have melt inclusions of less mafic composition. The whole-rock composition and slightly more evolved glass composition are of basanitc and alkali rhyolitic composition (at the limit of the trachyte field) according to the TAS classification. Such rhyolitic compositions are rare in the Canaries. Analyses of residual volatile concentration in the glasses show that the silicic glass is highly degassed (F: 511 ±222; Cl: 202 ±58; S: below detection limit; values in ppm,1SD, n=10), whereas the basanitic glass still has very high halogene concentrations (F: 1354 ±151; Cl: 1026 ±47; S: 362 ±29; 1SD, n=10). In-situ analysis of trace element compositions of the dark glasses reveal typical basanitic compositions with

  1. Surface stress relaxation of oxide glasses: The effects on mechanical strength

    NASA Astrophysics Data System (ADS)

    Lezzi, Peter Joseph

    A new glass strengthening mechanism based upon surface compressive stress formation by surface stress relaxation of glasses that were held under a tensile stress, at a temperature lower than the glass transition temperature, in low water vapor pressure, has been demonstrated. Although glass fibers are traditionally known to become mechanically weaker when heat-treated at a temperature lower than the glass transition temperature in the presence of water vapor, the strength was found to become greater than the as-received fiber strength when fibers were subjected to a sub-critical tensile stress during heat-treatment. The observed strengthening was attributed to surface compressive residual stress formation through surface stress relaxation during the sub-critical tensile stress application in the atmosphere containing water vapor. Surface stress relaxation of the same glass fibers was shown to take place under conditions identical to those experienced by the strengthened mechanical test specimens by observing permanent bending of the fiber. Furthermore, the magnitude and presence of the residual stresses formed during bending or tensile heat-treatments were confirmed by FTIR, fiber etching, and fiber slicing methods. The method can in principle be used to strengthen any oxide glass and is not subjected to the constraints of traditional strengthening methods such as a minimum thickness for tempering, or a glass containing alkali ions for ion-exchange. Thus far, the method has been successful in strengthening silica glass, E-glass, and soda-lime silicate glass by approximately 20-30%.

  2. Foam-like scaffolds for bone tissue engineering based on a novel couple of silicate-phosphate specular glasses: synthesis and properties.

    PubMed

    Vitale-Brovarone, Chiara; Baino, Francesco; Bretcanu, Oana; Verne, Enrica

    2009-11-01

    Glass-ceramic scaffolds mimicking the structure of cancellous bone were produced via sponge replication technique by using a polyurethane foam as template and glass powder below 30 lm as inorganic phase. Specifically, a SiO₂-based glass of complex composition and its corresponding P₂O₅-based "specular" glass were used as materials for scaffolding. The polymeric sponge was thermally removed and the glass powders were sintered to obtain a replica of the template structure. The scaffolds were investigated and compared from a structural, morphological and mechanical viewpoint by assessing their crystalline phases, volumetric shrinkage, pores content and interconnection, mechanical strength. In addition, the scaffolds were soaked in acellular simulated body fluid to investigate their in vitro behaviour. The produced scaffolds have a great potential for bone reconstructive surgery because their features, such as shape, strength, bioactivity and bioresorption, can be easily tailored according to the end use. PMID:19475339

  3. Why neutron guides may end up breaking down? Some results on the macroscopic behaviour of alkali-borosilicate glass support plates under neutron irradiation

    NASA Astrophysics Data System (ADS)

    Boffy, R.; Kreuz, M.; Beaucour, J.; Köster, U.; Bermejo, F. J.

    2015-09-01

    In this paper we report on a first part of a study on the mechanisms leading to brittle fracture in neutron guides made of glass as structural element. Such devices are widely used to deliver thermal and cold neutron beams to experimental lines in most large neutron research facilities. We present results on macroscopic properties of samples of guide glass substrates which are subjected to neutron irradiation at relatively large fluences. The results show a striking dependence of some of the macroscopic properties such as density, shape or surface curvature upon the specific chemical composition of a given glass. The relevance of the present findings for the installation of either replacement guides at the existing facilities or for the deployment of instruments for ongoing projects such as the European Spallation Source is briefly discussed.

  4. Liquidus Temperature and Primary Crystallization Phases in High-Zirconia High-Level Waste Borosilicate Glasses

    SciTech Connect

    Plaisted, Trevor J.; Hrma, Pavel R.; Vienna, John D.; Jiricka, Antonin

    1999-12-09

    Liquidus temperature (TL) studies of high-Zr high-level waste (HLW) borosilicate glasses have identified three primary phases: baddelyite (ZrO2), zircon (ZrSiO4), and alkali-zirconium silicates, such as parakeldyshite (Na2ZrSi2O7). Using published TL data for HLW glasses with these primary phases, we have computed partial specific TLs for major glass components. On the Na2O-SiO2-ZrO2 submixture, we have determined approximate positions of the boundaries between the baddelyite, zircon, and parakeldyshite primary phase fields. The maximum that can dissolve at 1150?C in a borosilicate HLW glass subjected to common processability and acceptability constraints appears to be 16.5 mass% ZrO2.

  5. Electrical Conductivity Relaxation and Melt Viscosity of Fluorosilicate Glasses.

    NASA Astrophysics Data System (ADS)

    Guo, Yuning

    1995-01-01

    Although silicate glasses have been studied extensively, relatively little attention has been paid to the effects of fluorine on silicate glass networks. Recently, however, the potential for treating fluoride-containing radioactive waste by vitrification using joule-heated melting has made the properties of such glass systems of considerable technological importance. The presence of fluorine produces a melt of much lower viscosity and higher electrical conductivity than the more typical non-fluorine glass melts. From a simple glass structure perspective, fluorine (mono-valent) replaces oxygen (di-valent) in the glass network and thereby reduces the degree of connectivity. This can be used to motivate simple models for the effect of this replacement on properties such as the viscosity and the electrical conductivity. However, studies of the electrical conductivity relaxation of fluorosilicate glasses in the solid state revealed that other basic processes had to be introduced in order to explain the observed results. The experimental data suggest very different mechanisms for the fluorine effects in the solid and molten states. In order to investigate the effects of fluorine on the glass network, electrical conductivity relaxation measurements were made on a group of simple alkali-fluorosilicate glasses (Si, Na, O, F) in both the solid and molten states. In the molten state, the shear viscosities were also measured. The experimental results were found in good agreement with computer simulations performed on the random conductor network and cluster models. In these models, fluorine was assumed to randomly break the silica tetrahedra above the glass liquidus temperature (decreasing the melt viscosity and favoring ionic conduction), and to form alkali fluoride crystals with certain probabilities below the liquidus temperature (increasing the viscosity and reducing the conductivity). The existence of such crystals was later confirmed by X-ray diffraction. The conclusions

  6. Raman spectra of Martian glass analogues: a tool to approximate their chemical composition

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Kolzenburg, Stephan; Vona, Alessandro; Chevrel, Magdalena O.; Hess, Kai-Uwe; Neuville, Daniel R.; Ertel-Ingrisch, Werner; Romano, Claudia; Dingwell, Donald B.

    2016-04-01

    We present a study on the systematic changes of Raman spectra of a series of glasses as a function of their chemistry. These glass compositions are considered as analogues for rock materials identified on Mars. We performed a diffusion experiment between an iron-rich basaltic and a rhyolitic melt under reducing conditions to produce a wide range of intermediate chemical compositions. We then systematically acquired Raman spectra of the intermediate composition glasses across the diffusion interface and correlate them with the corresponding chemical compositions derived by electron microprobe analysis. Using a linear mixing model for the spectral evolution as a function of chemistry, we fitted a Raman parameter to each spectrum to estimate the chemical composition of each glass. The Raman model was verified using external natural and synthetic samples. This study: 1) expands the Raman database of silicate glasses including alkali and iron-rich compositions as expected to be found on Mars; and 2) contributes to develop Raman spectroscopy as a quantitative tool in geological and planetary science to estimate the chemistry of glasses on a microscopic level. Moreover, as Raman spectrometers have been developed for two forthcoming Mars missions [ExoMars program (2016-2018) and Mars 2020], with the benefit of this calibration, Raman spectroscopy will allow rapid, in-situ and remotely controlled identification and investigation of silicate glasses on future extraterrestrial rover missions.

  7. Cation Diffusivity and the Mixed Network Former Effect in Borosilicate Glasses.

    PubMed

    Smedskjaer, Morten M; Mauro, John C; Yue, Yuanzheng

    2015-06-11

    Understanding the structural origins of cationic diffusion processes in silicate glasses is important for high-tech applications of silicate glasses. For glasses with more than one network former, transport properties such as diffusivity are often nonlinear functions of the particular distribution of these network formers, a phenomenon known as the mixed network former effect. Here, we investigate the sodium-potassium interdiffusion (D̅Na-K) and the calcium inward diffusion (DCa) in soda lime borosilicate glasses with varying silica/borate ratio but constant modifier content. Indeed, the structural organization of borosilicate glasses results in a pronounced nonlinear composition dependence of D̅Na-K and DCa (i.e., the mixed network former effect). Initial addition of B2O3 to the glass system results in a significant decrease in both diffusivities, whereas the change in diffusivity per mole of added B2O3 decreases with increasing B2O3 concentration. Besides the influences of water content and atomic packing degree, we find that 99% of the composition dependence of log D̅Na-K can be ascribed to the change in concentration of tetrahedral boron groups. This indicates that the formation of BO4/2 groups slows down diffusion processes of alkali and alkaline earth ions. Therefore, the mixed network former effect of the studied glass series is linked with the change of the concentration of tetrahedral boron groups, which is caused by the interactions between the different types of network formers. PMID:25978700

  8. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    NASA Astrophysics Data System (ADS)

    Kim, Miae; Heo, Jong

    2015-12-01

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca2Nd8-xCex(SiO4)6O2] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca-silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca-silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10-6 g m-2 for Ce ion and 2.19·10-6 g m-2 for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing.

  9. The effect of composition on the viscosity, crystallization and dissolution of simple borate glasses and compositional design of borate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Goetschius, Kathryn Lynn

    Borate glasses have recently been developed for a variety of medical applications, but much less is known about their structures and properties than more common silicate glasses. Melt properties and crystallization tendency for compositions in the Na2O-CaO-B2O3 system were characterized using differential thermal analysis and viscosity measurements. Characteristic viscosity (isokom) temperatures varied with the ratio between the modifier content (Na2O+CaO) and B2O3, particularly at lower temperatures, consistent with the changes in the relative concentrations of tetrahedral borons in the glass structure. Similar glasses were used to study dissolution processes in water. These alkali-alkaline earth glasses dissolve congruently and follow linear dissolution kinetics. The dissolution rates were dependent on the glass structure, with slower rates associated with greater fractions of four-coordinated boron. For glasses with a fixed alkaline earth identity, the dissolution rates increased in the order Liglasses with a constant alkali identity, the dissolution rates increased in the order Caalkali and alkaline earth oxides on dissolution rates are discussed in terms of competing effects of four-coordinated boron and the field strength of the modifying cation. Finally, a seven component (Na2O, K2O, MgO, CaO, B2O3, SiO2, and P2O5) mixture model design was used to predict composition-property relationships to optimize the properties of new borate-based bioactive compositions for specific applications. Melt viscosity, thermal expansion coefficient, liquidus temperature and crystallization tendency were determined, as were dissolution rates in simulated body fluid (SBF).

  10. Super ionic conductive glass

    DOEpatents

    Susman, Sherman; Volin, Kenneth J.

    1984-01-01

    An ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A.sub.1+x D.sub.2-x/3 Si.sub.x P.sub.3-x O.sub.12-2x/3, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  11. Super ionic conductive glass

    DOEpatents

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  12. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  13. Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fogel, R. A.

    1994-01-01

    Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.

  14. Behaviour of photopolymerized silicate glass fibre-reinforced dimethacrylate composites subjected to hydrothermal ageing: part II. Hydrolytic stability of mechanical properties.

    PubMed

    Kennedy, K C; Chen, T; Kusy, R P

    1998-11-01

    The flexural properties and failure morphologies of dimethacrylate-copolymer composites reinforced with either S2-glass or quartz fibres ( approximately 33-66 vol%) were examined after hydrothermal ageing (0-3 mon at 37 degrees C). Initially the S2-glass composites were generally stiffer and stronger than comparably reinforced quartz composites, but within 1 wk the properties of S2-glass composites decreased by 12%-26%. The properties of quartz composites were relatively stable, except for those of composites with the least reinforcement (35 vol%), which decreased by roughly 15%. Scanning electron microscopy revealed that in all composites buckling had occurred at the site of load application. Evidence of good fibre-matrix adhesion was observed for both types of composites under all conditions. Modelling of degradation between 1 wk and 3 mon revealed that: (1) the only temporal change was a slight increase in the stiffness of S2-glass composites; and (2) higher reinforcement levels reduced the retention of strength in S2-glass composites but had the opposite effect (on both properties) for quartz composites (p<0.05). For the most highly reinforced S2-glass composites, susceptibility to degradation was offset by high initial properties; and after ageing (elastic modulus approximately 50 GPa, strength approximately 1.2 GPa), these composites were still, on average, approximately 25% stiffer and 50% stronger than the more hydrostable quartz counterparts. PMID:15348683

  15. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  16. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  17. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  18. Origin of hydrous alkali feldspar-silica intergrowth in spherulites from intra-plate A2-type rhyolites at the Jabal Shama, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.; El-Nisr, Said A.; Bakhsh, Rami A.

    2016-03-01

    Miocene rhyolites (19.2 ± 0.9 Ma) at the Jabal Shama in western Saudi Arabia represent an example of rift-related silicic volcanism that took place during the formation of the Red Sea. They mostly consist of tuffaceous varieties with distinct flow banding, and pea-sized spherulites, obsidian and perlitized rhyolite tuffs. Although they have the geochemical signature of A2-type rhyolites, these silicic rocks are not typically alkaline but alkali-calcic to calc-alkaline. They developed in a within-plate regime and possibly derived from a recycled mafic subducted slab in depleted sub-continental mantle beneath the western Arabian plate. The Jabal Shama rhyolites are younger in age than their Miocene counterparts in Yemen and Ethiopia. The Jabal Shama spherulites consist of hydrous alkali feldspar-silica radial intergrowths with an occasional brown glass nucleus. Carbonate- and glass-free spherulites give up to 4.45 wt% L.O.I. The hydrous nature of these silicates and the absence of magnetite in the spherulites is a strong indication of oxidizing conditions. The spherulites contain hydrous feldspars with up to ∼6 wt% H2O, and they develop by diffusion and devitrification of glass in the rhyolite tuff at ∼800 °C. Owing to higher undercooling due to supersaturation, the radial hydrous phases within spherulites might grow faster and led to coagulation. The polygonal contacts between spherulites and the ∼120° dihedral angle suggest solid-state modification and recrystallization as the process of devitrification proceeds as low as ∼300 °C. The sum of FeO + MgO is positively correlated with total alkalies along with magnetite oxidation in the matrix to Fe-oxyhydroxides, and to the incorporation of OH- into silicates within the spehrulites themselves. Structural H2O in glass of the Jabal Shama perlite (obsidian) is considerable (∼9-12 wt%) with 3.72-5.6 wt% L.O.I. of the whole-rock. The presence of deleterious silica impurities would lower the ore grade due to

  19. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  20. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  1. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  2. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  3. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  4. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  5. The speciation of carbon dioxide in silicate melts

    NASA Astrophysics Data System (ADS)

    Konschak, Alexander; Keppler, Hans

    2014-05-01

    The speciation of CO2 in dacite, phonolite, basaltic andesite, and alkali silicate melt was studied by synchrotron infrared spectroscopy in diamond anvil cells to 1,000 °C and more than 200 kbar. Upon compression to 110 kbar at room temperature, a conversion of molecular CO2 into a metastable carbonate species was observed for dacite and phonolite glass. Upon heating under high pressure, molecular CO2 re-appeared. Infrared extinction coefficients of both carbonate and molecular CO2 decrease with temperature. This effect can be quantitatively modeled as the result of a reduced occupancy of the vibrational ground state. In alkali silicate (NBO/ t = 0.98) and basaltic andesite (NBO/ t = 0.42) melt, only carbonate was detected up to the highest temperatures studied. For dacite (NBO/ t = 0.09) and phonolite melts (NBO/ t = 0.14), the equilibrium CO2 + O2- = CO3 2- in the melt shifts toward CO2 with increasing temperature, with ln K = -4.57 (±1.68) + 5.05 (±1.44) 103 T -1 for dacite melt (Δ H = -42 kJ mol-1) and ln K = -6.13 (±2.41) + 7.82 (±2.41) 103 T -1 for phonolite melt (Δ H = -65 kJ mol-1), where K is the molar ratio of carbonate over molecular CO2 and T is temperature in Kelvin. Together with published data from annealing experiments, these results suggest that Δ S and Δ H are linear functions of NBO/ t. Based on this relationship, a general model for CO2 speciation in silicate melts is developed, with ln K = a + b/ T, where T is temperature in Kelvin and a = -2.69 - 21.38 (NBO/ t), b = 1,480 + 38,810 (NBO/ t). The model shows that at temperatures around 1,500 °C, even depolymerized melts such as basalt contain appreciable amounts of molecular CO2, and therefore, the diffusion coefficient of CO2 is only slightly dependent on composition at such high temperatures. However, at temperatures close to 1,000 °C, the model predicts a much stronger dependence of CO2 solubility and speciation on melt composition, in accordance with available solubility data.

  6. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules

    NASA Astrophysics Data System (ADS)

    Sperling, E. A.; Robinson, J.; Pisani, D.; Peterson, K.

    2010-12-01

    The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spicules in strata older than the Cambrian. This temporal disparity highlights a problem with our understanding of the Precambrian fossil record - either these supposed demosponge-specific biomarkers were derived from the sterols of some other organism and are simply retained in modern demosponges, or spicules do not primitively characterize crown-group demosponges. Resolving this issue requires resolving the phylogenetic placement of another group of sponges, the hexactinellids, which not only make a spicule thought to be homologous to the spicules of demosponges, but also make their first appearance near the Precambrian/Cambrian boundary. Using two independent analytical approaches and data sets - traditional molecular phylogenetic analyses and the presence or absence of specific microRNA genes - we show that demosponges are monophyletic, and that hexactinellids are their sister group (together forming the Silicea). Thus, spicules must have evolved before the last common ancestor of all living siliceans, suggesting the presence of a significant gap in the silicean spicule fossil record. Molecular divergence estimates date the origin of this last common ancestor well within the Cryogenian, consistent with the biomarker record, and strongly suggests that siliceous spicules were present during the Precambrian but were not preserved.

  7. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  8. Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo.

    PubMed

    Lin, Yinan; Xiao, Wei; Bal, B Sonny; Rahaman, Mohamed N

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13-93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0-2.0wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8wt.% CuO in the glass but they were significantly reduced by 2.0wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6weeks in rat calvarial defects (46±8%) was not significantly affected by 0.4 or 0.8wt.% CuO in the glass whereas it was significantly inhibited (0.8±0.7%) in the scaffolds doped with 2.0wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13-93 glass scaffolds with up to 0.8wt.% CuO did not affect their biocompatibility whereas 2.0wt.% CuO was toxic to cells and detrimental to bone regeneration. PMID:27287141

  9. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  10. DFT modeling of 45S5 and 77S soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism.

    PubMed

    Berardo, Enrico; Pedone, Alfonso; Ugliengo, Piero; Corno, Marta

    2013-05-14

    The reactivity of bioglasses, which is related to the dissolution of cations and orthosilicate groups in the physiological fluid, strongly depends on the key structural features present at the glass surfaces. On the basis of the composition and the synthetic routes employed to make the glass, surfaces with very different characteristics and thus presenting different mechanisms of dissolution can be observed. In this paper, the surface structures of two very different bioglass compositions, namely 45S5 (46.1 SiO2, 24.4 Na2O, 26.9 CaO, and 2.6 P2O5 mol %) and 77S (80.0 SiO2, 16.0 CaO, and 4.0 P2O5 mol %), have been investigated by means of periodic DFT calculations based on a PBE functional and localized Gaussian basis set as encoded in the CRYSTAL code. Our calculations show that the two glass surfaces differ by the relative amount of key structural sites such as NBOs, exposed ions, orthosilicate units, and small rings. We have demonstrated how the number of these sites affects the surface stability and reactivity (bioactivity). PMID:23594027

  11. Water Content of Lunar Alkali Fedlspar

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.; Wang, J.; Alexander, C. M. O'D.; Hauri, E. H.

    2016-01-01

    Detection of indigenous hydrogen in a diversity of lunar materials, including volcanic glass, melt inclusions, apatite, and plagioclase suggests water may have played a role in the chemical differentiation of the Moon. Spectroscopic data from the Moon indicate a positive correlation between water and Th. Modeling of lunar magma ocean crystallization predicts a similar chemical differentiation with the highest levels of water in the K- and Th-rich melt residuum of the magma ocean (i.e. urKREEP). Until now, the only sample-based estimates of water content of KREEP-rich magmas come from measurements of OH, F, and Cl in lunar apatites, which suggest a water concentration of < 1 ppm in urKREEP. Using these data, predict that the bulk water content of the magma ocean would have <10 ppm. In contrast, estimate water contents of 320 ppm for the bulk Moon and 1.4 wt % for urKREEP from plagioclase in ferroan anorthosites. Results and interpretation: NanoSIMS data from granitic clasts from Apollo sample 15405,78 show that alkali feldspar, a common mineral in K-enriched rocks, can have approx. 20 ppm of water, which implies magmatic water contents of approx. 1 wt % in the high-silica magmas. This estimate is 2 to 3 orders of magnitude higher than that estimated from apatite in similar rocks. However, the Cl and F contents of apatite in chemically similar rocks suggest that these melts also had high Cl/F ratios, which leads to spuriously low water estimates from the apatite. We can only estimate the minimum water content of urKREEP (+ bulk Moon) from our alkali feldspar data because of the unknown amount of degassing that led to the formation of the granites. Assuming a reasonable 10 to 100 times enrichment of water from urKREEP into the granites produces an estimate of 100-1000 ppm of water for the urKREEP reservoir. Using the modeling of and the 100-1000 ppm of water in urKREEP suggests a minimum bulk silicate Moon water content between 2 and 20 ppm. However, hydrogen loss was

  12. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  13. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Chi, Han; Shimizu, Nobumichi; Buono, Antonio S.; Walker, David

    2013-02-01

    The origin of bulk silicate Earth carbon inventory is unknown and the fate of carbon during the early Earth differentiation and core formation is a missing link in the evolution of the terrestrial carbon cycle. Here we present high pressure (P)-temperature (T) experiments that offer new constraints upon the partitioning of carbon between metallic and silicate melt in a shallow magma ocean. Experiments were performed at 1-5 GPa, 1600-2100 °C on mixtures of synthetic or natural silicates (tholeiitic basalt/alkali basalt/komatiite/fertile peridotite) and Fe-Ni-C ± Co ± S contained in graphite or MgO capsules. All the experiments produced immiscible Fe-rich metallic and silicate melts at oxygen fugacity (fO2) between ˜IW-1.5 and IW-1.9. Carbon and hydrogen concentrations of basaltic glasses and non-glassy quenched silicate melts were determined using secondary ionization mass spectrometry (SIMS) and speciation of dissolved C-O-H volatiles in silicate glasses was studied using Raman spectroscopy. Carbon contents of metallic melts were determined using both electron microprobe and SIMS. Our experiments indicate that at core-forming, reduced conditions, carbon in deep mafic-ultramafic magmas may dissolve primarily as various hydrogenated species but the total carbon storage capacity, although is significantly higher than solubility of CO2 under similar conditions, remains low (<500 ppm). The total carbon content in our reduced melts at graphite saturation increases with increasing melt depolymerization (NBO/T), consistent with recent spectroscopic studies, and modestly with increasing hydration. Carbon behaves as a metal-loving element during core-mantle separation and our experimental DCmetal/silicate varies between ˜4750 and ⩾150 and increases with increasing pressure and decreases with increasing temperature and melt NBO/T. Our data suggest that if only a trace amount of carbon (˜730 ppm C) was available during early Earth differentiation, most of it was

  14. Carbonatite-silicate immiscible melt inclusion in lamprophyre from Kutch, western India: Implication for plume-lithosphere interaction and initiation of Deccan Trap magmatism

    NASA Astrophysics Data System (ADS)

    Ray, Arijit; Paul, Dalim Kumar; Sen, Gautam; Biswas, Sanjib Kumar

    2014-05-01

    Kutch province of western India has undergone repeated rifting and marine transgression events from late Triassic to the late Cretaceous. Magmatic rocks occur in profusion in Kutch Basin. The southern part is characterized by occurrences of thick flows of tholeiitic basalt of Deccan Trap affinity, central part of Kutch Basin has numerous volcanic plugs of alkali basalt which is also considered as member of Deccan Trap, contain thin, discoidal mantle xenoliths of spinel lherzolite and wehrlite composition. Northern Kutch is dominated by suite of alkaline magmatic rocks similar to magmatic rocks of continental rift zone. The alkaline suite contains alkali pyroxenite, theralite, teschenite, basanite, nepheline syenite and kaersutite bearing lamprophyre (Ray et al., 2006, Das et al., 2007, Paul et al., 2008). The newly discovered east-west trending lamprophyre dyke swarm of northern Kutch (Pachham Island) is camptonite in composition and contains kaersutite phenocrysts in large proportion. These kaersutite phencrysts contain immscible melt/glass phases as melt inclusions. The lamprophyre yields an age of ca. 67 Ma.by Ar-Ar method (Sen et al., 2014 in press) synchronous with alkali basalt of central Kutch. The melt inclusions are fundamentally of two types - calciocarbonatite and alkaline silicate melts. We found sphene within carbonatitic melt and the rare mineral rhonite in silicate melt. Petrographic evidence indicates that carbonatite melt always occurs within alkali silicate melt as immiscible fraction. These carbonatite melts are extremely rich in CaCO3 (upto 95%) which contradicts the experimental results of carbonate melt composition (upto 80% CaCO3) in silicate-carbonate immiscible melt pair by Lee and Wyllie. The abundance of wehrlite xenoliths over lherzolite in alkali basalt, petrographic evidence of orthopyroxene to clinopyroxene transformation in wehrlite xenoliths, occurrence of calcite vein in mantle xenoliths indicate carbonatite metasomatism of spinel

  15. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional

  16. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  17. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Krishna, A. Keshav; Khanna, Tarun C.; Mohan, K. Rama

    2016-08-01

    This paper introduces a calibration procedure and provides the data achieved for accuracy, precision, reproducibility and the detection limits for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (Ba, Cr, Cu, Hf, La, Nb, Ni, Pb, Rb, Sr, Ta, Th, U, Y, Zn, Zr) elements in the routine analysis of geological and environmental samples. Forty-two rock and soil reference materials were used to calibrate and evaluate the analytical method using a sequential wavelength dispersive X-ray fluorescence spectrometer. Samples were prepared as fused glass discs and analysis performed with a total measuring time of thirty-one minutes. Another set of twelve independent reference materials were analyzed for the evaluation of accuracy. The detection limits and accuracy obtained for the trace elements (1-2 mg/kg) are adequate both for geochemical exploration and environmental studies. The fitness for purpose of the results was also evaluated by the quality criteria test proposed by the International Global Geochemical Mapping Program (IGCP) from which it can be deduced that the method is adequate considering geochemical mapping application and accuracy obtained is within the expected interval of certified values in most cases.

  18. Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots growth in a silicate glass matrix by the fusion method

    SciTech Connect

    Dantas, Noelio Oliveira; Lima Fernandes, Guilherme de; Almeida Silva, Anielle Christine; Baffa, Oswaldo; Gómez, Jorge Antônio

    2014-09-29

    In this study, we synthesized Cd{sub 1−x}Mn{sub x}Te ultrasmall quantum dots (USQDs) in SiO{sub 2}-Na{sub 2}CO{sub 3}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3} glass system using the fusion method. Growth of these Cd{sub 1−x}Mn{sub x}Te USQDs was confirmed by optical absorption, atomic force microscopy (AFM), magnetic force microscopy (MFM), scanning transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) measurements. The blueshift of absorption transition with increasing manganese concentration gives evidence of incorporation of manganese ions (Mn{sup 2+}) in CdTe USQDs. AFM, TEM, and MFM confirmed, respectively, the formation of high quality Cd{sub 1−x}Mn{sub x}Te USQDs with uniformly distributed size and magnetic phases. Furthermore, EPR spectra showed six lines associated to the S = 5/2 spin half-filled d-state, characteristic of Mn{sup 2+}, and confirmed that Mn{sup 2+} are located in the sites core and surface of the CdTe USQD. Therefore, synthesis of high quality Cd{sub 1−x}Mn{sub x}Te USQDs may allow the control of optical and magnetic properties.

  19. Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions.

    PubMed

    Salman, Muhammad; Cizer, Özlem; Pontikes, Yiannis; Snellings, Ruben; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2015-04-01

    With an aim of producing high value cementitious binder, stainless steel refining slag containing a high amount of CaO in γ-dicalcium silicate form was activated with NaOH and Na-silicate as well as KOH and K-silicate solutions, followed by steam curing at 80 °C. Higher levels of alkali-silicate in the activating solution resulted in higher cumulative heat suggesting accelerated reaction kinetics. With respect to compressive strength, higher levels of alkali silicate resulted in higher strength and the mortars with Na activator were found to have higher early strength than the ones with K activator. The long term strength was found to be similar, regardless of the alkali metal. Thermogravimetric, QXRD and FTIR analyses showed an increase in the amount of reaction products (C-S-H type) over time, further confirming the reactivity of the crystalline slag. Batch leaching results showed lower leaching of heavy metals and metalloids with K activator compared to the Na activator. These results demonstrate that the alkali type and the ratio of hydroxide to silicates have a significant impact on the hydration and mechanical strength development of the stainless steel slag. The above findings can aid in the recycling and valorization of these type of slags which otherwise end up landfilled. PMID:25577317

  20. Time-resolved study of luminescence in soda-lime silicate glasses co-doped with Gd 3+ and Eu 3+

    NASA Astrophysics Data System (ADS)

    Kondo, Yasutaka; Tanaka, Katsuhisa; Ota, Rikuo; Fujii, Tomoki; Ishikawa, Yo-ichi

    2005-05-01

    Energy transfer process in soda-lime glasses co-doped with Gd 3+ and Eu 3+, where a ground state of Gd 3+, 8S 7/2, was selectively excited to a 6I J state by a 275-nm pulsed laser irradiation, was studied based on a time-resolved luminescence spectroscopy. The luminescence decay rate at 313 nm (Gd 3+: 6P 7/2 → 8S 7/2) was observed to be (1.5 ± 0.2) × 10 2 s -1 ( τ = 6.6 ± 0.6 ms) without Eu 3+ and to increase monotonously with increasing co-doped Eu 3+ concentration, giving an apparent quenching rate constant of (5.0 ± 0.5) × 10 -18 ion -1 cm 3 s -1 (≈(1.9 ± 0.2) × 10 3 mol% -1 s -1) for a 6P 7/2 state of Gd 3+ ion with Eu 3+. The relaxation rate of a 6I J state to a luminescent state 6P 7/2 in Gd 3+ ion was estimated to be (1.8 ± 0.2) × 10 6 s -1 from the rise rate at 313-nm luminescence ( τrise ≈ 0.56 μs), which was observed to be almost independent of the Eu 3+ concentration. The luminescence intensity from Eu 3+ at 591 nm and 613 nm monotonously increased with increasing Eu 3+ concentration up to 0.33-mol% Eu 3+, while it started decreasing at concentration of Eu 3+ higher than 0.33-mol%, which was interpreted in terms of the resonant energy transfer to nearby Eu 3+ resulting in the excitation to the Eu 3+-O - charge transfer states.

  1. Determination of the Mesostructure of Glasses Using Laser Photoionization Time of Flight Mass Spectroscopy

    NASA Astrophysics Data System (ADS)

    Affatigato, Mario; Stentz, Dale; Blair, Sarah; Goater, Cole; Feller, Steve

    2000-03-01

    Though glasses are amorphous materials they retain both short- and intermediate range order, traditionally attributed to energetically favorable groups present in the crystals of the same stoichiometry. The short range order structures (nanounits) are well understood from a variety of measurements, chiefly from nuclear magnetic resonance. Intermediate range mesounits, on the other hand, have been quite difficult to study but play a key role in the determination of the properties of the glass. We report on investigations of the mesostructure of borate, silicate and borosilicate glasses and crystals containing lead, sodium and bismuth oxides using laser desorption mass spectroscopy. This method has yielded novel information regarding the dominant mesounits in the network, the mixing of silicate and borate subnetworks, the preferential associations of alkali cations, as well as the presence of larger grouping of atoms that have been the source of much speculation (e.g., reedmergnerite clusters). Both positive and negative high resolution mass spectra will be presented in the discussion of tentative models of the glass structure, and supporting evidence from Raman spectroscopy and neutron scattering will also be given. This research was supported by the National Science Foundation, DMR-PECASE award No. 9733724.

  2. The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán

    2015-06-01

    Experiments were conducted at 500 MPa and 1240 °C in a piston cylinder apparatus to assess the effect of melt composition on the melt/volatile partition coefficient of sulfur (DSmelt/volatile) , which was used as a measure of the silicate melt's capacity to dissolve oxidized sulfur species. Iron-free, three- and four-component silicate melts were equilibrated with H2O-S fluids with sulfur concentrations ⩽2 mol% at an oxygen fugacity imposed by the Re-ReO2 buffer (1.4 log units above the Ni-NiO buffer). At these conditions, SO2 (S4+) is predicted to be the dominant sulfur species in the volatile phase and sulfate (S6+) is the dominant sulfur species in the silicate melt. The values of DSmelt /volatile were calculated by mass balance. The results show that DSmelt /volatile values increase exponentially with decreasing the degree of polymerization of the silicate melt structure. For example, in calcium-aluminosilicate melts, DSmelt /volatile changes from 0.005 to 0.3 as the degree of melt polymerization changes from the equivalent of a rhyolite to the equivalent of a basalt. At a constant degree of melt polymerization, DSmelt /volatile in equilibrium with sodium-aluminosilicate (NAS) melts is more than an order of magnitude higher than in equilibrium with calcium-aluminosilicate (CAS) melts, and more than two orders of magnitude higher than in equilibrium with magnesium-aluminosilicate (MAS) melts. The value of DSmelt /volatile changes from 0.014 in MAS glasses to 3.4 in NAS glasses for the most depolymerized compositions in each series. Potassium has a similar effect on sulfate dissolution to that of Na. The variation of DSmelt /volatile in equilibrium with various calcium-sodium aluminosilicate (CNAS), magnesium-sodium aluminosilicate (MNAS) and magnesium-potassium aluminosilicate (MKAS) melts indicates that alkalis are only available for sulfate complexation when they are present in excess compared to the required amount to charge balance for the Si4+ to Al3

  3. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  4. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  5. Nanophase glass ceramics for capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Rangarajan, Badri

    Glass ceramics are candidate dielectric materials for high energy storage capacitors. Since energy density depends primarily on dielectric permittivity and breakdown strength, glass ceramics with interconnected nano-crystalline particles and low porosity, which leads to high breakdown strength, are expected to have high energy density values. Three glass ceramic systems were investigated. Barium/lead sodium niobate glass ceramics, designated as PNNS (PbO-Na 2O-Nb2O5-SiO2) and BNNS (BaONa 2O- Nb2O5-SiO2), and barium titanate silicate glass ceramic, designated as BTS (BaOTiO2-SiO2), belonging to medium (epsilonr ~ 400-700) and low (epsilon r ~ 20) permittivity regimes, respectively, were fabricated by roller quenching and controlled crystallization. The overall properties of the glass ceramics were controlled by connectivity and volume fraction of crystallites. PNNS and BNNS developed perovskite and tungsten-bronze phases during crystallization with permittivity values between 400 and 700. Microstructural analysis of PNNS glass ceramic revealed grain sizes of the order of 50 nm. The calculated breakdown strengths were ~0.7 and ~075 MV/cm for PNNS and BNNS respectively. The resulting energy densities at breakdown were ~4.5 and ~6.5 J/cm3 for PNNS and BNNS respectively. However, the disadvantages, such as difficult glass formability, less control over crystallization due to multiphase formation and low dielectric breakdown strength values due to high dielectric contrast between the glass and crystal phases, associated with PNNS and BNNS glass ceramics served as the motivating factor for exploring BTS glass ceramic. The major advantage of studying BTS glass ceramic over the other systems is that a single crystalline phase, fresnoite (Ba2TiSi2O 8), grows from the quenched glass and properties can be explored over the whole spectrum ranging from fully amorphous to fully crystalline. Crystallization kinetics of the BTS glass is explored to control the relative volume

  6. Rb-Sr isotopic systematics of alkali-rich fragments in the Yamato-74442 LL-chondritic breccia

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsunori; Misawa, Keiji; Okano, Osamu; Shih, Chi-Yu; Nyquist, Laurence E.; Simon, Justin I.; Tappa, Michael J.; Yoneda, Shigekazu

    2013-03-01

    We have undertaken mineralogical, petrographical and Rb-Sr isotopic studies on alkali-rich igneous rock fragments in the Yamato (Y)-74442 LL-chondritic breccia. The fragments are a few mm in size and are composed mainly of porphyritic olivine and dendritic pyroxene set in alkali-rich groundmass glass. Minor phases include chromite, troilite and metallic nickel-iron. Bulk chemical compositions of the fragments are almost identical to the host chondrite except for a depletion of sodium and an enrichment of potassium. Isotopic analyses of nine fragments from Y-74442 yield a Rb-Sr age of 4429±54 Ma (2σ) for λ(87Rb)=0.01402 Ga-1 with an initial ratio of 87Sr/86Sr=0.7144±0.0094 (2σ). Assuming precursors of the fragments formed 4568 Ma with 87Sr/86Sr=0.69889 when the Solar System formed, a time-averaged Rb/Sr (weight) ratio of the source material for the fragments is calculated to be 2.58+0.91/-0.93. The extremely high Rb/Sr value of this source is difficult to interpret by any igneous fractionation or liquid immiscibility, but can be explained by mixing of a chondritic component with an alkali-rich component formed in the early solar nebula. In our preferred model, the alkali component with Rb/Sr≫30 would have condensed from the residual nebular gas after removal of refractory strontium and must have been isolated for a long time in a region where the temperature was sufficiently low to prevent reaction with other silicates/oxides. A mixture of the alkali component (early nebular condensates) and the ferromagnesian component could reflect flash heating induced by impact on an LL-chondritic parent body at least 4429 Ma ago, and further enrichments of rubidium and potassium relative to strontium could have occurred during this event. The resulting impact-melt rocks could have been fragmented by later impact event(s) and finally incorporated into the Y-74442 parent body. Thus, a remarkable signature of alkali enrichments both in the early solar nebula and later on

  7. Properties Of Soda/Yttria/Silica Glasses

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  8. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  9. Reaction sintered glass: A durable matrix for spinel-forming nuclear waste compositions

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    Glass formation by reaction sintering under isostatic pressure is an innovative process to vitrify refractory-rich high-level radioactive waste. We used a typical defense waste composition, containing spinel-forming components such as ˜4 wt% of Cr 2O 3, ˜23 wt% Al 2O 3, ˜13 wt% Fe 2O 3, and ˜9 wt% UO 2, with CeO 2 simulating UO 2. Reaction sintered silicate glasses with waste loading up to 45 wt% were prepared within three hours, by hot pressing at 800°C. The glass former was amorphous silica. Simulated waste was added as calcined oxides. The reaction sintered glass samples were characterized using scanning and analytical electron microscopy. The results show that extensive reaction sintering took place and a continuous glass phase formed. Waste components such as Na 2O, CaO, MnO 2, and Fe 2O 3, dissolved completely in the continuous glass phase. Cr 2O 3, Al 2O 3, and CeO 2 were only partially dissolved due to incomplete dissolution (Al 2O 3) or super-saturation and reprecipitation (Cr 2O 3 and CeO 2). The precipitation mechanism is related to a time dependent alkali content in the developing glass phase. Short-term corrosion tests in water showed that the glasses are chemically more durable than melted nuclear waste glasses. Based on hydration energies calculations, the long-term chemical durability of our reaction sintered glasses is expected to be comparable to that of rhyolitic and tektite glasses.

  10. Activity composition relationships in silicate melts. Final report

    SciTech Connect

    Glazner, A.F.

    1990-12-31

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  11. Photoactive transparent nano-crystalline glass-ceramic for remazole red dye degradation

    SciTech Connect

    Gad-Allah, Tarek A.; Margha, Fatma H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation and characterization of novel transparent nanocrystalline glass-ceramic. ► Precipitation of photoactive phases by using controlled heat-treatment. ► Conservation of transparency along with photoactivity. ► Using the prepared nanocrystalline glass-ceramic in water purification. -- Abstract: Transparent glass ceramic material was prepared from alkali-borosilicate glass containing titania by proper heat treatment scheme. The prepared samples were characterized using differential thermal analysis, X-ray diffraction, transmission electron microscope, selected area electron diffraction and UV–visible spectroscopy. The applied heat treatment program allowed the crystallization of nano-crystalline anatase, rutile, barium titanate, titanium borate and silicate phases while maintaining the transparency. The precipitated nano-crystalline anatase and rutile phases were responsible for the observed high photocatalytic activity of the prepared samples. Samples of 24.29 and 32.39 TiO{sub 2} wt% showed better efficiency for the decolorization of remazole red dye compared with commercial-TiO{sub 2} used in preparation of glass-ceramic. The reuse of prepared glass-ceramic photocatalyst with nearly same efficiency for different times was also proved.

  12. Effects of radiation exposure on glass alteration in a steam environment

    SciTech Connect

    Wronkiewicz, D.J.; Bates, J.K.; Tani, B.S.; Wang, L.M.

    1992-12-31

    Several Savannah River Plant (SRL) glass compositions were reacted in steam at temperatures of 150 to 200{degrees}C. Half of the tests utilized actinide-doped monoliths and were exposed to an external ionizing gamma source, while the remainder were doped only with U and reacted without gamma exposure. All glass samples readily reacted to form secondary mineral phases within the first week of testing. An in situ layer of smectite initially developed on nonirradiated SRL 202 glass test samples. After 21 days, a thin layer of illite was precipitated from solution onto the smectite layer. A number of alteration products including zeolite, Casilicate, and alkali or alkaline earth uranyl silicate phases were also distributed over most sample surfaces. In the irradiated SRL 202 glass tests, up to three layers enveloped rounded, and sometimes fractured, glass cores. After 35 to 56 days these remnant cores were replaced by a mottled or banded Fe- and Si-rich material. The formation of some secondary mineral phases also has been accelerated in the irradiated tests, and in some instances, the irradiated environment may have led to the precipitation of a different suite of minerals. The alteration layer(s) developed at rates of 2.3 and 32 {mu}m/day for the nonirradiated and irradiated SRL 202 glasses, respectively, indicating that layer development is accelerated by a factor of {approximately} 10 to 15X due to radiation exposure under the test conditions.

  13. Silicate volcanism on Io

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1986-01-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  14. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  15. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    2003-01-01

    This flight definition project has the specific objective of investigating the kinetics of nucleation and crystal growth in high temperature inorganic oxide, glass forming melts in microgravity. It is related to one1 of our previous NASA projects that was concerned with glass formation for high temperature containerless melts in microgravity. The previous work culminated in two experiments which were conducted aboard the space shuttle in 1983 and 1985 and which consisted of melting (at 1500 C) and cooling levitated 6 to 8 mm diameter spherical samples in a Single Axis Acoustic Levitator (SAAL) furnace. Compared to other types of materials, there have been relatively few experiments, 6 to 8, conducted on inorganic glasses in space. These experiments have been concerned with mass transport (alkali diffusion), containerless melting, critical cooling rate for glass formation, chemical homogeneity, fiber pulling, and crystallization of glass forming melts. One of the most important and consistent findings in all of these experiments has been that the glasses prepared in microgravity are more resistant to crystallization (better glass former) and more chemically homogeneous than equivalent glasses made on earth (1g). The chemical composition of the melt appears relatively unimportant since the same general results have been reported for oxide, fluoride and chalcogenide melts. These results for space-processed glasses have important implications, since glasses with a higher resistance to crystallization or higher chemical homogeneity than those attainable on earth can significantly advance applications in areas such as fiber optics communications, high power laser glasses, and other photonic devices where glasses are the key functional materials. The classical theories for nucleation and crystal growth for a glass or melt do not contain any parameter that is directly dependent upon the g-value, so it is not readily apparent why glasses prepared in microgravity should be

  16. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  17. Preparation and characterization of special glasses for sealing and other applications

    NASA Astrophysics Data System (ADS)

    Shrikhande, V. K.

    2009-07-01

    Glasses find wide applications, among others, in process technologies, vacuum science and technology etc. because of their desired thermo-mechanical properties and chemical durability. In particular, hermetic glass-to-metal (GM) seals are required mainly as electrical feed through for various types of gas based and electron devices, chemical process industries, including for packaging of power devices. The physico-chemical properties of glasses play important role in forming hermetic sealing with metals/alloys. The properties like thermal expansion coefficient, glass transition temperature, micro hardness, chemical durability etc. can be tailored by varying the glass composition by adding multi alkali and alkaline earth metal oxides to the base glass and varying the process parameters. We have prepared different types of glasses for the fabrication of different types of hermetic seals. Some of these are i) Lead silicate (LS) glass having SiO2, Na2O, K2O, BaO and PbO for compression type GM seals with SS304/Inconel and AISI 446 alloy ii) Borosilicate (BS) glass containing SiO2.Na2O.K20. Al2O3.B2O3 for matched type GM seals with Mo/ Kovar alloy and for uptake of synthetic dyes like Rhodamine 6G, Methylene Blue, Uranyl ions in process industries and nuclear industry iii) Sodium alumino phosphate (NAP) glass with P2O5-Na2O-B2O3-BaO- PbO for matched type GM seals with low melting metals (Al,Cu)/alloys like Cu-Be.

  18. Studies of Oxide Glass Structure Using Laser Ionization Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Affatigato, Mario

    2004-03-01

    We report on our work determining the structure of glass systems using a new technique, laser photoionization time of flight mass spectroscopy. This technique uses gentle laser desorption from nitrogen (337.1 nm, 100 µJ pulse) or Nd:YAG (266 nm, 100 µJ/pulse) lasers to remove structural units from the glass sample, and is especially well suited for looking at the intermediate range structures present in the glass. We will present our results on the lead borates, lead silicates, lead borosilicates, bismuth borates and gallates, and others where we have observed mesostructural units. We will focus on the insights the technique has yielded regarding question on the sharing of alkali, the mixing of borate- and silicate- networks, the presence of clusters and crystalline units, and the identification and compositional persistence of larger mesostructural units. Complementary work on laser damage from nitrogen and Nd:YAG lasers to our samples and doping with chromophores to aid the technique will also be presented. Given the novelty of the instrument, we will also discuss how our results match those of other, more established techniques such as NMR, Raman, FTIR, and neutron scattering, and also the limitations of the instrument. This work was supported by the National Science Foundation under grant DMR-CER-PECASE 9733724, and by Coe College.

  19. Alkalis and Skin.

    PubMed

    Greenwood, John E; Tan, Jin Lin; Ming, Justin Choong Tzen; Abell, Andrew D

    2016-01-01

    The aim of this editorial is to provide an overview of the chemical interactions occurring in the skin of our patients on contact with alkaline agents. Strongly basic alkali is highly aggressive and will readily hydrolyze (or cleave) key biological molecules such as lipids and proteins. This phenomenon is known as saponification in the case of lipids and liquefactive denaturation for peptides and proteins. A short section on current first-aid concepts is included. A better understanding of the basic science behind alkali burns will make us better teachers and provide an insight into the urgency needed in treating these common and dangerous chemical injuries. PMID:26182072

  20. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  1. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  2. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    SciTech Connect

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements of diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution

  3. Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25 years in a granitic environment

    DOE PAGESBeta

    Gin, Stephane; Ryan, Joseph V.; Schreiber, Daniel K.; Neeway, James J.; Cabie, M.

    2013-04-08

    Here, we report and discuss results of atom probe tomography (APT) and energy-filtered transmission electron microscopy (EFTEM) applied to a borosilicate glass sample of nuclear interest altered for nearly 26 years at 90°C in a confined granitic medium in order to better understand the rate-limiting mechanisms under conditions representative of a deep geological repository for vitrified radioactive waste. The APT technique allows the 3D reconstruction of the elemental distribution at the reactive interphase with sub-nanometer precision. Profiles of the B distribution at pristine glass/hydrated glass interface obtained by different techniques are compared to show the challenge of accurate measurements ofmore » diffusion profiles at this buried interface on the nanometer length scale. Our results show that 1) Alkali from the glass and hydrogen from the solution exhibit anti-correlated 15 ± 3 nm wide gradients located between the pristine glass and the hydrated glass layer, 2) boron exhibits an unexpectedly sharp profile located just at the outside of the alkali/H interdiffusion layer; this sharp profile is more consistent with a dissolution front than a diffusion-controlled release of boron. The resulting apparent diffusion coefficients derived from the Li and H profiles are DLi = 1.5 × 10-22 m2.s-1 and DH = 6.8 × 10-23 m2.s-1. These values are around two orders of magnitude lower than those observed at the very beginning of the alteration process, which suggests that interdiffusion is slowed at high reaction progress by local conditions that could be related to the porous structure of the interphase. As a result, the accessibility of water to the pristine glass could be the rate-limiting step in these conditions. More generally, these findings strongly support the importance of interdiffusion coupled with hydrolysis reactions of the silicate network on the long-term dissolution rate, contrary to what has been suggested by recent interfacial dissolution

  4. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  5. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  6. Analysis of early medieval glass beads - Glass in the transition period

    NASA Astrophysics Data System (ADS)

    Šmit, Žiga; Knific, Timotej; Jezeršek, David; Istenič, Janka

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  7. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  8. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  9. Trace element studies of silicate-rich inclusions in the Guin (UNGR) and Kodaikanal (IIE) iron meteorites

    NASA Astrophysics Data System (ADS)

    Kurat, Gero; Zinner, Ernst; Varela, Maria Eugenia

    2007-08-01

    A devitrified glass inclusion from the Guin (UNGR) iron consists of cryptocrystalline feldspars, pyroxenes, and silica and is rich in SiO2, Al2O3, and Na2O. It contains a rutile grain and is in contact with a large Cl apatite. The latter is very rich in rare earth elements (REEs) (˜80 × CI), which display a flat abundance pattern, except for Eu and Yb, which are underabundant. The devitrified glass is very poor in REEs (<0.1 × CI), except for Eu and Yb, which have positive abundance anomalies. Devitrified glass and Cl apatite are out of chemical equilibrium and their complementary REE patterns indicate a genesis via condensation under reducing conditions. Inclusion 1 in the Kodaikanal (IIE) iron consists of glass only, whereas inclusion 2 consists of clinopyroxene, which is partly overgrown by low-Ca pyroxene, and apatite embedded in devitrified glass. All minerals are euhedral or have skeletal habits indicating crystallization from the liquid precursor of the glass. Pyroxenes and the apatite are rich in trace elements, indicating crystallization from a liquid that had 10-50 × CI abundances of REEs and refractory lithophile elements (RLEs). The co-existing glass is poor in REEs (˜0.1-1 × CI) and, consequently, a liquid of such chemical composition cannot have crystallized the phenocrysts. Glasses have variable chemical compositions but are rich in SiO2, Al2O3, Na2O, and K2O as well as in HFSEs, Be, B, and Rb. The REE abundance patterns are mostly flat, except for the glass-only inclusion, which has heavy rare earth elements (HREEs) > light rare earth elements (LREEs) and deficits in Eu and Yb—an ultrarefractory pattern. The genetic models suggested so far cannot explain what is observed and, consequently, we offer a new model for silicate inclusion formation in IIE and related irons. Nebular processes and a relationship with E meteorites (Guin) or Ca-Al-rich inclusions (CAIs) (Kodaikanal) are indicated. A sequence of condensation (CaS, TiN or refractory

  10. Alkali differentiation in LL-chondrites

    NASA Astrophysics Data System (ADS)

    Wlotzka, F.; Palme, H.; Spettel, B.; Wanke, H.; Fredriksson, K.; Noonan, A. F.

    1983-04-01

    The Kraehenberg and Bhola LL-group chondrites are heterogeneous agglomerates which contain a variety of lithic fragments and chondrules as well as crystal fragments. Both meteorites contain large, cm-sized fragments with high K enrichments. The K-rich inclusions are fragments of larger rock bodies which crystallized from melts of chondritic parent material that had previously been enriched in K and in heavier alkalies,while also being depleted in Na and metal. It is suggested that the K enrichment occurred as an exchange for Na in feldspars via a vapor phase, whose presence on the chondrite parent body (or bodies) is supported by the recent finding of fluid inclusions in chondritic silicates. Cooling rate considerations indicate that the K-rich rock units could not have been very large, implying that the K-rich materials were locally molten by, for example, impact.

  11. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  12. DISORDERED SILICATES IN SPACE: A STUDY OF LABORATORY SPECTRA OF 'AMORPHOUS' SILICATES

    SciTech Connect

    Speck, Angela K.; Whittington, Alan G.; Hofmeister, Anne M.

    2011-10-20

    We present a laboratory study of silicate glasses of astrophysically relevant compositions including olivines, pyroxenes, and melilites. With emphasis on the classic Si-O stretching feature near 10 {mu}m, we compare infrared spectra of our new samples with laboratory spectra on ostensibly similar compositions, and also with synthetic silicate spectral data commonly used in dust modeling. Several different factors affect spectral features including sample chemistry (e.g., polymerization, Mg/Fe ratio, oxidation state, and Al-content) whereas different sample preparation techniques lead to variations in porosity, density, and water content. The convolution of chemical and physical effects makes it difficult to attribute changes in spectral parameters to any given variable. It is important that detailed chemical and structural characterization be provided along with laboratory spectra. In addition to composition and density, we measured the glass transition temperatures for the samples which place upper limits on the formation and/or processing temperatures of these solids in space. Popular synthetically generated optical functions do not have spectral features that match any of our glass samples. However, the {approx}10 {mu}m feature generated by the synthetic data rarely exactly matches the shape and peak position of astronomically observed silicate features. Our comparison with the synthetic spectra allows astronomers to determine likely candidates among our glass samples for matching astronomical observations.

  13. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  14. Nickel-iron spherules from aouelloul glass

    USGS Publications Warehouse

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  15. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  16. Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy

    NASA Astrophysics Data System (ADS)

    Panina, Liya; Stoppa, Francesco

    2009-12-01

    Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 - 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform

  17. Simple model potential and model wave functions for (H-alkali)+ and (alkali-alkali)+ ions

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.

    2000-07-01

    A simple model potential is proposed to describe the interaction of a valence electron with the alkali core, which incorporates the correct asymptotic behavior in terms of dipolar polarizabilities, and the short-range exchange effects in terms of a hard core adjusted to give the correct energy for the valence electron. Based on this potential, simple wave functions are developed to describe the (H-alkali)+ and (alkali-alkali)+ ions. These wave functions exhibit some important structures of the ions, and provide a universal description of the properties of all (H-alkali)+ and (alkali-alkali)+ ions, in particular, the equilibrium separations of the nuclei and the corresponding dissociation energies. They also allow us to calculate the dipolar polarizabilities of Li2+, Na2+, K2+, Rb2+, and Cs2+.

  18. Carbon dioxide in silica-undersaturated melt Part II: Effect of CO2 on quenched glass structure

    NASA Astrophysics Data System (ADS)

    Morizet, Yann; Paris, Michael; Gaillard, Fabrice; Scaillet, Bruno

    2014-11-01

    Despite CO2 is the second most abundant volatile species implied in magmatic systems, its impact on the molecular structure of aluminosilicate glasses in complex systems is currently not well-constrained. Inasmuch, whether CO2 induces an increase in glass polymerization or not is yet not clear for complex glass compositions. Using the set of nephelinite glass samples investigated in Part I (Morizet et al., 2014), in which the CO2 solubility and speciation have been constrained as a function of the #K (molar K2O/K2O + Na2O), we have conducted a thorough investigation of the change in the silicate network structure associated to CO2 dissolution. The change in silicate structure has been studied as a function of volatiles solubility (CO2 up to 4.5 wt.%, H2O up to 3 wt.%) as well as a function of the #K (between 0 and 0.75) of the glasses. We used 29Si Solid-State NMR for probing the silicon local environment in the quenched glasses. We observe that in such depolymerized nephelinite compositions the exchange between Na and K in volatile-free glasses induces a change in the glass structure attributed to the Mixed Alkali Effect (MAE) invoked in previous works. The observed changes might be related to geometric changes in the glass structure (change in network species bond lengths or angles). The addition of H2O only produces a negligible change in the degree of polymerization being probed by the constant NBO/T (Non-Bridging Oxygen per Tetrahedron) as H2O is added to volatile-free glasses. In contrast, we observed that the addition of CO2 induces a strong change in the glass structure which might be interpreted as an increase in polymerization. Alternatively, considering the identified CO2 dissolution mechanism (mostly as non-bridging carbonates units), the glass structure changes might reflect an apparent glass polymerization through the creation of Si-O-C bonds rather a true polymerization through the creation of Si-O-Si bonds.

  19. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  20. Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites

    NASA Astrophysics Data System (ADS)

    McDermott, Kathryn H.; Greenwood, Richard C.; Scott, Edward R. D.; Franchi, Ian A.; Anand, Mahesh

    2016-01-01

    supported by our new data. However, derivation of both groups from one parent body seems unlikely. Instead, both groups probably sampled similar precursor materials and accreted at a similar nebular location. Our data suggest that the IIE meteorites formed on an internally heated H/HH chondrite-like body that experienced the initial stages of differentiation in response to radiogenic heating. However, prior to full differentiation the IIE parent body experienced a major hit-and-run style collision that resulted in silicate-metal mixing. The initial stages of this event involved a phase of rapid cooling that prevented unmixing of metal and silicates. Reassembly of the IIE parent body produced a large regolith blanket that facilitated subsequent slow cooling. The IIE parent body has probably experienced numerous subsequent less catastrophic collisions. The development of alkali glass textures in some differentiated inclusions is probably the result of one of these later events.

  1. Oxygen isotope partitioning between rhyolitic glass/melt and CO{sub 2}: An experimental study at 550-950{degrees}C and 1 bar

    SciTech Connect

    Palin, J.M.; Epstein, S.; Stolper, E.M.

    1996-06-01

    Oxygen isotope partitioning between gaseous CO{sub 2} and a natural rhyolitic glass and melt (77.7 wt% SiO{sub 2}, 0.16 wt% H{sub 2}O{sub total}) has been measured at 550-950{degrees}C and approximately 1 bar. Equilibrium oxygen isotope fractionation factors ({alpha}{sub CO2-rhyolite} = ({sup 18}O/{sup 16}O){sub rhyolite}) determined in exchange experiments of 100-255 day duration. These values agree well with predictions based on experimentally determined oxygen isotope fractionation factors for CO{sub 2}-silica glass and CO{sub 2}-albitic glass/melt, if the rhyolitic glass is taken to be a simple mixture of normative silica and alkali feldspar components. The results indicate that oxygen isotope partitioning in felsic glasses and melts can be modeled by linear combinations of endmember silicate constituents. Rates of oxygen isotope exchange observed in the partitioning experiments are consistent with control by diffusion of molecular H{sub 2}O dissolved in the glass/melt and are three orders of magnitude faster than predicted for rate control solely by diffusion of dissolved molecular CO{sub 2} under the experimental conditions. Additional experiments using untreated and dehydrated (0.09 wt% H{sub 2}O{sub total}) rhyolitic glass quantatively support these interpretations. We conclude that diffusive oxygen isotope exchange in rhyolitic glass/melt, and probably other polymerized silicate materials, it controlled by the concentrations and diffusivities of dissolved oxygen-bearing volatile species rather than diffusion of network oxygen under all but the most volatile-poor conditions. 25 refs., 6 figs., 1 tab.

  2. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  3. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  4. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  5. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  6. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    SciTech Connect

    Fox, K.; Choi, A.; Marra, J.; Billings, A.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting the melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling

  7. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  8. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  9. Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): Implications for carbonatite genesis and eruptive behavior

    NASA Astrophysics Data System (ADS)

    de Moor, J. Maarten; Fischer, Tobias P.; King, Penelope L.; Botcharnikov, Roman E.; Hervig, Richard L.; Hilton, David R.; Barry, Peter H.; Mangasini, Frederick; Ramirez, Carlos

    2013-01-01

    This study presents volatile, trace, and major element compositions of silicate glasses (nepheline-hosted melt inclusions and matrix glass) from the 2007-2008 explosive eruption at Oldoinyo Lengai volcano, Tanzania. The bulk compositions of the heterogeneous ash erupted in 2007-2008 are consistent with physical mixing between juvenile nephelinite magma and natrocarbonatite emplaced during the preceding ˜25 years of effusive carbonatite eruption. The melt inclusions and matrix glasses span a wide range of silica-undersaturated compositions, from ˜46 wt% SiO2 and (Na+K)/Al˜3 in the least evolved melt inclusions to 38 wt% SiO2 and (Na+K)/Al up to 12 in the matrix glass. The depletion in SiO2 between melt inclusions and matrix glass is accompanied by strong enrichment in all of the incompatible trace elements measured (Ba, Nb, La, Ce, Sr, Zr, Y), which is consistent with fractional crystallization of a bulk mineral assemblage with SiO2 higher than that of the melt inclusions but inconsistent with silicate melt evolution by assimilation of carbonatite. The melt inclusions are volatile-rich with 2.7 wt% to 8.7 wt% CO2 and 0.7 wt% to 10.1 wt% H2O, indicating that Oldoinyo Lengai is a hydrous system. This is contrary to the long-held assumption that Oldoinyo Lengai is relatively anhydrous, which is based on the observation that natrocarbonatite lavas are water-poor. We argue that natrocarbonatites are derived from hydrous carbonate liquid that degas H2O at low pressure. The silicate glass data show that H2O concentration is negatively correlated with incompatible element enrichment, which we attribute to crystallization of the melt in response to decompression degassing of H2O. The eruptive cycle at Oldoinyo Lengai reflects changes in bulk silicate magma viscosity due to extensive H2O-driven crystallization and explosive eruptions occur when volatiles (i.e. H2O>CO2 gas, and carbonate liquid) cannot separate from the crystal-rich nephelinite magma. Melt H2O content

  10. Lead silicate microstructured optical fibres for electro-optical applications.

    PubMed

    Zhang, Wen Qi; Manning, Sean; Ebendorff-Heidepriem, Heike; Monro, Tanya M

    2013-12-16

    We report progress towards the realization of optical modulators based on electro-optic effects in soft glass fibres. A hybrid fabrication procedure was developed for producing microstructured lead silicate glass fibres with internal electrodes. Electro-optical characterization confirms experimentally that the enhanced nonlinear properties and superior isolation between the optical field and the electrodes make these fibres an ideal candidate platform for efficient electro-optical devices. PMID:24514705

  11. Mecanismes d'action des fines et des granulats de verre sur la reaction alcali-silice et la reaction pouzzolanique

    NASA Astrophysics Data System (ADS)

    Idir, Rachida

    Recycling composite glass with different colours in order to be manufactured into new glass products is at present not economically viable. Therefore, the search for new issues other than stockpile areas or dumping sites could be a serious opportunity. To a certain extent, one of the possible solutions is to use the recycled glass in manufacturing cements and in the preparation of concrete mixtures. However, it is essential to manage the two main behaviours that the glass can have when used in cement-based materials: (1) the use of glass as coarse aggregates reveals harmful behaviour related to alkali-silica reaction; (2) on the other hand, it can result in useful behaviour related to pozzolanic reaction if used as fine particles. Furthermore, the significant alkali content should not be overlooked as their mass corresponds to about 13% of the total mass of the glass and as they may activate the alkali-silica reaction. An experimental programme was conducted to provide answers to the various questions raised about the use of glass in cement-based materials. The first part of this work was primarily devoted to the evaluation of the reactive potential of glass in mortars (alkali and pozzolanic reactions). At this stage, nine classes of glass particles ranging from 3mum to 2.5 mm were considered. Then, fine glass particles were used in order to counteract the negative effect of some classes of coarse aggregates having revealed alkali-reactive behaviour. The second part of this work was performed to study the mechanisms that could explain the behaviours of fine and coarse particles in aqueous and concentrated environments. Different answers have been proposed to explain the observed behaviour in terms of grain sizes of glass. Keywords: Glass, Powder, Pozzolan, aggregates, alkali-reaction, alkali-aggregate reaction, alkali-silica reaction, Pouzzolanicity, alkalis, Mortars

  12. Silicate Stardust in Meteorites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2004-06-01

    One of the most exciting discoveries in cosmochemistry during the past 15 years is the presence of presolar grains in meteorites. They are identified by the unusual abundances of isotopes of oxygen, silicon, and other elements. Presolar grains, also called stardust, are exotic compounds such as diamond, graphite, aluminum oxide, and silicon carbide. Why are there no silicates? Spectroscopic observations of young stars show that silicates are abundant. This means that silicates are abundant in molecular clouds like the one in which the solar system formed. Cosmochemists wondered why do we not find silicates in the most primitive extraterrestrial materials: interplanetary dust particles (IDPs) and primitive chondrites. These materials are the least altered since they formed and if any preserved presolar silicate grains, IDPs and chondrites would. Were they all destroyed as the solar system formed? Or was it that we were looking for stardust in all the wrong places? As we reported previously [see PSRD article A New Type of Stardust], Scott Messenger and colleagues have found silicates in IDPs. Now, researchers report finding presolar silicate grains in primitive chondritic meteorites. Ann Nguyen and Ernst Zinner (Washington University in St. Louis) and Kazuhide Nagashima and Hisayoshi Yurimoto (Tokyo Institute of Technology), with Alexander Krot (University of Hawaii) used advanced instrumentation to image the isotopic compositions of small regions of the Acfer 094 carbonaceous chondrite and found several silicate grains with isotopically anomalous oxygen isotopes, a clear indicator of presolar origin. Nagashima and his colleagues also investigated the primitive CR2 carbonaceous chondrite Northwest Africa 530, finding presolar grains in it as well. The grains will shed (star)light on the histories of the stars in which they formed. The relative abundances of presolar silicates in different types of meteorites will help cosmochemists understand the processes of heating

  13. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…