Science.gov

Sample records for alkali vapor cell

  1. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  2. Alkali-vapor cell with metal coated windows for efficient application of an electric field

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Sarkisyan, A. S.; Guéna, J.; Lintz, M.; Bouchiat, M.-A.

    2005-05-01

    We describe the implementation of a cylindrical T-shaped alkali-vapor cell for laser spectroscopy in the presence of a longitudinal electric field. The two windows are used as two electrodes of the high-voltage assembly, which is made possible by a metallic coating which entirely covers the inner and outer sides of the windows except for a central area to let the laser beams in and out of the cell. This allows very efficient application of the electric field, up to 2kV/cm in a rather dense superheated vapor, even when significant photoemission takes place at the windows during pulsed laser irradiation. The body of the cell is made of sapphire or alumina ceramic to prevent large currents resulting from surface conduction observed in cesiated glass cells. The technique used to attach the monocrystalline sapphire windows to the cell body causes minimal stress birefringence in the windows. In addition, reflection losses at the windows can be made very small. The vapor cell operates with no buffer gas and has no magnetic part. The use of this kind of cell has resulted in an improvement of the signal-to-noise ratio in the measurement of parity violation in cesium vapor underway at ENS, Paris. The technique can be applied to other situations where a brazed assembly would give rise to unacceptably large birefringence in the windows.

  3. Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Levi, Filippo; Vanier, Jacques

    2006-03-15

    In this paper we calculate the effect of spin-exchange collisions in alkali-metal vapors. In the framework of the high-energy approximation, we evaluate the spin-exchange cross sections related to the line broadening and to the frequency shift of the ground state hyperfine transition. We do the calculation for the four isotopes, {sup 23}Na, {sup 39}K, {sup 87}Rb, and {sup 133}Cs. The results are used in particular to evaluate the spin-exchange frequency shift in Rb vapor cell frequency standards used in many applications. It turns out that, due to possible fluctuations in the atomic density, spin exchange may affect significantly the medium and long term frequency stability of the frequency standard.

  4. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  5. Investigation of antirelaxation coatings for alkali-metal vapor cells using surface science techniques

    NASA Astrophysics Data System (ADS)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Kimball, D. F. Jackson; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-01

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of CC double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  6. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  7. Perforated hollow core waveguides for Alkali Vapor-cells and Slow Light Devices

    NASA Astrophysics Data System (ADS)

    Giraud-Carrier, Matthieu C.

    The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation. Keywords: Matthieu Giraud-Carrier, Aaron Hawkins, microfabrication, spectroscopy, slow light, stopped light, EIT, rubidium, diffusion, vapor transport, microfabrication, ARROW, light-matter interactions, waveguide.

  8. Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Du, Guan-Xiang; Treutlein, Philipp

    2015-11-01

    We report on widefield microwave vector field imaging with sub-100 μ {{m}} resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6 × 6 mm2 field of view at a rate of 10 Hz. It provides up to 50 μ {{m}} spatial resolution, and allows imaging of fields as close as 150 μ {{m}} above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represent an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 μ {{T}} {{Hz}}-1/2 per 50× 50× 140 μ {{{m}}}3 voxel, at present limited by the speed of our camera system. Since we image 120 × 120 voxels in parallel, a single scanned sensor would require a sensitivity of at least 12 {nT} {{Hz}}-1/2 to produce images with the same sensitivity. Our technique could prove transformative in the design, characterization, and debugging of microwave devices, as there are currently no satisfactory established microwave imaging techniques. Moreover, it could find applications in medical imaging.

  9. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II).

    PubMed

    Han, Juhong; Wang, You; Cai, He; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Jiang, Zhigang; Gao, Ming

    2015-04-01

    With high efficiency and small thermally-induced effects in the near-infrared wavelength region, a diode-pumped alkali laser (DPAL) is regarded as combining the major advantages of solid-state lasers and gas-state lasers and obviating their main disadvantages at the same time. Studying the temperature distribution in the cross-section of an alkali-vapor cell is critical to realize high-powered DPAL systems for both static and flowing states. In this report, a theoretical algorithm has been built to investigate the features of a flowing-gas DPAL system by uniting procedures in kinetics, heat transfer, and fluid dynamic together. The thermal features and output characteristics have been simultaneously obtained for different gas velocities. The results have demonstrated the great potential of DPALs in the extremely high-powered laser operation.

  10. Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I.

    PubMed

    Han, Juhong; Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan

    2014-06-01

    A diode-pumped alkali laser (DPAL) is one of the most hopeful candidates to achieve high power performances. As the laser medium is in a gas-state, populations of energy-levels of a DPAL are strongly dependent on the vapor temperature. Thus, the temperature distribution directly determines the output characteristics of a DPAL. In this report, we developed a systematic model by combining the procedures of heat transfer and laser kinetics together to explore the radial temperature distribution in the transverse section of a cesium vapor cell. A cyclic iterative approach is adopted to calculate the population densities. The corresponding temperature distributions have been obtained for different beam waists and pump powers. The conclusion is thought to be useful for realizing a DPAL with high output power.

  11. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  12. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Observation of Raman self-focusing in an alkali-metal vapor cell

    NASA Astrophysics Data System (ADS)

    Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.

    2008-02-01

    We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.

  14. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    SciTech Connect

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  15. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  16. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  17. Vector light shift averaging in paraffin-coated alkali vapor cells

    NASA Astrophysics Data System (ADS)

    Zhivun, Elena; Wickenbrock, Arne; Sudyka, Julia; Patton, Brian; Pustelny, Szymon; Budker, Dmitry

    2016-07-01

    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

  18. Vector light shift averaging in paraffin-coated alkali vapor cells

    NASA Astrophysics Data System (ADS)

    Zhivun, Elena; Wickenbrock, Arne; Sudyka, Julia; Patton, Brian; Pustelny, Szymon; Budker, Dmitry

    2016-05-01

    Light shifts are an important source of noise and systematics in optically pumped magnetometers. We demonstrate that the long spin coherence time in paraffin-coated cells leads to spatial averaging of the light shifts over the entire cell volume. This renders the averaged light shift independent, under certain approximations, of the light-intensity distribution within the sensor cell. These results and the underlying mechanism can be extended to other spatially varying phenomena in anti-relaxation-coated cells with long coherence times.

  19. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  20. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  1. AMTEC vapor-vapor series connected cells

    NASA Astrophysics Data System (ADS)

    Underwood, Mark L.; Williams, Robert M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Oconnor, Dennis

    1993-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  2. AMTEC vapor-vapor series connected cells

    NASA Astrophysics Data System (ADS)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  3. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    NASA Astrophysics Data System (ADS)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-02-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.

  4. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells.

    PubMed

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-01-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1-xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber(|)buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells. PMID:26916212

  5. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    PubMed Central

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-01-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1−xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells. PMID:26916212

  6. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  7. The Structure and Thermodynamics of Alkali Halide Vapors.

    NASA Astrophysics Data System (ADS)

    Hartley, John George

    A comprehensive set of electron diffraction experiments were performed on 16 of the alkali halides in the vapor phase. A 40kev electron beam was scattered from the vapor effusing out of the nozzle of a temperature controlled gas cell. The resulting data were analyzed at the University of Edinburgh with the program ED80. This resulted in values for the bond lengths of monomers and the dimers, the bond angle of the dimers and the monomer-dimer ratios. In several cases, it was possible to further refine the data to obtain information on the mean amplitudes of vibration. As a check on the accuracy of the results, the monomer bond distances obtained by electron diffraction were compared to values obtained previously by microwave spectroscopy. The average monomer bond length r_{a} is corrected to obtain the equilibrium bond distance r_{e}. This value is then compared to the value of r_{e } obtained from microwave spectroscopy and found to be in excellent agreement. The bond lengths and angles of the dimers were compared against model calculations. While no one model was found to accurately predict the dimer structure parameters of all of the alkali halides, the Rittner model of Gowda et al was found to accurately predict the structure of six of the dimers. Thermodynamical calculations were performed on the model data which resulted in theoretical curves of the monomer-dimer ratios. Comparison of these curves with the experimental monomer-dimer ratio permits an evaluation of the model vibration frequencies. The enthalpy of formation of the dimer, Delta H_sp{2}{f}(298) is examined with regard to the size of the variation necessary to bring about agreement of the experimental and model monomer-dimer ratios.

  8. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  9. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  10. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-12-01

    Analysis of two new pump-couplings: semi-ring and trapezoid LD side-pumped configurations in alkali vapor lasers is reported, which mainly includes the numerical approaches for evaluation of the pump intensity and temperature distribution in the cell of these two configurations. Comparison between the simulated results of the semi-ring and trapezoid LD side-pumped Cs vapor lasers and the experimental results of the single-side pumped Cs vapor lasers with a cylindrical white diffuse reflector and a stable or unstable resonator is made. Dependencies of laser power on pump power and flowed velocity for semi-ring, trapezoid, single and double side-pumped configurations are calculated, demonstrating the advantages of the semi-ring and trapezoid LD side-pumped configurations. Thus the model is very helpful for designing high-power side-pumped alkali vapor lasers.

  11. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  12. Computation of three-dimensional temperature distribution in diode-pumped alkali vapor amplifiers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-06-01

    Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor amplifiers, a comprehensive physical model with a cyclic iterative approach for calculating the three-dimensional temperature distribution of the vapor cell is established. Taking into account heat generation, thermal conductivity and convection, the excitation of the alkali atoms to high electronic levels, and their losses due to ionization in the gain medium, the thermal features and output characteristics have been simultaneously obtained. The results are in good agreement with those of the measurement in a static rubidium vapor amplifier. Influences of gas velocity on radial and axial temperature profiles are simulated and analyzed. The results have demonstrated that thermal problems in gaseous gain medium can be significantly reduced by flowing the gain medium with sufficiently high velocity.

  13. Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time

    NASA Astrophysics Data System (ADS)

    Balabas, M. V.; Karaulanov, T.; Ledbetter, M. P.; Budker, D.

    2010-08-01

    We demonstrate lifetimes of Zeeman populations and coherences in excess of 60 sec in alkali-metal vapor cells with inner walls coated with an alkene material. This represents 2 orders of magnitude improvement over the best paraffin coatings. We explore the temperature dependence of cells coated with this material and investigate spin-exchange relaxation-free magnetometry in a room-temperature environment, a regime previously inaccessible with conventional coating materials.

  14. Modeling of the static and flowing-gas ring-LD side-pumped alkali vapor amplifiers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-07-01

    A new method of pump-coupling in diode-pumped alkali vapor amplifier is reported, which uses ring-LD to tightly surround the alkali vapor cell for directly coupled side-pumping. The kinetic and fluid dynamic modeling, numerical approaches of the ring-LD side-pumped configuration are proposed and applied to the static and the flowing-gas Cs vapor amplifiers. Pump intensity and temperature distribution in the cell are simulated. Influences of some important factors on laser power are calculated and analyzed. Comparisons of different pumped configurations are made, demonstrating the highest utilizing efficiency of pump power of the ring-LD side-pumped configuration. Thus the model is very helpful for designing high-power side-pumped alkali vapor amplifiers.

  15. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    PubMed

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  16. High-temperature interactions of alkali vapors with solids during coal combustion and gasification

    SciTech Connect

    Punjak, W.A.

    1988-01-01

    A temperature and concentration programmed reaction method is used to investigate the mechanism by which organically bound alkali is released from carbonaceous substrates. Vaporization of the alkali is preceded by reduction of oxygen-bearing groups during which CO is generated. A residual amount of alkali remains after complete reduction. This residual level is greater for potassium, indicating that potassium has stronger interactions with graphitic substrates that sodium. Other mineral substrates were exposed to high temperature alkali chloride vapors under both nitrogen and simulated flue gas atmospheres to investigate their potential application as sorbents for the removal of alkali from coal conversion flue gases. The compounds containing alumina and silica are found to readily adsorb alkali vapors and the minerals kaolinite, bauxite and emathlite are identified as promising alkali sorbents. The fundamentals of alkali adsorption on kaolinite, bauxite and emathlite are compared and analyzed both experimentally and through theoretical modeling. The experiments were performed in a microgravimetric reactor system; the sorbents were characterized before and after alkali adsorption using scanning Auger microscopy, X-ray diffraction analysis, mercury porosimetry and atomic emission spectrophotometry. The results show that the process is not a simple physical condensation, but a complex combination of several diffusion steps and reactions.

  17. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers.

    PubMed

    Shen, Binglin; Pan, Bailiang; Jiao, Jian; Xia, Chunsheng

    2015-07-27

    Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode-pumped alkali vapor amplifiers is reported. Taking into account effects of the temperature, the amplified spontaneous emission, the saturation power, the excitation of the alkali atoms to high electronic levels and the ionization, a detailed physical model is established to simulate the output performance of flowing-gas diode-pumped alkali vapor amplifiers. Influences of the flow velocity and the pump power on the amplified power are calculated and analyzed. Comparisons between single and double amplifier, longitudinal and transverse flow are made. Results show that end-pumped cascaded amplifier can provide higher output power under the same total pump power and the cell length, while output powers achieved by single- and double-end pumped, double-side pumped amplifiers with longitudinal or transverse flow have a complicated but valuable relation. Thus the model is extremely helpful for designing high-power flowing-gas diode-pumped alkali vapor amplifiers.

  18. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  19. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  20. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating.

    PubMed

    Tretiak, O Yu; Blanchard, J W; Budker, D; Olshin, P K; Smirnov, S N; Balabas, M V

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene. PMID:26957176

  1. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Tretiak, O. Yu.; Blanchard, J. W.; Budker, D.; Olshin, P. K.; Smirnov, S. N.; Balabas, M. V.

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.

  2. Spin Transfer from an Optically Pumped Alkali Vapor to a Solid

    SciTech Connect

    Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2007-05-04

    We report enhancement of the spin polarization of {sup 133}Cs nuclei in CsH salt by spin transfer from an optically pumped cesium vapor. The nuclear polarization was 4.0 times the equilibrium polarization at 9.4 T and 137 deg. C, with larger enhancements at lower fields. This work is the first demonstration of spin transfer from a polarized alkali vapor to the nuclei of a solid, opening up new possibilities for research in hyperpolarized materials.

  3. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  4. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  5. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  6. Photocathode transfer and storage techniques using alkali vapor feedback control

    NASA Astrophysics Data System (ADS)

    Springer, R. W.; Cameron, B. J.

    1992-07-01

    Photocathodes of quantum efficiency (QE) above 1% at the doubled YAG frequency of 532 nm are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of ˜ 2V or less. As such, these surfaces are very reactive because they provide many surface states for the residual gases that have positive electron affinities such as oxygen and water. In addition to this problem it is found that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the CsAgBiO, the Cs3Sb and the K2CsSb. The most stable material found is the K2CsSb. The required vacuum conditions can be met by a variety of pumping schemes such as using sputter ion diode pumps and baking at 250°C or less for whatever time is required to reduce the pump currents to below 1 μA at room temperature. To obtain the required partial pressure of cesium, a simple, very sensitive, diagnostic gauge has been developed that can discriminate between free alkali atoms and other gases. This Pressure Alkali Monitor (PAM) can be used with cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vaccuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nm.

  7. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  8. Alkali element depletion by core formation and vaporization on the early Earth

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  9. Self-discharge in bimetallic cells containing alkali metal

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Hesson, J. C.; Shimotake, H.

    1969-01-01

    Theoretical analysis of thermally regenerative bimetallic cells with alkali metal anodes shows a relation between the current drawn and the rate of discharge under open-circuit conditions. The self-discharge rate of the cell is due to the dissolution and ionization of alkali metal atoms in the fused-salt electrolyte

  10. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    SciTech Connect

    Kominis, I. K.

    2008-02-22

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks.

  11. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  12. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOEpatents

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  13. Electrochemical cell having an alkali-metal-nitrate electrode

    DOEpatents

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  14. The mode-matching model of diode-end-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Xie, Jijiang; Chen, Fei; Yang, Guilong; Li, Dianjun; Wang, Chunrui; Zhang, Kuo; Zheng, Changbin; He, Yang; Gao, Fei

    2015-02-01

    Diode-pumped alkali vapor lasers are famous in the field of laser for their significant advantages such as very high quantum efficiency (Cs 99.5%, Rb 98.1%, K 95.2%), good thermal management performance and excellent beam output quality etc. A rate equation model fully considering the spatial distributions of pumping light and oscillating light is established under the hypothesis of quasi-two-level energy system of DPALs in this paper. Meanwhile, expressions of threshold pumping power, mode-matching efficiency and output power and slop efficiency in low pumping and strong pumping, respectively, are obtained. Then, the influences of mode-matching efficiency on working performance of DPALs are discussed and analyzed. Results show that mode-matching efficiency mainly impacts on threshold pumping power, output power and slop efficiency in low pumping but that nearly has no effects in strong pumping. Therefore, this model benefits the further research of DPALs.

  15. Laboratory studies of the deposition of alkali sulfate vapors from combustion gases using a flash-evaporation technique

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.; Liang, Baishen

    1986-01-01

    A relatively simple experimental technique is proposed and demonstrated for making measurements of absolute dewpoints and relative deposition rates from flowing combustion gases containing condensible inorganic vapors. The method involves first accumulating condensate on a Pt ribbon target maintained below the dewpoint and then flash-evaporating the condensate into the filament wake, where its alkali content is monitored by alkali-atom emission spectroscopy. The advantages of the method over others are demonstrated; in particular, the method can detect liquid condensate inventories which are small enough to be negligibly influenced by surface runoff produced by gas-side shear stress and liquid condensate surface tension gradients. Illustrative Na2SO4 and K2SO4 deposition rate data and corresponding dewpoint data obtained in a series of alkali-seeded propane/air atmospheric flames are presented and discussed.

  16. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability.

    PubMed

    Knappe, S; Gerginov, V; Schwindt, P D D; Shah, V; Robinson, H G; Hollberg, L; Kitching, J

    2005-09-15

    A novel technique for microfabricating alkali atom vapor cells is described in which alkali atoms are evaporated into a micromachined cell cavity through a glass nozzle. A cell of interior volume 1 mm3, containing 87Rb and a buffer gas, was made in this way and integrated into an atomic clock based on coherent population trapping. A fractional frequency instability of 6 x 10(-12) at 1000 s of integration was measured. The long-term drift of the F=1, mF=0-->F=2, mF=0 hyperfine frequency of atoms in these cells is below 5 x 10(-11)/day.

  17. Aging studies on micro-fabricated alkali buffer-gas cells for miniature atomic clocks

    SciTech Connect

    Abdullah, S.; Affolderbach, C.; Gruet, F.; Mileti, G.

    2015-04-20

    We report an aging study on micro-fabricated alkali vapor cells using neon as a buffer gas. An experimental atomic clock setup is used to measure the cell's intrinsic frequency, by recording the clock frequency shift at different light intensities and extrapolating to zero intensity. We find a drift of the cell's intrinsic frequency of (−5.2 ± 0.6) × 10{sup −11}/day and quantify deterministic variations in sources of clock frequency shifts due to the major physical effects to identify the most probable cause of the drift. The measured drift is one order of magnitude stronger than the total frequency variations expected from clock parameter variations and corresponds to a slow reduction of buffer gas pressure inside the cell, which is compatible with the hypothesis of loss of Ne gas from the cell due to its permeation through the cell windows. A negative drift on the intrinsic cell frequency is reproducible for another cell of the same type. Based on the Ne permeation model and the measured cell frequency drift, we determine the permeation constant of Ne through borosilicate glass as (5.7 ± 0.7) × 10{sup −22} m{sup 2} s{sup −1 }Pa{sup −1} at 81 °C. We propose this method based on frequency metrology in an alkali vapor cell atomic clock setup based on coherent population trapping for measuring permeation constants of inert gases.

  18. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  19. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  20. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  1. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  2. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by §...

  3. DPAL: a new class of CW near-infrared high-power diode-pumped alkali (vapor) lasers

    NASA Astrophysics Data System (ADS)

    Krupke, William F.; Beach, Raymond J.; Kanz, Vernon K.; Payne, Stephen A.

    2004-05-01

    DPAL, a new class of diode pumped alkali vapor lasers, offers the prospect for high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The physics of DPAL lasers are outlined, and the results of laboratory demonstrations using a titanium sapphire surrogate pump are summarized, along with benchmarked device models. DPAL electrical efficiencies of 25-30% are projected and near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is also projected.

  4. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  5. Testing of candidate materials for their resistance to alkali-vapor adsorption in PFBC and gasification environments. Final report

    SciTech Connect

    Lee, S.H.D.; Natesan, K.; Swift, W.M.

    1995-08-01

    Laboratory-scale studies were performed to identify metallic material(s) having no, or limited, affinity for alkali vapors in an environment of either the off-gas from pressurized fluidized-bed combustion (PFBC) or the fuel gas from coal gasification. Such materials would be potential candidates for use as components in advanced coal-utilization systems. The following materials were tested for adsorption of NaCl vapor at 870--875 C and atmospheric pressure in a simulated PFBC off-gas (oxidizing) doped with 80 ppmW NaCl vapor: iron-based Type 304 stainless steel (304 SS), nickel-based Hastelloy C-276 and Hastelloy X alloys, cobalt-based Haynes No. 188 alloy, noble-metal-coated 304 SS, aluminized 304 SS, and ZrO{sub 2}-coated 304 SS. The Haynes No. 188 alloy and the aluminized 304 SS were also tested for their NaCl-vapor adsorption in a simulated gasification fuel gas (reducing) under the same test conditions as in the PFBC off-gas test. After 100 h of testing, the specimens were analyzed with a SEM equipped with an energy dispersive X-ray analyzer, and by an AES. The aluminized 304 SS had the least tendency to adsorb NaCl vapor, as well as an excellent resistance to corrosion as a result of the formation of a protective layer of Al{sub 2}O{sub 3} on its surface. In the reducing environment, however, the aluminized 304 SS was badly corroded by H{sub 2}S attack. The Haynes No. 188 showed virtually no NaCl-vapor adsorption and only limited H{sub 2}S attack. The authors recommend further long-term parametric studies to quantitate alkali-vapor adsorption as a function of operating variables for (1) the aluminized 304 SS in the PFBC off-gas environment and (2) the Haynes No. 188 in the gasification fuel gas environment.

  6. Non-negligible collisions of alkali atoms with background gas in buffer-gas-free cells coated with paraffin

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Naota; Hatakeyama, Atsushi

    2016-04-01

    We measured the rate of velocity-changing collisions (VCCs) between alkali atoms and background gas in buffer-gas-free anti-relaxation-coated cells. The average VCC rate in paraffin-coated rubidium vapor cells prepared in this work was 1× 106 hbox {s}^{-1}, which corresponds to 1 mm in the mean free path of rubidium atoms. This short mean free path indicates that the background gas is not negligible in the sense that alkali atoms do not travel freely between the cell walls. In addition, we found that a heating process known as "ripening" increases the VCC rate, and also confirmed that ripening improves the anti-relaxation performance of the coatings.

  7. Study of Rb-vapor coated cells — Atomic diffusion and cell curing process

    NASA Astrophysics Data System (ADS)

    Atutov, S. N.; Benimetskiy, F. A.; Plekhanov, A. I.; Sorokin, V. A.

    2016-02-01

    We present the results of a study on an optical-resonant cell filled by a vapor of the Rb atoms and coated with a non-stick polydimethylsiloxane (PDMS) polymer. We show that it is possible to define correctly the diffusion coefficient of the atoms in the coating using the geometric parameters of the cell and the vapor density in the cell volume only. The dependence of the diffusion coefficient on the cell curing time is presented. It is shown that the mysterious cell curing process can be explained in terms of the polymerization of the polymer coating by alkali atoms. The anomalous long dwell time of the Rb atoms on the PDMS coating is discussed as well.

  8. Spin-polarized lithium diffusion in a glass hot-vapor cell

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyoshi

    2016-08-01

    We report diffusion coefficients of optically pumped lithium atoms in helium buffer gas. The free-induction decay and the spin-echo signals of ground-state atoms were optically detected in an external magnetic field with the addition of field gradient. Lithium hot vapor was produced in a borosilicate-glass cell at a temperature between 290 and 360°C. The simple setup using the glass cells enabled lithium atomic spectroscopy in a similar way to other alkali-metal atoms and study of the collisional properties of lithium atoms in a hot-vapor phase.

  9. Studies of the regeneration of activated bauxite used as granular sorbent for the control of alkali vapors from hot flue gas of coal combustion

    SciTech Connect

    Lee, S H.D.; Smith, S D; Swift, W M; Johnson, I

    1981-05-01

    Regeneration of activated bauxite was studied by water-leaching and thermal swing (high-temperature desorption) methods. Granular activated bauxite has been identified to be very effective when used as a filter medium (i.e., sorbent) in granular-bed filters to remove gaseous alkali metal compounds from simulated hot flue gas of PFBC. Activated bauxite that had captured alkali chloride vapors was demonstrated to be easily and effectively regenerated for reuse by a simple water-leaching method. Data were obtained on (1) the leaching rate of the adsorbed NaCl, (2) effects on the leaching rate of adsorbed NaCl loading, leaching temperature, and the amount of water, and (3) water retention in activated bauxite after leaching. Observed physical changes and particle attrition of activated bauxite as a result of regeneration are discussed. The sorption mechanisms of activated bauxite toward alkali chloride vapors are interpreted on the basis of (1) the chemical compositions of the leachates from alkali chloride-sorbed activated bauxite and (2) the desorption of adsorbed NaCl vapor from activated bauxite at high temperature.

  10. Improved cell for water-vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  11. Hybrid Optical Pumping of Optically Dense Alkali-Metal Vapor without Quenching Gas

    SciTech Connect

    Romalis, M. V.

    2010-12-10

    Optical pumping of an optically thick atomic vapor typically requires a quenching buffer gas, such as N{sub 2}, to prevent radiation trapping of unpolarized photons which would depolarize the atoms. We show that optical pumping of a trace contamination of Rb present in K metal results in a 4.5 times higher polarization of K than direct optical pumping of K in the absence of N{sub 2}. Such spin-exchange polarization transfer from optically thin species is useful in a variety of areas, including spin-polarized nuclear scattering targets and electron beams, quantum-nondemolition spin measurements, and ultrasensitive magnetometry.

  12. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    PubMed Central

    de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  13. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  14. Experimental investigations of the kinetic processes involved in a rubidium (Rb) Optically Pumped Alkali metal vapor Laser (OPAL)

    NASA Astrophysics Data System (ADS)

    Zameroski, Nathan D.

    Diode or Optically Pumped Alkali metal vapor Lasers (DPALs or OPALs) are candidates for high power laser systems. These gas-phase three-level lasers are pumped on the alkali's D2 transition, 2S1/2 → 2P3/2, and support lasing on the D1 transition, 2P1/2 → 2S1/2. Collisional mixing using several hundred Torr of an additive gas such as methane or ethane transfers population from the 2P3/2 state to the 2P1/2 state. These gases are selected because of their large mixing rates (cross sections) and small quenching rates (cross sections) of the 2P states. Pressure broadening of the D1 and D2 transitions is a direct consequence of using several hundred Torr of buffer gas required for collisional mixing. The quenching kinetics (non radiative decay of excited states) of Rb 2P states by methane and ethane are reexamined with time resolved fluorescence techniques. A detailed analysis of the interplay between radiation trapping, the absorption and re-emission of resonant radiation in an atomic vapor, and quenching is carried out. Experimental results supported by theoretical simulations (calculations) bound the quenching cross sections (sigma) of methane and ethane at 40°C to sigma ≤ 0.02 A2 and sigma ≤ 0.03 A2, respectively. These values are about two orders of magnitude smaller than previously reported. The pressure broadening and collisional shift rates of the Rb D2 absorption line by methane, ethane, propane, butane, and helium are measured by using linear absorption spectroscopy at 40°C. The rates of ethane, propane, and butane are measured for the first time. The broadening rates in (MHz/Torr) for C2H6, C3H8, and n-C4H10, are 28.1 +/- 0.4, 30.5 +/- 0.6, and 31.3 +/- 0.6. The corresponding shift rates in (MHz/Torr) are -8.8 +/- 0.2, -9.7 +/- 0.2, and -10.0 +/- 0.2. A pulsed Rb-methane OPAL is demonstrated. Slope efficiencies of 72 to 76 % are obtained. A one dimensional (1D) rate equation model that includes the spectral overlap of the pump and the Rb D2

  15. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes.

    PubMed

    Zhang, Wei; Wang, You; Cai, He; Xue, Liangping; Han, Juhong; Wang, Hongyuan; Liao, Zhiye

    2014-07-01

    The diode-pumped alkali laser (DPAL) is a new type of laser source which has been widely studied in the recent years. The temperature distribution of a sealed vapor cell, which is the crucial component in a DPAL system, produces an important effect on the output performance of a DPAL. In this paper, the strict solution of the heat conduction equation for a cesium vapor cell is obtained by using a finite difference procedure. The temperature distribution of a dummy open cell is first analyzed, and then the temperature distributions of two independent windows, regarded as the boundary conditions of solving a sealed cell, are evaluated in detail. By combining the results of the two steps together, we finally acquire the temperature distribution of a real sealed cesium vapor cell. The results reveal that the temperature gradients on both radial and longitudinal directions change with the pump power, cell radius, and absorption coefficient when the sealed cesium vapor cell is heated or pumped with the laser diodes. The conclusions are helpful for accurately evaluating the output characteristics of a DPAL.

  16. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  17. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  18. Vapor sensing with a natural photonic cell.

    PubMed

    Mouchet, Sébastien R; Tabarrant, Tijani; Lucas, Stéphane; Su, Bao-Lian; Vukusic, Pete; Deparis, Olivier

    2016-05-30

    Photonic structures encased by a permeable envelope give rise to iridescent blue color in the scales covering the male Hoplia coerulea beetle. This structure comprises a periodic porous multilayer. The color of these scales is known for changing from blue to green upon contact with water despite the presence of the envelope. This optical system has been referred to as a photonic cell due to the role of the envelope that mediates fluid exchanges with the surrounding environment. Following from previously studied liquid-induced changes in the color appearance of H. coerulea, we measured vapor-induced color changes in its appearance. This response to vapor exposure was marked by reflectance redshift and an increase in peak reflectance intensity. Different physico-chemical processes were investigated to explain the increase in reflectance intensity, a property not usually associated with vapor-induced optical signature changes. These simulations indicated the optical response arose from physisorption of a liquid film on the beetle scales followed by liquid penetration through the envelope and the filling of micropores within the body of the photonic structure. PMID:27410142

  19. An optical absorption cell with vapor cross flow.

    NASA Technical Reports Server (NTRS)

    Hendrickson, P. E.; Walls, W. L.; Broersma, S.

    1973-01-01

    Description of a water vapor cross flow system that simulates meteorological conditions and effectively curbs any disturbing effects of walls and vacuum connections in an optical absorption cell. Vapor equilibrium is established within 30 min. A 6.3 micron infrared beam traverses the pressure, temperature, and humidity controlled vapor column. The effect of these thermodynamic parameters can be examined.

  20. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  1. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  2. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOEpatents

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  3. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  4. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  5. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1979-September 1980

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.

    1980-10-01

    In the application of pressurized fluidized-bed combustion (PFBC) to the generation of electricity, hot corrosion of the gas turbine (downstream from the combustor) by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for the removal of gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. The use of a granular bed filter, with either diatomaceous earth or activated bauxite as the bed material, is under study. Breakthrough data are reported on the sorption of gaseous NaCl by activated bauxite. Results are reported for the regeneration of activated bauxite using water leaching and a thermal swing method.

  6. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  7. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  8. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    NASA Astrophysics Data System (ADS)

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  9. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  10. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    PubMed

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  11. Vapor Corrosion Cell and Method of Using Same

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    2001-01-01

    The present invention provides a vapor corrosion cell for a real-time and quantitative measurement of corrosion of conductive materials in atmospheres containing chemically reactive gases and water vapor. Two prototypes are provided. Also provided are various applications of this apparatus in industry.

  12. Electrochemical storage cell or battery of the alkali metal and sulfur type

    SciTech Connect

    Weddigen, G.

    1980-09-09

    An electrochemical storage cell or battery is described that has at least one anode filled with a molten alkali metal as the anolyte and at least one cathode chamber filled with a sulfur-containing catholyte substance with the anode chamber and the cathode chamber separated from each other by an alkali-ion-conducting solid electrolyte. To the catholyte substance in the cathode chamber is added a chemical compound of the polar bond type which can charge the sulfur positively while absorbing electrons. This induces mobilization of the sulfur phase in the cathode chamber and prevents major accumulation of liquid sulfur as an insulator. As a result the cell can be repeatedly recharged with large currents to a greater capacity.

  13. NIST on a Chip: Realizing SI units with microfabricated alkali vapour cells

    NASA Astrophysics Data System (ADS)

    Kitching, J.; Donley, E. A.; Knappe, S.; Hummon, M.; Dellis, A. T.; Sherman, J.; Srinivasan, K.; Aksyuk, V. A.; Li, Q.; Westly, D.; Roxworthy, B.; Lal, A.

    2016-06-01

    We describe several ways in which microfabricated alkali atom vapour cells might potentially be used to accurately realize a variety of International System (SI) units, including the second, the meter, the kelvin, the ampere, and the volt, in a compact, low-cost “chip-scale” package. Such instruments may allow inexpensive in-situ calibrations at the user's location or widespread integration of accurate references into instrumentation and systems.

  14. Polysaccharide Hydrogel Combined with Mesenchymal Stem Cells Promotes the Healing of Corneal Alkali Burn in Rats

    PubMed Central

    Liu, Xun; Yu, Min; Yang, Chunbo; Li, Xiaorong

    2015-01-01

    Corneal chemical burns are common ophthalmic injuries that may result in permanent visual impairment. Although significant advances have been achieved on the treatment of such cases, the structural and functional restoration of a chemical burn-injured cornea remains challenging. The applications of polysaccharide hydrogel and subconjunctival injection of mesenchymal stem cells (MSCs) have been reported to promote the healing of corneal wounds. In this study, polysaccharide was extracted from Hardy Orchid and mesenchymal stem cells (MSCs) were derived from Sprague-Dawley rats. Supplementation of the polysaccharide significantly enhanced the migration rate of primarily cultured rat corneal epithelial cells. We examined the therapeutic effects of polysaccharide in conjunction with MSCs application on the healing of corneal alkali burns in rats. Compared with either treatment alone, the combination strategy resulted in significantly better recovery of corneal epithelium and reduction in inflammation, neovascularization and opacity of healed cornea. Polysaccharide and MSCs acted additively to increase the expression of anti-inflammatory cytokine (TGF-β), antiangiogenic cytokine (TSP-1) and decrease those promoting inflammation (TNF-α), chemotaxis (MIP-1α and MCP-1) and angiogenesis (VEGF and MMP-2). This study provided evidence that Hardy Orchid derived polysaccharide and MSCs are safe and effective treatments for corneal alkali burns and that their benefits are additive when used in combination. We concluded that combination therapy with polysaccharide and MSCs is a promising clinical treatment for corneal alkali burns and may be applicable for other types of corneal disorder. PMID:25789487

  15. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  16. Measurement of the Rydberg ionization current in thermal vapor cells

    NASA Astrophysics Data System (ADS)

    Loew, Robert; Barredo, Daniel; Daschner, Renate; Kuebler, Harald; Ritter, Ralf; Pfau, Tilman

    2013-05-01

    Rydberg atoms confined in atomic vapor cells are promising candidates for the realization of single photon sources and quantum optical devices. To date, most information about the behavior of the Rydberg ensembles in thermal vapors has been extracted by absorptive measurements, e.g. EIT. However, to access directly quantities, like the population of the excited states, new methods are needed. In this task, the detection of the Rydberg ionization current provides a complementary and direct insight in the atomic processes. We show measurements of the Rydberg-ion current in thermal vapor cells equipped with field plates inside the vacuum. arXiv:1209.655.

  17. Efficiency Enhancement Mechanism for Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells Using Alkali Treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Yurong; Gong, Xiu; Qin, Ruiping; Liu, Hairui; Xia, Congxin; Ma, Heng

    2016-05-01

    The efficiency enhancement mechanism of the alkali-treated Si nanowire (SiNW) solar cells is discussed and analyzed in detail, which is important to control the useful photovoltaic process. All the results demonstrate that the photovoltaic performance enhancement of alkali-treated SiNW device steps from the formation of the good core-shell heterojunction, which consequently enhances the junction area, promotes fast separating and transporting of electron and hole pairs, and reduces the carrier surface combination. It also indicates that alkali treatment for SiNWs is a promising processing as an economical method for the formation of good core-shell SiNW/polymer heterojunction.

  18. Efficiency Enhancement Mechanism for Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells Using Alkali Treatment.

    PubMed

    Jiang, Yurong; Gong, Xiu; Qin, Ruiping; Liu, Hairui; Xia, Congxin; Ma, Heng

    2016-12-01

    The efficiency enhancement mechanism of the alkali-treated Si nanowire (SiNW) solar cells is discussed and analyzed in detail, which is important to control the useful photovoltaic process. All the results demonstrate that the photovoltaic performance enhancement of alkali-treated SiNW device steps from the formation of the good core-shell heterojunction, which consequently enhances the junction area, promotes fast separating and transporting of electron and hole pairs, and reduces the carrier surface combination. It also indicates that alkali treatment for SiNWs is a promising processing as an economical method for the formation of good core-shell SiNW/polymer heterojunction.

  19. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  20. Chemiluminescence from excited c 2- -alkali cation complexes formed in alkali atom-halocarbon flames

    NASA Astrophysics Data System (ADS)

    Lin, K. K.; Balling, L. C.; Wright, J. J.

    1987-01-01

    Vapor phase reactions between alkali atoms and several halocarbon molecules containing C-C bonds have been observed to produce chemiluminescence which appears to originate from C 2-- (alkali) + complexes.

  1. Thermal design of high temperature alkaline-earth vapor cells

    NASA Astrophysics Data System (ADS)

    Armstrong, Jordan L.; Lemke, Nathan D.; Martin, Kyle W.; Erickson, Christopher J.

    2016-03-01

    Europium doped calcium fluoride is a machinable and alkaline-earth resistant crystal that is suitable for constructing a calcium or strontium vapor cell. However, its heat capacity, emissivity, and high coefficient of thermal expansion make it challenging to achieve optically dense calcium vapors for laser spectroscopy on narrow linewidth transitions. We discuss a low size, weight and power heating package that is under development at the Air Force Research Laboratory.

  2. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  3. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  5. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  6. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  7. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  8. Efficiency Enhancement Mechanism for Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells Using Alkali Treatment.

    PubMed

    Jiang, Yurong; Gong, Xiu; Qin, Ruiping; Liu, Hairui; Xia, Congxin; Ma, Heng

    2016-12-01

    The efficiency enhancement mechanism of the alkali-treated Si nanowire (SiNW) solar cells is discussed and analyzed in detail, which is important to control the useful photovoltaic process. All the results demonstrate that the photovoltaic performance enhancement of alkali-treated SiNW device steps from the formation of the good core-shell heterojunction, which consequently enhances the junction area, promotes fast separating and transporting of electron and hole pairs, and reduces the carrier surface combination. It also indicates that alkali treatment for SiNWs is a promising processing as an economical method for the formation of good core-shell SiNW/polymer heterojunction. PMID:27225423

  9. Pressure sensitivity of the vapor-cell atomic clock.

    PubMed

    Iyanu, Gebriel; Wang, He; Camparo, James

    2009-06-01

    Although atomic clocks have very low levels of frequency instability, they are nonetheless sensitive (albeit slightly) to various environmental parameters, including temperature, power supply voltage, and dc magnetic fields. In the terrestrial environment, however, atmospheric pressure (i.e., the air's molecular density) is not generally included in this list, because the air's density variations near the surface of the earth will typically have a negligible effect on the clock's performance. The situation is different, however, for clocks onboard satellites like Galileo, where manufacturing and testing are done at atmospheric pressure, while operation is in vacuum. The pressure sensitivity of atomic clocks, in particular vapor-cell atomic clocks, can therefore be of significance. Here, we discuss some of the ways in which changes in atmospheric pressure affect vapor-cell atomic clocks, and we demonstrate that, for one device, the pressure-sensitivity traces back to a pressure-induced change in the temperature of the clock's filter and resonance cells.

  10. CHARACTERIZATION OF FUGITIVE MERCURY EMISSIONS FROM THE CELL BUILDING AT A U.S. CHLOR-ALKALI PLANT

    EPA Science Inventory

    The paper discusses an extensive measurement campaign that was conducted of the fugitive (non-ducted) airborne elemental mercury [Hg(0)] emissions from the cell building of a chlor-alkali plant (CAP) located in the southeastern United States. The objectives of this study were to ...

  11. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  12. Radio-frequency-modulated Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  13. Transplantation with cultured stem cells derived from the human amniotic membrane for corneal alkali burns: an experimental study.

    PubMed

    Zeng, Wei; Li, Yanwei; Zeng, Guangwei; Yang, Bo; Zhu, Yu

    2014-01-01

    Amniotic membranes (AM) have been used in a wide range of clinical applications. We successfully extracted mesenchymal stem cells (MSCs) from human AM, but little is known about the use and efficacy of human amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) for the treatment of alkali burns. We utilized hAM-dMSCs transplantation, AM grafting, and their combined use in the treatment of alkali burns. An experimental model in rabbits was devised to analyze the use of these techniques with immunocytochemistry and ELISA. The survival and migration of hAM-dMSCs labeled by SPION in the host were assessed with Prussian blue staining. Compared with the control group, the treated groups demonstrated faster reconstruction of the corneal epithelium, and lower levels of corneal opacification and neovascularization within corneal alkali burns. Furthermore, dark blue-stained particles were detected in the limbus corneae at day 28. These results demonstrated the ability of hAM-dMSCs to enhance epithelial healing and reduce corneal opacification and neovascularization in corneal alkali wounds.

  14. Femtotesla atomic magnetometry in a microfabricated vapor cell.

    PubMed

    Griffith, W Clark; Knappe, Svenja; Kitching, John

    2010-12-20

    We describe an optically pumped 87Rb magnetometer with 5 fT/Hz(1/2) sensitivity when operated in the spin-exchange relaxation free (SERF) regime. The magnetometer uses a microfabricated vapor cell consisting of a cavity etched in a 1 mm thick silicon wafer with anodically bonded Pyrex windows. The measurement volume of the magnetometer is 1 mm3, defined by the overlap region of a circularly polarized pump laser and a linearly polarized probe laser, both operated near 795 nm. Sensitivity limitations unique to the use of microfabricated cells are discussed.

  15. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Riley, Brian; Szreders, Bernard E.

    1988-04-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approx. 1100 to 1300 C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20 and 50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  16. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  17. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  18. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  19. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  20. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  1. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  2. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    SciTech Connect

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  3. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  4. Alkali-sensitive sites in DNA from human cells treated with ultraviolet light, 1'-acetoxysafrole or 1'-acetoxyestragole

    SciTech Connect

    Phillips, D.H.; Hanawalt, P.C.

    1982-01-01

    The formation and repair of alkali-labile sites in the DNA of human cells treated with 254 nm u.v. light, 1'-acetoxyestragole (1'-AcO-E) or 1'-acetoxysafrole (1'-AcO-S) have been studied. DNA was analysed by sedimentation in alkaline sucrose gradients after the cells had been layered on the gradients in lysis solution for 15 h (long lysis) or for only 0.75 h (short lysis). With the long lysis technique, a dose of 20 J/m2 resulted in 0.2-0.4 strand breaks/10(8) daltons while treatment of cells with 0.5 mM 1'-AcO-E or 1'-AcO-S caused 0.1-0.3 strand breaks/10(8) daltons. In excision repair proficient T98G cells, one third to two thirds of these strand breaks disappeared upon 4 h incubation after exposure to each of the three agents. In excision repair deficient xeroderma pigmentosum fibroblasts (XPA), the alkali-labile sites produced by 1'-AcO-E or 1'-AcO-S were still repaired, although those resulting from u.v.-irradiation were not. Similar characteristics were observed after the short lysis period. The sedimentation velocities of nucleoids, prepared from treated XPA cells, in neutral sucrose gradients containing ethidium bromide, did not reveal the presence of overt strand breaks in the DNA, suggesting that the lesions were of a type in which the sugar-phosphate backbone was intact but sensitive to hydrolysis by alkali. The contribution of this type of damage to the total DNA damage produced by the agents was estimated to be less than 1% for u.v., and less than 2.5% for 1'-AcO-E and 1'-AcO-S.

  5. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  6. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  7. Modulation transfer spectroscopy in a lithium atomic vapor cell.

    PubMed

    Sun, Dali; Zhou, Chao; Zhou, Lin; Wang, Jin; Zhan, Mingsheng

    2016-05-16

    We have investigated modulation transfer spectroscopy of D2 transitions of 7Li atoms in a vapor cell. The role of the intensity of the probe beam in the spectrum is important, we have seen unique characteristics of the signal in the crossover peak. In order to find the best signal for laser locking, the slope and frequency offset of the zero-crossing signal are determined. The dependence of the modulation transfer spectra on polarizations of pump and probe beam is demonstrated. The residual amplitude modulation in the system is also considered, and the distortion of the spectra due to the modulation is analyzed. It was found that the crossover peak is more suitable for frequency stabilization due to its better residual amplitude modulation compensation.

  8. Modulation transfer spectroscopy in a lithium atomic vapor cell.

    PubMed

    Sun, Dali; Zhou, Chao; Zhou, Lin; Wang, Jin; Zhan, Mingsheng

    2016-05-16

    We have investigated modulation transfer spectroscopy of D2 transitions of 7Li atoms in a vapor cell. The role of the intensity of the probe beam in the spectrum is important, we have seen unique characteristics of the signal in the crossover peak. In order to find the best signal for laser locking, the slope and frequency offset of the zero-crossing signal are determined. The dependence of the modulation transfer spectra on polarizations of pump and probe beam is demonstrated. The residual amplitude modulation in the system is also considered, and the distortion of the spectra due to the modulation is analyzed. It was found that the crossover peak is more suitable for frequency stabilization due to its better residual amplitude modulation compensation. PMID:27409886

  9. Raman-Ramsey multizone spectroscopy in a pure rubidium vapor cell

    SciTech Connect

    Failache, H.; Lenci, L.; Lezama, A.

    2010-02-15

    In view of application to a miniaturized spectroscopy system, we consider an optical setup that splits a laser beam into several parallel narrow light sheets allowing an effective beam expansion and consequently longer atom-light interaction times. We analyze the multizone coherent population trapping (MZCPT) spectroscopy of alkali-metal-vapor atoms, without buffer gas, in the presence of a split light beam. We show that the MZCPT signal is largely insensitive to intensity broadening. Experimentally observed spectra are in qualitative agreement with the predictions of a simplified model that describes each spectrum as an integral over the atomic velocity distribution of Ramsey multizone spectra.

  10. Surface characteristics and osteoblastic cell response of alkali-and heat-treated titanium-8tantalum-3niobium alloy

    PubMed Central

    Lee, Bo-Ah; Kang, Choong-Hee; Vang, Mong-Sook; Jung, Young-Suk; Piao, Xing Hui; Kim, Ok-Su; Chung, Hyun-Ju

    2012-01-01

    Purpose The aim of the present study was to evaluate the biological response of alkali- and heat-treated titanium-8tantalum-3niobium surfaces by cell proliferation and alkaline phosphatase (ALP) activity analysis. Methods Commercial pure titanium (group cp-Ti) and alkali- and heat-treated titanium-8tantalum-3niobium (group AHT) disks were prepared. The surface properties were evaluated using scanning electron microscopy, energy dispersed spectroscopy and X-ray photoelectron spectroscopy (XPS). The surface roughness was evaluated by atomic force microscopy and a profilometer. The contact angle and surface energy were also analyzed. The biological response of fetal rat calvarial cells on group AHT was assessed by cell proliferation and ALP activity. Results Group AHT showed a flake-like morphology microprofile and dense structure. XPS analysis of group AHT showed an increased amount of oxygen in the basic hydroxyl residue of titanium hydroxide groups compared with group cp-Ti. The surface roughness (Ra) measured by a profilometer showed no significant difference (P>0.05). Group AHT showed a lower contact angle and higher surface energy than group cp-Ti. Cell proliferation on group AHT surfaces was significantly higher than on group cp-Ti surfaces (P<0.05). In comparison to group cp-Ti, group AHT enhanced ALP activity (P<0.05). Conclusions These results suggest that group AHT stimulates osteoblast differentiation. PMID:23346470

  11. DIVALENT INORGANIC REACTIVE GASEOUS MERCURY EMISSIONS FROM A MERCURY CELL CHLOR-ALKALI PLANT AND ITS IMPACT ON NEAR FIELD ATMOSPHERIC DRY DEPOSITION

    EPA Science Inventory

    The emission of inorganic divalent reactive gaseous mercury (RGM) from a mercury cell chlor-alkali plant (MCCAP) cell building and the impact on near field (100 km) dry deposition was investigated as part of a larger collaborative study between EPA, University of Michigan, Oak ...

  12. Vapor bubble generation around gold nano-particles and its application to damaging of cells.

    PubMed

    Kitz, M; Preisser, S; Wetterwald, A; Jaeger, M; Thalmann, G N; Frenz, M

    2011-01-11

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage.

  13. Tuning indium tin oxide work function with solution-processed alkali carbonate interfacial layers for high-efficiency inverted organic photovoltaic cells.

    PubMed

    Chen, Fei; Chen, Qi; Mao, Lin; Wang, Yixin; Huang, Xun; Lu, Wei; Wang, Bing; Chen, Liwei

    2013-12-01

    Selective electron collection by an interfacial layer modified indium tin oxide cathode is critically important for achieving high-efficiency inverted structure organic photovoltaic (OPV) cells. Here, we demonstrate that solution-processed alkali carbonates, such as Li2CO3, Na2CO3, K2CO3, Rb2CO3, Cs2CO3, are good interfacial layer materials. Both carbonate concentration and annealing conditions can affect cathode work function and surface roughness. By proper optimization, different alkali carbonates can be almost equally effective as the cathode interfacial layer. Furthermore, good device performance can be achieved at a low annealing temperature (<50 ° C), which allows for potential applications in solution-processed inverted OPV cells on plastic substrates. This work indicates that alkali carbonates, not just cesium carbonate, are valid choices as the cathode interlayer in inverted OPV devices.

  14. Comparative study of alkali-vapour cells with alkane-, alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings

    SciTech Connect

    Balabas, M V; Tretiak, O Yu

    2013-12-31

    The dependence of both longitudinal and transverse relaxation times of ground-state magnetic polarisation in alkali atoms on the coating temperature is experimentally studied for the first time in a rubidium-vapour cell with 1-nonadecylbenzene antirelaxation coating of inner walls. The comparison of these times with the relaxation times in a caesium-vapour cell with alkane wall coatings is presented. It is found that within the studied temperature range (294 – 340K) the transverse relaxation time decreases with increasing temperature of alkene and 1-nonadecylbenzene coatings. For the alkane coating such a dependence was not explicitly found. The longitudinal relaxation time begins to decrease in all cases when passing a certain critical temperature of the coating material. It is found that the unsaturated radical structure of the coating material molecules strongly affects its antirelaxation properties. (optical pumping)

  15. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.

    PubMed

    Chen, Shanshan; Liu, Guangli; Zhang, Renduo; Qin, Bangyu; Luo, Yong

    2012-02-21

    By combining the microbial electrolysis cell and the microbial desalination cell, the microbial electrolysis desalination cell (MEDC) becomes a novel device to desalinate salty water. However, several factors, such as sharp pH decrease and Cl(-) accumulation in the anode chamber, limit the MEDC development. In this study, a microbial electrolysis desalination and chemical-production cell (MEDCC) was developed with four chambers using a bipolar membrane. Results showed that the pH in the anode chamber of the MEDCC always remained near 7.0, which greatly enhanced the microbial activities in the cell. With applied voltages of 0.3-1.0 V, 62%-97% of Coulombic efficiencies were achieved from the MEDCC, which were 1.5-2.0 times of those from the MEDC. With 10 mL of 10 g/L NaCl in the desalination chamber, desalination rates of the MEDCC reached 46%-86% within 18 h. Another unique feature of the MEDCC was the simultaneous production of HCl and NaOH in the cell. With 1.0 V applied voltage, the pH values at 18 h in the acid-production chamber and cathode chamber were 0.68 and 12.9, respectively. With the MEDCC, the problem with large pH changes in the anode chamber was resolved, and products of the acid and alkali were obtained.

  16. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  17. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    EPA Science Inventory

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  18. Transfer of spin angular momentum from Cs vapor to nearby Cs salts through laser-induced spin currents

    SciTech Connect

    Ishikawa, K.; Patton, B.; Olsen, B. A.; Jau, Y.-Y.; Happer, W.

    2011-06-15

    Optical pumping of alkali-metal atoms in vapor cells causes spin currents to flow to the cell walls where excess angular momentum accumulates in the wall nuclei. Experiments reported here indicate that the substantial enhancement of the nuclear-spin polarization of salts at the cell walls is primarily due to the nuclear-spin current, with a lesser contribution from the electron-spin current of the vapor.

  19. Methods to Characterize Vapor Cell Performance for Nuclear Magnetic Resonance Applications

    NASA Astrophysics Data System (ADS)

    Mirijanian, James; Larsen, Michael

    2012-06-01

    The Advanced Sensors Development team at Northrop Grumman, Navigation Systems Division is developing a Nuclear Magnetic Resonance Gyroscope (NMRG). Various methods to measure atomic spin lifetimes in vapor cells for predicting NMRG performance have been investigated. Certain methods show clear advantages over others by reducing required testing times and improving test data resolution. New modifications of methods were also developed to study and improve the precision and repeatability of test results. These methods help correlate vapor cell performance to cell filling and sealing methods for cell fabrication process improvement. The vapor cells produced in conjunction with these techniques have exhibited significant and consistent increases in both the noble gas spin lifetimes and the NMR signal strengths compared to previous cell fabrication processes, providing more precise insight into cell development techniques.

  20. Vapor-deposited platinum as a fuel-cell catalyst

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1974-01-01

    Electrodes are prepared by vacuum deposition of platinum on nickel substrate with conventional vapor-deposition apparatus. Amount of platinum loaded on substrate can be veried by changing exposure time during deposition. These electrodes are significantly more effective than conventional oxygen electrodes.

  1. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum).

    PubMed

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.

  2. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)

    PubMed Central

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. ‘Zhongwan no. 6’) were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (104 RBCs) was approximately 24.5% of the total Al in the root apex (0–2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity. PMID:27679639

  3. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum).

    PubMed

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity. PMID:27679639

  4. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum)

    PubMed Central

    Yang, Jin; Qu, Mei; Fang, Jing; Shen, Ren Fang; Feng, Ying Ming; Liu, Jia You; Bian, Jian Feng; Wu, Li Shu; He, Yong Ming; Yu, Min

    2016-01-01

    We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. ‘Zhongwan no. 6’) were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (104 RBCs) was approximately 24.5% of the total Al in the root apex (0–2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.

  5. Oxidative Chemical Vapor Deposition of Neutral Hole Transporting Polymer for Enhanced Solar Cell Efficiency and Lifetime.

    PubMed

    Jo, Won Jun; Nelson, Justin T; Chang, Sehoon; Bulović, Vladimir; Gradečak, Silvija; Strano, Michael S; Gleason, Karen K

    2016-08-01

    The concept of a neutral hole-transporting polymer is realized for the first time, by integrating patterned Cl(-) -doped poly(3,4-dimethoxythiophene) thin films into organic solar cells through a vacuum-based polymer vapor printing technique. Due to this novel polymer's neutrality, high transparency, good conductivity, and appropriate energy levels, the solar-cell efficiency and lifetime are significantly enhanced.

  6. Could a strong alkali deproteinization replace the standard lysis step in alkaline single cell gel electrophoresis (comet) assay (pH>13)?

    PubMed

    Vivek Kumar, P R; Cheriyan, V D; Seshadri, M

    2009-08-01

    The alkaline version of single cell gel electrophoresis (comet) assay is widely used for evaluating DNA damage at the individual cell level. The standard alkaline method of the comet assay involves deproteinization of cells embedded in agarose gel using a high salt-detergent lysis buffer, followed by denaturation of DNA and electrophoresis using a strong alkali at pH>13 [N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp. Cell. Res. 175 (1988) 184-191]. However, a recent report showed that a strong alkali treatment results in simultaneous deproteinization of cells and denaturation of genomic DNA [P. Sestili, C. Martinelli, V. Stocchi, The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single cell-level, Mutat. Res. 607 (2006) 205-214]. This study was carried out to test whether the strong alkali deproteinization of cells could replace the high salt-detergent lysis step used in the standard method of the alkaline comet assay. Peripheral blood lymphocytes from 3 healthy individuals were irradiated with gamma rays at doses varying between 0 and 10 Gy. Following irradiation, the comet assay was performed according to the standard alkaline method (pH>13) and a modified method. In the modified method, agarose embedded cells were treated with a strong alkali (0.3M NaOH, 0.02 M Trizma and 1mM EDTA, pH>13) for 20 min to allow deproteinization of cells and denaturation of DNA. This was followed by electrophoresis using the same alkali solution to obtain comets. DNA damage expressed in terms of comet tail length, percentage of DNA in comet tail and tail moment obtained by the standard alkaline method and the modified method were compared. In both methods, DNA damage showed a good correlation with the dose of gamma ray. The results indicate a satisfactory sensitivity of the modified method in detecting radiation-induced DNA damage in human peripheral

  7. Volume regulation by Amphiuma red blood cells: cytosolic free Ca and alkali metal-H exchange.

    PubMed

    Cala, P M; Mandel, L J; Murphy, E

    1986-03-01

    Osmotic swelling of Amphiuma red blood cells results in activation of electroneutral K-H exchange, whereas cell shrinkage activates an electroneutral Na-H exchange. These K-H and Na-H exchangers function to restore cell volume to normal after cell swelling and shrinkage, respectively. Our previous studies have suggested that Ca plays a role in volume-dependent activation of K-H exchange. In the present studies, intracellular free Ca levels were measured employing the Ca-sensitive extracellular dye arsenazo III and a previously described null-point method. Control values for intracellular free Ca averaged 0.46 +/- 0.15 microM. Cell shrinkage caused this value to decrease to 0.16 +/- 0.11 microM, whereas either cell swelling or addition of 5 microM A23187 resulted in saturation of intracellular Ca buffers, suggesting that both treatments caused an increase in intracellular free Ca. In the presence of 7 microM A23187, the rate of K-H exchange displayed a hyperbolic relationship as a function of extracellular Ca (Cao). The apparent half-maximal concentration for Cao (in the presence of 7 microM A23187) was 0.27 mM for osmotically swollen cells and 1.9 mM for cells in isotonic medium, suggesting that the Ca affinity of a modulating site is increased in swollen cells. Inhibitors of Ca-mediated processes, such as quinidine and the phenothiazines, inhibited K-H exchange. In contrast, the phenothiazines chlorpromazine and trifluoperazine stimulated Na-H exchange by osmotically shrunken cells. These results suggest that increases in intracellular free Ca are involved in stimulating K-H exchange while repressing Na-H exchange in Amphiuma red blood cells. PMID:2420196

  8. Advances in high temperature components for AMTEC (Alkali Metal Thermal-To-Electric Converter)

    NASA Astrophysics Data System (ADS)

    Williams, R. M.; Jeffries-Nakamura, B.; Underwood, M. L.; Ryan, M. A.; Oconnor, D.; Kikkert, S.

    1991-07-01

    Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta(double prime) alumina solid electrolyte (BASE), the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.

  9. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  10. Characterization of antirelaxation-coated vapor cells in high-temperature regime

    NASA Astrophysics Data System (ADS)

    Li, Wenhao; Balabas, Mikhail; Pustelny, Szymon; Wickenbrock, Arne; Budker, Dmitry

    2016-05-01

    Antirelaxation-coated vapor cells are widely used in modern atomic physics experiments due to the coating's ability to maintain spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures of up to 90° C. The longitudinal spin relaxation time (τrel) is measured with a modified version of ``relaxation in the dark'' technique and the vapor density (n) is obtained by fitting atomic absorption spectrum with linear absorption function. The spin-projection-noise-limited (or atomic shot noise limited) sensitivity for atomic magnetometers is δBSNL 1 /√{ nτrel T } , where T is measurement time. Therefore, by showing the product of the longitudinal spin relaxation time and the vapor density increases with temperature, we demonstrate the potential of antirelaxation-coated cells in applications of future high-sensitivity magnetometers. W.L. would like to acknowledge support from the China Scholarship Council (CSC) enabling his research at the University of California at Berkeley.

  11. Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells

    SciTech Connect

    Xiao, Teng; Cui, Weipan; Cai, Min; Liu, Rui; Anderegg, James W.; Shinar, Joseph; Shinar, Ruth

    2012-03-12

    Alkali fluorides, mostly LiF and CsF, are well-known to improve electron injection/extraction in organic light-emitting diodes (OLEDs) and organic solar cells (OSCs). They are also utilized, though to a lesser extent, for hole injection in OLEDs. Here we demonstrate a new role for such fluorides in enhancing OSCs’ hole extraction.We show that an ultrathin air-plasmatreated alkali fluoride layer between the indium tin oxide (ITO) anode and the active layer in copper phthalocyanine ðCuPcÞ∕C70-based OSCs increases the short circuit current by up to ∼17% for cells with LiF and ∼7% for cells with NaF or CsF. The effects of the fluoride layer thickness and treatment duration were evaluated, as were OSCs with oxidized and plasma-treated Li and UV-ozone treated LiF. Measurements included current voltage, absorption, external quantum efficiency (EQE), atomic force microscopy, and x-ray photoelectron spectroscopy, which showed the presence of alkali atoms F and O at the treated ITO/fluoride surface. The EQE of optimized devices with LiF increased at wavelengths >560 nm, exceeding the absorption increase. Overall, the results indicate that the improved performance is due largely to enhanced hole extraction, possibly related to improved energy-level alignment at the fluorinated ITO/CuPc interface, reduced OSC series resistance, and in the case of LiF, improved absorption.

  12. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Fan, H. Q.; Kumar, S.; Kübler, H.; Shaffer, J. P.

    2016-05-01

    We introduce a method to measure radio frequency (RF) electric fields (E-fields) using atoms contained in a prism-shaped vapor cell. The method utilizes the concept of electromagnetically induced transparency with Rydberg atoms. The RF E-field induces changes in the index of refraction of the vapor resulting in deflection of the probe laser beam as it passes through the prism-shaped vapor cell. We measured a minimum RF E-field of 8.25 μ {{Vcm}}-1 with a sensitivity of ∼ 46.5 μ {{Vcm}}-1 {{Hz}}-1/2. The experimental results agree with a numerical model that includes dephasing effects. We discuss possible improvements to obtain higher sensitivity for RF E-field measurements.

  13. All-Hot-Wire Chemical Vapor Deposition a-Si:H Solar Cells

    SciTech Connect

    Iwaniczko, E.; Wang, Q.; Xu, Y.; Nelson, B. P.; Mahan, A. H.; Crandall, R. S.; Branz, H. M.

    2000-01-01

    Efficient hydrogenated amorphous silicon (a-Si:H) nip solar cells have been fabricated with all doped and undoped a-Si:H layers deposited by hot-wire chemical vapor deposition (HWCVD). The total deposition time of all layers, except the top ITO-contact, is less than 4 minutes.

  14. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  15. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  16. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    NASA Astrophysics Data System (ADS)

    Joulaei, A.; Moody, J.; Berti, N.; Kasparian, J.; Mirzanejhad, S.; Muggli, P.

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  17. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K. M.; Kapur, V. K.; Bartlett, R. W.; Westphal, S.

    1980-01-01

    A process was developed for the economic production of high purity Si from inexpensive reactants, based on the Na reduction of SiF4 gas. The products of reaction (NaF, Si) are separated by either aqueous leaching or by direct melting of the NaF-Si product mixture. Impurities known to degrade solar cell performance are all present at sufficiently low concentrations so that melt solidification (e.g., Czochralski) will provide a silicon material suitable for solar cells.

  18. Bisphenols that stimulate cells to release alkali metal cations: a structure-activity study.

    PubMed

    Hopp, L; Megee, S O; Lloyd, J B

    1998-10-22

    The laxative action of phenolphthalein (5) is believed to result from induction of potassium and water efflux from the colon epithelium. In cultured cells, K+ efflux is promoted by 5 and by a contaminant (1) present in commercial phenol red. Six compounds with chemical structures related to those of 5 and 1 were tested for ability to induce the release of 86Rb from COS-7 cells preloaded with this isotope: 4,4'-(9-fluorenylidene)diphenol (2), 4, 4'-(9-fluorenylidene)dianiline, 4, 4'-(9-fluorenylidene)bisphenoxyethanol, 1,1'-bi-2-naphthol, 4, 4'-biphenol, and bis(4-hydroxyphenyl)methane. With one exception these compounds were all inactive at a concentration of 10 microM. However, 2 caused profound 86Rb efflux at concentrations as low as 100 nM. Concentrations of 5 1-2 orders of magnitude higher were needed to achieve similar levels of activity. The three compounds known to be active in this experimental system share a common feature that is absent in all the inactive compounds: a five-membered ring structure, one of whose carbon atoms is disubstituted with p-hydroxyphenyl residues. Because 2 and 5 are readily available, comparative studies on the mechanism of action of these biphenols at the cellular level can now be undertaken. PMID:9784117

  19. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    SciTech Connect

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-12-09

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of {approx}4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  20. Efficiency enhancement in solution-processed organic small molecule: Fullerene solar cells via solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Miao, Jingsheng; Chen, Hui; Liu, Feng; Zhao, Baofeng; Hu, Lingyu; He, Zhicai; Wu, Hongbin

    2015-05-01

    We report highly efficient small molecule solar cells (SMSCs) by using dichloromethane solvent vapor annealing method. The resulted devices delivered a power conversion efficiency (PCE) of 8.3%, which is among the highest in SMSCs. Comparing to the control devices, the short circuit current (Jsc), fill factor, and PCE of solvent vapor annealed devices are significantly improved. Summarizing the results of optical absorption, film morphology, and charge carrier transporting properties, we see that the enhanced structure order and reduced size of phase separation are major reasons for the improved device performances, establishing a solid structure-property relationship. The solvent vapor annealing method can thus be a useful method in device fabrication to enhance performances of SMSCs.

  1. Oxidative Chemical Vapor Deposition of Neutral Hole Transporting Polymer for Enhanced Solar Cell Efficiency and Lifetime.

    PubMed

    Jo, Won Jun; Nelson, Justin T; Chang, Sehoon; Bulović, Vladimir; Gradečak, Silvija; Strano, Michael S; Gleason, Karen K

    2016-08-01

    The concept of a neutral hole-transporting polymer is realized for the first time, by integrating patterned Cl(-) -doped poly(3,4-dimethoxythiophene) thin films into organic solar cells through a vacuum-based polymer vapor printing technique. Due to this novel polymer's neutrality, high transparency, good conductivity, and appropriate energy levels, the solar-cell efficiency and lifetime are significantly enhanced. PMID:27167214

  2. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  3. Conical evaporator and liquid-return wick model for vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A detailed, 2-D thermal-hydraulic model for conical and flat evaporators and the liquid sodium return artery in PX-type AMTEC cells was developed, which predicts incipient dryout at the evaporator wick surface. Results obtained at fixed hot and cold side temperatures showed that the flat evaporator provided a slightly lower vapor pressure, but reached the capillary limit at higher temperature. The loss of performance due to partial recondensation over up to 20% of the wick surface of the deep conical evaporators was offset by the larger surface area available for evaporation, providing a slightly higher vapor pressure. Model results matched the PX-3A cell's experimental data of electrical power output, but the predicted temperature of the cell's conical evaporator was consistently ~50 K above measurements. A preliminary analysis indicated that sodium vapor leakage in the cell (through microcracks in the BASE tubes' walls or brazes) may explain the difference between predicted and measured evaporator temperatures in PX-3A. .

  4. UVA and visible light photons produce frank strand breaks in human P3 cell DNA as well as a new class of alkali-labile lesion

    SciTech Connect

    Peak, M.J.; Peak, J.G.

    1994-05-01

    Human P3 epithelioid cells were exposed to UVA (290--400 nm), as well as to blue and green photons in the 400--520 mm region of the spectrum, and the production of strand breaks in their DNA was measured by using elution. After exposure to blue photons the profiles were convex (downturning), shown to be due to the induction of a mixture of frank single-strand DNA breaks (SSB) plus rapidly developing alkali-labile sites (ALS). as well as latent breaks that develop during the first 6 h of the elution, termed slowly developing alkali-labile sites (SDALS). A significant proportion of the lesions produced by P3 cells by blue light photons are SDALS, whereas green light photons at 520 nm and UVA photons at 365 nm produce no SDALS and the elution profiles are exponential. This is also the case for Chinese hamster ovary cells exposed to 405 nm, evidence that a unique chromophore in P3 cells that absorbs strongly in the blue region leads to the formation of SDALS. The similarity in induction of SDALS at 460 and 405 nm is evidence that the chromophore is not a porphyrin, because these compounds have sharp absorption maxima in the lower 400 nm region. The chemical nature of these lesions as well as the cellular responses to them remain enigmatic.

  5. Effects of water concentration in the coating solution on the wall relaxation rate of octadecyltrichlorosilane coated rubidium vapor cells

    SciTech Connect

    Zhang, Guiying; Wei, Lihua; Wang, Meiling; Zhao, Kaifeng

    2015-01-28

    High quality anti-relaxation surface coatings for atomic vapor cells are essential for the preservation of atomic spin coherence and the enhancement of measurement sensitivity. In this paper, we studied the effects of water concentration in octadecyltrichlorosilane (OTS) coating solution on the relaxation rate and its reproducibility of OTS coated Rubidium vapor cells. We found that appropriate water concentration can improve the anti-relaxation performance of OTS coated cells.

  6. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  7. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  8. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  9. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  10. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOEpatents

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  11. The development of a potassium-sulfide glass fiber cell and studies on impurities in alkali metal-sulfur cells

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1977-01-01

    Potassium sulfur rechargeable cells, having as the electrolyte the thin walls of hollow glass fibers made from permeable glass, were developed. The cells had short lives, probably due to the construction materials and impurities in the potassium. The effect of the impurities in the analogous NA-S system was studied. Calcium, potassium, and NaOH/oxide impurities caused increased resistance or corrosion of the glass fibers. For long lived cell operation, the Na must contain less than 1 ppm Ca and less than a few ppm of hydroxide/oxide. Up to 150 ppm K can be tolerated. After purification of the Na anolyte, cell lifetimes in excess of 1000 deep charge-discharge cycles or over 8 months on continuous cycling at 10-30 percent depth of discharge were obtained.

  12. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    SciTech Connect

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Guérandel, Stéphane; Clercq, Emeric de

    2015-05-14

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and a microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.

  13. Characterization of Cs vapor cell coated with octadecyltrichlorosilane using coherent population trapping spectroscopy

    NASA Astrophysics Data System (ADS)

    Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder; Passilly, Nicolas; Gorecki, Christophe; Guérandel, Stéphane; de Clercq, Emeric; Boudot, Rodolphe

    2015-05-01

    We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10-9/K in fractional unit. A hyperfine population lifetime, T1, and a microwave coherence lifetime, T2, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.

  14. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    NASA Astrophysics Data System (ADS)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  15. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-02-24

    The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100[degrees]C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10[sup 4] to 10[sup 5] times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.

  16. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication. PMID:26186840

  17. Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser.

    PubMed

    An, Guofei; Wang, You; Han, Juhong; Cai, He; Zhou, Jie; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Gao, Ming; Jiang, Zhigang

    2015-10-01

    In recent years, a diode-pumped alkali laser (DPAL) has become one of the most hopeful candidates to achieve the high power performance. A series of models have been established to analyze the DPAL's kinetic process and most of them were based on the algorithms in which only the ideal 3-level system was considered. In this paper, we developed a systematic model by taking into account the influence of excitation of neutral alkali atoms to even-higher levels and their ionization on the physical features of a static DPAL. The procedures of heat transfer and laser kinetics were combined together in our theoretical model. By using such a theme, the continuous temperature and number density distribution have been evaluated in the transverse section of a cesium vapor cell. The calculated results indicate that both energy pooling and ionization play important roles during the lasing process. The conclusions might deepen the understanding of the kinetic mechanism of a DPAL.

  18. Alkali metal/sulfur battery

    DOEpatents

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  19. Analysis of advanced vapor source for cadmium telluride solar cell manufacturing

    NASA Astrophysics Data System (ADS)

    Khetani, Tejas Harshadkumar

    A thin film CdS/CdTe solar cell manufacturing line has been developed in the Materials Engineering Laboratory at Colorado State University. The original design incorporated infrared lamps for heating the vapor source. This system has been redesigned to improve the energy efficiency of the system, allow co-sublimation and allow longer run time before the sources have to be replenished. The advanced vapor source incorporates conduction heating with heating elements embedded in graphite. The advanced vapor source was modeled by computational fluid dynamics (CFD). From these models, the required maximum operating temperature of the element was determined to be 720 C for the processing of CdS/CdTe solar cells. Nichrome and Kanthal A1 were primarily selected for this application at temperature of 720 °C in vacuum with oxygen partial pressure. Research on oxidation effects and life due to oxidation as well as creep deformation was done, and Nichrome was found more suitable for this application. A study of the life of the Nichrome heating elements in this application was conducted and the estimate of life is approximately 1900 years for repeated on-off application. This is many orders of magnitude higher than the life of infrared heat lamps. Ceramic cement based on aluminum oxide (Resbond 920) is used for bonding the elements to the graphite. Thermodynamic calculations showed that this cement is inert to the heating element. An earlier design of the advanced source encountered failure of the element. The failed element was studies by scanning electron microscopy and the failure was attributed to loss of adhesion between the graphite and the ceramic element. The design has been modified and the advanced vapor source is currently in operation.

  20. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    PubMed

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments.

  1. Superconductivity in the alkali metal intercalates of molybdenum disulphide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.

    1972-01-01

    The complete series of alkali metals, lithium through cesium, have been intercalated into molybdenum disulphide, using both the liquid ammonia and vapor techniques. All the intercalates with the exception of lithium yielded full superconducting transitions with onset temperatures of 6 K for AxMoS2(Ax=K,Rb,Cs) and 4 K for BxMoS2(Bx=Li,Na). The superconducting transition for lithium was incomplete down to 1.5 K. Stoichiometries and unit cell parameters have been determined for the intercalation compounds. Both rhombohedral and hexagonal polymorphs of MoS2 have been intercalated and found to exhibit the same superconductivity behavior. The nature of the extraneous superconducting transition of some intercalated samples on exposure to air was elucidated.

  2. Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell

    NASA Astrophysics Data System (ADS)

    Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.

    2013-03-01

    We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.

  3. Bifacial solar cell with SnS absorber by vapor transport deposition

    SciTech Connect

    Wangperawong, Artit; Hsu, Po-Chun; Yee, Yesheng; Herron, Steven M.; Clemens, Bruce M.; Cui, Yi; Bent, Stacey F.

    2014-10-27

    The SnS absorber layer in solar cell devices was produced by vapor transport deposition (VTD), which is a low-cost manufacturing method for solar modules. The performance of solar cells consisting of Si/Mo/SnS/ZnO/indium tin oxide (ITO) was limited by the SnS layer's surface texture and field-dependent carrier collection. For improved performance, a fluorine doped tin oxide (FTO) substrate was used in place of the Mo to smooth the topography of the VTD SnS and to make bifacial solar cells, which are potentially useful for multijunction applications. A bifacial SnS solar cell consisting of glass/FTO/SnS/CdS/ZnO/ITO demonstrated front- and back-side power conversion efficiencies of 1.2% and 0.2%, respectively.

  4. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  5. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  6. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    DOE PAGES

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; Shao, Yuchuan; Huang, Jinsong

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV largermore » open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.« less

  7. Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells

    SciTech Connect

    Lian, Jiarong; Wang, Qi; Yuan, Yongbo; Shao, Yuchuan; Huang, Jinsong

    2015-03-25

    In this study, the anisotropic electronic properties of the perovskite crystals originating from their non-cubic crystal structures can potentially give rise to the grain orientation correlated photovoltaic device performance. Here we report that an organic solvent vapor atmosphere introduced during the spin-coating and formation of perovskite films changes the orientation and size of perovskite grains. It was found that slightly larger but much more oriented methylammonium lead trihalide (CH3NH3PbI3) grains could be obtained under 1,2-dichlorobenzene (DCB) and dimethyl sulfoxide (DMSO) vapor atmospheres. The devices with more oriented grains outperformed regular devices with more random grains by a 50 mV larger open circuit voltage as well as a slightly increased fill factor. The device efficiency enhancement can be attributed to the longer charge recombination lifetime resulting from the reduced trap density and oriented grains. This result is important in providing guidelines for comparing the results from various groups because organic solvent vapors are generally present in a sealed glovebox for perovskite solar cell fabrication.

  8. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  9. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  10. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Thomsen, E. C.; Choi, J.-P.; Stevenson, J. W.

    2012-01-01

    An alkali silicate glass (SCN-1) is being evaluated as a candidate sealant for solid oxide fuel cell (SOFC) applications. The glass contains about 17 wt.% alkalis (K + Na) and has low glass transition and softening temperatures. It remains vitreous and compliant after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealant. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with yttria stabilized zirconia (YSZ) coating during short term testing. In this study, the compliant glass was further evaluated in a more realistic way in that the sealed couples were first isothermally aged for 1000 h followed by thermal cycling. High temperature leakage was measured. Chemical compatibility was also investigated with powder mixtures to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results. Overall the compliant sealing glass showed desirable chemical compatibility with YSZ coated metallic interconnect of minimum reaction and hermetic behavior at 700-750 °C in dual environment.

  11. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-01-01

    An alkali-containing silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel cell (SOFC) applications. The glass contains about 17 mole% alkalis (K+Na) and has low glass transition and softening temperatures. It remains vitreous and compliant around 750-800oC after sealing without substantial crystallization, as contrary to conventional glass-ceramic sealants, which experience rapid crystallization after the sealing process. The glassy nature and low characteristic temperatures can reduce residual stresses and result in the potential for crack healing. In a previous study, the glass was found to have good thermal cycle stability and was chemically compatible with YSZ coating during short term testing. In the current study, the compliant glass was further evaluated in a more realistic way in that the sealed glass couples were first isothermally aged for 1000h followed by thermal cycling. High temperature leakage was measured. The chemical compatibility was also investigated with powder mixtures at 700 and 800oC to enhance potential interfacial reaction. In addition, interfacial microstructure was examined with scanning electron microscopy and evaluated with regard to the leakage and chemical compatibility results.

  12. Vapor of Volatile Oils from Litsea cubeba Seed Induces Apoptosis and Causes Cell Cycle Arrest in Lung Cancer Cells

    PubMed Central

    Seal, Soma; Chatterjee, Priyajit; Bhattacharya, Sushmita; Pal, Durba; Dasgupta, Suman; Kundu, Rakesh; Mukherjee, Sandip; Bhattacharya, Shelley; Bhuyan, Mantu; Bhattacharyya, Pranab R.; Baishya, Gakul; Barua, Nabin C.; Baruah, Pranab K.; Rao, Paruchuri G.; Bhattacharya, Samir

    2012-01-01

    Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation. PMID:23091605

  13. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  14. Efficient Collection of {sup 221}Fr into a Vapor Cell Magneto-optical Trap

    SciTech Connect

    Lu, Z.; Corwin, K.L.; Vogel, K.R.; Wieman, C.E. |; Dinneen, T.P.; Maddi, J.; Gould, H.

    1997-08-01

    We have efficiently loaded a vapor cell magneto-optical trap from an orthotropic source of {sup 221}Fr with a trapping efficiency of 56(10){percent}. A novel detection scheme allowed us to measure 900 trapped atoms with a signal to noise ratio of {approximately}60 in 1sec. We have measured the energies and the hyperfine constants of the 7 {sup 2}P{sub 1/2} and 7 {sup 2}P{sub 3/2} states. {copyright} {ital 1997} {ital The American Physical Society}

  15. Electromagnetically-induced transparency in Cs and Rb in the same vapor cell

    NASA Astrophysics Data System (ADS)

    Simons, Matt; Gordon, Joshua; Holloway, Christopher

    2016-05-01

    We demonstrate simultaneous electromagnetically-induced transparency (EIT) in both cesium and rubidium in the same vapor cell with coincident optical fields. Each atomic system can detect radio frequency (RF) field strengths through modification of the EIT signal. We show that these two systems can detect the same RF field strength simultaneously. This allows us to perform the same measurement in two effective ``laboratories,'' providing an immediate independent reference, which will lead to an SI-traceable RF E-field measurement. We examine the impact of coincident, simultaneous EIT on RF field metrology and the EIT signal.

  16. Experimental and theoretical study of the vapor-cell Zeeman optical trap

    NASA Astrophysics Data System (ADS)

    Lindquist, K.; Stephens, M.; Wieman, C.

    1992-10-01

    We present an experimental study of the number and density of trapped atoms in a vapor-cell Zeeman optical trap. We have investigated how the number (and therefore the capture rate) and density change with the trapping laser's beam diameter, intensity, and detuning and with the magnetic-field gradient of the trap. We have developed a quasi-one-dimensional numerical model that accurately predicts the number of trapped atoms for all conditions. We also have investigated chirping the laser frequency and trapping with broadband light, neither of which increase the number of trapped atoms.

  17. Transient response of nonlinear magneto-optic rotation in a paraffin-coated Rb vapor cell

    NASA Astrophysics Data System (ADS)

    Momeen, M. Ummal; Rangarajan, G.; Natarajan, Vasant

    2010-01-01

    We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about “300 μG” (2π×420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.

  18. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  19. Silicon halide-alkali metal flames as a source of solar grade silicon. Final report

    SciTech Connect

    Olson, D.B.; Miller, W.J.; Gould, R.K.

    1980-01-01

    The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  20. Strong field radio-frequency measurements using Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie; Anderson, David; Raithel, Georg

    2016-05-01

    There has been a growing interest in using electromagnetically induced transparency with Rydberg atoms in a room-temperature vapor cell as an all-optical readout method for measuring microwave electric fields. We present results from RF-modulating the 60S1 / 2 and 58D5 / 2 Rydberg states of rubidium with 50 MHz and 100 MHz fields, respectively. Weak RF fields AC Stark-shifts the Rydberg states. As the field strength is increased, sidebands appear at even multiples of the driving frequency. When strong fields are applied, the nearby hydrogenic manifold begins to intersect with the shifted levels. Similar investigations have been performed in cesium. Due to the significant amount of state mixing and level structure, Floquet theory is required to describe the level shifts and mixing. By comparing the calculation with the experimental data, we obtain an absolute determination of the RF electric field reaching a maximum field of 296 V/m to within +/- 0 . 35 % . Additionally, we estimate the shielding of DC fields within the vapor cell.

  1. Comparison of reactive nucleation of silver and alkali clusters in the presence of oxygen and water

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Leygnier, J.; Tignères, I.

    The nucleation of silver-atom vapor in the presence of O2 and H2O molecules has been investigated by photoionization mass spectrometry and compared to the case of alkali-atom vapor. Relative intensities in mass spectra show that silver vapor does not react with H2O molecules, in contrast with sodium vapor. When O2 and H2O are simultaneously present, hydroxided products are observed. Results emphasize the role of stable units, (NaOH)2 or (KOH)2, for alkalies, and more complex hydrated or hydroxided systems, involving trimers, for silver. Similarities are found with water dissociative adsorption on an oxygen-predosed silver surface.

  2. Optical Measurements of Strong Microwave Fields with Rydberg Atoms in a Vapor Cell

    NASA Astrophysics Data System (ADS)

    Anderson, D. A.; Miller, S. A.; Raithel, G.; Gordon, J. A.; Butler, M. L.; Holloway, C. L.

    2016-03-01

    We present a spectral analysis of Rydberg atoms in strong microwave fields using electromagnetically induced transparency (EIT) as an all-optical readout. The measured spectroscopic response enables optical, atom-based electric-field measurements of high-power microwaves. In our experiments, microwaves are irradiated into a room-temperature rubidium vapor cell. The microwaves are tuned near the two-photon 65 D -66 D Rydberg transition and reach an electric-field strength of 230 V /m , about 20% of the microwave-ionization threshold of these atoms. A Floquet treatment is used to model the Rydberg-level energies and their excitation rates. We arrive at an empirical model for the field-strength distribution inside the spectroscopic cell that yields excellent overall agreement between the measured and calculated Rydberg EIT-Floquet spectra. Using spectral features in the Floquet maps, we achieve an absolute strong-field measurement precision of 6%.

  3. Analyses of Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2000-01-01

    A high performance, Nb-1Zr/C-103, vapor anode, multi-tube AMTEC cell design is presented. The cell measures 41.27 mm in diameter, is 125.3 mm high, and has eight BASE tubes connected electrically in series. The hot structure of the cell (hot plate, BASE tubes support plate, hot plenum wall, evaporator standoff, evaporator wick, and side wall facing the BASE tubes) is made of Nb-1Zr. The cold structure of the cell (condenser, interior cylindrical thermal radiation shield, the casing and the wick of the liquid sodium return artery, and side wall above the BASE tubes) is made of the stronger, lower thermal conductivity niobium alloy C-103. This cell, which weighs 163.4 g, could deliver 7.0 We at 17% efficiency and load voltage of 3.3 V, when using TiN BASE electrodes characterized by B=75 A.K1/2/m2.Pa and G=50 and assuming BASE/electrode contact resistance of 0.06 Ω-cm2 and leakage resistance of the BASE braze structure of 3 Ω. For these performance parameters and when the interior cylindrical C-103 thermal radiation shield is covered with low emissivity rhodium, the projected specific mass of the cell is 23.4 g/We. The BASE brazes and the evaporator temperatures were below the recommended limits of 1123 K and 1023 K, respectively. In addition, the temperature margin in the cell was at least + 20 K. When electrodes characterized by B=120 A.K1/2/m2.Pa and G=10 were used, the cell power increased to 8.38 We at 3.5 V and efficiency of 18.8%, for a cell specific mass of 19.7 g/We. Issues related to structure strength of the cell and the performance degradation of the BASE and electrodes are not addressed in this paper. .

  4. Chromium vaporization from mechanically deformed pre-coated interconnects in Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2015-11-01

    Cathode poisoning, associated with Cr evaporation from interconnect material, is one of the most important degradation mechanisms in Solid Oxide Fuel Cells when Cr2O3-forming steels are used as the interconnect material. Coating these steels with a thin Co layer has proven to decrease Cr vaporization. To reduce production costs, it is suggested that thin metallic PVD coatings be applied to each steel strip before pressing the material into interconnect shape. This process would enable high volume production without the need for an extra post-coating step. However, when the pre-coated material is mechanically deformed, cracks may form and lower the quality of the coating. In the present study, Chromium volatilization is measured in an air-3% H2O environment at 850 °C for 336 h. Three materials coated with 600 nm Co are investigated and compared to an uncoated material. The effect of deformation is investigated on real interconnects. Microscopy observations reveal the presence of cracks in the order of several μm on the deformed pre-coated steel. However, upon exposure, the cracks can heal and form a continuous surface oxide rich in Co and Mn. As an effect of the rapid healing, no increase in Cr vaporization is measured for the pre-coated material.

  5. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.

    PubMed

    Cejkova, Jitka; Trosan, Peter; Cejka, Cestmir; Lencova, Anna; Zajicova, Alena; Javorkova, Eliska; Kubinova, Sarka; Sykova, Eva; Holan, Vladimir

    2013-11-01

    The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In the second group MSCs were applied on the injured corneal surface immediately after the injury and eyelids sutured for two days. Then the sutures were removed. In the third group nanofiber scaffolds seeded with MSCs (and in the fourth group nanofibers alone) were transferred onto the corneas immediately after the injury and the eyelids sutured. Two days later the eyelid sutures were removed together with the nanofiber scaffolds. The rabbits were sacrificed on days four, ten or fifteen after the injury, and the corneas were examined immunohistochemically, morphologically, for the central corneal thickness (taken as an index of corneal hydration) using an ultrasonic pachymeter and by real-time PCR. Results show that in untreated injured corneas the expression of malondialdehyde (MDA) and nitrotyrosine (NT) (important markers of lipid peroxidation and oxidative stress) appeared in the epithelium. The antioxidant aldehyde dehydrogenase 3A1 (ALDH3A1) decreased in the corneal epithelium, particularly in superficial parts, where apoptotic cell death (detected by active caspase-3) was high. (In control corneal epithelium MDA and NT are absent and ALDH3A1 highly present in all layers of the epithelium. Cell apoptosis are sporadic). In injured untreated cornea further corneal disturbances developed: The expressions of matrix metalloproteinase 9 (MMP9) and proinflammatory cytokines, were high. At the end of experiment (on day 15) the injured untreated corneas were vascularized and numerous inflammatory cells were present in the corneal stroma. Vascular endothelial growth factor (VEGF) expression and number of macrophages

  6. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    PubMed Central

    Shen, Yifei; Wolkowicz, Michael J.; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  7. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    PubMed

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-04-04

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products.

  8. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  9. Homodyne Microwave Electric Field Measurements Using Cesium Rydberg Atoms in Vapor Cells

    NASA Astrophysics Data System (ADS)

    Fan, Haoquan; Kumar, Santosh; Shaffer, James

    2015-05-01

    Probe laser noise is one of the main factors limiting the sensitivity of microwave electric field measurements that use Rydberg atoms in vapor cells. We apply a homodyne detection technique using a Mach-Zehnder interferometer to achieve a new sensitivity limit for the measurement of microwave electric fields, 3 - 5 μV cm-1√{ Hz }-1 . The new sensitivity is almost one order of magnitude better than the previous results presented in Ref. [Nat. Phys. 8, 819 (2012)]. We also report on the homogeneous dephasing effects caused by transit time broadening, collision broadening, and the lifetime of Rydberg atoms which we can now directly observe. We show that these dephasing effects are the fundamental limiting factors that determine the shot noise limit.

  10. Frequency-tunable microwave field detection in an atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Treutlein, Philipp

    2016-05-01

    We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the σ+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high-resolution microwave imaging system [Horsley et al., New J. Phys. 17, 112002 (2015)], this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.

  11. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer

    SciTech Connect

    Lu, Jixi Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-15

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  12. Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer.

    PubMed

    Lu, Jixi; Qian, Zheng; Fang, Jiancheng; Quan, Wei

    2015-08-01

    This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjust the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.

  13. Cytotoxicity and mutagenicity of vapor-phase pollutants in rat lung epithelial cells and Chinese hamster ovary cells grown on collagen gels

    SciTech Connect

    Zamora, P.O.; Benson, J.M.; Marshall, T.C.; Mokler, B.V.; Li, A.P.; Dahl, A.R.; Brooks, A.L.; McClellan, R.O.

    1983-01-01

    Lung epithelial cell (cell line designated LEC) and Chinese hamster ovary (CHO) cells were grown on hydrated collagen gels and exposed directly to toxic vapor-phase pollutants. The cells were exposed to graded concentrations of phenol, formaldehyde, a volatile fraction of process stream material from an experimental coal gasifier, and the nonparticulate, vapor phase of diesel engine exhaust. During exposures, the cells were maintained at an air/collagen interface by removing the medium overlying the hydrated collagen gel. Morphological changes indicative of cell retraction were found in LEC cell cultures exposed to phenol, formaldehyde, or diesel exhaust. Damage following exposure to the toxicants was quantitated in LEC and CHO cells by Trypan blue dye exclusion, a measure of plasma membrane integrity. Clone-forming ability was also used to measure cell survival in CHO cells. When measured by Trypan blue dye exclusion, phenol (EC50 = 2.1 mg/l) caused membrane damage to LEC cells but not CHO cells, while formaldehyde (EC50 = 31 and 42 ..mu..g/l for LEC and CHO, respectively) and diesel exhaust (EC50 = 11 and 29% of tailpipe exhaust in LEC and CHO cells, respectively) caused damage to both cell types. No cytotoxicity was observed in LEC or CHO cells exposed to the fraction from the coal gasifier. Essentially no mutagenic activity was associated with the exposure of CHO cells to formaldehyde or the vapor phase of diesel exhaust. Mutagenic activity was found in CHO cells exposed to ethylene oxide, the positive control.

  14. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  15. Amorphous Carbon Deposited by a Novel Aerosol-Assisted Chemical Vapor Deposition for Photovoltaic Solar Cells

    NASA Astrophysics Data System (ADS)

    Ahmad, Nurfadzilah; Kamaruzzaman, Dayana; Rusop, Mohamad

    2012-06-01

    Amorphous carbon (a-C) solar cells were successfully prepared using a novel and self-designed aerosol-assisted chemical vapor deposition (AACVD) method using camphor oil as a precursor. The fabricated solar cell with the configuration of Au/p-C/n-Si/Au achieved an efficiency of 0.008% with a fill factor of 0.15 for the device deposited at 0.5 h. The current-voltage (I-V) graph emphasized on the linear graph (ohmic) for the a-C thin films, whereas for the p-n device structure, a rectifying curve was obtained. The rectifying curves signify the heterojunction between the p-type a-C film and the n-Si substrate and designate the generation of electron-hole pair of the samples under illumination. Photoresponse characteristics of the deposited a-C was highlighted when being illuminated (AM 1.5 illumination: 100 mW/cm2, 25 °C). Transmittance spectrum exhibit a large transmittance value (>85%) and absorption coefficient value of 103-104 cm-1 at the visible range of 390 to 790 nm. The atomization of a liquid precursor solution into fine sub-micrometre-sized aerosol droplets in AACVD induced the smooth surface of a-C films. To the best of our knowledge, fabrication of a-C solar cell using this AACVD method has not yet been reported.

  16. Sub-picotesla Scalar Atomic Magnetometer with a Microfabricated Vapor Cell

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Mhaskar, Rahul

    2016-05-01

    We explore the sensitivity limits of scalar atomic magnetometry with a micro-fabricated Cs vapor cell. The millimeter-scale cell is fabricated using silicon Micro-Electro-Mechanical Systems (MEMS) technology. The atomic spin procession is driven by an amplitude-modulated circularly polarized pump laser resonant with the D1 transition in Cs atoms. The precession is detected by an off-resonant linearly polarized probe laser using a balanced polarimeter setup. The probe light is spatially split into two beams to perform a gradiometer measurement. In a magnetic field of magnitude within the range of the earth magnetic field, we measure a sensitivity of less than 150 fT/ √Hz in the gradiometer mode, which shows that the magnetometer by itself can achieve sub-100 fT/ √Hz sensitivitiy. In addition to its high sensitivity, the magnetometer has a bandwidth of nearly 1 kHz due to the broad magnetic resonance inside the small cell. Our experiment suggests the feasibility of a portable, low-power and high-performance magnetometer, which can be operated in the earth's magnetic field. Such a device will greatly expand the range of applications for atomic magnetometers, such as the detection of nuclear magnetic resonance in an unshielded environment.

  17. Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint

    SciTech Connect

    Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

    2009-06-01

    We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures < 750..deg..C, demonstrate open-circuit voltages > 500 mV and efficiencies > 5%.

  18. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.

    PubMed

    Liao, Yanfen; Cao, Yawen; Chen, Tuo; Ma, Xiaoqian

    2015-10-01

    Bagasse is utilized as fuel in the biggest biomass power plant of China, however, alkalis in the fuel created severe agglomeration and slagging problems. Alkalis transfer characteristic, agglomeration causes in engineering practice, additive improvement effects and mechanism during bagasse combustion were investigated via experiments and simulations. Only slight agglomeration occurs in ash higher than 800°C. Serious agglomeration in practical operation should be attributed to the gaseous alkalis evaporating at high temperature and condensing on the cooler grain surfaces in CFB. It can be speculated that ash caking can be avoided with temperature lower than 750°C and heating surface corrosion caused by alkali metal vapor can be alleviated with temperature lower than 850°C. Kaolin added into the bagasse has an apparent advantage over CaO additive both in enhancing ash fusion point and relieving alkali-chloride corrosion by locking alkalis in dystectic solid compounds over the whole temperature range.

  19. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  20. Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.

    PubMed

    McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz

    2014-05-01

    This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.

  1. Very thin and stable thin-film silicon alloy triple junction solar cells by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Veldhuizen, L. W.; Schropp, R. E. I.

    2016-08-01

    We present a silicon-based triple junction solar cell that requires a deposition time of less than 15 min for all photoactive layers. As a low-bandgap material, we used thin layers of hydrogenated amorphous silicon germanium with lower band gap than commonly used, which is possible due to the application of hot wire chemical vapor deposition. The triple junction cell shows an initial energy conversion efficiency exceeding 10%, and with a relative performance stability within 6%, the cell shows a high tolerance to light-induced degradation. With these results, we help to demonstrate that hot wire chemical vapor deposition is a viable deposition method for the fabrication of low-cost solar cells.

  2. Moisturized anode and water management in a passive vapor-feed direct methanol fuel cell operated with neat methanol

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochun; Yuan, Wei; Wang, Aoyu; Yan, Zhiguo; Tang, Yong; Tang, Kairui

    2015-11-01

    This paper investigates the moisturized anode and water management of a vapor-feed direct methanol fuel cell operated with neat methanol. Three methods of water management are experimentally compared, including water storage in a fuel reservoir, active water vapor supply and water recovery from the cathode to the anode. A water management layer for water recovery is introduced to the cathode, which is made of a quasi-superhydrophobic sintered porous metal plate (SPMP) to enhance water back diffusion (WBD). Results prove that each of these methods can improve the cell performance. WBD enhancement based on the use of a SPMP is proven to be the most effective way. It is also found that combination of different methods may more promote the cell performance. Using a WBD enhancement layer under the condition of active water vapor supply can completely eliminate performance decline in the early stage of constant-load discharging. For fully-passive operation, a higher catalyst loading at the cathode helps retain stable performance when a WBD enhancement layer is used. Based on this design, the passive vapor-feed DMFC fed with neat methanol can achieve a maximum power density of 21 mW cm-2.

  3. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  4. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%). PMID:22724887

  5. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  6. Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation.

    PubMed

    Cejka, Cestmir; Cejkova, Jitka; Trosan, Peter; Zajicova, Alena; Sykova, Eva; Holan, Vladimir

    2016-09-01

    The aim of this study was to examine whether nanofiber scaffolds seeded with rabbit bone marrow mesenchymal stem cells (MSCs nanofibers) transferred onto the damaged corneal surface and covered with cyclosporine A (CsA)-loaded nanofiber scaffolds (CsA nanofibers) enable healing of the rabbit cornea injured with 1N NaOH. The healing of damaged corneas was examined morphologically, immunohistochemically and biochemically on day 24 after the injury. Compared to untreated injured corneas, where corneal ulceration or large corneal thinning or even perforation were developed, injured corneas treated with drug free nanofibers healed without profound disturbances in a majority of cases, although with fibrosis and scar formation. In injured corneas treated with CsA nanofibers or MSCs nanofibers, the development of scar formation was reduced. Best healing results were obtained with a combination of MSCs and CsA nanofibers (MSCs-CsA nanofibers). Corneas healed with highly restored transparency. Neovascularization highly expressed in untreated injured corneas and reduced in corneas treated with CsA nanofibers or MSCs nanofibers, was suppressed in corneas treated with MSCs-CsA nanofibers. The levels of matrix metalloproteinase 9, inducible nitric oxide synthase, interleukin 6, α-smooth muscle actin, tumor growth factor β and vascular endothelial growth factor were significantly decreased in these corneas as compared to untreated corneas, where the levels of the above mentioned markers were high. In conclusion, MSCs-CsA nanofibers were effective in the treatment of severe alkali-induced corneal injury. PMID:26797822

  7. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  8. Spin-exchange-relaxation-free magnetometry with Cs vapor

    NASA Astrophysics Data System (ADS)

    Ledbetter, M. P.; Savukov, I. M.; Acosta, V. M.; Budker, D.; Romalis, M. V.

    2008-03-01

    We describe a Cs atomic magnetometer operating in the spin-exchange-relaxation-free (SERF) regime. With a vapor cell temperature of 103°C we achieve intrinsic magnetic resonance widths ΔB=17μG corresponding to an electron spin-relaxation rate of 300s-1 when the spin-exchange rate is ΓSE=14000s-1 . We also observe an interesting narrowing effect due to diffusion. Signal-to-noise measurements yield a sensitivity of about 400pG/Hz . Based on photon shot noise, we project a sensitivity of 40pG/Hz . A theoretical optimization of the magnetometer indicates sensitivities on the order of 2pG/Hz should be achievable in a 1cm3 volume. Because Cs has a higher saturated vapor pressure than other alkali metals, SERF magnetometers using Cs atoms are particularly attractive in applications requiring lower temperatures.

  9. Properties of cell wall-associated DD-carboxypeptidase of Enterococcus hirae (Streptococcus faecium) ATCC 9790 extracted with alkali.

    PubMed Central

    Kariyama, R; Massidda, O; Daneo-Moore, L; Shockman, G D

    1990-01-01

    DD-Carboxypeptidase (DD-CPase) activity of Enterococcus hirae (Streptococcus faecium) ATCC 9790 was extracted from intact bacteria and from the insoluble residue (crude cell wall fraction) of mechanically disrupted bacteria by a brief treatment at pH 10.0 (10 mM glycine-NaOH) at 0 degrees C or by extraction with any of several detergents. Extractions with high salt concentrations failed to remove DD-CPase activity from the crude wall fraction. In contrast to N-acetylmuramoylhydrolase (both muramidase 2 and muramidase 1) activities, DD-CPase activity failed to bind to insoluble cell walls or peptidoglycan matrices. Thus, whereas muramidase 1 and muramidase 2 activities can be considered to be cell wall proteins, the bulk of the data are consistent with the interpretation that the DD-CPase of this species is a membrane protein that is sometimes found in the cell wall fraction, presumably because of hydrophobic interactions with other proteins and cell wall polymers. The binding of [14C]penicillin to penicillin-binding protein 6 (43 kilodaltons) was proportional to DD-CPase activity. Kinetic parameters were also consistent with the presence of only one DD-CPase (penicillin-binding protein 6) in E. hirae. Images PMID:2361945

  10. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    ERIC Educational Resources Information Center

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  11. Interface engineering to enhance the efficiency of conventional polymer solar cells by alcohol-/water-soluble C60 materials doped with alkali carbonates.

    PubMed

    Lai, Yu-Ying; Shih, Ping-I; Li, Yi-Peng; Tsai, Che-En; Wu, Jhong-Sian; Cheng, Yen-Ju; Hsu, Chain-Shu

    2013-06-12

    Two new C60-based n-type materials, EGMC-OH and EGMC-COOH, functionalized with hydrophilic triethylene glycol groups (TEGs), have been synthesized and employed in conventional polymer solar cells. With the assistance of the TEG-based surfactant, EGMC-OH and EGMC-COOH can be dissolved in highly polar solvents to implement the polar/nonpolar orthogonal solvent strategy, forming an electron modification layer (EML) without eroding the underlying active layer. Multilayer conventional solar cells on the basis of ITO/PEDOT:PSS/P3HT:PC61BM/EML/Ca/Al configuration with the insertion of the EGMC-OH and EGMC-COOH EML between the active layer and the electrode have thus been successfully realized by cost-effective solution processing techniques. Moreover, the electron conductivity of the EML can be improved by incorporating alkali carbonates into the EGMC-COOH EML. Compared to the pristine device with a PCE of 3.61%, the devices modified by the Li2CO3-doped EGMC-COOH EML achieved a highest PCE of 4.29%. Furthermore, we demonstrated that the formation of the EGMC-COOH EML can be utilized as a general approach in the fabrication of highly efficient multilayer conventional devices. With the incorporation of the EGMC-COOH doped with 40 wt % Li2CO3, the PCDCTBT-C8:PC71BM-based device exhibited a superior PCE of 4.51%, which outperformed the corresponding nonmodified device with a PCE of 3.63%.

  12. A study of vapor CdCl{sub 2} treatment by CSS in CdS/CdTe solar cells

    SciTech Connect

    Rios-Flores, A.; Pena, J.L.; Castro-Pena, V.; Ares, O.; Castro-Rodriguez, R.; Bosio, A.

    2010-06-15

    We report the effect of CdCl{sub 2} vapor treatment on the photovoltaic parameters of CdS/CdTe solar cells. Vapor treatment allows combining CdCl{sub 2} exposure time and annealing in one step. In this alternative treatment, the CdS/CdTe substrates were treated with CdCl{sub 2} vapor in a close spaced sublimation (CSS) configuration. The substrate temperature and CdCl{sub 2} powder source temperature were 400 C. The treatment was done by varying the treatment time (t) from 15 to 90 min. Such solar cells are examined by measuring their current density versus voltage (J-V) characteristics. The open-circuit voltage (V{sub oc}), short circuit current density (J{sub sc}) and fill factor (FF) of our best cell, fabricated and normalized to the area of 1 cm{sup 2}, were V{sub oc} = 663 mV, J{sub sc} = 18.5 mA/cm{sup 2} and FF = 40%, respectively, corresponding to a total area conversion efficiency of {eta} = 5%. In cells of minor area (0.1 cm{sup 2}) efficiencies of 8% have been obtained. (author)

  13. C-CAMP, A closed cycle alkali metal power system

    SciTech Connect

    Wichner, R.P.; Hoffman, H.W.

    1988-01-01

    A concept is presented for a Closed-Cycle Alkali Metal (C-CAMP) power systems which utilizes the heat of reaction of an alkali metal and halogen compound to vaporize an alkali metal turbine fluid for a Rankine cycle. Unique features of the concept are (1) direct contact (heat exchange) between the reaction products and turbine fluid, and (2) a flow-through chemical reactor/boiler. The principal feasibility issues of the concept relate to the degree of cross-mixing of product and turbine fluid streams within the reactor-boiler. If proven feasible, the concept may be adapted to a range of fuel and turbine fluids and ultimately lead to thermal efficiencies in excess of 35%.

  14. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  15. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  16. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. PMID:27442970

  17. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    PubMed

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  18. Use of precalciners to remove alkali from raw materials in the cement industry. Final report, July 1978-July 1980

    SciTech Connect

    Gartner, E.M.

    1980-07-01

    The objective of this work was to develop an efficient means of removing alkali metal compounds (alkalies) from high-alkali aluminosilicate raw materials of the type commonly used as part of cement raw mixes in order to increase the energy efficiency of cement manufacture. The intention of this project was to determine whether the high-alkali raw materials could be pyroprocessed separately to remove the alkalies before they entered the rotary kiln, where they would be mixed with the other raw feed components. If this could be achieved, considerable savings could be made in the energy required to remove alkalies, compared to conventional methods in which the cement raw mix must be treated as a whole. Two different methods of alkali removal were examined, namely, vaporization of alkalies at relatively low temperatures; and alkali-rich melt separation at relativey high temperatures. The results showed that the removal of alkalies by pyroprocessing of high-alkali raw feed components separate from the other cement raw mix components is not likely to be a practical alternative to the best available conventional precalciner technology. (LCL)

  19. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  20. Plasma-enhanced chemical vapor deposition of n-heptane and methyl methacrylate for potential cell alignment applications.

    PubMed

    Steinbach, Annina; Tautzenberger, Andrea; Schaller, Andreas; Kalytta-Mewes, Andreas; Tränkle, Sebastian; Ignatius, Anita; Volkmer, Dirk

    2012-10-24

    Plasma-enhanced chemical vapor deposited polymers (plasma polymers) are promising candidates for biomaterials applications. In the present study, plasma deposition as a fast and easily scalable method was adapted to deposit coatings from n-heptane and methyl methacrylate monomers onto glass substrates. Linear patterns with line and groove widths between 1.25 and 160 μm were introduced by degrative UV-lithography for cell alignment. Differential interference contrast optical microscopy, profilometry and atomic force microscopy revealed that the patterned surfaces had a smooth, homogeneous appearance and a pattern height of 8 and 45 nm for plasma deposited n-heptane and methyl methacrylate, respectively. UV-lithography increased the oxygen content on the surface drastically as shown by X-ray photoelectron spectroscopy. After immersion in simulated body fluid for 21 days, the pattern was still intact, and the ester groups were also maintained for the most part as shown by infrared spectroscopy. To test the coatings' potential applicability for biomaterial surfaces in a preliminary experiment, we cultured murine preosteoblastic MC3T3-E1 cells on these coatings. Light and electron microscopically, a normal spindle-shaped and aligned cell morphology was observed. At the mRNA level, cells showed no signs of diminished proliferation or elevated expression of apoptosis markers. In conclusion, plasma-enhanced chemical vapor deposited polymers can be patterned with a fast and feasible method and might be suitable materials to guide cell alignment. PMID:22992135

  1. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  2. VAPOR VALVE

    DOEpatents

    Wouters, L.F.

    1959-08-25

    Electromagnetically operated vapor valves are described for apparatus employed in the separation of isotopes or elements to control the flow of gaseous vapors between a vaporizing charge chamber and an ionizing chamber, The charge chamber and ionizing chamber are positioned in a magnetic field, and the flow of vapors through an orifice connecting the chambers is regulated by regulating the flow of current through a resilient metal strip rigidly mounted at one end and positioned in the magnetic field adjacent to the orifice.

  3. Alkali (Rb/K) abundances in Allende barred-olivine chondrules - Implications for the melting conditions of chondrules

    SciTech Connect

    Matsuda, Hitoshi; Nakamura, Noboru; Noda, Shinji )

    1990-06-01

    Twenty five petrographically characterized chondrules, including 18 barred olivine (BO) chondrules from the Allende (CV3) meteorite, were analyzed for alkalis (K and Rb) and alkaline earths (Sr, Ba, Ca and Mg) by mass spectrometric isotope dilution. Most BO chondrules with higher alkalis (greater than the CI level) have nearly CI-chondritic Rb/K ratios, while those with lower alkalis clearly show higher Rb/K ratios than the CI-chondritic. In general, BO chondrules with higher Rb/K exhibit more depletion of alkalis relative to Ca. The mean olivine Fa for individual chondrules positively correlates with bulk alkali concentrations in BO type but not in porphyritic type chondrules. These observations suggest that some BO chondrules formed from more reducing assemblages of precursor minerals, which experienced more intensive vaporization losses of alkalis, accompanied by Rb/K fractionation, during the chondrule-formation melting. 30 refs.

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Measuring spatial variability of vapor flux to characterize vadose-zone VOC sources: flow-cell experiments.

    PubMed

    Mainhagu, J; Morrison, C; Truex, M; Oostrom, M; Brusseau, M L

    2014-10-15

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local-extraction point, whereas increases were observed for monitoring points located between the local-extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  6. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    PubMed Central

    Morrison, C.; Truex, M.; Oostrom, M.; Brusseau, M.L.

    2014-01-01

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. The results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points. PMID:25171394

  7. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    DOE PAGES

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less

  8. Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments

    SciTech Connect

    Mainhagu, Jon; Morrison, C.; Truex, Michael J.; Oostrom, Martinus; Brusseau, Mark

    2014-08-05

    A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. A well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.

  9. Alkali hydrolysis of trinitrotoluene.

    PubMed

    Karasch, Christian; Popovic, Milan; Qasim, Mohamed; Bajpai, Rakesh K

    2002-01-01

    Data for alkali hydrolysis of 2,4,6-trinitrotoluene (TNT) in aqueous solution at pH 12.0 under static (pH-controlled) as well as dynamic (pH-uncontrolled) conditions are reported. The experiments were conducted at two different molar ratios of TNT to hydroxyl ions at room temperature. The TNT disappeared rapidly from the solution as a first-order reaction. The complete disappearance of aromatic structure from the aqueous solution within 24 h was confirmed by the ultraviolet-visible (UV-VIS) spectra of the samples. Cuvet experiments in a UV-VIS spectrophotometer demonstrated the formation of Meisenheimer complex, which slowly disappeared via formation of aromatic compounds with fewer nitro groups. The known metabolites of TNT were found to accumulate only in very small quantities in the liquid phase.

  10. High-efficiency CdTe thin-film solar cells using metalorganic chemical vapor deposition techniques

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Stirn, R. J.; Meyers, P. V.; Liu, C. H.

    1989-01-01

    Energy conversion efficiency of metalorganic chemical vapor deposited CdTe as an intrinsic active layer in n-i-p solar cell structures is reported. Small-area devices with efficiencies over 9 percent have been demonstrated. I-V characteristics, photospectral response, and the results of Auger profiling of structural composition for typical devices will be presented. Also presented are preliminary results on similar photovoltaic devices having Cd(0.85)Mn(0.15)Te in place of CdTe as an i layer.

  11. Mixed alkali effect in nonconventional alkali gallotitanate glasses

    SciTech Connect

    Miyaji, Fumiaki; Hasegawa, Shinya; Yoko, Toshinobu; Sakka, Sumio . Inst. for Chemical Research)

    1993-02-01

    The mixed alkali effect on electrical conductivity, that is, the reduction of conductivity due to alkali mixing, was observed in Na[sub 2]O-K[sub 2]O-Ga[sub 2]O[sub 3]-TiO[sub 2] glasses, which are nonconventional in the sense that glass-forming oxides defined by Zachariasen are not involved. The magnitude of the reduction in conductivity of the present glasses due to alkali mixing was similar to that of corresponding mixed alkali silicate and phosphate glasses. The activation energy for electrical conduction showed a maximum around the composition Na/(Na + K) = 0.5, where the conductivity was at a minimum.

  12. Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process.

    PubMed

    Liu, Chong; Fan, Jiandong; Zhang, Xing; Shen, Yanjiao; Yang, Lin; Mai, Yaohua

    2015-05-01

    Recently, the organic-inorganic hybrid perovskite solar cells exhibit rapidly rising efficiencies, while anomalous hysteresis in perovskite solar cells remains unsolvable. Herein, a high-quality perovskite thin film is prepared by a modified vapor-assisted solution process, which is a simple but well-controllable method proven to be capable of producing a thin film with full surface coverage and grain size up to micrometers. The as-fabricated perovskite solar cell has efficiency as high as 10.2%. The hysteresis effects of both planar and mesoscopic TiO2-based perovskite solar cells have been comprehensively studied upon illumination. The results demonstrate that mesoporous-based perovskite cells combined with remarkable grain size are subject to alleviating the hysteresis effects in comparison to the planar cells. Likewise, mesoscopic TiO2-based perovskite cells perform independently of illumination and bias conditions prior to the measurements, whereas the planar cells display a reversible behavior of illumination and applied bias-dependent I-V curves. The present study would refer strip road for the stability study of the perovskite solar cells.

  13. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  14. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    DOE PAGES

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. Asmore » a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.« less

  15. Panchromatic polymer-polymer ternary solar cells enhanced by Forster resonance energy transfer and solvent vapor annealing

    SciTech Connect

    Goh, Tenghooi; Sfeir, Matthew Y.; Huang, Jing -Shun; Bartolome, Benjamin; Vaisman, Michelle; Lee, Minjoo L.; Taylor, Andre D.

    2015-08-04

    Thanks to the bulk-heterojunction (BHJ) feature of polymer solar cells (PSC), additional light active components can be added with ease to form ternary solar cells. This strategy has achieved great success largely due to expanded spectral response range and improved power conversion efficiency (PCE) without incurring excessive processing costs. Here, we report ternary blend polymer–polymer solar cells comprised of PTB7, P3HT, and PC71BM with PCE as high as 8.2%. Analyses of femtosecond time resolved photoluminescence and transient absorption spectroscopy data confirm that P3HT is effective in transferring energy non-radiatively by inducing excitons and prolonging their overall lifetime in PTB7. As a result, solvent vapor annealing (SVA) treatment was employed to rectify the overly-coarse morphology, thus enhancing the fill factor, reducing interfacial recombination, and boosting the PCE to 8.7%.

  16. Design of a physical vapor transport cell for time controlled deposition of nucleation phase organic thin films.

    PubMed

    Mea, Jesse S; Gauvin, Serge; Ashrit, P V

    2007-04-01

    A portable high vacuum chamber has been designed to implement a solenoid operated shutter used as a substrate cache during short duration deposition of organic thin films via the physical vapor transport (PVT) method. This PVT cell was designed for the study of gravity effects on nucleation phase organic thin films obtained in laboratory unit g conditions and especially low g conditions found onboard parabolic flights. The design challenges met were, notably, the timely control of deposition on the substrate during parabolas and maintenance of the experimental cell pressure during operation of the shutter. Nucleation phase thin films of the organic hole transporting semiconductor N,N' -bis(3-methylphenyl)-N,N' -bis(phenyl)benzidine (TPD), obtained with the use of the PVT cells, show that the moving shutter has an effect on the convective PVT gas flow; however, as convection is reduced, this effect is observed to be equally reduced.

  17. Multiwavelength Strontium Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  18. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  19. Comparison of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in live cells.

    PubMed

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C; Skirtach, Andre G; Braeckmans, Kevin

    2014-06-24

    There is a great interest in delivering macromolecular agents into living cells for therapeutic purposes, such as siRNA for gene silencing. Although substantial effort has gone into designing nonviral nanocarriers for delivering macromolecules into cells, translocation of the therapeutic molecules from the endosomes after endocytosis into the cytoplasm remains a major bottleneck. Laser-induced photoporation, especially in combination with gold nanoparticles, is an alternative physical method that is receiving increasing attention for delivering macromolecules in cells. By allowing gold nanoparticles to bind to the cell membrane, nanosized membrane pores can be created upon pulsed laser illumination. Depending on the laser energy, pores are created through either direct heating of the AuNPs or by vapor nanobubbles (VNBs) that can emerge around the AuNPs. Macromolecules in the surrounding cell medium can then diffuse through the pores directly into the cytoplasm. Here we present a systematic evaluation of both photoporation mechanisms in terms of cytotoxicity, cell loading, and siRNA transfection efficiency. We find that the delivery of macromolecules under conditions of VNBs is much more efficient than direct photothermal disturbance of the plasma membrane without any noticeable cytotoxic effect. Interestingly, by tuning the laser energy, the pore size could be changed, allowing control of the amount and size of molecules that are delivered in the cytoplasm. As only a single nanosecond laser pulse is required, we conclude that VNBs are an interesting photoporation mechanism that may prove very useful for efficient high-throughput macromolecular delivery in live cells.

  20. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  1. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    NASA Astrophysics Data System (ADS)

    Quarrie, L.

    2014-09-01

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  2. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  3. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

    SciTech Connect

    Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry

    2014-11-10

    We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/√(Hz) and measure a technical noise floor of 40fT/√(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

  4. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    PubMed

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-01

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  5. Electrodes For Alkali-Metal Thermoelectric Converters

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Wheeler, Bob L.; Jeffries-Nakamura, Barbara; Lamb, James L.; Bankston, C. Perry; Cole, Terry

    1989-01-01

    Combination of thin, porous electrode and overlying collector grid reduces internal resistance of alkali-metal thermoelectric converter cell. Low resistance of new electrode and grid boosts power density nearly to 1 W/cm2 of electrode area at typical operating temperatures of 1,000 to 1,300 K. Conductive grid encircles electrode film on alumina tube. Bus wire runs along tube to collect electrical current from grid. Such converters used to transform solar, nuclear, and waste heat into electric power.

  6. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  7. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    NASA Astrophysics Data System (ADS)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  8. The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Svensson, Jan Erik; Froitzheim, Jan

    2015-08-01

    Chromium vaporization and oxide scale growth are probably the two most important degradation mechanisms associated with the interconnect in Solid Oxide Fuel Cells (SOFCs) when Cr2O3-forming alloys are used as the interconnect material. This study examines the influence of temperature on both mechanisms. Two commercially available steels; Crofer 22 H and Sanergy HT, were isothermally exposed at 650, 750 and 850 °C in an air-3% H2O atmosphere with a high flow rate. Volatile chromium species were collected using the denuder technique. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX) and X-Ray Diffraction (XRD). The findings of this study show that although Cr evaporation is reduced with lower temperature, its relative importance compared to oxide scale growth is greater.

  9. ZnO/Cu(InGa)Se.sub.2 solar cells prepared by vapor phase Zn doping

    DOEpatents

    Ramanathan, Kannan; Hasoon, Falah S.; Asher, Sarah E.; Dolan, James; Keane, James C.

    2007-02-20

    A process for making a thin film ZnO/Cu(InGa)Se.sub.2 solar cell without depositing a buffer layer and by Zn doping from a vapor phase, comprising: depositing Cu(InGa)Se.sub.2 layer on a metal back contact deposited on a glass substrate; heating the Cu(InGa)Se.sub.2 layer on the metal back contact on the glass substrate to a temperature range between about 100.degree. C. to about 250.degree. C.; subjecting the heated layer of Cu(InGa)Se.sub.2 to an evaporant species from a Zn compound; and sputter depositing ZnO on the Zn compound evaporant species treated layer of Cu(InGa)Se.sub.2.

  10. Hydrothermal alkali metal catalyst recovery process

    DOEpatents

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  11. Vapor Explosions

    NASA Astrophysics Data System (ADS)

    Berthoud, Georges

    A vapor explosion results from the rapid and intense heat transfer that may follow contact between a hot liquid and a cold, more volatile one. Because it can happen during severe-accident sequences of a nuclear power plan, that is, when a large part of the core is molten, vapor explosions have been widely studied. The different sequences of a vapor explosion are presented, including premixing, triggering, propagation, and expansion. Typical experimental results are also analyzed to understand the involved physics. Then the different physics involved in the sequences are addressed, as well as the present experimental program.

  12. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere. PMID:27483916

  13. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  14. High temperature alkali corrosion of ceramics in coal gas. Quarterly progress report No. 6, December 1, 1992--February 28, 1993

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-02-24

    The high temperature alkali corrosion kinetics of SiC have been systematically investigated from 950 to 1100{degrees}C at 0.63 vol % alkali vapor concentration. The corrosion rate in the presence of alkaliis approximately 10{sup 4} to 10{sup 5} times faster than the oxidation rate of SiC in air. The activation energy associated with the alkali corrosion is 406 kJ/mol, indicating a highly temperature-dependent reaction rate. The rate-controlling step of the overall reaction is likely to be the dissolution of silica in the sodium silicate liquid, based on the oxygen diffusivity data.

  15. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  16. Passivation properties of aluminum oxide films deposited by mist chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Miki, Shohei; Iguchi, Koji; Kitano, Sho; Hayakashi, Koki; Hotta, Yasushi; Yoshida, Haruhiko; Ogura, Atsushi; Satoh, Shin-ichi; Arafune, Koji

    2015-08-01

    Aluminum oxide (AlOx) films were deposited by mist chemical vapor deposition (MCVD) in air for p-type crystalline silicon, and the effects of the deposition temperature (Tdep) and AlOx film thickness on the maximum surface recombination velocities (Smax) were evaluated. It was found that Smax was improved with increasing Tdep. The AlOx film deposited at 400 °C exhibited the best Smax value of 2.8 cm/s, and the passivation quality was comparable to that of AlOx deposited by other vacuum-based techniques. Smax was also improved with increasing film thickness. When the film thickness was above 10 nm, Smax was approximately 10 cm/s. From the Fourier transform infrared spectra, it was found that the AlOx films deposited by MCVD consisted of an AlOx layer and a Si-diffused AlOx layer. In addition, it is important for the layers to be thick enough to obtain high-quality passivation.

  17. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  18. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  19. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  20. Idiosyncrasies of Physical Vapor Deposition Processes from Various Knudsen Cells for Quinacridone Thin Film Growth on Silicon Dioxide

    PubMed Central

    2015-01-01

    Thin films of quinacridone deposited by physical vapor deposition on silicon dioxide were investigated by thermal desorption spectroscopy (TDS), mass spectrometry (MS), atomic force microscopy (AFM), specular and grazing incidence X-ray diffraction (XRD, GIXD), and Raman spectroscopy. Using a stainless steel Knudsen cell did not allow the preparation of a pure quinacridone film. TDS and MS unambiguously showed that in addition to quinacridone, desorbing at about 500 K (γ-peak), significant amounts of indigo desorbed at about 420 K (β-peak). The existence of these two species on the surface was verified by XRD, GIXD, and Raman spectroscopy. The latter spectroscopies revealed that additional species are contained in the films, not detected by TDS. In the film mainly composed of indigo a species was identified which we tentatively attribute to carbazole. The film consisting of mainly quinacridone contained in addition p-sexiphenyl. The reason for the various decomposition species effusing from the metal Knudsen cell is the comparably high sublimation temperature of the hydrogen bonded quinacridone. With special experimental methods and by using glass Knudsen-type cells we were able to prepare films which exclusively consist of molecules either corresponding to the β-peak or the γ-peak. These findings are of relevance for choosing the proper deposition techniques in the preparation of quinacridone films in the context of organic electronic devices. PMID:26401189

  1. Vapor phase crystallization in Apollo 14 breccia.

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Clanton, U. S.; Morrison, D. A.; Ladle, G. H.

    1972-01-01

    The vugs contained in many of the highly recrystallized breccias from Apollo 14 are discussed, along with the well-developed crystals of plagioclase, pyroxene, ilmenite, apatite, whitlockite, iron, nickel-iron, and troilite that extend from the vug walls and bridge open spaces. These crystals are interpreted as having formed by deposition from a hot vapor containing oxides, halides, sulfides, alkali metals, iron and possibly other chemical species. The hot vapor was associated with the thermal metamorphism and subsequent cooling of the Fra Mauro formation after it had been deposited as an ejecta blanket by the Imbrian impact.

  2. Fugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere

    NASA Astrophysics Data System (ADS)

    Southworth, G. R.; Lindberg, S. E.; Zhang, H.; Anscombe, F. R.

    During winter 2000, a multi-organization research team assessed fugitive (non-stack) mercury air emissions at a chlor-alkali factory in the US using a variety of sophisticated mercury vapor analyzers to assess fugitive air emissions of mercury. The team obtained mercury data over a 9-day period from inside the factory, with the first known concurrent awareness of manufacturing operations. Emissions were measured from the roof vent, the open-sided basement below the production cells, and from surrounding soils and sealed waste ponds. Some emphasis was also placed on assessing the spatial distribution of Hg concentrations within an operating cell room. The team used real-time and near-real-time Hg analyzers including a Tekran 5-min integrated sampler modified for cell-room use, Lumex RA915+ and Jerome 431-X portable Hg analyzers, and a long-path integrating DOAS system for gaseous elemental Hg, coupled with an optical anemometer for measuring vent-averaged air flow rates. The integrated beam (DOAS) and point measurements of Hg° compared favorably. One principal finding is that fugitive air emissions from the cell-room roof vent are episodic and vary with factory operating conditions (maintenance and minor operational perturbations). Therefore, air emissions are likely to vary widely among factories on a worldwide basis, in accordance with operating procedures followed at each. Properly positioned, real-time mercury vapor analyzers are potentially valuable tools to locate small-scale process leaks, and to estimate overall emissions from the cell-room building. A preliminary estimate of daily fugitive Hg emissions during this period (˜400-600 g d -1) indicated that the bulk of the atmospheric loss was emitted from the roof vent of the main production building. Sealed waste ponds were not important sources, emitting Hg at rates comparable to background soils.

  3. Alkali and transition metal phospholides

    NASA Astrophysics Data System (ADS)

    Bezkishko, I. A.; Zagidullin, A. A.; Milyukov, V. A.; Sinyashin, O. G.

    2014-06-01

    Major tendencies in modern chemistry of alkali and transition metal phospholides (phosphacyclopentadienides) are systematized, analyzed and generalized. Basic methods of synthesis of these compounds are presented. Their chemical properties are considered with a special focus on their complexing ability. Potential applications of phospholides and their derivatives are discussed. The bibliography includes 184 references.

  4. Influence of temperature on alkali stress adaptation in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes cells may induce alkali stress adaptation when exposed to sublethal concentrations of alkaline cleaners and sanitizers that may be frequently used in the food processing environment. In the present study, the effect of temperature on the induction and the stability of such alk...

  5. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE PAGES

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  6. GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers

    SciTech Connect

    Simon, John; Schulte, Kevin L.; Young, David L.; Haegel, Nancy M.; Ptak, Aaron J.

    2016-01-01

    The high cost of high-efficiency III-V photovoltaic devices currently limits them to niche markets. Hydride vapor-phase epitaxy (HVPE) growth of III-V materials recently reemerged as a low-cost, high-throughput alternative to conventional metal- organic vapor-phase epitaxy (MOVPE) growth of high-efficiency solar cells. Previously, we demonstrated unpassivated HVPEgrown GaAs p-n junctions with good quantum efficiency and high open-circuit voltage (Voc). In this work, we demonstrate the growth of GaInPby HVPE for use as a high-quality surface passivation layer to GaAs solar cells. Solar cells grown with GaInP window layers show significantly improved quantum efficiency compared with unpassivated cells, increasing the short-circuit current (JSC) of these low-cost devices. These results show the potential of low-cost HVPE for the growth of high-quality III-V devices.

  7. Characterization of intrinsic a-Si:H films prepared by inductively coupled plasma chemical vapor deposition for solar cell applications.

    PubMed

    Jeong, Chaehwan; Boo, Seongjae; Jeon, Minsung; Kamisako, Koichi

    2007-11-01

    The hydrogenated amorphous silicon (a-Si:H) films, which can be used as the passivation or absorption layer of solar cells, were prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD) and their characteristics were studied. Deposition process of a-Si:H films was performed by varying the parameters, gas ratio (H2/SiH4), radio frequency (RF) power and substrate temperature, while a working pressure was fixed at 70 m Torr. Their characteristics were studied by measuring thickness, optical bandgap (eV), photosensitivity, bond structure and surface roughness. When the RF power and substrate temperature were 300 watt and 200 degrees C, respectively, optical bandgap and photosensitivity, similar to the intrinsic a-Si:H film, were obtained. The Si-H stretching mode at 2000 cm(-1), which means a good quality of films, was found at all conditions. Although the RF power increased up to 400 watt, average of surface roughness got better, compared to a-Si:H films deposited by the conventional PECVD method. These results show the potential for developing the solar cells using ICP-CVD, which have the relatively less damage of plasma.

  8. Vapor fragrancer

    NASA Astrophysics Data System (ADS)

    Sang, Q. Tran; Bryant, Timothy D.

    1987-05-01

    This invention relates to a vapor fragrancer for continuously, uniformly, and economically odorizing or deodorizing an environment. Homes, offices, automobiles, and space stations require either odorizing or deodorizing of the atmosphere to create pleasant conditions for work or leisure. A vapor fragrancer is provided to accomplish these goals. A supplier continuously supplies a predetermined amount of desired liquid fragrance from a container to a retaining material, which is positioned in the circulation path of the atmosphere. The supplier is either a low powered pump or a gravity dispenser. The atmosphere flowing in a circulation path passes over the retaining material containing the liquid fragrance and lifts a fragrant vapor from the retaining material. The atmosphere is thereby continuously and uniformly fragranced.

  9. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines

    PubMed Central

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H.; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland’s nutrient solution with 0 mM Na+ (control) or half strength Hoagland’s nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL) ], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  10. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  11. High temperature alkali corrosion of ceramics in coal gas. Quarterly progress report No. 7, March 1, 1993--June 1, 1993

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1993-05-25

    Corrosion kinetics of SiC were investigated from 950 to 1100C at 0.63 vol% alkali vapor concentration. Corrosion rate in alkali is 10{sup 4} to 10{sup 5} times faster than oxidation rate of SiC in air. Activation energy of the alkali corrosion is 406 kj/mol, indicating a high sensitivity to temperature changes. Overall reaction appears to be controlled by the oxidation of SiC. The alkali corrosion kinetics of Si{sub 3}N{sub 4} from 950 to 1050{degrees}C were also examined in the same atmosphere (0.63 vol% alkali vapors). Reaction thickness of Si{sub 3}N{sub 4} appears to vary linearly with reaction time from 950 to 1050C, suggesting that the alkali corrosion process is controlled by the oxidation of Si{sub 3}N{sub 4}. At 1050{degrees}C, the alkali-enhanced oxidation of Si{sub 3}N{sub 4} is approximately 10{sup 7} times faster than the oxidation of Si{sub 3}N{sub 4} in dry oxygen. Compared to SiC corroded in the same alkali atmosphere, Si{sub 3}N{sub 4} seems to be less alkali-resistant than SiC. Phase relations of the Na{sub 2}O-Al{sub 2}TiO{sub 5} vertical section from 5--40 wt% Na{sub 2}O and 840-1100C were studied. Phase analysis indicates that this section is not a true binary system. A tentative phase diagram for the Na{sub 2}O-Al{sub 2}O{sub 3}-TiO{sub 2} system was constructed.

  12. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs

    SciTech Connect

    Daschner, R.; Kübler, H.; Löw, R.; Pfau, T.; Baur, H.; Frühauf, N.

    2014-07-28

    We demonstrate the use of an anodic bonding technique for building a vacuum tight vapor cell for the use of Rydberg spectroscopy of alkali atoms with thin film electrodes on the inside of the cell. The cell is fabricated by simultaneous triple stack glass-to-glass anodic bonding at 300 °C. This glue-free, low temperature sealing technique provides the opportunity to include thin film electric feedthroughs. The pressure broadening is only limited by the vapor pressure of rubidium and the lifetime is at least four months with operating temperatures up to 230 °C.

  13. Triple stack glass-to-glass anodic bonding for optogalvanic spectroscopy cells with electrical feedthroughs

    NASA Astrophysics Data System (ADS)

    Daschner, R.; Kübler, H.; Löw, R.; Baur, H.; Frühauf, N.; Pfau, T.

    2014-07-01

    We demonstrate the use of an anodic bonding technique for building a vacuum tight vapor cell for the use of Rydberg spectroscopy of alkali atoms with thin film electrodes on the inside of the cell. The cell is fabricated by simultaneous triple stack glass-to-glass anodic bonding at 300 °C. This glue-free, low temperature sealing technique provides the opportunity to include thin film electric feedthroughs. The pressure broadening is only limited by the vapor pressure of rubidium and the lifetime is at least four months with operating temperatures up to 230 °C.

  14. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  15. A Quantitative Tunneling/Desorption Model for the Exchange Current at the Porous Electrode/Beta - Alumina/Alkali Metal Gas Three Phase Zone at 700-1300K

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Ryan, M. A.; Saipetch, C.; LeDuc, H. G.

    1996-01-01

    The exchange current observed at porous metal electrodes on sodium or potassium beta -alumina solid electrolytes in alkali metal vapor is quantitatively modeled with a multi-step process with good agreement with experimental results.

  16. Sub-doppler spectroscopy of sodium vapor in an ultrathin cell

    NASA Astrophysics Data System (ADS)

    Khanbekyan, K. A.; Mariotti, E.; Khanbekyan, A. A.; Moi, L.; Khanbekyan, A. M.

    2016-05-01

    The results obtained in a cell with a distance between windows on the order of several hundreds of nanometers (the so-called "nanocell") are presented. The nanocell thickness L in the vertical direction changes from 100 to 900 nm. It is shown that the use of a nanocell with thickness L = λ/2, where λ is a laser wavelength resonant to the atomic transition D2 in sodium atoms, provides sub-Doppler resolution of transmission and fluorescence spectra.

  17. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    SciTech Connect

    François, B.; Boudot, R.; Calosso, C. E.; Danet, J. M.

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  18. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    NASA Astrophysics Data System (ADS)

    François, B.; Calosso, C. E.; Danet, J. M.; Boudot, R.

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad2/Hz and -129 dB rad2/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10-14 at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  19. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    PubMed

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels. PMID:24977849

  20. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock.

    PubMed

    François, B; Calosso, C E; Danet, J M; Boudot, R

    2014-09-01

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be -42, -100, -117 dB rad(2)/Hz and -129 dB rad(2)/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10(-14) at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out. PMID:25273756

  1. Spatial transport of atomic coherence in electromagnetically induced absorption with a paraffin-coated Rb vapor cell.

    PubMed

    Lee, Yoon-Seok; Moon, Han Seb

    2014-06-30

    We report the spatial transport of spontaneously transferred atomic coherence (STAC) in electromagnetically induced absorption (EIA), which resulted from moving atoms with the STAC of the 5S(1/2) (F = 2)-5P(3/2) (F' = 3) transition of (87)Rb in a paraffin-coated vapor cell. In our experiment, two channels were spatially separate; the writing channel (WC) generated STAC in the EIA configuration, and the reading channel (RC) retrieved the optical field from the spatially transported STAC. Transported between the spatially separated positions, the fast light pulse of EIA in the WC and the delayed light pulse in the RC were observed. When the laser direction of the RC was counter-propagated in the direction of the WC, we observed direction reversal of the transported light pulse in the EIA medium. Furthermore, the delay time, the magnitude, and the width of the spatially transported light pulse were investigated with respect to the distance between the two channels.

  2. Melatonin promotes distal dendritic ramifications in layer II/III cortical pyramidal cells of rats exposed to toluene vapors.

    PubMed

    Pascual, Rodrigo; Bustamante, Carlos

    2010-10-01

    We have previously shown that toluene inhalation produces significant impairments in the basilar dendritic outgrowth of pyramidal cortical cells. This neurotoxic effect was markedly inhibited by melatonin administration at a dose of 5mg kg(-1). The present study was designed to determine whether toluene and melatonin equally affect all basilar dendritic segments or if a differential response exists between the segments. Twenty-eight male mice were weaned at postnatal day 21 (P21) and randomly assigned to either the control (C; n=10,) or toluene (T; n=18) group. Between P22-P32, male rats were placed into a glass chamber and exposed to either toluene vapors (5-000-6000 ppm) or clean air for 10 min a day. When toluene exposure ended (P32), animals were further assigned to the following experimental groups: (a) control/saline (C/S; n=10), (b) toluene/saline (T/S; n=10), or (c) toluene/melatonin 5mg kg(-1) (T/M; n=8). Melatonin or vehicle solutions were administered daily between P32 and P38. Forty-eight hours after the final toluene exposure, the animals were sacrificed, and the pyramidal cortical cells were stained using the Golgi-Cox-Sholl procedure. The number of basilar dendritic branches/order was counted using the centrifugal ordering method. The results indicate that (i) toluene inhalation significantly impairs both proximal and distal basilar dendritic ramifications (in the parietal and frontal/occipital cortices, respectively) and (ii) melatonin both protects neurons from toluene neurotoxicity in all cortical areas studied and increases the complexity of the dendritic tree above control values.

  3. Vapor and healing treatment for CH3NH3PbI3-xClx films toward large-area perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A.; Bouhadana, Yaniv; Zaban, Arie

    2016-03-01

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm2). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (Voc, Jsc, Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ~100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a ``healing effect'' to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method.Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non

  4. Vapor and healing treatment for CH3NH3PbI(3-x)Cl(x) films toward large-area perovskite solar cells.

    PubMed

    Gouda, Laxman; Gottesman, Ronen; Tirosh, Shay; Haltzi, Eynav; Hu, Jiangang; Ginsburg, Adam; Keller, David A; Bouhadana, Yaniv; Zaban, Arie

    2016-03-28

    Hybrid methyl-ammonium lead trihalide perovskites are promising low-cost materials for use in solar cells and other optoelectronic applications. With a certified photovoltaic conversion efficiency record of 20.1%, scale-up for commercial purposes is already underway. However, preparation of large-area perovskite films remains a challenge, and films of perovskites on large electrodes suffer from non-uniform performance. Thus, production and characterization of the lateral uniformity of large-area films is a crucial step towards scale-up of devices. In this paper, we present a reproducible method for improving the lateral uniformity and performance of large-area perovskite solar cells (32 cm(2)). The method is based on methyl-ammonium iodide (MAI) vapor treatment as a new step in the sequential deposition of perovskite films. Following the MAI vapor treatment, we used high throughput techniques to map the photovoltaic performance throughout the large-area device. The lateral uniformity and performance of all photovoltaic parameters (V(oc), J(sc), Fill Factor, Photo-conversion efficiency) increased, with an overall improved photo-conversion efficiency of ∼100% following a vapor treatment at 140 °C. Based on XRD and photoluminescence measurements, We propose that the MAI treatment promotes a "healing effect" to the perovskite film which increases the lateral uniformity across the large-area solar cell. Thus, the straightforward MAI vapor treatment is highly beneficial for large scale commercialization of perovskite solar cells, regardless of the specific deposition method. PMID:26754034

  5. Plasma Formation During Operation of a Diode Pumped Alkali Laser (DPAL) in Cs

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-10-01

    Diode pumped Alkali Lasers (DPALs) produce laser action on the resonant lines of alkali atoms. Diode lasers resonantly pump the 2P3/2 state of the alkali atom which is collisionally relaxed to the 2P3/2 state which then lases to the ground state 2S1/2. The low optical quality of high power semiconductor diode lasers is converted into high optical quality laser radiation from the alkali vapor. The Cs DPAL system using Ar/Cs/C2H6 mixtures has shown promising results. (C2H6 is the collisional relaxant.) In other studies, resonant excitation of alkali vapor by low power lasers has been used to produce highly ionized channels, initiated through associative ionization and superelastic electron heating. The issue then arises if plasma formation occurs during DPAL by similar mechanisms which would be detrimental to laser performance. In this paper, we report on results from a computational study of a DPAL using Cs vapor. The global model addresses quasi-cw pumping of the Cs(2P3/2) state by laser diodes, and includes a full accounting of the resulting electron kinetics. To enable this study, the B-spline R-matrix (BSR) with pseudostates method was employed to calculate electron impact cross sections for Cs. We found that for pump rates of many to 10 kW/cm2, plasma densities approaching 1013 cm-3 occur during laser oscillation with higher values in the absence of laser oscillation. Supported by DoD High Energy Laser Mult. Res. Initiative and NSF.

  6. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    NASA Astrophysics Data System (ADS)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  7. Alkali-Metal Spin Maser.

    PubMed

    Chalupczak, W; Josephs-Franks, P

    2015-07-17

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra. PMID:26230788

  8. Alkali-Metal Spin Maser

    NASA Astrophysics Data System (ADS)

    Chalupczak, W.; Josephs-Franks, P.

    2015-07-01

    Quantum measurement is a combination of a read-out and a perturbation of the quantum system. We explore the nonlinear spin dynamics generated by a linearly polarized probe beam in a continuous measurement of the collective spin state in a thermal alkali-metal atomic sample. We demonstrate that the probe-beam-driven perturbation leads, in the presence of indirect pumping, to complete polarization of the sample and macroscopic coherent spin oscillations. As a consequence of the former we report observation of spectral profiles free from collisional broadening. Nonlinear dynamics is studied through exploring its effect on radio frequency as well as spin noise spectra.

  9. Sol-Generating Chemical Vapor into Liquid (SG-CViL) Deposition- A Facile Method for Encapsulation of Diverse Cell Types in Silica Matrices

    PubMed Central

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-01-01

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex-vivo environments necessitates development of bio-nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. The ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell-silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications. PMID:25688296

  10. Magnesium doping of efficient GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lewis, C. R.; Ford, C. W.; Werthen, J. G.

    1984-01-01

    Magnesium has been substituted for zinc in GaAs and Ga(0.75)In(0.25)As solar cells grown by metalorganic chemical vapor deposition (MOCVD). Bis(cyclopentadienyl)magnesium (Cp2Mg) is used as the MOCVD transport agent for Mg. Full retention of excellent material quality and efficient cell performance results. The substitution of Mg for Zn would enhance the abruptness and reproducibility of doping profiles, and facilitate high temperature processing and operation, due to the much lower diffusion coefficient of Mg, relative to Zn, in these materials.

  11. Cesium vapor thermionic current generator

    SciTech Connect

    Fowler, H.H.; Israel, A.D.

    1981-11-03

    An electron current generator is disclosed which includes a nonelectrical heat source, a heat pipe having its first end in thermal relationship with the heat source, and a second end projecting upwardly therefrom and constituting a thermionic emitter enclosed within a chamber containing an alkali metal vapor at a substantially reduced atmospheric pressure. A substantial portion of the chamber wall constitutes a thermionic collector which is cooled by an appropriate cooling means to enhance current generation. A body of liquid metal is disposed between the heat source and heat pipe as a thermal stabilizing agent while a solid state diode is arranged in a forward bias situation in the electrical output of the generator to stabilize the voltage thereby forming a constant voltage current generator.

  12. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    SciTech Connect

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  13. Fabrication of solid state dye sensitized solar cells utilizing vapor phase polymerized poly(3,4-ethylenedioxythiophene) hole conducting layer

    NASA Astrophysics Data System (ADS)

    Skorenko, Kenneth H.

    There is a need for sustainable and renewable energy sources that can be used in both grid and off-grid structured systems. Photovoltaic devices have been used to generate electrical energy by capturing and converting photons from the sun. Dye sensitized solar cells (DSSC) have gained attention due to their consistent energy generation during indirect sunlight. Furthermore, DSSC can be applied as a flexible device and gain benefits from the low cost roll to roll manufacturing. With this in mind, we have taken steps toward optimizing a DSSC device for use as a solid state solar cell using conducting polymers. Typically DSSC use a liquid electrolyte as a hole conducting layer used to direct the separation of electron -- hole pairs. This liquid electrolyte comes with problems that can be subverted using conducting polymers. Poly(3,4 -- ethylenedioxythiophene) (PEDOT), is a conducting thiophene that is tailored to have enhanced conductivity. We show that a vapor phase polymerization (VPP) of PEDOT can be used as a hole conducting layer in a solid state DSSC device. To this end we have investigated the electrical properties of the VPP PEDOT films in order to understand how the morphology and conductive domains relate to a polymers conductivity. Using 4 point probe we have measure the sheet resistance of the film, as well as how the films resistance is altered during stress tests. Scanning electron microscopy has been utilized to compare morphologies of different PEDOT films and see how surface morphology impacts the conductance measured. Using conductive atomic force microscopy we can look at the conductive domains between VPP PEDOT and PEDOT:PSS films. We saw that conductive domains of the VPP PEDOT are not only more conductive but also much larger in size and widespread throughout the film. We show that there is formation of PEDOT through optical spectroscopy and structural characterization such as UV/Vis and Raman spectroscopy as well as X-ray diffraction. When

  14. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wada, Takao; Ueda, Noriaki

    2013-04-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  15. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides!

  16. The alkali metals: 200 years of surprises.

    PubMed

    Dye, James L

    2015-03-13

    Alkali metal compounds have been known since antiquity. In 1807, Sir Humphry Davy surprised everyone by electrolytically preparing (and naming) potassium and sodium metals. In 1808, he noted their interaction with ammonia, which, 100 years later, was attributed to solvated electrons. After 1960, pulse radiolysis of nearly any solvent produced solvated electrons, which became one of the most studied species in chemistry. In 1968, alkali metal solutions in amines and ethers were shown to contain alkali metal anions in addition to solvated electrons. The advent of crown ethers and cryptands as complexants for alkali cations greatly enhanced alkali metal solubilities. This permitted us to prepare a crystalline salt of Na(-) in 1974, followed by 30 other alkalides with Na(-), K(-), Rb(-) and Cs(-) anions. This firmly established the -1 oxidation state of alkali metals. The synthesis of alkalides led to the crystallization of electrides, with trapped electrons as the anions. Electrides have a variety of electronic and magnetic properties, depending on the geometries and connectivities of the trapping sites. In 2009, the final surprise was the experimental demonstration that alkali metals under high pressure lose their metallic character as the electrons are localized in voids between the alkali cations to become high-pressure electrides! PMID:25666067

  17. Process for the disposal of alkali metals

    DOEpatents

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  18. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.

    PubMed

    Li, Jianjun; Wang, Hongxia; Wu, Li; Chen, Cheng; Zhou, Zhiqiang; Liu, Fangfang; Sun, Yun; Han, Junbo; Zhang, Yi

    2016-04-27

    It is a challenge to fabricate high quality Cu2ZnSnSe4 (CZTSe) film with low Cu content (Cu/(Zn + Sn) < 0.8). In this work, the growth mechanisms of CZTSe films under different Se vapor composition are investigated by DC-sputtering and a postselenization approach. The composition of Se vapor has important influence on the compactability of the films and the diffusion of elements in the CZTSe films. By adjusting the composition of Se vapor during the selenization process, an optimized two step selenization process is proposed and highly crystallized CZTSe film with low Cu content (Cu/(Zn + Sn) = 0.75) is obtained. Further study of the effect of Cu content on the morphology and photovoltaic performance of the corresponding CZTSe solar cells has shown that the roughness of the CZTSe absorber film increases when Cu content decreases. As a consequence, the reflection loss of CZTSe solar cells reduces dramatically and the short circuit current density of the cells improve from 34.7 mA/cm(2) for Cu/(Zn + Sn) = 0.88 to 38.5 mA/cm(2) for Cu/(Zn + Sn) = 0.75. In addition, the CZTSe solar cells with low Cu content show longer minority carrier lifetime and higher open circuit voltage than the high Cu content devices. A champion performance CZTSe solar cell with 10.4% efficiency is fabricated with Cu/(Zn + Sn) = 0.75 in the CZTSe film without antireflection coating. PMID:27058738

  19. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE PAGES

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  20. First-principles study of ternary graphite compounds cointercalated with alkali atoms (Li, Na, and K) and alkylamines towards alkali ion battery applications

    NASA Astrophysics Data System (ADS)

    Ri, Gum-Chol; Yu, Chol-Jun; Kim, Jin-Song; Hong, Song-Nam; Jong, Un-Gi; Ri, Mun-Hyok

    2016-08-01

    First-principles calculations were carried out to investigate the structural, energetic, and electronic properties of ternary graphite compounds cointercalated with alkali atoms (AM = Li, Na, and K) and normal alkylamine molecules (nCx; x = 1, 2, 3, 4), denoted as AM-nCx-GICs. From the optimization of the orthorhombic unit cells for the crystalline compounds, it was found that, with the increase in the atomic number of alkali atoms, the layer separations decrease in contrast to AM-GICs, while the bond lengths between alkali atoms and graphene layer, and nitrogen atom of alkylamine increase. The calculated formation energies and interlayer binding energies of AM-nC3-GICs indicate that the compounds is increasingly stabilized from Li to K, and the energy barriers for migration of alkali atoms suggest that alkali cation with larger ionic radius diffuses more smoothly in graphite, being similar to AM-GICs. Through the analysis of electronic properties, it was established that more extent of electronic charge is transferred from more electropositive alkali atom to the carbon ring of graphene layer, and the hybridization of valence electron orbitals between alkylamine molecules and graphene layer is occurred.

  1. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Method of handling radioactive alkali metal waste

    DOEpatents

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  3. Chlor-alkali producers evaluate safer alternatives to asbestos

    SciTech Connect

    Stadig, W.

    1993-03-01

    Until recently, 75% of all US capacity for producing chlor-alkali - more than 40% of the world's capacity - has used asbestos diaphragm-cell technology. Although the Environmental Protection Agency continues to exempt asbestos use in diaphragms from restrictions, producers are considering alternatives. In Germany, stringent regulations will ban asbestos in chlor-alkali production after 1994. Heavy fines were levied recently against some chlor-alkali producers in the United States when EPA inspectors found asbestos fibers in cell renewal areas. Restrictions on the mining of asbestos raise the cost of obtaining adequate amounts of high-quality asbestos and gradually raise the cost of transporting and discarding spent diaphragms. Two alternatives are to use newly developed, non-asbestos diaphragms or to convert to existing ion-exchange membrane-cell technology. Only the former seems economical in the United States. The non-asbestos diaphragm is based on an inorganic polymer composite developed in 1988 as an asbestos substitute. The composite received Du Pont's Plunkett Award for Innovation with Teflon[trademark], landed on the National Development Association's 1991 Honor Roll and became a 1991 R D 100 Award winner. 6 figs.

  4. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  5. Infrared spectral evaluation of methanol/ammonia vapor mixtures

    SciTech Connect

    Field, Paul E.; Combs, R. J.

    2004-01-01

    The vapor analytes of methanol and ammonia are quantitatively generated separately and as mixtures in the presence of water vapor. Generation of these analytes relies on the vapor liquid equilibria properties of the associated aqueous solutions for delivering targeted vapor amounts into an equilibrium vapor cell. The amount delivered to the equilibrium vapor cell is controlled by use of gravimetrically prepared solutions and maintaining a constant solution temperature. The cell vapor contents are examined with a laboratory Fourier transform infrared spectrometer. Vapor phase spectra are acquired for the analyte mixtures in the Beer's Law concentration range using a fixed path length optical cell. Comparison to literature vapor liquid equilibrium measurements indicates the assumption of ideal solution behavior for methanollammonia interactions in the ternary solutions to be valid.

  6. Nano-granulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jun Woo; Jang, Dong Young; Kim, Manjin; Choi, Hyung Jong; Shim, Joon Hyung

    2016-01-01

    We have fabricated nano-scale gadolinia-doped ceria (GDC) at the electrode-electrolyte boundary by aerosol-assisted chemical vapor deposition (AACVD) for high-performance solid oxide fuel cells (SOFCs) working at low temperatures below 500 °C. In AACVD, temperature is the key factor affecting the grain size. We have confirmed that by nano-granulizing the electrolyte surface using optimized AACVD, the power output of the SOFC is 50% higher than that of the bare GDC SOFC. From the impedance analysis, significant enhancement of the cathodic oxygen reduction reaction is identified from the AACVD-GDC nano-grain surface treatment.

  7. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  8. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  9. A facile, solvent vapor-fumigation-induced, self-repair recrystallization of CH3NH3PbI3 films for high-performance perovskite solar cells.

    PubMed

    Zhu, Weidong; Yu, Tao; Li, Faming; Bao, Chunxiong; Gao, Hao; Yi, Yong; Yang, Jie; Fu, Gao; Zhou, Xiaoxin; Zou, Zhigang

    2015-03-12

    A high-quality CH3NH3PbI3 film is crucial in the manufacture of a high-performance perovskite solar cell. Here, a recrystallization process via facile fumigation with DMF vapor has been successfully introduced to self-repair of CH3NH3PbI3 films with poor coverage and low crystallinity prepared by the commonly used one-step spin-coating method. We found that the CH3NH3PbI3 films with dendritic structures can spontaneously transform to the uniform ones with full coverage and high crystallinity by adjusting the cycles of the recrystallization process. The mesostructured perovskite solar cells based on these repaired CH3NH3PbI3 films showed reproducible optimal power conversion efficiency (PCE) of 11.15% and average PCE of 10.25±0.90%, which are much better than that of devices based on the non-repaired CH3NH3PbI3 films. In addition, the hysteresis phenomenon in the current-voltage test can also be effectively alleviated due to the quality of the films being improved in the optimized devices. Our work proved that the fumigation of solvent vapor can modify metal organic perovskite films such as CH3NH3PbI3. It offers a novel and attractive way to fabricate high-performance perovskite solar cells.

  10. Water vapor diffusion membranes, 2

    NASA Technical Reports Server (NTRS)

    Holland, F. F.; Klein, E.; Smith, J. K.; Eyer, C.

    1976-01-01

    Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine.

  11. Effusion Cell Measurements of the Vapor Pressure of Cobalt at Temperatures up to 2000K; Comparisons with Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Nuth, J. A.; Ferguson, F. T.; Johnson, N. M.

    2004-01-01

    It has become increasingly clear over the past decade that high temperature processes played important roles in the Primitive Solar Nebula. Unfortunately, basic data, such as the vapor pressures of Fe, Ni, Co or SiO have not been measured over the appropriate temperature range (near T approx. 2000K), but must be extrapolated from lower temperature measurements often made more than 50 years ago. The extrapolation of the available data to higher temperatures can be quite complex (e.g., see [1] for SiO vapor pressures) and can depend on other factors such as the oxygen fugacity or the presence of hydrogen gas not accounted for in the original measurements. Moreover, modern technology has made possible more accurate measurements of such quantities over a wider temperature range. We have acquired a commercial Thermo-Cahn Thermogravimetric system capable of vacuum operation to 1700C and measurement of a 10g change in sample mass using up to a 100g sample, with microgram accuracy. With this new system we have initiated a series of basic vapor pressure measurements on simple metals such as Fe[2] and Ni[3] with the intention to extend such measurements to more complex systems once we gain sufficient experience.

  12. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. PMID:26303652

  13. Headspace stir bar sorptive extraction-gas chromatography/mass spectrometry characterization of the diluted vapor phase of cigarette smoke delivered to an in vitro cell exposure chamber.

    PubMed

    Kaur, Navneet; Cabral, Jean-Louis; Morin, André; Waldron, Karen C

    2011-01-14

    Advanced smoke generation systems, such as the Borgwaldt RM20S(®) smoking machine used in combination with the BAT exposure chamber, allow for the generation, dilution and delivery of fresh cigarette smoke to cell or tissue cultures for in vitro cell culture analyses. Recently, our group confirmed that the Borgwaldt RM20S(®) is a reliable tool to generate and deliver repeatable and reproducible exposure concentrations of whole smoke to in vitro cultures. However, the relationship between dose and diluted smoke components found within the exposure chamber has not been characterized. The current study focused on the development of a headspace stir bar sorptive extraction (HSSE) method to chemically characterize some of the vapor phase components of cigarette smoke generated by the Borgwaldt RM20S(®) and collected within a cell culture exposure chamber. The method was based on passive sampling within the chamber by HSSE using a Twister™ stir bar. Following exposure, sorbed analytes were recovered using a thermal desorption unit and a cooled injection system coupled to gas chromatograph/mass spectrometry for identification and quantification. Using the HSSE method, sixteen compounds were identified. The desorption parameters were assessed using ten reference compounds and the following conditions led to the maximal response: desorption temperature of 200°C for 2 min with cryofocussing temperature of -75°C. During transfer of the stir bars to the thermal desorption system, significant losses of analytes were observed as a function of time; therefore, the exposure-to-desorption time interval was kept at the minimum of 10±0.5 min. Repeatability of the HSSE method was assessed by monitoring five reference compounds present in the vapor phase (10.1-12.9% RSD) and n-butyl acetate, the internal standard (18.5% RSD). The smoke dilution precision was found to be 17.2, 6.2 and 11.7% RSD for exposure concentrations of 1, 2 and 5% (v/v) cigarette vapor phase in air

  14. Effects of Dietary Supplementation of Barodon, an Anionic Alkali Mineral Complex, on Growth Performance, Feed Utilization, Innate Immunity, Goblet Cell and Digestibility in Olive Flounder (Paralichthys olivaceus)

    PubMed Central

    Shin, Chang-Hoon; Cha, Ji-Hoon; Rahimnejad, Samad; Jeong, Joon-Bum; Yoo, Byung-Woo; Lee, Bo-Kyeun; Ahn, Hyung-Jin; Choi, Soo-Il; Choi, Yun-Jeong; Park, Yong-Ho; Kim, Jeong-Dae; Lee, Kyeong-Jun

    2014-01-01

    A 15-wk feeding trial was conducted to examine the supplemental effects of Barodon on growth performance, gastrointestinal histology, feed digestibility and innate immunity in olive founder. A basal commercial diet was used as a control and two other diets were prepared by spraying 0.1% or 0.2% of Barodon. Triplicate groups of fish (BW, 145 g) were fed one of the test diets to apparent satiation twice daily. At the end of the feeding trial, fish growth performance was not significantly affected by dietary treatments; however, feed utilization was significantly improved (linear and quadratic, p<0.05) by Barodon supplementation. Significantly higher (p<0.05) survival rates were obtained in fish fed Barodon containing diets. Hepatosomatic index increased significantly in Barodon treated groups. Also, the use of Barodon resulted in significant increase (linear and quadratic, p<0.05) of intestine length and number of goblet cells. Significantly higher (Quadratic, p<0.05) apparent digestibility coefficient of DM was obtained by supplementation of Barodon. Lysozyme and myeloperoxidase activities increased quadratically and linearly, respectively, in Barodon treated fish. Also, significantly higher (linear and quadratic, p<0.05) superoxide dismutase activity was found in Barodon fed fish. The findings in this study show that inclusion of Barodon in diets for olive flounder improves feed utilization and digestibility, and positively affects digestive tract histology and innate immunity. PMID:25049965

  15. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  16. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  17. Alkali Metal Handling Practices at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Carter, Robert R.

    2002-01-01

    NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.

  18. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  19. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons. PMID:22705959

  20. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.

    PubMed

    Zabeti, M; Nguyen, T S; Lefferts, L; Heeres, H J; Seshan, K

    2012-08-01

    Canadian pinewood was pyrolyzed at 450 °C in an Infrared oven and the pyrolysis vapors were converted by passing through a catalyst bed at 450 °C. The catalysts studied were amorphous silica alumina (ASA) containing alkali metal or alkaline earth metal species including Na, K, Cs, Mg and Ca. The catalysts effectiveness to reduce the bio-oil oxygen content, to enhance the bio-oil energy density and to change the liquid and gas product distribution were evaluated using different techniques including gravimetric analysis, elemental analysis, Karl-Fischer titration, GC/MS and micro-GC analysis. According to the results K/ASA found to be the most effective catalysts for conversion of hollocellulose (hemicellulose and cellulose)-derived vapors of pinewood while Cs/ASA catalyst was the most effective catalyst for conversion of lignin-derived vapors and production of hydrocarbons.

  1. High efficiency vapor-fed AMTEC system for direct conversion. Final report

    SciTech Connect

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lower potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.

  2. Deposition of microcrystalline silicon prepared by hot-wire chemical-vapor deposition: The influence of the deposition parameters on the material properties and solar cell performance

    NASA Astrophysics Data System (ADS)

    Klein, Stefan; Finger, Friedhelm; Carius, Reinhard; Stutzmann, Martin

    2005-07-01

    Microcrystalline silicon (μc-Si:H) of superior quality can be prepared using the hot-wire chemical-vapor deposition method (HWCVD). At a low substrate temperature (TS) of 185 °C excellent material properties and solar cell performance were obtained with spin densities of 6×1015cm-3 and solar cell efficiencies up to 9.4%, respectively. In this study we have systematically investigated the influence of various deposition parameters on the deposition rate and the material properties. For this purpose, thin films and solar cells were prepared at specific substrate and filament temperatures and deposition pressures (pD), covering the complete range from amorphous to highly crystalline material by adjusting the silane concentration. The influence of these deposition parameters on the chemical reactions at the filament and in the gas phase qualitatively explains the behavior of the structural composition and the formation of defects. In particular, we propose that the deposition rate is determined by the production of reactive species at the filament and a particular atomic-hydrogen-to-silicon ratio is found at the microcrystalline/amorphous transition. The structural, optical, and electronic properties were studied using Raman and infrared spectroscopies, optical-absorption measurements, electron-spin resonance, and dark and photoconductivities. These experiments show that higher TS and pD lead to a deterioration of the material quality, i.e., much higher defect densities, oxygen contaminations, and SiH absorption at 2100cm-1. Similar to plasma enhanced chemical-vapor deposition material, μc-Si:H solar cells prepared with HW i layers show increasing open circuit voltages (Voc) with increasing silane concentration and best performance is achieved near the transition to amorphous growth. Such solar cells prepared at low TS exhibit very high Voc up to 600 mV and fill factors above 70% with i layers prepared by HWCVD.

  3. Precise measurements of 203 Tl and 205 Tl excited state hyperfine splittings and isotope shifts using two-step vapor cell spectroscopy

    NASA Astrophysics Data System (ADS)

    Majumder, P. K.; Cheng, Sau Man; Rupasinghe, P. M.

    2016-05-01

    We have undertaken a series of high-precision atomic structure measurement in thallium to test ongoing ab initio atomic structure calculations of relevance to symmetry violation tests in this element. We are currently completing two-step spectroscopy measurements of the 8P1 / 2 and 8P3 / 2 hyperfine structure and isotope shift using a heated thallium vapor cell and two external cavity semiconductor diode lasers. One laser, locked to the thallium 6P1 / 2 --> 7S1 / 2 378 nm transition excites one or both naturally-occurring isotopes to an intermediate state. A second red laser overlaps the UV beam within the thallium vapor cell in both a co-propagating and counter-propagating configuration. Analysis of subsequent Doppler-free absorption spectra of the 7S1 / 2 --> 8P1 / 2 , 3 / 2 visible transitions allows us to extract both hyperfine and isotope shift information for these excited states with uncertainties below 1 MHz. Frequency modulation of the red laser provides convenient in situ frequency calibration. Recent measurements in our group have shown significant discrepancies from older hyperfine structure measurements in thallium excited states. Current results will be presented. Work supported by NSF Grant # 1404206.

  4. Alkali-related ocular burns: a case series and review.

    PubMed

    Bunker, Daniel J L; George, Robert J; Kleinschmidt, Andrew; Kumar, Rohit J; Maitz, Peter

    2014-01-01

    Alkali burns are known to possess high pathological potential because of their inherent ability to lyse cell membranes and penetrate intraocular structures with devastating results. The authors aimed to evaluate the most common cause of this presentation, the current treatment approaches to injury, and eventual outcome as related to severity. The authors performed a retrospective review of all patients who sustained chemical-related ocular injuries seen at the Concord Hospital Burns Unit, Australia between January 2005 and March 2012. Management was based on cooperation between ophthalmic staff and the burns unit, with emphasis on early aggressive intervention and rigorous follow-up. The records of 39 patients who presented with chemical-related injury were assessed, 12 of whom had confirmed alkali burns involving the cornea. The most commonly implicated agent was sodium hydroxide, usually in the context of otherwise trivial domestic accidents. Acute medical management included copious irrigation and the use of analgesics, cycloplegics, and topical antibiotics. In half the cases, steroid drops and oral vitamin C were also used. Ten of the 12 patients (83%) had return to premorbid visual acuity. Complications included cicatrical ectropion (n = 1), pseudoexfoliative syndrome (n = 1), and symblepharon (n = 1). Surgical correction was needed in the one patient with cicatrical ectropion. This case series shows that appropriate acute management minimizes the potentially devastating sequelae of ocular alkali burns. Emphasis should be placed on prevention of domestic and workplace injuries when using alkaline products.

  5. Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction

    NASA Astrophysics Data System (ADS)

    Shen, Po-Shen; Chiang, Yu-Hsien; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-01

    With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

  6. Metalorganic chemical vapor deposition of CuInSe{sub 2} from copper and indium diselenocarbamates for solar cell devices

    SciTech Connect

    McAleese, J.; O`Brien, P.; Otway, D.J.

    1998-12-31

    Thin film(s) of chalcopyrite CuInSe{sub 2} have been grown by low-pressure metal-organic chemical vapor deposition (LP-MOCVD) using the precursors In(Se{sub 2}CNMe{sup n}Hexyl){sub 3} and precursors Cu(Se{sub 2}CNMe{sup n}Hexyl){sub 2}. The precursors were prepared from carbon diselenide. Films were grown on glass between 400--450 C, and characterized by X-ray diffraction, optical spectroscopy (UV/Vis), EDAX and scanning electron microscopy.

  7. Calibrated vapor generator source

    DOEpatents

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  8. Calibrated vapor generator source

    DOEpatents

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  9. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  10. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  11. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  12. DPAL: A new class of lasers for cw power beaming at ideal photovoltaic cell wavelengths

    NASA Astrophysics Data System (ADS)

    Krupke, W. F.; Beach, R. J.; Payne, S. A.; Kanz, V. K.; Early, J. T.

    2004-03-01

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies ~40% (Si) and ~60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected. The potential application to power beaming propulsion to raise satellites from LEO to Geo is discussed.

  13. DPAL: A New Class of Lasers for CW Power Beaming at Ideal Photovoltaic Cell Wavelengths

    SciTech Connect

    Krupke, W F; Beach, R J; Payne, S A; Kanz, V K; Early, J T

    2003-09-15

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies {approx}40% (Si) and {approx}60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected.

  14. Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame

    PubMed Central

    Khan, Ahsan U.

    1980-01-01

    Phosphorus chemiluminescence under ambient conditions of a phosphorus oxidation flame is found to offer an efficient electronic energy transferring system to alkali metal atoms. The lowest resonance lines, 2P3 / 2,½→2S½, of potassium and sodium are excited by energy transfer when an argon stream at 80°C carrying potassium or sodium atoms intersects a phosphorus vapor stream, either at the flame or in the postflame region. The lowest electronically excited metastable 4IIi state of PO or the (PO[unk]PO)* excimer is considered to be the probable energy donor. The (PO[unk]PO)* excimer results from the interaction of the 4IIi state of one PO molecule with the ground 2IIr state of another. Metastability of the donor state is strongly indicated by the observation of intense sensitized alkali atom fluorescence in the postflame region. PMID:16592925

  15. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    PubMed

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry. PMID:24571825

  16. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.

    PubMed

    Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun

    2014-04-01

    A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry.

  17. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  18. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    SciTech Connect

    François, B.; Calosso, C. E.; Micalizio, S.; Abdel Hafiz, M.; Boudot, R.

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  19. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks.

    PubMed

    François, B; Calosso, C E; Abdel Hafiz, M; Micalizio, S; Boudot, R

    2015-09-01

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be -109 and -141 dB rad(2)/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is -105 and -138 dB rad(2)/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10(-14) for the Cs cell clock and 2 × 10(-14) for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10(-15) level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards. PMID:26429467

  20. Self-generating magnetometer with laser pumping employment in “end resonance” wall coated vapor cell atomic clocks

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Smolin, R. V.; Semenov, V. V.

    2016-06-01

    This paper presents the results of two double resonance signals correlation investigation. These signals were observed synchronously in optically oriented Rb87 vapors with laser pumping in a dual scheme: low frequency Mx-magnetometer and microwave frequency discriminator. Analytical studies of the scalar and vector light shift components contribution to the frequency instability of the end resonance microwave transitions are presented. An experimental demonstration of the light shift components mutual compensation in optically pumped Rb87 atoms was provided. The results were processed in terms of Allan variance, which demonstrated an effect of decreasing frequency variation at averaging times more than 100 s for a joint scheme of the end resonance microwave transition and selfgenerating (Mx) magnetometer.

  1. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  2. Novel duplex vapor-electrochemical method for silicon solar cells. [reaction of fluorine and silicon compounds with sodium

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K. M.; Bartlett, R.; Westphal, S.

    1979-01-01

    The dependence of the SiF4 Na reaction initiation time and of the efficiency of the reaction on Na particle size and reaction temperature were studied. Close to 100 percent utilization of Na was obtained, and formation of byproduct fluoro-silicate was decreased to below 10 percent. A SiF4 Na reactor was built to scale up the reaction by a factor of about four and is now being tested. A scaled up melting system was built and successfully used to separate Si from kilogram quantities of SiF4 NaF mixtures. Support studies of the volatilization of NaF performed in a smaller melting system indicated minimal loss of NaF as vapor at 1410 C. The wetting of graphite was also investigated to determine the constituents of the NaF phase which promote good wetting.

  3. DIET of alkali atoms from mineral surfaces

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-03-01

    To investigate mechanisms for the origin of alkalis in the atmosphere of the Moon, we are studying the electron- and photon-stimulated desorption (ESD and PSD) of K atoms from model mineral surfaces (SiO 2 films), and ESD and PSD of Na atoms from a lunar basalt sample. X-ray photoelectron spectroscopy demonstrates the existence of traces of Na in the lunar sample. To obtain an increased signal for detailed measurements of desorption parameters (appearance thresholds, yields), a fractional monolayer of Na is deposited onto the lunar sample surface. An alkali atom detector based on surface ionization and a time-of-flight technique are used for DIET measurements, together with a pulsed electron gun, and a mechanically chopped and filtered mercury arc light source. We find that bombardment of the alkali covered surfaces by UV photons or by electrons with energies E>4 eV causes desorption of "hot" alkali atoms. The results are consistent with the model based on charge transfer from the substrate to adsorbate which was developed to explain our previous measurements of sodium desorption from a silica surface and desorption of K atoms from water ice. The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  4. The effect of Na vapor on the Na content of chondrules

    NASA Technical Reports Server (NTRS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  5. Determination of Alkali Ions in Biological and Environmental Samples.

    PubMed

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope. PMID:26860298

  6. Determination of Alkali Ions in Biological and Environmental Samples.

    PubMed

    Hauser, Peter C

    2016-01-01

    An overview of the common methods for the determination of the alkali metals is given. These are drawn from all of the three principle branches of quantitative analysis and consist mainly of optical atomic spectrometric methods, ion-selective electrodes, and the separation methods of ion-chromatography and capillary electrophoresis. Their main characteristics and performance parameters are discussed. Important specific applications are also examined, namely clinical analysis, single cell analysis, the analysis of soil samples and hydroponic nutrient solutions, as well as the detection of the radioactive (137)Cs isotope.

  7. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    PubMed

    Lerner, Chad A; Sundar, Isaac K; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  8. Vapors Produced by Electronic Cigarettes and E-Juices with Flavorings Induce Toxicity, Oxidative Stress, and Inflammatory Response in Lung Epithelial Cells and in Mouse Lung

    PubMed Central

    Lerner, Chad A.; Sundar, Isaac K.; Yao, Hongwei; Gerloff, Janice; Ossip, Deborah J.; McIntosh, Scott; Robinson, Risa; Rahman, Irfan

    2015-01-01

    Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs) with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS)/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS) may be inhaled directly into the lung during a “vaping” session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used), and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292) in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that could lead to

  9. A CPT-based Cs vapor cell atomic clock with a short-term fractional frequency stability of 3 x 10-13 τ-1/2

    NASA Astrophysics Data System (ADS)

    Abdel Hafiz, Moustafa; Liu, Xiaochi; Guérandel, Stéphane; De Clercq, Emeric; Boudot, Rodolphe

    2016-06-01

    This article reports on the development and short-term fractional frequency stability of a continuous-regime (CW) Cs vapor cell atomic clock based on coherent population trapping (CPT). The push-pull optical pumping technique is used to increase the number of atoms that participate to the clock transition, yielding a typical CPT resonance contrast of 25% for a CPT linewidth of about 450 Hz. The clock short-term fractional frequency stability is measured to be 3 x 10-13 τ-1/2 up to 100 seconds averaging time, in correct agreement with the signal-to-noise ratio limit. The mid-term frequency stability results are currently mainly limited by laser power effects. The detection of high-contrast narrow Raman-Ramsey fringes is demonstrated with this setup by making the atoms interact with a light pulse sequence.

  10. Co-Pt core-shell nanostructured catalyst prepared by selective chemical vapor pulse deposition of Pt on Co as a cathode in polymer electrolyte fuel cells

    SciTech Connect

    Seo, Sang-Joon; Chung, Ho-Kyoon; Yoo, Ji-Beom; Chae, Heeyeop; Seo, Seung-Woo; Min Cho, Sung

    2014-01-15

    A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact with the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.

  11. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    PubMed

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-01

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  12. Alternate methods of applying diffusants to silicon solar cells. [screen printing of thick-film paste materials and vapor phase transport from solid sources

    NASA Technical Reports Server (NTRS)

    Brock, T. W.; Field, M. B.

    1979-01-01

    Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.

  13. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells.

    PubMed

    Hossain, Md Anower; Wang, Mingqing; Choy, Kwang-Leong

    2015-10-14

    Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin films have been deposited by a novel, nonvacuum, and cost-effective electrostatic spray-assisted vapor deposition (ESAVD) method. The generation of a fine aerosol of precursor solution, and their controlled deposition onto a molybdenum substrate, results in adherent, dense, and uniform Cu(In,Ga)S2 (CIGS) films. This is an essential tool to keep the interfacial area of thin film solar cells to a minimum value for efficient charge separation as it helps to achieve the desired surface smoothness uniformity for subsequent cadmium sulfide and window layer deposition. This nonvacuum aerosol based approach for making the CIGSSe film uses environmentally benign precursor solution, and it is cheaper for producing solar cells than that of the vacuum-based thin film solar technology. An optimized CIGSSe thin film solar cell with a device configuration of molybdenum-coated soda-lime glass substrate/CIGSSe/CdS/i-ZnO/AZO shows the photovoltaic (j-V) characteristics of Voc=0.518 V, jsc=28.79 mA cm(-2), fill factor=64.02%, and a promising power conversion efficiency of η=9.55% under simulated AM 1.5 100 mW cm(-2) illuminations, without the use of an antireflection layer. This demonstrates the potential of ESAVD deposition as a promising alternative approach for making thin film CIGSSe solar cells at a lower cost.

  14. Refractories for high-alkali environments

    SciTech Connect

    Rau, A.W.; Cloer, F.

    1996-01-01

    There are two reliable and cost-effective tests for evaluating refractory materials. They are used to determine which refractory products allow greater variance in fuel type with respect to alkali environment for coal-fired applications. Preselection of a particular refractory is important because of down-time cost for premature failure. One test is a variation of the standard alkali cup test. The second involves reacting test specimens with the contaminant, followed by physical properties testing to determine degree of degradation and properties affected. The alkali cup test rates products using a relative numerical scale based upon visual appearance. This test indicates the presence and relative degree of chemical attack to the refractory. The physical properties test determines the specific properties affected by the given contaminant.

  15. Diode-pumped alkali laser-bleached wave dynamics

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Miller, Wooddy; Hurd, Ed

    2012-11-01

    A three level analytic model for optically pumped alkali metal vapor lasers is developed by considering the steady state rate equations for the longitudinally averaged number densities of the ground 2S 1/2 and first excited 2P3/2, and 2P1/2 states. The threshold pump intensity includes both the requirements to fully bleach the pump transition and exceed optical losses, typically about 200 Watts/cm2. Slope efficiency depends critically on the fraction of incident photons absorbed. For efficient operation, the collisional relaxation between the two upper levels should be fast to prevent bottle-necking. By assuming a statistical distribution between the upper two levels, the limiting analytic solution for the quasi-two level system is achieved. The highly saturated pump limit of the recently developed three-level model for Diode Pumped Alkali Lasers (DPAL) is also developed. The model is anchored to several recent laser demonstrations. A rubidium laser pumped on the 5 2S1/2 - 5 2P3/2 D2 transition by a pulsed dye laser at pump intensities exceeding 3.5 MW/cm2 (< 1000 times threshold) has been demonstrated. Output energies as high as 12 μJ/pulse are limited by the rate for collision relaxation of the pumped 2P3/2 state to the upper laser 2P1/2 state. More than 250 photons are available for every rubidium atom in the pumped volume during each pulse. For modest alkali atom and ethane spin-orbit relaxer concentrations, the gain medium can only process about 50 photons/atom during the 2 - 8 ns pump pulse. At 110° C and 550 Torr of ethane, the system is bottlenecked. The system efficiency based on absorbed photons approaches 36% even for these extreme pump conditions. Furthermore, at 320°C with 2500 torr of helium, a pulsed potassium laser with 1.15 MW/cm2 peak intensity and 9.3% slope efficiency has been demonstrated.

  16. Microscopically controlled surgical excision combined with ultrapulse CO2 vaporization in the management of a patient with the nevoid basal cell carcinoma syndrome.

    PubMed

    Krunic, A L; Viehman, G E; Madani, S; Clark, R E

    1998-01-01

    Nevoid basal cell carcinoma syndrome is an autosomal dominant condition characterized by multiple basal cell carcinomas, skeletal abnormalities and sometimes mental retardation. The large number of tumors, which are often disfiguring, presents extreme difficulties in the treatment of these patients. Microscopically controlled excision, compared to other modalities (radiation therapy, photodynamic therapy, intralesional interferon alpha-2b) offers the highest cure rate. However, because of the large size and involvement of wide areas of the skin, this approach is sometimes impractical. The ultrapulse CO2 laser with high energy and short pulses achieves char-free ablation of the tumors, bloodless surgical field, minimal nonspecific thermal damage, rapid healing and diminished postoperative pain. Also, a number of lesions can be removed in a single session. We present a 48-year-old man with a 6.5 x 4.5 cm large basal cell carcinoma involving the anterior abdomen and navel area. The central thick portion of the tumor was resected by microscopically controlled excision with 3 stages, and wide thinner peripheral crescentic plaque vaporized with ultrapulse CO2 laser. The laser settings were 300 mJ energy/pulse and 100 W average power, which corresponds to the fluence of 7.5 J/cm2. Computerized pattern generator (ultrascan handpiece) was adjusted to patterns of 3 (circle) and 1 (square) with sizes varying from 5 to 7, and density of 9 (60% overlapping). The tumor was vaporized with 6 passes, all the way to deep reticular dermis. A fifteen month-follow up disclosed no recurrent disease. Subsequent biopsies revealed only a scar with postinflammatory hyperpigmentation. Our experience indicates that combined treatment with microscopically controlled excision and ultrapulse CO2 laser ablation is a suitable modality for the large tumor plaques involving concave and convex areas of the skin respectively. Microscopically controlled excision of thicker, concave portions of basal

  17. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  18. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  1. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  2. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  3. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for...

  4. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  5. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  6. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  7. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  8. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151)...

  9. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  10. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  11. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  12. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  13. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  14. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting...

  15. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  16. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  17. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject...

  18. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    SciTech Connect

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  19. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  20. Experimental study of the diode pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2014-02-01

    A small-scale cesium diode-pumped alkali laser (DPAL) apparatus has been developed for fundamental researches. A commercial laser diode with volume Bragg grating outcoupler is used to pump the gain cell longitudinally. Both windows of the gain cell are set at Brewster's angle for minimum loss and maximum durability. Output coupling coefficient is continuously variable from 13% to 85% by the slanted quartz plate outcoupler inserted in the optical resonator. Small signal gain is measured with a laser diode probe at various gain cell temperatures. A 6.5 W continuouswave output with 56% optical-to-optical conversion efficiency (based on the absorbed power) has been achieved. A numerical simulation code is developed and its calculation results are in good agreement with the experiments.

  1. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered. PMID:8433244

  2. Ingestion of caustic alkali farm products.

    PubMed

    Neidich, G

    1993-01-01

    Since the Poison Prevention Packaging Act took effect, the number of ingestions of caustic alkali from household products has been significantly reduced. Commercial caustic alkalis used on farms, however, were not included in this legislation. Fourteen children over a 5 year period were seen after ingestion of commercial caustic alkalis used on farms. Seven of the children had ingested liquid pipeline cleaners and seven had ingested solid agents used for a variety of reasons. Six of seven children ingesting liquid agents did so from nonoriginal containers into which the caustic had been transferred for convenience. All seven children ingesting solid agents did so from the original container. Eight of the 14 children were found to have second-degree or worse esophageal involvement. Both solid and liquid caustic agents used commercially on farms can cause significant morbidity. Development of a child-resistant container for daily transfer of liquid pipeline agents could be helpful in preventing injuries from liquid pipeline cleaners. Pediatric gastroenterologists as well as primary care physicians in rural areas should be familiar with this type of injury and should take an active role in instructing parents of children living on farms to prevent such injuries. Extension of the Poison Prevention Packaging Act to caustic alkalis used on farms needs to be considered.

  3. The Additive Coloration of Alkali Halides

    ERIC Educational Resources Information Center

    Jirgal, G. H.; and others

    1969-01-01

    Describes the construction and use of an inexpensive, vacuum furnace designed to produce F-centers in alkali halide crystals by additive coloration. The method described avoids corrosion or contamination during the coloration process. Examination of the resultant crystals is discussed and several experiments using additively colored crystals are…

  4. Cohesive Energy of the Alkali Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1980-01-01

    Describes a method, considered appropriate for presentation to undergraduate students in materials science and related courses, for the calculation of cohesive energies of the alkali metals. Uses a description based on the free electron model and gives results to within 0.1 eV of the experimental values. (Author/GS)

  5. Mercury Pollution Near A Chlor-Alkali Plant In Northern Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water is contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  6. The Alkali Metal Thermal-To-Electric Converter for Solar System Exploration

    NASA Technical Reports Server (NTRS)

    Ryan, M.

    1999-01-01

    AMTEC, the Alkali Metal Thermal to Electric Converter, is a direct thermal to electric energy conversion device; it has been demostrated to perform at high power densities, with open circuit voltages in single electrochemical cells up to 1.6 V and current desities up to 2.0 A/cm(sup 2).

  7. CHARACTERIZATION OF THE FUGITIVE MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT. OVERALL STUDY DESIGN

    EPA Science Inventory

    The paper discusses a detailed emissions measurement campaign that was conducted over a 9-day period within a mercury (Hg) cell chlor-alkali plant in the southeastern United States (U.S.). The principal focus of this study was to measure fugitive (non-ducted) airborne Hg emission...

  8. Vapor compression distillation module

    NASA Technical Reports Server (NTRS)

    Nuccio, P. P.

    1975-01-01

    A Vapor Compression Distillation (VCD) module was developed and evaluated as part of a Space Station Prototype (SSP) environmental control and life support system. The VCD module includes the waste tankage, pumps, post-treatment cells, automatic controls and fault detection instrumentation. Development problems were encountered with two components: the liquid pumps, and the waste tank and quantity gauge. Peristaltic pumps were selected instead of gear pumps, and a sub-program of materials and design optimization was undertaken leading to a projected life greater than 10,000 hours of continuous operation. A bladder tank was designed and built to contain the waste liquids and deliver it to the processor. A detrimental pressure pattern imposed upon the bladder by a force-operated quantity gauge was corrected by rearranging the force application, and design goals were achieved. System testing has demonstrated that all performance goals have been fulfilled.

  9. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  10. Genomic and proteomic analysis of the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes 10403S

    PubMed Central

    Giotis, Efstathios S; Muthaiyan, Arunachalam; Blair, Ian S; Wilkinson, Brian J; McDowell, David A

    2008-01-01

    Background Information regarding the Alkali-Tolerance Response (AlTR) in Listeria monocytogenes is very limited. Treatment of alkali-adapted cells with the protein synthesis inhibitor chloramphenicol has revealed that the AlTR is at least partially protein-dependent. In order to gain a more comprehensive perspective on the physiology and regulation of the AlTR, we compared differential gene expression and protein content of cells adapted at pH 9.5 and un-adapted cells (pH 7.0) using complementary DNA (cDNA) microarray and two-dimensional (2D) gel electrophoresis, (combined with mass spectrometry) respectively. Results In this study, L. monocytogenes was shown to exhibit a significant AlTR following a 1-h exposure to mild alkali (pH 9.5), which is capable of protecting cells from subsequent lethal alkali stress (pH 12.0). Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. The observed variability between results of cDNA arrays and 2D gel electrophoresis may be accounted for by posttranslational modifications. Interestingly, several alkali induced genes/proteins can provide a cross protective overlap to other types of stresses. Conclusion Alkali pH provides therefore L. monocytogenes with nonspecific multiple-stress resistance that may be vital for survival in the human gastrointestinal tract as well as within food processing systems where alkali conditions prevail. This study showed strong evidence that the AlTR in L. monocytogenes functions as to minimize excess alkalisation and energy expenditures while mobilizing available carbon sources. PMID:18577215

  11. Steering the efficiency of carbon nanotube-silicon photovoltaic cells by acid vapor exposure: a real-time spectroscopic tracking.

    PubMed

    Pintossi, C; Pagliara, S; Drera, G; De Nicola, F; Castrucci, P; De Crescenzi, M; Crivellari, M; Boscardin, M; Sangaletti, L

    2015-05-13

    Hybrid carbon nanotube-silicon (CNT-Si) junctions have been investigated by angle resolved photoemission spectroscopy (AR-XPS) with the aim to clarify the effects of a nonstoichiometric silicon oxide buried interface on the overall cell efficiency. A complex silicon oxide interface has been clearly identified and its origin and role in the heterojunction have been probed by exposing the cells to hydrofluoric (HF) and nitric (HNO3) acid. Real-time monitoring of the cell efficiencies during the steps following acid exposure (up to 1 week after etching) revealed a correlation between the thickness and chemical state of the oxide layer and the cell efficiencies. By matching the AR-XPS and Raman spectroscopy with the electrical response data it has been possible to discriminate the effects on the cell efficiency of the buried SiO(x) interface from those related to CNT acid doping. The overall cell behavior recorded for different thicknesses of the SiO(x) interface indicates that the buried oxide layer is likely acting as a passivating/inversion layer in a metal-insulator-semiconductor junction.

  12. PEP-1-FK506BP inhibits alkali burn-induced corneal inflammation on the rat model of corneal alkali injury

    PubMed Central

    Kim, Dae Won; Lee, Sung Ho; Shin, Min Jea; Kim, Kibom; Ku, Sae Kwang; Youn, Jong Kyu; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Son, Ora; Sohn, Eun Jeong; Cho, Sung-Woo; Park, Jong Hoon; Kim, Hyun Ah; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2015-01-01

    FK506 binding protein 12 (FK506BP) is a small peptide with a single FK506BP domain that is involved in suppression of immune response and reactive oxygen species. FK506BP has emerged as a potential drug target for several inflammatory diseases. Here, we examined the protective effects of directly applied cell permeable FK506BP (PEP-1-FK506BP) on corneal alkali burn injury (CAI). In the cornea, there was a significant decrease in the number of cells expressing pro-inflammation, apoptotic, and angiogenic factors such as TNF-α, COX-2, and VEGF. Both corneal opacity and corneal neovascularization (CNV) were significantly decreased in the PEP-1-FK506BP treated group. Our results showed that PEP-1-FK506BP can significantly inhibit alkali burn-induced corneal inflammation in rats, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors and inflammatory cytokines. These results suggest that PEP-1-FK506BP may be a potential therapeutic agent for CAI. [BMB Reports 2015; 48(11): 618-623] PMID:25817214

  13. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Matsutani, Takaomi; Yamasaki, Kayo; Imaeda, Norihiro; Kawasaki, Tadahiro

    2015-12-01

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N2+ ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si-N and C-N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  14. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide

    NASA Astrophysics Data System (ADS)

    Kerr, M. J.; Schmidt, J.; Cuevas, A.; Bultman, J. H.

    2001-04-01

    The emitter saturation current density (JOe) and surface recombination velocity (Sp) of various high quality passivation schemes on phosphorus-diffused solar cell emitters have been determined and compared. The passivation schemes investigated were (i) stoichiometric plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiN), (ii) forming gas annealed thermally grown silicon oxide, and (iii) aluminum annealed (alnealed) thermal silicon oxide. Emitters with sheet resistances ranging from 30 to 430 and 50 to 380 Ω/□ were investigated for planar and random-pyramid textured silicon surfaces, which covers both industrial and laboratory emitters. The electronic surface passivation quality provided by PECVD SiN films was found to be good, with Sp values ranging from 1400 to 25 000 cm/s for planar emitters. Thin thermal silicon oxides were found to provide superior passivation to PECVD SiN, with the best passivation provided by an alnealed thin oxide (Sp values between 250 and 21 000 cm/s). The optimized PECVD SiN films are, nevertheless, sufficiently good for most silicon solar cell applications.

  15. Alkali metal recovery from carbonaceous material conversion process

    DOEpatents

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  16. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  17. Method of treating alkali metal sulfide and carbonate mixtures

    DOEpatents

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  18. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  19. High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report

    SciTech Connect

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

  20. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    SciTech Connect

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  1. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  2. Aqueous cathode for next-generation alkali-ion batteries.

    PubMed

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost.

  3. Substitution mechanism of alkali metals for strontium in strontium hydroxyapatite

    SciTech Connect

    Naddari, Thouraya; Hamdi, Besma; Savariault, Jean Michel; El Feki, Hafed; Ben Salah, Abdelhamid

    2003-01-25

    Strontium hydroxyapatites substituted by alkali metals are synthesized by double decomposition method in basic medium. Structures of Sr{sub 9.50}Na{sub 0.30}(PO{sub 4}){sub 6}(OH){sub 1.30} (SrNaHAp) and Sr{sub 9.81}K{sub 0.12}(PO{sub 4}){sub 6}(OH){sub 1.74} (SrKHAp) are determined by X-ray powder diffraction. Both compounds are isotypic and crystallize in hexagonal system (space group P63/m) with the following cells: a=9.751(3) A and c=7.279(3) A for SrNaHAp and a=9.755(4) A and c=7.284(3) A for SrKHAp. Results are compared to those of Sr{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}. According to the site occupancy factors, in SrNaHAp sodium is localized in site (I) and in SrKHAp potassium in site (II). Both structures contain vacancies in hydroxyl and metal sites. The mechanism of alkali metals substitution for strontium proposed explains the vacancies formation.

  4. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition. PMID:19235995

  5. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOEpatents

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  6. The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition

    SciTech Connect

    ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.; JONES,ERIC D.; KURTZ,STEVEN R.

    1999-09-16

    InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.

  7. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  8. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    NASA Astrophysics Data System (ADS)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  9. Involvement of NADPH oxidases in alkali burn-induced corneal injury

    PubMed Central

    GU, XUE-JUN; LIU, XIAN; CHEN, YING-YING; ZHAO, YAO; XU, MAN; HAN, XIAO-JIAN; LIU, QIU-PING; YI, JING-LIN; LI, JING-MING

    2016-01-01

    Chemical burns are a major cause of corneal injury. Oxidative stress, inflammatory responses and neovascularization after the chemical burn aggravate corneal damage, and lead to loss of vision. Although NADPH oxidases (Noxs) play a crucial role in the production of reactive oxygen species (ROS), the role of Noxs in chemical burn-induced corneal injury remains to be elucidated. In the present study, the transcription and expression of Noxs in corneas were examined by RT-qPCR, western blot analysis and immunofluorescence staining. It was found that alkali burns markedly upregulated the transcription and expression of Nox2 and Nox4 in human or mouse corneas. The inhibition of Noxs by diphenyleneiodonium (DPI) or apocynin (Apo) effectively attenuated alkali burn-induced ROS production and decreased 3-nitrotyrosine (3-NT) protein levels in the corneas. In addition, Noxs/CD11b double-immunofluorescence staining indicated that Nox2 and Nox4 were partially co-localized with CD11b. DPI or Apo prevented the infiltration of CD11b-positive inflammatory cells, and inhibited the transcription of inflammatory cytokines following alkali burn-induced corneal injury. In our mouse model of alkali burn-induced corneal injury, corneal neovascularization (CNV) occurred on day 3, and it affected 50% of the whole area of the cornea on day 7, and on day 14, CNV coverage of the cornea reached maximum levels. DPI or Apo effectively attenuated alkali burn-induced CNV and decreased the mRNA levels of angiogenic factors, including vascular endothelial growth factor (VEGF), VEGF receptors and matrix metalloproteinases (MMPs). Taken together, our data indicate that Noxs play a role in alkali burn-induced corneal injury by regulating oxidative stress, inflammatory responses and CNV, and we thus suggest that Noxs are a potential therapeutic target in the future treatment of chemical-induced corneal injury. PMID:27221536

  10. Vapor spill monitoring method

    DOEpatents

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  11. Infrared spectra of FHF - in alkali halides

    NASA Astrophysics Data System (ADS)

    Chunnilall, C. J.; Sherman, W. F.

    1982-03-01

    The bifluoride ion, FHF -, has been substitutionally isolated within single crystal samples of several different alkali halides. Infrared spectra of these crystals have been studied for sample temperatures down to 8K when half-bandwidths of less than 1 cm -1 have been observed. (Note that at room temperature ν 3 is observed to have a half-bandwidth of about 40 cm -1). The frequency shifts and half-bandwidth changes caused by cooling are considered together with the frequency shifts caused by pressures up to 10 k bar. The low temperature spectra clearly indicate that FHF - is a linear symmetrical ion when substitutionally isolated within alkali halides of either the NaCl or CsCl structure.

  12. Geopolymers and Related Alkali-Activated Materials

    NASA Astrophysics Data System (ADS)

    Provis, John L.; Bernal, Susan A.

    2014-07-01

    The development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

  13. Removal of Retired Alkali Metal Test Systems

    SciTech Connect

    Brehm, W. F.; Church, W. R.; Biglin, J. W.

    2003-02-26

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  14. Supplemental fuel vapor system

    SciTech Connect

    Foster, P.M.

    1991-01-08

    This patent describes a supplemental fuel system utilizing fuel vapor. It comprises: an internal combustion engine including a carburetor and an intake manifold; a fuel tank provided with air vents; a fuel conduit having a first end connected to the fuel tank and in communication with liquid fuel in the tank and a second end connected to the carburetor; the fuel conduit delivering the liquid fuel to the carburetor from the fuel tank; a fuel vapor conduit having a first end connected to the fuel tank at a location displaced from contact with the liquid fuel and a second end connected to a carbon canister; a PCV conduit having a first end connected to a pollution control valve and a second end connected to the intake manifold; and, an intermediate fuel vapor conduit having a first end connected to the fuel vapor conduit and a second end connected to the PCV conduit; wherein the air vents continuously provide air to the tank to mix with the liquid fuel and form fuel vapor. The fuel vapor drawn from the fuel tank by vacuum developed in the intake manifold and flows through the fuel vapor conduit. The intermediate fuel vapor conduit and the intake manifold to combustion chambers of the internal combustion engine so as to supplement fuel delivered to the engine by the fuel conduit. The liquid fuel and the fuel vapor constantly delivered to the engine during normal operation.

  15. Alkali Metal Heat Pipe Life Issues

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.

    2004-01-01

    One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.

  16. Alkali Metal Heat Pipe Life Issues

    SciTech Connect

    Reid, Robert S.

    2004-07-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  17. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, Seo young; Kim, Yu kyoung; Park, Il song; Jin, Guang chun; Bae, Tae sung; Lee, Min ho

    2014-12-01

    In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO2 nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO2 nanotubes (PNA) and alkali and heat-treated TiO2 nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na2TiO3) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  18. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.

    PubMed

    Breschi, Evelina; Kazakov, George; Lammegger, Roland; Matisov, Boris; Windholz, Laurentius; Mileti, Gaetano

    2009-05-01

    We evaluate the influence of 2 types of laser sources with different spectral profiles on the performance of vapor cell atomic clocks based on lin||lin coherent population trapping (CPT) resonances. We show that a short-term stability of 1-2 x 10(-11) tau(-1/2) may be reached in a compact system using a modulated vertical cavity surface-emitting laser. Here the stability is limited by the detection noise level and can be improved up to a factor of 4 by increasing the lock-in detection frequency to several tens of kilohertz, which is not possible in standard double resonance atomic clocks. We compare these results with CPT prepared under the same experimental conditions, using 2 phase-locked extended cavity diode lasers, with which we predict a challenging short-term stability of 1-3 x 10(-13) tau(-1/2), comparable to the state-of-the-art laser-pumped Rb-clocks.

  19. Effects of size-controlled TiO2 nanopowders synthesized by chemical vapor condensation process on conversion efficiency of dye-sensitized solar cells.

    PubMed

    Kim, Woo-Byoung; Lee, Jai-Sung

    2013-07-01

    To investigate the microstructural effects of the synthesized TiO2 nanopowders such as particle size, specific surface area, pore size and pore distributions for the application of an anode material of dye-sensitized solar cells (DSSC), size-controlled and well-dispersed TiO2 nanopowders were synthesized by chemical vapor condensation (CVC) process in the range of 800-1000 degreesC under a pressure of 50 mbar. The average particle size of synthesized TiO2 nanopowders was increased with increasing temperature from 13 nm for 800 degreesC, 15 nm for 900 degreesC and 26 nm. The specific surface area of synthesized nanoparticles were measured as 119.1 m2/g for 800 degreesC, 104.7 m2/g for 900 degreesC and 59.5 m2/g for 1000 degreesC, respectively. The conversion efficiency values (eta%) of DSSC with the synthesized TiO2 nanopowders at 800 degreesC, 900 degreesC, and 1000 degreesC were 2.59%, 5.96% and 3.66%, respectively. The highest conversion efficiency obtained in the 900 degreesC (5.96%) sample is thought to be attributable to homogeneous particle size and pore distributions, large specific surface area, and high transmittance in regions of dye absorption wavelength.

  20. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  1. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  2. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  3. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing.

    PubMed

    Wang, Jin-Liang; Liu, Kai-Kai; Yan, Jun; Wu, Zhuo; Liu, Feng; Xiao, Fei; Chang, Zheng-Feng; Wu, Hong-Bin; Cao, Yong; Russell, Thomas P

    2016-06-22

    We report the synthesis of a family of multifluorine substituted oligomers and the corresponding polymer that have the same backbones but different conjugation lengths and amounts of fluorine atoms on the backbone. The physical properties and photovoltaic performances of these materials were systematically investigated using optical absorption, charge mobility, atomic force microscopy, transmission electron microscopy, grazing incidence X-ray diffraction, resonant soft X-ray scattering methods, and photovoltaic devices. The power conversion efficiencies (PCEs) based on oligomers were much higher than that in the polymer. Moreover, the devices based on BIT6F and BIT10F, which have an axisymmetric electron-deficient difluorobenzothiadiazole as the central unit, gave slightly higher PCEs than those with centrosymmetric electron-rich indacenodithiophene (IDT) as the central unit (BIT4F or BIT8F). Using proper solvent vapor annealing (SVA), particularly using thermal annealing (TA) followed by SVA, the device performance could be significantly improved. Notably, the best PCE of 9.1% with a very high FF of 0.76 was achieved using the medium-sized oligomer BIT6F with the optimized film morphology. This efficiency is the highest value reported for organic solar cells from small-molecules without rhodanine terminal group. More excitingly, devices from the shortest oligomer BIT4F showed an impressively high FF of 0.77 (the highest FF value reported for solution-processed small-molecule organic solar cells). These results indicate that photovoltaic performances of oligomers can be modulated through successive change in chain-length and fluorine atoms, alternating spatial symmetric core, and combined post-treatments. PMID:27225322

  4. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  5. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  6. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  7. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  8. Petroleum Vapor - Field Technical

    EPA Science Inventory

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  9. Feed Preparation for Source of Alkali Melt Rate Tests

    SciTech Connect

    Stone, M. E.; Lambert, D. P.

    2005-02-26

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na{sub 2}O in the frit (low washed sludge) to 16% Na{sub 2}O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na{sub 2}O baseline run. For the other four cases (0% Na{sub 2}O, 4% Na{sub 2}O, 12% Na{sub 2}O, and 16% Na{sub 2}O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na{sub 2}O in frit, 4% Na{sub 2}O in frit, 8% Na{sub 2}O in frit or baseline, 12% Na{sub 2}O in frit, and 16% Na{sub 2}O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na

  10. Stratospheric water vapor feedback.

    PubMed

    Dessler, A E; Schoeberl, M R; Wang, T; Davis, S M; Rosenlof, K H

    2013-11-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry-climate model to be +0.3 W/(m(2)⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  11. Stratospheric water vapor feedback

    PubMed Central

    Dessler, A. E.; Schoeberl, M. R.; Wang, T.; Davis, S. M.; Rosenlof, K. H.

    2013-01-01

    We show here that stratospheric water vapor variations play an important role in the evolution of our climate. This comes from analysis of observations showing that stratospheric water vapor increases with tropospheric temperature, implying the existence of a stratospheric water vapor feedback. We estimate the strength of this feedback in a chemistry–climate model to be +0.3 W/(m2⋅K), which would be a significant contributor to the overall climate sensitivity. One-third of this feedback comes from increases in water vapor entering the stratosphere through the tropical tropopause layer, with the rest coming from increases in water vapor entering through the extratropical tropopause. PMID:24082126

  12. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  13. Alkali Metal Thermoelectric Conversion (AMTEC) for space nuclear power systems

    NASA Astrophysics Data System (ADS)

    Bankston, C. P.; Cole, T.; Khanna, S. K.; Thakoor, A. P.

    Performance parameters of the Alkali Metal Thermoelectric Converter (AMTEC) for a 100 kW electric power system have been calculated at four technological levels assuming a heat pipe-cooled nuclear reactor heat source. The most advanced level considered would operate between 1180 K converter temperature and 711 K radiator temperature at 16 percent efficiency, and would weigh 1850 kg with a radiator area of 43 sq m. In addition, electrode research studies for the AMTEC systems have been conducted utilizing an experimental test cell of Bankston et al. (1983) and Mo and several Mo-Ti electrodes. It was found that the Mo-Ti electrodes offered no improvement in lifetime characteristics over the pure Mo electrodes, however, oxygen treatment of a degraded Mo electrode restored its specific power output to 90 percent of its original specific power and maintained this level for 60 hr, thus offering a potential for lifetime stability.

  14. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  15. Abundant alkali-sensitive sites in DNA of human and mouse sperm

    SciTech Connect

    Singh, N.P.; Danner, D.B.; McCoy, M.T.; Collins, G.D.; Schneider, E.L. ); Tice, R.R. )

    1989-10-01

    The DNA of human and mouse sperm cells was analyzed by single-cell microgel electrophoresis, by agarose gel electrophoresis, and by alkaline elution-three techniques that can detect single-strand DNA breaks and/or labile sites. Under these conditions a surprisingly large number of single-strand DNA breaks, approximately 10{sup 6} to 10{sup 7} per genome, were detected in human and mouse sperm but not in human lymphocytes or in mouse bone marrow cells. These breaks were also present in chicken erythrocyte DNA, which is also highly condensed. These breaks were not observed under neutral pH conditions nor under denaturing conditions not involving alkali, suggesting that these sites are alkali-sensitive and do not represent preexisting single-strand breaks. The high frequency of such sites in sperm from healthy mouse and human donors suggest that they represent a functional characteristic of condensed chromatin rather than DNA damage.

  16. Determination of the common and rare alkalies in mineral analysis

    USGS Publications Warehouse

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  17. Environmental mercury contamination around a chlor-alkali plant

    SciTech Connect

    Lodenius, M.; Tulisalo, E.

    1984-04-01

    The chlor-alkali industry is one of the most important emitters of mercury. This metal is effectively spread from chlor-alkali plants into the atmosphere and it has been reported that only a few percent of the mercury emissions are deposited locally the major part spreading over very large areas. The purpose of this investigation was to study the spreading of mercury up to 100 km from a chlor-alkali plant using three different biological indicators.

  18. Solvation at nanoscale: Alkali-halides in water clusters

    SciTech Connect

    Partanen, Leena; Mikkelae, Mikko-Heikki; Huttula, Marko; Tchaplyguine, Maxim; Zhang Chaofan; Andersson, Tomas; Bjoerneholm, Olle

    2013-01-28

    The solvation of alkali-halides in water clusters at nanoscale is studied by photoelectron spectroscopy using synchrotron radiation. The Na 2p, K 3p, Cl 2p, Br 3d, and I 4d core level binding energies have been measured for salt-containing water clusters. The results have been compared to those of alkali halide clusters and the dilute aqueous salt solutions. It is found that the alkali halides dissolve in small water clusters as ions.

  19. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-01

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  20. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  1. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-05-27

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  2. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1991-11-30

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this program is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  3. High temperature alkali corrosion of ceramics in coal gas

    SciTech Connect

    Pickrell, G.R.; Sun, T.; Brown, J.J.

    1992-08-29

    High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, zirconia, and fireclay glass. The study consists of identification of the alkali reaction products (phase equilibria) and the kinetics of the alkali reactions as a function of temperature and time.

  4. Low helium permeation cells for atomic microsystems technology.

    PubMed

    Dellis, Argyrios T; Shah, Vishal; Donley, Elizabeth A; Knappe, Svenja; Kitching, John

    2016-06-15

    Laser spectroscopy of atoms confined in vapor cells can be strongly affected by the presence of background gases. A significant source of vacuum contamination is the permeation of gases such as helium (He) through the walls of the cell. Aluminosilicate glass (ASG) is a material with a helium permeation rate that is many orders of magnitude lower than borosilicate glass, which is commonly used for cell fabrication. We have identified a suitable source of ASG that is fabricated in wafer form and can be anodically bonded to silicon. We have fabricated chip-scale alkali vapor cells using this glass for the windows and we have measured the helium permeation rate using the pressure shift of the hyperfine clock transition. We demonstrate micro fabricated cells with He permeation rates at least three orders of magnitude lower than that of cells made with borosilicate glass at room temperature. Such cells may be useful in compact vapor-cell atomic clocks and as a micro fabricated platform suitable for the generation of cold atom samples.

  5. Low helium permeation cells for atomic microsystems technology.

    PubMed

    Dellis, Argyrios T; Shah, Vishal; Donley, Elizabeth A; Knappe, Svenja; Kitching, John

    2016-06-15

    Laser spectroscopy of atoms confined in vapor cells can be strongly affected by the presence of background gases. A significant source of vacuum contamination is the permeation of gases such as helium (He) through the walls of the cell. Aluminosilicate glass (ASG) is a material with a helium permeation rate that is many orders of magnitude lower than borosilicate glass, which is commonly used for cell fabrication. We have identified a suitable source of ASG that is fabricated in wafer form and can be anodically bonded to silicon. We have fabricated chip-scale alkali vapor cells using this glass for the windows and we have measured the helium permeation rate using the pressure shift of the hyperfine clock transition. We demonstrate micro fabricated cells with He permeation rates at least three orders of magnitude lower than that of cells made with borosilicate glass at room temperature. Such cells may be useful in compact vapor-cell atomic clocks and as a micro fabricated platform suitable for the generation of cold atom samples. PMID:27304286

  6. Vacuum vapor deposition

    NASA Technical Reports Server (NTRS)

    Poorman, Richard M. (Inventor); Weeks, Jack L. (Inventor)

    1995-01-01

    A method and apparatus is described for vapor deposition of a thin metallic film utilizing an ionized gas arc directed onto a source material spaced from a substrate to be coated in a substantial vacuum while providing a pressure differential between the source and the substrate so that, as a portion of the source is vaporized, the vapors are carried to the substrate. The apparatus includes a modified tungsten arc welding torch having a hollow electrode through which a gas, preferably inert, flows and an arc is struck between the electrode and the source. The torch, source, and substrate are confined within a chamber within which a vacuum is drawn. When the arc is struck, a portion of the source is vaporized and the vapors flow rapidly toward the substrate. A reflecting shield is positioned about the torch above the electrode and the source to ensure that the arc is struck between the electrode and the source at startup. The electrode and the source may be confined within a vapor guide housing having a duct opening toward the substrate for directing the vapors onto the substrate.

  7. Bioeffects due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Bull, Joseph

    2015-11-01

    Encapsulated micro- and nano-droplets can be vaporized via ultrasound, a process termed acoustic droplet vaporization. Our interest is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular microdroplets. Additionally, the microdroplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Early timescale vaporization events, including phase change, are directly visualized using ultra-high speed imaging, and the influence of acoustic parameters on droplet/bubble dynamics is discussed. Acoustic and fluid mechanics parameters affecting the severity of endothelial cell bioeffects are explored. These findings suggest parameter spaces for which bioeffects may be reduced or enhanced, depending on the objective of the therapy. This work was supported by NIH grant R01EB006476.

  8. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  9. Vapor generator wand

    NASA Technical Reports Server (NTRS)

    Robelen, David B. (Inventor)

    1996-01-01

    A device for producing a stream of vapor for wind tunnel airflow visualization is described. An electrically conductive heating tube is used to resistively heat a vapor producing liquid. The heating and delivery systems are integrated to allow the device to present a small cross section to the air flow, thereby reducing disturbances due to the device. The simplicity of the design allows for inexpensive implementation and construction. The design is readily scaled for use in various wind tunnel applications. The device may also find uses in manufacturing, producing a vapor for deposition on a substrate.

  10. Vapor resistant arteries

    NASA Technical Reports Server (NTRS)

    Shaubach, Robert M. (Inventor); Dussinger, Peter M. (Inventor); Buchko, Matthew T. (Inventor)

    1989-01-01

    A vapor block resistant liquid artery structure for heat pipes. A solid tube artery with openings is encased in the sintered material of a heat pipe wick. The openings are limited to that side of the artery which is most remote from the heat source. The liquid in the artery can thus exit the artery through the openings and wet the sintered sheath, but vapor generated at the heat source is unlikely to move around the solid wall of the artery and reverse its direction in order to penetrate the artery through the openings. An alternate embodiment uses finer pore size wick material to resist vapor entry.

  11. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions. PMID:27375042

  12. Second Vapor-Level Sensor For Vapor Degreaser

    NASA Technical Reports Server (NTRS)

    Painter, Nance M.; Burley, Richard K.

    1990-01-01

    Second vapor-level sensor installed at lower level in vapor degreaser makes possible to maintain top of vapor at that lower level. Evaporation reduced during idle periods. Provides substantial benefit, without major capital cost of building new vapor degreaser with greater freeboard height.

  13. Gasoline Vapor Recovery

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  14. Vapor Control Layer Recommendations

    SciTech Connect

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  15. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations. PMID:27248118

  16. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  17. Superconductivity in alkali metal intercalated iron selenides.

    PubMed

    Krzton-Maziopa, A; Svitlyk, V; Pomjakushina, E; Puzniak, R; Conder, K

    2016-07-27

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  18. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  19. Packing transition in alkali metallic clusters

    NASA Astrophysics Data System (ADS)

    Kawai, R.; Sung, Ming Wen; Weare, John H.

    1996-03-01

    Small metallic clusters form a local geometric configuration quite different from the bulk crystals. As the cluster size increases, several transitions in the local coordination take place before the bulk structure appears. These transitions involve change in the nature of chemical bonds. We have systematically investigated the structural transition of various alkali metal clusters including binary compounds using an ab initio molecular dynamics simulation. Among them, Li clusters exhibit unusual transition in their packing pattern. Small lithium clusters (N <= 21) form open structures based on a ``solvation shell''.(M. Sung, R. Kawai, and J. Weare, Phys. Rev. Lett. 73) (1994) 3552., which is quite different from other alkali metal clusters. The bonding of these small clusters is partially ionic. Above N=25, a close-packed structure is established. However, the local configuration still differ from that of the bulk crystal. As the size further increases, the ionic nature decreases and the system reaches another close-packed structure based on the Mackay icosahedron, which is similar to the bulk crystal structure.

  20. Decalcification resistance of alkali-activated slag.

    PubMed

    Komljenović, Miroslav M; Baščarević, Zvezdana; Marjanović, Nataša; Nikolić, Violeta

    2012-09-30

    This paper analyses the effects of decalcification in concentrated 6M NH(4)NO(3) solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si ~0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification. PMID:22818592

  1. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2‑y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  2. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. PMID:26772660

  3. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  4. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  5. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  6. 40 CFR 721.4740 - Alkali metal nitrites.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defined in 40 CFR 721.3) containing amines. (b) ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject...

  7. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  8. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOEpatents

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  9. Atomic mercury vapor inside a hollow-core photonic crystal fiber.

    PubMed

    Vogl, Ulrich; Peuntinger, Christian; Joly, Nicolas Y; Russell, Philip St J; Marquardt, Christoph; Leuchs, Gerd

    2014-12-01

    We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 × 10(10) cm(-3). The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum.

  10. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  11. Effects of alkali treatments on Ag nanowire transparent conductive films

    NASA Astrophysics Data System (ADS)

    Kim, Sunho; Kang, Jun-gu; Eom, Tae-yil; Moon, Bongjin; Lee, Hoo-Jeong

    2016-06-01

    In this study, we employ various alkali materials (alkali metals with different base strengths, and ammonia gas and solution) to improve the conductivity of silver nanowire (Ag NW)-networked films. The alkali treatment appears to remove the surface oxide and improve the conductivity. When applied with TiO2 nanoparticles, the treatment appears more effective as the alkalis gather around wire junctions and help them weld to each other via heat emitted from the reduction reaction. The ammonia solution treatment is found to be quick and aggressive, damaging the wires severely in the case of excessive treatment. On the other hand, the ammonia gas treatment seems much less aggressive and does not damage the wires even after a long exposure. The results of this study highlight the effectiveness of the alkali treatment in improving of the conductivity of Ag NW-networked transparent conductive films.

  12. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea

    PubMed Central

    Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo

    2016-01-01

    MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698

  13. Power scaling of a wavelength-narrowed diode laser system for pumping alkali vapors

    NASA Astrophysics Data System (ADS)

    Hersman, F. W.; Distelbrink, J. H.; Ketel, J.; Wilson, J.; Watt, D. W.

    2016-03-01

    We report a method for locking the output wavelength and reducing the spectral linewidth of diode lasers by feeding back light to the emitters from a wavelength selective external optical cavity. Ten years ago our team developed a stepped-mirror that allowed a single external cavity to lock the wavelength of a stack of diode array bars by equalizing path lengths between each emitter and the grating. Here we report combining one such step-mirror external cavity with an array of power dividers, each sending a portion of this feedback power to a separate diode array bar stack.

  14. Recycling of PVC Waste via Environmental Friendly Vapor Treatment

    NASA Astrophysics Data System (ADS)

    Cui, Xin; Jin, Fangming; Zhang, Guangyi; Duan, Xiaokun

    2010-11-01

    This paper focused on the dechlorination of polyvinyl chloride (PVC), a plastic which is widely used in the human life and thereby is leading to serious "white pollution", via vapor treatment process to recycle PVC wastes. In the process, HCl emitted was captured into water solution to avoid hazardous gas pollution and corruption, and remaining polymers free of chlorine could be thermally degraded for further energy recovery. Optimal conditions for the dechlorination of PVC using vapor treatment was investigated, and economic feasibility of this method was also analyzed based on the experimental data. The results showed that the efficiency of dechlorination increased as the temperature increased from 200° C to 250° C, and the rate of dechlorination up to 100% was obtained at the temperature near 250° C. Meanwhile, about 12% of total organic carbon was detected in water solution, which indicated that PVC was slightly degraded in this process. The main products in solution were identified to be acetone, benzene and toluene. In addition, the effects of alkali catalysis on dechlorination were also studied in this paper, and it showed that alkali could not improve the efficiency of the dechlorination of PVC.

  15. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage.

    PubMed

    Sheng, Jiangyun; Baldeck, Jeremiah D; Nguyen, Phuong T M; Quivey, Robert G; Marquis, Robert E

    2010-07-01

    Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.

  16. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  17. Elastic properties of alkali-feldspars

    NASA Astrophysics Data System (ADS)

    Waeselmann, N.; Brown, J.; Angel, R. J.; Ross, N.; Kaminsky, W.

    2013-12-01

    New measurements of single crystal elastic moduli for a suite of the alkali feldspars are reported. In order to interpret Earth's seismic structure, knowledge of the elastic properties of constituent minerals is essential. The elasticity of feldspar minerals, despite being the most abundant phase in Earth's crust (estimated to be more than 60%), were previously poorly characterized. All prior seismic and petrologic studies have utilized 50-year-old results, of questionable quality, based on 1-bar measurements on pseudo-single crystals. Alkali-feldspars present a large experimental challenge associated with their structural complexity. In the K-end member (KAlSi3O8) the symmetry is governed by Al/Si ordering, in the Na-end member (NaAlSi3O8) the symmetry is governed by whether or not there is a displacive collapse of the framework independent of the Al/Si ordering. K-feldspars exhibit monoclinic (C2/m) symmetry (necessitating determination of 13 elastic moduli) if disordered and triclinic (C-1) symmetry (21 elastic moduli) if ordered. Exsolution of Na-rich and K-rich phases is ubiquitous in natural samples, making it difficult to find suitable single phase and untwinned samples for study. The small single domain samples selected for this study were previously characterized by x-ray diffraction and microprobe analysis to ensure adequate sample quality. Surface wave velocities were measured on oriented surfaces of natural and synthetic single crystals using impulsively stimulated light scattering. A surface corrugation with a spacing of about 2 microns was impulsively created by the overlap of 100 ps infrared light pulses. The time evolution of the stimulated standing elastic waves was detected by measuring the intensity of diffraction from the surface corrugation of a variably delayed probe pulse. This method allows accurate (better than 0.2%) determination of velocities on samples smaller than 100 microns. The combination of measured surface wave velocities and

  18. Alkali oxide-tantalum oxide and alkali oxide-niobium oxide ionic conductors

    NASA Technical Reports Server (NTRS)

    Roth, R. S.; Parker, H. S.; Brower, W. S.; Minor, D.

    1974-01-01

    A search was made for new cationic conducting phases in alkali-tantalate and niobate systems. The phase equilibrium diagrams were constructed for the six binary systems Nb2O5-LiNbO3, Nb2O5-NaNbO3, Nb2O5-KNbO3, Ta2O5-NaTaO3, Ta2O5-LiTaO3, and Ta2O5-KTaO3. Various other binary and ternary systems were also examined. Pellets of nineteen phases were evaluated (by the sponsoring agency) by dielectric loss measurements. Attempts were made to grow large crystals of eight different phases. The system Ta2O5-KTaO3 contains at least three phases which showed peaks in dielectric loss vs. temperature. All three contain structures related to the tungsten bronzes with alkali ions in non-stoichiometric crystallographic positions.

  19. MEASUREMENT OF TOTAL SITE MERCURY EMISSIONS FROM A CHLOR-ALKALI PLANT USING OPEN-PATH UV-DOAS

    EPA Science Inventory

    In December 2003, the EPA promulgated the National Emission Standard for Hazardous Air Pollutants for mercury cell chlor-alkali plants. In February 2004, the Natural Resources Defense Council filed petitions on the final rule in U.S. district court citing, among other issues, th...

  20. Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Oliveira, Claudia

    Preparatory steps for the experimental investigation of the highly forbidden 5s → 6s transition in rubidium using an atom trap and laser cooling are reported. A magneto-optical trap (MOT) has been assembled including saturation spectroscopy and a dichroic vapor laser lock. A frequency-doubled diode laser system has been installed to perform the spectroscopy of the forbidden transition with cold Rb atoms in the trap. The properties of the ns → n's transition in the presence of an external electric field have been investigated theoretically. A first measurement will be exploring the Stark-induced transition amplitude and the very faint magnetic dipole amplitude. The rubidium experiment is a precursor study for a long-term project at TRIUMF, Canada's National Laboratory for nuclear and particle physics, to measure atomic parity violation in the equivalent 7s → 8s transition in francium, the heaviest alkali atom which has no stable isotopes.