Science.gov

Sample records for alkali vapor lasers

  1. Alkali-vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.; Krupke, W. F.

    2010-02-01

    We report on the results from several of our alkali laser systems. We show highly efficient performance from an alexandrite-pumped rubidium laser. Using a laser diode stack as a pump source, we demonstrate up to 145 W of average power from a CW system. We present a design for a transversely pumped demonstration system that will show all of the required laser physics for a high power system.

  2. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  3. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  4. Alkali metal vapors - Laser spectroscopy and applications

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Koch, M. E.

    1980-01-01

    The paper examines the rapidly expanding use of lasers for spectroscopic studies of alkali metal vapors. Since the alkali metals (lithium, sodium, potassium, rubidium and cesium) are theoretically simple ('visible hydrogen'), readily ionized, and strongly interacting with laser light, they represent ideal systems for quantitative understanding of microscopic interconversion mechanisms between photon (e.g., solar or laser), chemical, electrical and thermal energy. The possible implications of such understanding for a wide variety of practical applications (sodium lamps, thermionic converters, magnetohydrodynamic devices, new lasers, 'lithium waterfall' inertial confinement fusion reactors, etc.) are also discussed.

  5. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  6. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  7. Solar-powered alkali metal vapor lasers

    NASA Technical Reports Server (NTRS)

    Blount, Charles E.

    1989-01-01

    The emission spectrum of the A(1 Sigma u +) - X(1 Sigma g +) band of Na2 has been recorded following excitation by monochromatic radiation in the region of X-A and X-B absorption. The spectral profile has been investigated as a function of excitation wavelength, sodium vapor temperature and buffer gas pressure. Additionally, gain measurements were made for the satellite of the A-X band as a function of the sodium vapor temperature and buffer gas pressure.

  8. Wavelength diversity in optically pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.

    2017-01-01

    Alternative wavelengths for optically pumped alkali vapor lasers have been developed using single photon excitation of higher lying P-states, stimulated Raman processes, two-photon excitation of S and D states, and electric quadruple excitation on S-D transitions. Two photon excitation of Cs 72D leads to competing and cascade lasing producing red and infrared lasers operating on the D-P transitions, followed by ultraviolet, blue, the standard near infrared DPAL transitions operating on P-S transitions. The S-D pump transitions are fully bleached at pump intensities exceeding 1 MW/cm2, allowing for lasing transitions that terminate on the ground state. The kinetics of these systems are complex due to competition for population inversion among the many optical transitions. An optically pumped mid-infrared rubidium pulsed, mirrorless laser has also been demonstrated in a heat pipe along both the 62P3/2 - 62S1/2 transition at 2.73 μm and the 62P1/2 - 62S1/2 transition at 2.79 μm with a maximum energy of 100 nJ. Performance improves dramatically as the rubidium vapor density is increased, in direct contradiction with the prior work. No scaling limitations associated with energy pooling or ionization kinetics have been observed. Practical application for infrared counter measures depends on the further development of blue diode pump sources. Finally, stimulated electronic Raman scattering and hyper-Raman processes in potassium vapor near the D1 and D2 lines have been observed using a stable resonator and pulsed laser excitation. First and second order Stokes and anti-Stokes lines were observed simultaneously and independently for a pump laser tuning range exceeding 70 cm-1. When the pump is tuned between the K D1 and D2 lines, an efficient hyper-Raman process dominates with a slope efficiency that exceeds 10%. Raman shifted laser may be useful as a target illuminator or atmospheric compensation beacon for a high power diode pumped alkali laser.

  9. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  10. Theoretical analysis of the semi-ring and trapezoid LD side-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2016-12-01

    Analysis of two new pump-couplings: semi-ring and trapezoid LD side-pumped configurations in alkali vapor lasers is reported, which mainly includes the numerical approaches for evaluation of the pump intensity and temperature distribution in the cell of these two configurations. Comparison between the simulated results of the semi-ring and trapezoid LD side-pumped Cs vapor lasers and the experimental results of the single-side pumped Cs vapor lasers with a cylindrical white diffuse reflector and a stable or unstable resonator is made. Dependencies of laser power on pump power and flowed velocity for semi-ring, trapezoid, single and double side-pumped configurations are calculated, demonstrating the advantages of the semi-ring and trapezoid LD side-pumped configurations. Thus the model is very helpful for designing high-power side-pumped alkali vapor lasers.

  11. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  12. Diode Pumped Alkali Vapor Lasers - A New Pathway to High Beam Quality at High Average Power

    SciTech Connect

    Page, R H; Boley, C D; Rubenchik, A M; Beach, R J

    2005-05-06

    Resonance-transition alkali-vapor lasers have only recently been demonstrated [1] but are already attracting considerable attention. Alkali-atom-vapor gain media are among the simplest possible systems known, so there is much laboratory data upon which to base performance predictions. Therefore, accurate modeling is possible, as shown by the zero- free-parameter fits [2] to experimental data on alkali-vapor lasers pumped with Ti:sapphire lasers. The practical advantages of two of the alkali systems--Rb and Cs--are enormous, since they are amenable to diode-pumping [3,4]. Even without circulating the gas mixture, these lasers can have adequate cooling built-in owing to the presence of He in their vapor cells. The high predicted (up to 70%) optical-to-optical efficiency of the alkali laser, the superb (potentially 70% or better) wall-plug efficiency of the diode pumps, and the ability to exhaust heat at high temperature (100 C) combine to give a power-scalable architecture that is lightweight. A recent design exercise [5] at LLNL estimated that the system ''weight-to-power ratio'' figure of merit could be on the order of 7 kg/kW, an unprecedented value for a laser of the 100 kW class. Beam quality is expected to be excellent, owing to the small dn/dT value of the gain medium. There is obviously a long way to go, to get from a small laser pumped with a Ti:sapphire or injection-seeded diode system (of near-perfect beam quality, and narrow linewidth) [1, 4] to a large system pumped with broadband, multimode diode- laser arrays. We have a vision for this technology-development program, and have already built diode-array-pumped Rb lasers at the 1 Watt level. A setup for demonstrating Diode-array-Pumped Alkali vapor Lasers (DPALs) is shown in Figure 1. In general, use of a highly-multimode, broadband pump source renders diode-array-based experiments much more difficult than the previous ones done with Ti:sapphire pumping. High-NA optics, short focal distances, and short

  13. Buffer gas-assisted four-wave mixing resonances in alkali vapor excited by a single cw laser

    NASA Astrophysics Data System (ADS)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Khanbekyan, Alen; Mariotti, Emilio; Papoyan, Aram V.

    2016-12-01

    We report the observation of a fluorescence peak appearing in dilute alkali (Rb, Cs) vapor in the presence of a buffer gas when the cw laser radiation frequency is tuned between the Doppler-broadened hyperfine transition groups of an atomic D2 line. Based on steep laser radiation intensity dependence above the threshold and spectral composition of the observed features corresponding to atomic resonance transitions, we have attributed these features to the buffer gas-assisted four-wave mixing process.

  14. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  15. Spill-Resistant Alkali-Metal-Vapor Dispenser

    NASA Technical Reports Server (NTRS)

    Klipstein, William

    2005-01-01

    A spill-resistant vessel has been developed for dispensing an alkali-metal vapor. Vapors of alkali metals (most commonly, cesium or rubidium, both of which melt at temperatures slightly above room temperature) are needed for atomic frequency standards, experiments in spectroscopy, and experiments in laser cooling. Although the present spill-resistant alkali-metal dispenser was originally intended for use in the low-gravity environment of outer space, it can also be used in normal Earth gravitation: indeed, its utility as a vapor source was confirmed by use of cesium in a ground apparatus. The vessel is made of copper. It consists of an assembly of cylinders and flanges, shown in the figure. The uppermost cylinder is a fill tube. Initially, the vessel is evacuated, the alkali metal charge is distilled into the bottom of the vessel, and then the fill tube is pinched closed to form a vacuum seal. The innermost cylinder serves as the outlet for the vapor, yet prevents spilling by protruding above the surface of the alkali metal, no matter which way or how far the vessel is tilted. In the event (unlikely in normal Earth gravitation) that any drops of molten alkali metal have been shaken loose by vibration and are floating freely, a mesh cap on top of the inner cylinder prevents the drops from drifting out with the vapor. Liquid containment of the equivalent of 1.2 grams of cesium was confirmed for all orientations with rubbing alcohol in one of the prototypes later used with cesium.

  16. Multiwavelength Strontium Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  17. High Pressure Noble Gas Alkali Vapor Mixtures and Their Visible and Infrared Excimer Bands.

    DTIC Science & Technology

    1980-02-01

    Dense Alkali Vapors; Near Infrared Lasers; Infrared Absorption and Emission 20. ABSTRACT (Conrfinte on reverse -Ide If nece oeery ed Identify hr block...n,mber) " The infrared absorption of saturated alkali vapors has been measured for the first time. New absorption bands are tentatively assigned to...region of infrared absorption between lu and 2 i in the saturated vapors of sodium, potassium, rubidium and cesium. This new region of absorption appears

  18. Plasma formation in diode pumped alkali lasers sustained in Cs

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2016-11-01

    In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the 2P states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N2 is not a favored collisional mixing agent due to large rates of quenching of the 2P states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N2 as the collisional mixing agent, plasma formation is in excess of 1014-1015 cm-3, which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels.

  19. 420nm alkali blue laser based on two-photon absorption

    NASA Astrophysics Data System (ADS)

    Tan, Yan-nan; Li, Yi-min; Liu, Tong; Gong, Fa-quan; Jia, Chun-yan; Hu, Shu; Gai, Bao-dong; Guo, Jing-wei; Liu, Wan-fa

    2015-02-01

    Based on two-photon absorption, a 420nm blue laser of alkali Rb vapor was demonstrated, and a dye laser was used as the pumping laser. Utilizing the energy level structure of Rb atom, lasering mechanism and two-photon absorption process are analyzed. Absorbing two 778.1nm photons, Rb atoms were excited from 52 S1/2 to 52 D5/2, then relaxed to 62 P3/2 with mid infrared photon radiation. 420nm blue laser was achieved by the transition 62 P3/2-->52 S1/2. To improve efficiency of the blue laser, two-photon resonant excitation pumped alkali vapor blue lasers are proposed, which will be good beam quality, high efficiency and scalable blue lasers. The development of diode pumped alkali vapor blue laser is expected.

  20. Lithium and Sodium Resistance of Alkali Metal Vapor Resistant Glasses

    NASA Astrophysics Data System (ADS)

    Kishinevski, Anatoly; Hall, Matthew

    2014-05-01

    A common challenge in atomic physics is that of containing an alkali metal vapor at an elevated temperature and concurrently being able to excite and probe atomic transitions within. Typically glass is used as the material to construct the container, as it is easy to manipulate into any geometry and offers thermal, mechanical, and optical properties that no other material is capable. Unfortunately it has been well established that alkali metal gasses/vapors react readily with silica containing glass and results in a progressive darkening of the material. As the darkening reaction progresses, the optical transmission properties of the glass progressively degrade to an eventual point of uselessness. Alkali metals have been used extensively in frequency standards and magnetometers. The finite life of these alkali metal vapor-containing devices has been accepted despite varying attempts by different teams to solve this problem. As a viable solution, it has been identified there exist a family of glass compositions that contain a marginal amount of silica, may be lampworked using traditional glassblowing techniques, and that offer substantially better alkali vapor resistance. The evaluation of these glasses and their resistance to sodium and lithium vapor at varying pressures and temperatures are discussed.

  1. Alkali-vapor emission from PFBC of Illinois coals.

    SciTech Connect

    Lee, S. H. D.; Teats, F. G.; Swift, W. M.; Banerjee, D. D.; Chemical Engineering; Center for Research on Sulfur in Coal

    1992-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were combusted in a laboratory-scale PFBC/alkali sorber facility with a bed of Tymochtee dolomite at temperatures ranging from 910 to 950oC and a system pressure of 9.2 atm absolute. Alkali vapor emission (Na and K) from combustion was determined by analytical activated-bauxite sorber bed technique. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas of these coals and that there is a positive linear relationship between the level of sodium-vapor emission with both Na and Cl contents in the coals.

  2. Transverse-pumped Cs vapor laser

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Shaffer, M. K.; Sell, J.; Knize, R. J.

    2009-02-01

    Scaling of alkali lasers to higher powers requires combining beams of multiple diode laser pump sources. For longitudinal pumping this can be very complicated if more than four beams are to be combined. In this paper we report a first demonstration of a transversely pumped Cs laser with fifteen laser diode arrays. The LDA pump beams were individually collimated with a beam size of about 1 x 4 cm as measured at a 1 m distance from the diodes. All these beams were incident on a cylindrical lens to be focused and coupled through the side slit of a hollow, cylindrical diffuse reflector which contained the Cs vapor cell. We measured the output power and efficiency of the Cs laser for pump powers up to 200 W at different cell temperatures. Although the values of output power and slope efficiency obtained for this laser system were less than those for a longitudinally pumped alkali laser, these recent results can be significantly improved by using a more optimal laser cavity design. The demonstrated operation of Cs laser with transverse pumping opens new possibilities in power scaling of alkali lasers.

  3. Advancements in flowing diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Stalnaker, Donald M.; Guild, Eric M.; Oliker, Benjamin Q.; Moran, Paul J.; Townsend, Steven W.; Hostutler, David A.

    2016-03-01

    Multiple variants of the Diode Pumped Alkali Laser (DPAL) have recently been demonstrated at the Air Force Research Laboratory (AFRL). Highlights of this ongoing research effort include: a) a 571W rubidium (Rb) based Master Oscillator Power Amplifier (MOPA) with a gain (2α) of 0.48 cm-1, b) a rubidium-cesium (Cs) Multi-Alkali Multi-Line (MAML) laser that simultaneously lases at both 795 nm and 895 nm, and c) a 1.5 kW resonantly pumped potassium (K) DPAL with a slope efficiency of 50%. The common factor among these experiments is the use of a flowing alkali test bed.

  4. Control of alkali vapors by a granular-bed filter

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.; Jonke, A.A.

    1983-01-01

    Control of alkali vapors in the pressurized fluidized-bed combustion (PFBC) of coal is being studied in a laboratory-scale fixed granular-bed filter. The potential sorbents identified earlier were tested for their alkali vapor sorption in a gas stream with temperature (greater than or equal to 850/sup 0/C), pressure (10 atm absolute), and composition closely simulating actual PFBC flue gas. The NaCl-vapor sorption efficiency of activated bauxite is > 99.8% and was found not to be diminished by HCl in flue gas. Diatomaceous earth has lower sorption efficiencies than activated bauxite. Emathlite, a fuller's earth, has a capability for NaCl-vapor capture. Its sorption behavior and preliminary sorption efficiencies are presented and discussed.

  5. An electron diffraction study of alkali chloride vapors

    NASA Technical Reports Server (NTRS)

    Mawhorter, R. J.; Fink, M.; Hartley, J. G.

    1985-01-01

    A study of monomers and dimers of the four alkali chlorides NaCl, KCl, RbCl, and CsCl in the vapor phase using the counting method of high energy electron diffraction is reported. Nozzle temperatures from 850-960 K were required to achieve the necessary vapor pressures of approximately 0.01 torr. Using harmonic calculations for the monomer and dimer 1 values, a consistent set of structures for all four molecules was obained. The corrected monomer distances reproduce the microwave values very well. The experiment yields information on the amount of dimer present in the vapor, and these results are compared with thermodynamic values.

  6. Measurement of alkali vapors in PFBC exhaust. Final report

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1994-01-01

    Under the auspices of the US Department of Energy through Morgantown Energy Technology Center, laboratory-scale studies were conducted to develop a regenerable activated-bauxite adsorbent (RABA) for use in an in situ regenerable activated-bauxite sorber alkali monitor (RABSAM). The RABSAM is a sampling probe that does not require a high-temperature/high-pressure sampling line for reliable measurement of alkali vapor in the exhaust of pressurized fluidized-bed combustor (PFBC). The RABA can be generated from the commercial grade activated bauxite by deactivating (or reacting) clay impurities in activated bauxite with NaCl or LiCl vapor. Under the atmospheric deactivation process, however, only a partial deactivation of clay impurities is achieved, probably due to limited access of NaCl or LiCl vapor into micropores of activated bauxite. Because LiCl vapor chemically reacts with alumina substrate of activated bauxite, resulting in pore enlargement, loss of pore surface area, and a decrease in the subsequent NaCl-vapor sorption capacity of the RABA, NaCl is a more suitable deactivation agent than LiCl vapor. In a simulated PFBC exhaust environment, the RABA behaves similarly to fresh activated bauxite in capturing NaCl vapor from the simulated PFBC exhaust. Based on results of this work, we recommend generating chemically and thermally stable RABA by deactivating clay impurities of commercial grade activated bauxite with NaCl or KCl vapor under simulated PFBC exhaust environment, that is, high-temperature, high-pressure, and high concentrations of NaCl or KCl vapor in simulated PFBC exhaust compositions.

  7. Intensity Scaling for Diode Pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-01

    unphased diode lasers is absorbed in the near IR by atomic potassium, rubidium , or cesium. The gain cell for a DPAL system using a heat pipe design is...demonstrated linear scaling of a rubidium laser to 32 times threshold.3 In our present work, we explore scaling to pump in- tensities of >100kW/cm2. The...of output power. Each alkali atom in the laser medium may be required to cycle as many as 1010 pump photons per second. We demonstrated a rubidium

  8. Iron bromide vapor laser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  9. Study of Alkali-Metal Vapor Diffusion into Glass Materials

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori

    2013-08-01

    To investigate nanodispersion of alkali metals into glass materials, potassium vapor diffusion is conducted using SiO2 glass under well-controlled temperature conditions. It is found that potassium vapor significantly diffuses into the bulk of SiO2 glass with less precipitation on the surface when the host material is kept at a temperature slightly higher than that of the guest material. Positron annihilation spectroscopy reveals that angstrom-scale open spaces in the SiO2 matrix contribute to potassium vapor diffusion. The analysis of potassium concentration obtained by electron probe microanalysis (EPMA) mapping with Fick's second law yields an extremely low potassium diffusion coefficient of 5.1×10-14 cm2 s-1, which arises from the overall diffusion from open spaces of various sizes. The diffusion coefficient attributable to angstrom-scale open spaces is thus expected to be less than ˜10-14 cm2 s-1. The present findings imply that angstrom-scale open spaces play an important role in loading alkali metals into glass materials.

  10. Optical Absorption of Alkali Metal Vapors at High Temperatures

    NASA Astrophysics Data System (ADS)

    Erdman, Paul Stephen

    High pressure, high temperature lithium vapors are of interest to both basic and applied research. Lithium vapors at extreme temperatures may contain new species of molecules and molecular ions which have not been previously observed or well studied. The strong optical absorption properties of alkali metals in the visible and infrared make them desirable as solar absorbing materials for many applications. In particular, lithium is being considered as a candidate for absorption of solar energy in solar plasma propulsion. Studies of lithium vapors under high pressure and at high temperatures would simulate the rocket thruster environment in which they are expected to perform as solar absorbers. Optical absorption experiments were performed on high temperature, high pressure lithium vapors. The Plasma Spectroscopy Cell (PSC), a unique device constructed just for such experiments, was used to heat lithium vapors to a maximum temperature of 2100 K at 1 atmosphere pressure. The PSC has the potential to reach 3000 K and 100 atmospheres. Absorption spectra contain features of several well understood molecular transitions of lithium. Remaining spectral features require modeling of all possible transitions in order to identify the molecule contributing to overall absorption. Modeling of lithium optical absorption is performed here for several transitions of diatomic lithium. Several interesting features of the PSC absorption spectra have been explained by the modeling. Additional experiments and modeling are possible for future research.

  11. A Modular Control Platform for a Diode Pumped Alkali Laser

    DTIC Science & Technology

    2008-09-01

    A Modular Control Platform for a Diode Pumped Alkali Laser Joshua Shapiro, Scott W. Teare New Mexico Institute of Mining and Technology, 801 Leroy...gain media, such as is done in diode pumped alkali lasers (DPALs), has been proposed and early experiments have shown promising results. However...REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE A Modular Control Platform for a Diode Pumped Alkali Laser 5a

  12. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  13. Ionic alkali halide XUV laser feasibility study

    SciTech Connect

    Yang, T.T.; Gylys, V.T.; Bower, R.D.; Harris, D.G.; Blauer, J.A.; Turner, C.E.; Hindy, R.N.

    1989-11-10

    The objective of this work is to assess the feasibility of a select set of ionic alkali halide XUV laser concepts by obtaining the relevant kinetic and spectroscopic parameters required for a proof-of-principle and conceptual design. The proposed lasers operate in the 80--200 nm spectral region and do not require input from outside radiation sources for their operation. Frequency up-conversion and frequency mixing techniques and therefore not considered in the work to be described. An experimental and theoretical study of a new type of laser operating in the extreme ultraviolet wavelength region has been conducted. The lasing species are singly ionized alkali halide molecules such as Rb{sup 2+}F{sub {minus}}, Rb{sup 2+}Br{sup {minus}} and Cs{sup 2+}F{sup {minus}}. These species are similar in electronic structure to the rare gas halide excimers, such as XeF and Krf, except that the ionic molecules emit at wavelengths of 80--200 nm, much shorter than the conventional rare-gas halide excimer laser. The radiative lifetime of these molecules are typically near 1 ns, which is about an order of magnitude shorter than that for rare-gas halide systems. The values of the cross section for stimulated emission are on the order of 1 {times} 10{sup {minus}16}cm{sup 2}. Because of the fundamental similarity to existing UV lasers, these systems show promise as a high power, efficient XUV lasers. 55 refs., 50 figs., 5 tabs.

  14. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  15. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ban, K.; Hirai, Y.; Sugano, K.; Tsuchiya, T.; Mizutani, N.; Tabata, O.

    2013-11-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460-490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches.

  16. A reactor system for studying the interactions between alkali vapors and ceramic compounds

    SciTech Connect

    Shadman, F.; Punjak, W.A.

    1987-01-01

    The kinetics and mechanism of interaction between alkali vapors and several ceramic compounds are studied. A unique micro-gravimetric reactor is designed and utilized for this study. Bauxite and kaolin are very good adsorbents for alkali chlorides and are potentially good additives for control of alkali during coal combustion and gasification. The experimental data shows that the alkali capturing process is a combination of physisorption, chemisorption and chemical reaction. An analytical model is developed assuming a multi-layer adsorption of alkali on substrate followed by a rate-controlling rection on the surface. The experimental results and model predictions are in good agreement.

  17. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect

    Lee, S.H.D.; Teats, F.G.; Swift, W.M.; Banerjee, D.D.

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  18. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. ); Banerjee, D.D. )

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  19. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  20. High-temperature interactions of alkali vapors with solids during coal combustion and gasification

    SciTech Connect

    Punjak, W.A.

    1988-01-01

    A temperature and concentration programmed reaction method is used to investigate the mechanism by which organically bound alkali is released from carbonaceous substrates. Vaporization of the alkali is preceded by reduction of oxygen-bearing groups during which CO is generated. A residual amount of alkali remains after complete reduction. This residual level is greater for potassium, indicating that potassium has stronger interactions with graphitic substrates that sodium. Other mineral substrates were exposed to high temperature alkali chloride vapors under both nitrogen and simulated flue gas atmospheres to investigate their potential application as sorbents for the removal of alkali from coal conversion flue gases. The compounds containing alumina and silica are found to readily adsorb alkali vapors and the minerals kaolinite, bauxite and emathlite are identified as promising alkali sorbents. The fundamentals of alkali adsorption on kaolinite, bauxite and emathlite are compared and analyzed both experimentally and through theoretical modeling. The experiments were performed in a microgravimetric reactor system; the sorbents were characterized before and after alkali adsorption using scanning Auger microscopy, X-ray diffraction analysis, mercury porosimetry and atomic emission spectrophotometry. The results show that the process is not a simple physical condensation, but a complex combination of several diffusion steps and reactions.

  1. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  2. Transversely diode-pumped alkali metal vapour laser

    SciTech Connect

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  3. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    NASA Astrophysics Data System (ADS)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  4. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    PubMed

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  5. Diode-Pumped Alkali Atom Lasers 03-LW-024 Final Report

    SciTech Connect

    Page, R H; Beach, R J

    2005-02-16

    The recent work at LLNL on alkali-atom lasers has been remarkably successful and productive. Three main phases (so far) can be identified. First, the concept and demonstration of red lasers using (Ti:sapphire pumping) took place; during this time, Rubidium and Cesium resonance-line lasers were tested, and theoretical models were developed and shown to describe experimental results very reliably. Work done during this first phase has been well documented, and the models from that period are still in use for their predictions and for designing power-scaled lasers. [1 - 3] Second, attempts were made to produce a blue alkali-vapor laser using sequentially-resonant two-step pumping (again, using Ti:sapphire lasers.) Although a blue laser did not result, the physical limitations of our approach are now better-defined. Third, diode-pumped operation of a red laser (Rubidium) was attempted, and we eventually succeeded in demonstrating the world's first diode-pumped gas laser. [4] Because we have a defensible concept for producing an efficient, compact, lightweight, power-scaled laser (tens of kW,) we are in a position to secure outside funding, and would like to find a sponsor. For descriptions of work done during the ''first phase,'' see References [1 - 3] ''Phase two'' work is briefly described in the section ''Blue laser,'' and ''phase three'' work is presented in the section entitled ''Diode-pumped red laser.''

  6. Atomic vapor laser isotope separation

    SciTech Connect

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  7. Modeling of a diode four-side pumped cesium vapor laser amplifier with flowing medium

    NASA Astrophysics Data System (ADS)

    Xia, Chunsheng; Shen, Binglin; Xu, Xingqi; Pan, Bailiang

    2017-03-01

    A physical model for a flowing four-side pumped alkali vapor laser MOPA system, which considers the saturation effect and amplified spontaneous emission (ASE) and cross-sectional temperature distribution, is established to simulate the output performance of the cesium vapor amplifier. According to the experimental parameters, the simulated result agrees well with the experiment, which demonstrates the validity of this model. Influences of the seed power, the flowing velocity, and the cell length on the amplified power are simulated and analyzed, and a set of optimal operating parameters are obtained. Thus, the model can provide an effective way for designing an efficient side-pumped flowing-gas alkali vapor amplifier.

  8. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOEpatents

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  9. 250W diode laser for low pressure Rb vapor pumping

    NASA Astrophysics Data System (ADS)

    Podvyaznyy, A.; Venus, G.; Smirnov, V.; Mokhun, O.; Koulechov, V.; Hostutler, D.; Glebov, L.

    2010-02-01

    The diode pumped alkali vapor lasers operating at subatmospheric pressure require developing of a new generation of high-power laser diode sources with about 10 GHz wide emission spectrum. The latest achievements in the technology of volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass opened new opportunities for the design and fabrication of compact external cavity laser diodes, diode bars and stacks with reflecting VBGs as output couplers. We present a diode laser system providing up to 250 W output power and emission spectral width of 20 pm (FWHM) at the wavelength of 780 nm. The stability and position of an emission wavelength is determined by the resonant wavelength of a VBG which is controlled by temperature. Stability of an emitting wavelength is within 5 pm. Thermal tuning of the wavelength provides maximum overlapping of emitting line with absorption spectrum of a Rb (rubidium)- cell. The designed system consists of 7 modules tuned to the same wavelength corresponding to D2 spectral line of Rb87 or Rb85 and coupled to a single output fiber. Analogous systems could be used for other Rb isotopes spectral lines as well as for lasers based on other alkali metal vapors (Cs and K) or any agents with narrow absorption lines.

  10. Laboratory measurements of alkali metal containing vapors released during biomass combustion

    SciTech Connect

    Dayton, D.C.; Milne, T.A.

    1996-12-31

    Alkali metals, in particular potassium, have been implicated as key ingredients for enhancing fouling and slagging of heat transfer surfaces in power generating facilities that convert biomass to electricity. When biomass is used as a fuel in boilers, the deposits formed reduce efficiency, and in the worst case lead to unscheduled plant downtime. Blending biomass with other fuels is often used as a strategy to control fouling and slagging problems. Depending on the combustor, sorbents can be added to the fuel mixture to sequester alkali metals. Another possibility is to develop methods of hot gas cleanup that reduce the amount of alkali vapor to acceptable levels. These solutions to fouling and slagging, however, would greatly benefit from a detailed understanding of the mechanisms of alkali release during biomass combustion. Identifying these alkali vapor species and understanding how these vapors enhance deposit formation would also be beneficial. The approach is to directly sample the hot gases liberated from the combustion of small biomass samples in a variable-temperature quartz-tube reactor employing a molecular beam mass spectrometer (MBMS) system. The authors have successfully used this experimental technique to identify alkali species released during the combustion of selected biomass feedstocks used in larger scale combustion facilities. Fuels investigated include lodgepole pine, eucalyptus, poplar, corn stover, switchgrass, wheat straw, rice straw, pistachio shells, almond shells and hulls, wood wastes, waste paper, alfalfa stems, and willow tops.

  11. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  12. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W.; Ault, Earl R.; Moses, Edward I.

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  13. Spin Transfer from an Optically Pumped Alkali Vapor to a Solid

    SciTech Connect

    Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W.

    2007-05-04

    We report enhancement of the spin polarization of {sup 133}Cs nuclei in CsH salt by spin transfer from an optically pumped cesium vapor. The nuclear polarization was 4.0 times the equilibrium polarization at 9.4 T and 137 deg. C, with larger enhancements at lower fields. This work is the first demonstration of spin transfer from a polarized alkali vapor to the nuclei of a solid, opening up new possibilities for research in hyperpolarized materials.

  14. Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier.

    PubMed

    Hostutler, David A; Klennert, Wade L

    2008-05-26

    A master oscillator power amplifier (MOPA) with variable amplifier gain lengths was built to demonstrate power enhancement of an alkali vapor laser. A small signal gain of 0.91 / cm for two different gain lengths was observed. For a 2 cm long amplifier gain length an amplification of 7.9 dB was observed.

  15. Observation of Raman self-focusing in an alkali-metal vapor cell

    NASA Astrophysics Data System (ADS)

    Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.

    2008-02-01

    We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.

  16. Hyperfine frequency shift and Zeeman relaxation in alkali-metal-vapor cells with antirelaxation alkene coating

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.; Karaulanov, Todor; Balabas, Mikhail; Budker, Dmitry

    2013-02-01

    An alkene-based antirelaxation coating for alkali-metal vapor cells exhibiting Zeeman relaxation times up to 77 s was recently identified by Balabas The long relaxation times, two orders of magnitude longer than in paraffin- (alkane-) coated cells, motivate revisiting the question of what the mechanism is underlying wall-collision-induced relaxation and renew interest in applications of alkali-metal vapor cells to secondary frequency standards. We measure the width and frequency shift of the ground-state hyperfine mF=0→mF'=0 transition (clock resonance) in vapor cells with 85Rb and 87Rb atoms, with an alkene antirelaxation coating. We find that the frequency shift is slightly larger than for paraffin-coated cells and that the Zeeman linewidth scales linearly with the hyperfine frequency shift.

  17. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  18. New Class of CW High-Power Diode-Pumped Alkali Lasers (DPALs)

    SciTech Connect

    Krupke, W F; Beach, R J; Kanz, V K; Payne, S A; Early, J T

    2004-03-23

    The new class of diode-pumped alkali vapor lasers (DPALs) offers high efficiency cw laser radiation at near-infrared wavelengths: cesium 895 nm, rubidium 795 nm, and potassium 770 nm. The working physical principles of DPALs will be presented. Initial 795 nm Rb and 895 nm Cs laser experiments performed using a titanium sapphire laser as a surrogate pump source demonstrated DPAL slope power conversion efficiencies in the 50-70% range, in excellent agreement with device models utilizing only literature spectroscopic and kinetic data. Using these benchmarked models for Rb and Cs, optimized DPALs with optical-optical efficiencies >60%, and electrical efficiencies of 25-30% are projected. DPAL device architectures for near-diffraction-limited power scaling into the high kilowatt power regime from a single aperture will be described. DPAL wavelengths of operation offer ideal matches to silicon and gallium arsenide based photovoltaic power conversion cells for efficient power beaming.

  19. Effects of Plasma Formation on the Cesium Diode (DPAL) and Excimer (XPAL) Pumped Alkali Laser

    NASA Astrophysics Data System (ADS)

    Markosyan, Aram H.; Kushner, Mark J.

    2015-09-01

    Diode pumped alkali lasers (DPALs) and excimer pumped alkali lasers (XPALs) are being investigated as a means to convert optical pumps having poor optical quality to laser radiation having high optical quality. DPALs sustained in Cs vapor are pumped on the D2(852.35 nm), Cs(62S1/2) --> Cs(62P3/2) , transition and lase on the D1(894.59 nm) transition, Cs(62P1/2) --> Cs(62S1/2) . Collisional mixing (spin orbit relaxation) of the Cs(62P3/2) and Cs(62P1/2) levels is a key part of this three-level (in fact, a quasi-two-level) laser scheme. In the five-level XPAL pumping scheme, the CsAr(B2Σ1/ 2 +) state is optically pumped by 836.7 nm pulses, which later dissociates and produces Cs(62P3/2) . As in DPAL, a collisional relaxant transfers the population of Cs(62P3/2) to Cs(62P1/2) , which enables lasing on D1 transition. A first principals global computer model has been developed for both systems to investigate the effects of plasma formation on the laser performance. Argon is used as a buffer gas and nitrogen or ethane are used as a collisional relaxant at total pressure of 600 Torr at temperatures of 350-450 K, which produces vapor pressures of Cs of <0.1 Torr. In both systems, a plasma formation in excess of 1014 - 1016cm-3 occurs, which potentially reduces laser output power by electron collisional mixing of upper and lower laser levels. Work supported by DoD High Energy Laser Multidisc, Res. Initiative.

  20. Photocathode transfer and storage techniques using alkali vapor feedback control

    NASA Astrophysics Data System (ADS)

    Springer, R. W.; Cameron, B. J.

    1991-12-01

    Photocathodes of quantum efficiency above 1 percent at the doubled YAG frequency of 532 nM are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of approximately 2 volts or less. As such, these surfaces are very reactive as they provide many surface states for the residual gases that have positive electron affinities such as oxygen and omnipotent water. Attendant to this problem is that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the Cs-Ag-Bi-O, the Cs3Sb and the K2CsSb. The most stable material found is the K2CsSb. The vacuum conditions can be met by a variety of pumping schemes. The vacuum is achieved by using sputter ion diode pumps, and baking at 250 C or less for whatever time is required to reduce the pump currents to below 1 uA at room temperature. To obtain the required partial pressure of cesium, a simple very sensitive diagnostic gauge has been developed that can discriminate between free alkali and other gases present. This Pressure Alkali Monitor (PAM) can be used on cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vacuum system and preserved for over 10 days with less than a 25 percent loss to the QE at 543.5 nM.

  1. Photocathode transfer and storage techniques using alkali vapor feedback control

    SciTech Connect

    Springer, R.W.; Cameron, B.J.

    1991-12-20

    Photocathodes of quantum efficiency above 1% at the doubled YAG frequency of 532 nM are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of {approximately}2 volts or less. As such, these surfaces are very reactive as they provide many surface states for the residual gases that have positive electron affinities such as oxygen and omnipotent water. Attendant to this problem is that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the Cs-Ag-Bi-O, the Cs{sub 3}Sb and the K{sub 2}CsSb. The most stable material found is the K{sub 2}CsSb. The vacuum conditions can be met by a variety of pumping schemes. The vacuum is achieved by using sputter ion diode pumps, and baking at 250{degrees}C or less for whatever time is required to reduce the pump currents to below 1 uA at room temperature. To obtain the required partial pressure of cesium, a simple very sensitive diagnostic gauge has been developed that can discriminate between free alkali and other gases present. This Pressure Alkali Monitor (PAM) can be used cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vacuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nM.

  2. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  3. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  4. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  5. Impurity detection in alkali-metal vapor cells via nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Patton, B.; Ishikawa, K.

    2016-11-01

    We use nuclear magnetic resonance spectroscopy of alkali metals sealed in glass vapor cells to perform in situ identification of chemical contaminants. The alkali Knight shift varies with the concentration of the impurity, which in turn varies with temperature as the alloy composition changes along the liquidus curve. Intentional addition of a known impurity validates this approach and reveals that sodium is often an intrinsic contaminant in cells filled with distilled, high-purity rubidium or cesium. Measurements of the Knight shift of the binary Rb-Na alloy confirm prior measurements of the shift's linear dependence on Na concentration, but similar measurements for the Cs-Na system demonstrate an unexpected nonlinear dependence of the Knight shift on the molar ratio. This non-destructive approach allows monitoring and quantification of ongoing chemical processes within the kind of vapor cells which form the basis for precise sensors and atomic frequency standards.

  6. Removal of alkali vapors by a fixed granular-bed sorber using activated bauxite as a sorbent

    SciTech Connect

    Lee, S.H.D.; Henry, R.F.; Myles, K.M.

    1985-01-01

    Studies have been conducted to develop a fixed granular-bed sorber for the removal of alkali vapors in a pressurized fluidized-bed combustion (PFBC) combined-cycle system. A laboratory-scale pressurized alkali vapor sorption test unit was used to characterize activated bauxite, the most effective sorbent identified earlier, for its alkali vapor sorption capability in a gas stream with temperature (less than or equal to 900/sup 0/C), pressure (10 atm absolute), and composition closely simulating the actual PFBC flue gas. A scale-up of laboratory tests is being conducted in a 15.2-cm-dia (6-in.-dia) PFBC system to demonstrate the granular-bed sorber concept. The NaCl-vapor sorption chemistry of activated bauxite is described. The extent of alkali-vapor evolution from the activated bauxite bed itself is discussed, along with an evaluation of the significance of its alkali vapor contribution to a downstream gas turbine. Details of the design of a high-temperature/high-pressure alkali sorber system for the demonstration of the sorber are presented. 15 references, 6 figures, 3 tables.

  7. Measurement of alkali vapor in PFBC flue gas and its control by a fixed granular bed of activated bauxite

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.

    1985-01-01

    A fixed granular-bed sorber, with regenerable activated bauxite as the sorbent, for the control of the alkali vapor in the flue gas produced during pressurized fluidized-bed combustion (PFBC) of coal is being developed. In a gas stream closely simulating the actual PFBC flue gas, activated bauxite is shown to capture NaCl vapor by (1) chemical fixation of the vapor with the intrinsic clay minerals, probably to form thermally stable, water-insoluble sodium aluminosilicates and (2) chemical conversion of NaCl vapor into a condensed-phase sodium sulfate, which has a much lower vapor pressure than does NaCl. The latter predominates the capture process, and the captured sodium sulfate can be easily removed by simple water-leaching to restore the porosity of activated bauxite for reuse. A high-temperature (less than or equal to 900/sup 0/C) and high-pressure (less than or equal to 10 atm) laboratory-scale, fixed, granular-bed alkali sorber has been operated with the Argonne National Laboratory PFBC combustor to (1) measure the alkali vapor concentration in the PFBC flue gas on a real-time, on-line basis, and (2) demonstrate the alkali sorber for the control of alkali vapor from an actual PFBC flue gas. The alkali (Na + K) vapor concentration in particulate filtered hot flue gas was measured to be <10 ppbW with the Ames analyzer. The same measurement with the APST was higher between 90 to 170 ppbW. Therefore, the possibility of sink for sodium vapor in the PFBC/alkali sorber system must be considered. 32 refs.

  8. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  9. Laser synthesis of ultracold alkali metal dimers: optimization and control

    NASA Astrophysics Data System (ADS)

    Pazyuk, E. A.; Zaitsevskii, A. V.; Stolyarov, A. V.; Tamanis, M.; Ferber, R.

    2015-10-01

    The review concerns the potential of modern high-resolution laser spectroscopy and state-of-the-art ab initio electronic structure calculations used to obtain comprehensive information on the energy and radiative properties of strongly coupled rovibronic diatomic states. The possibility of deperturbation treatment of the intermediate electronically excited states at the experimental (spectroscopic) level of accuracy is demonstrated taking alkali metal dimers as examples. The deperturbation analysis is of crucial importance to optimize multistep laser synthesis and stabilization of ultracold molecular ensembles in their absolute ground level. The bibliography includes 227 references.

  10. Wave optics simulation of diode pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2016-03-01

    A numerical simulation code for a diode pumped alkali laser (DPAL) was developed. The code employs the Fresnel- Kirchhoff diffraction integral for both laser mode and pump light propagations. A three-dimensional rate equation set was developed to determine the local gain. The spectral divergence of the pump beam was represented by a series of monochromatic beams with different wavelengths. The calculated results showed an excellent agreements with relevant experimental results. It was found that the main channel of the pump power drain is the spontaneous emission from the upper level of the lasing transition.

  11. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOEpatents

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  12. Alkali element depletion by core formation and vaporization on the early Earth

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  13. Experimental investigation of a pulsed Rb–Ar excimer-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Cheng, Hongling; Wang, Zhimin; Zhang, Fengfeng; Wang, Mingqiang; Tian, Zhaoshuo; Peng, Qinjun; Cui, Dafu; Xu, Zuyan

    2017-03-01

    We present experimental results of an exciplex-pumped alkali laser (XPAL) at 780 nm based on the 52P3/2 → 52S1/2 transition of the Rb atom in mixtures of Rb vapor and Ar. A laboratory-built Ti:sapphire laser with a pulse repetition rate of 3 kHz and a pulse width of 100 ns is used as the pump source. The maximum laser pulse energy of 0.26 µJ at 780 nm is obtained under an absorbed pump pulse energy of 42 µJ at 755 nm in mixtures of Rb vapor and Ar at a temperature of 423 K, corresponding to an optical conversion efficiency of 0.62%. Further experiments show that the output laser at 780 nm can always be detected for pump wavelengths ranging from 754 to 759 nm, indicating that Rb–Ar mixtures can be effectively pumped by commercial laser diodes (LDs) with a bandwidth of 5 nm.

  14. Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

    SciTech Connect

    Zhivun, Elena; Wickenbrock, Arne; Patton, Brian; Budker, Dmitry

    2014-11-10

    We demonstrate an all-optical {sup 133}Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/√(Hz) and measure a technical noise floor of 40fT/√(Hz). These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

  15. Metal vapor lasers with increased reliability

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Sabotinov, N. V.; Polunin, Yu. P.; Shumeiko, A. S.; Kostadinov, I. K.; Vasilieva, A. V.; Reimer, I. V.

    2015-12-01

    Results of investigation and development of an excitation pulse generator with magnetic pulse compression by saturation chokes for pumping of active media of CuBr, Sr, and Ca vapor lasers are presented. A high-power IGBT transistor is used as a commutator. The generator can operate at excitation pulse repetition frequencies up to 20 kHz. The total average power for all laser lines of the CuBr laser pumped by this generator is ~6.0 W; it is ~1.3-1.7 W for the Sr and Ca lasers.

  16. New Medical Applications Of Metal Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Anderson, Robert S.; McIntosh, Alexander I.

    1989-06-01

    The first medical application for metal vapor lasers has been granted marketing approval by the FDA. This represents a major milestone for this technology. Metalaser Technologies recently received this approval for its Vasculase unit in the treatment of vascular lesions such as port wine stains, facial telangiectasia and strawberry hemangiomas.

  17. Diode pumped alkali laser kinetics: comparison of theory and experiment

    NASA Astrophysics Data System (ADS)

    Lewis, Charleton D.; Weeks, David E.; Perram, Glen P.

    2012-06-01

    The performance of Diode Pumped Alkali Lasers (DPAL) depends critically on both collisionally broadened linehapes and rates for fine structure mixing. The first four potential surfaces for K, Rb, and Cs interactions with rare gases have been computed at the MCSCF/MR SOCI level. These surfaces are then used to compute scattering matrix elements for the spin-orbit relaxation, yielding temperature dependent cross-sections. Theoretical predictions are compared to recent experimental results. The observed fine structure mixing rates for rare gas collisions are interpreted in terms of collision adiabaticity. For molecular partners, ro-vibrational energy appears to dominate the mechanism.

  18. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  19. Sub-Shot-Noise Magnetometry with a Correlated Spin-Relaxation Dominated Alkali-Metal Vapor

    SciTech Connect

    Kominis, I. K.

    2008-02-22

    Spin noise sets fundamental limits to the precision of measurements using spin-polarized atomic vapors, such as performed with sensitive atomic magnetometers. Spin squeezing offers the possibility to extend the measurement precision beyond the standard quantum limit of uncorrelated atoms. Contrary to current understanding, we show that, even in the presence of spin relaxation, spin squeezing can lead to a significant reduction of spin noise, and hence an increase in magnetometric sensitivity, for a long measurement time. This is the case when correlated spin relaxation due to binary alkali-atom collisions dominates independently acting decoherence processes, a situation realized in thermal high atom-density magnetometers and clocks.

  20. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  1. Copper vapor laser development for SILVA

    NASA Astrophysics Data System (ADS)

    Bettinger, Antoine; Neu, M.; Maury, J.; Chatelet, Jacques A.

    1993-05-01

    The recent developments of the components for high power Copper Vapor Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, and extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watt amplifier; the present step concerns development of a 400 Watts class amplifier.

  2. Spin-exchange frequency shift in alkali-metal-vapor cell frequency standards

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Levi, Filippo; Vanier, Jacques

    2006-03-15

    In this paper we calculate the effect of spin-exchange collisions in alkali-metal vapors. In the framework of the high-energy approximation, we evaluate the spin-exchange cross sections related to the line broadening and to the frequency shift of the ground state hyperfine transition. We do the calculation for the four isotopes, {sup 23}Na, {sup 39}K, {sup 87}Rb, and {sup 133}Cs. The results are used in particular to evaluate the spin-exchange frequency shift in Rb vapor cell frequency standards used in many applications. It turns out that, due to possible fluctuations in the atomic density, spin exchange may affect significantly the medium and long term frequency stability of the frequency standard.

  3. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1983-September 1984

    SciTech Connect

    Lee, S.H.D.; Henry, R.F.; Smith, S.D.; Teats, F.G.; Wilson, W.I.; Myles, K.M.

    1985-08-01

    Under the auspices of the US Department of Energy, this work supports a program to develop sorbents for the cleanup of alkali corrodents from the flue gas produced by pressurized fluidized-bed coal combustion (PFBC) so that the cleaned hot gas is able to power downstream gas turbines without causing corrosion. This effort for FY 1984 involved two parts. In the first part, a laboratory-scale pressurized test unit was used to measure the rate of alkali (Na + K) evolution from beds of activated bauxite and Emathlite at a bed temperature of 850/sup 0/C and a system pressure of 10 atm absolute in a gas stream closely simulating the actual PFBC flue gas. The evaluation of the measured rates showed that (1) a spent activated bauxite bed, regenerated by water leaching and replenished with a small amount of fresh activated bauxite, contributes significantly less alkali vapor to the flue gas than the currently accepted alkali tolerance (0.024 ppM) of an industrial gas turbine and (2) the Emathlite bed contributes more alkali vapor than the turbine tolerance limit if the bed is exposed to a flue gas for a space time greater than 0.5 seconds. In the second part, a laboratory-scale demonstration of a fixed granular-bed sorber for the control of alkali vapor from PFBC flue gas was initiated. A detailed engineering design of this sorber system is described, and initial test results are presented and discussed. 26 refs., 16 figs.; 14 tabs.

  4. Laser Velocimetry of Chemical Vapor Deposition Flows

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Laser velocimetry (LV) is being used to measure the gas flows in chemical vapor deposition (CVD) reactors. These gas flow measurements can be used to improve industrial processes in semiconductor and optical layer deposition and to validate numerical models. Visible in the center of the picture is the graphite susceptor glowing orange-hot at 600 degrees C. It is inductively heated via the copper cool surrounding the glass reactor.

  5. Injection locked oscillator system for pulsed metal vapor lasers

    DOEpatents

    Warner, Bruce E.; Ault, Earl R.

    1988-01-01

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  6. Laser cooling of nuclear spin 0 alkali 78Rb

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Gorelov, A.; Anholm, M.

    2015-05-01

    The textbook example for sub-Doppler cooling is a J = 1/2 I = 0 alkali atom in lin ⊥ lin molasses. In the σ+ σ- configuration of a standard MOT, the main sub-Doppler cooling mechanism relies on changing alignment (MF2 population) with the summed linear polarization orientation, but there is no such variation in AC Stark shift for F = 1/2. We have nevertheless looked for signs of sub-Doppler cooling by trapping I = 0 78Rb in a standard MOT and measuring the cloud size as a function of laser detuning and intensity. The 78Rb cloud size does not change significantly with lowered intensity, and expands slightly with detuning, consistent with minimal to no sub-Doppler cooling. Our geometry does show the well-known substantially smaller cloud size with detuning and intensity for I = 3/2 87Rb. Maintaining an I = 0 alkali cloud size with lowered intensity will help our planned β- ν correlation experiments in 38mK decay by suppressing possible production of photoassisted dimers. Supported by NSERC and NRC Canada through TRIUMF.

  7. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, Earl R.; Alger, Terry W.

    1995-01-01

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube.

  8. Metal vapor laser including hot electrodes and integral wick

    DOEpatents

    Ault, E.R.; Alger, T.W.

    1995-03-07

    A metal vapor laser, specifically one utilizing copper vapor, is disclosed herein. This laser utilizes a plasma tube assembly including a thermally insulated plasma tube containing a specific metal, e.g., copper, and a buffer gas therein. The laser also utilizes means including hot electrodes located at opposite ends of the plasma tube for electrically exciting the metal vapor and heating its interior to a sufficiently high temperature to cause the metal contained therein to vaporize and for subjecting the vapor to an electrical discharge excitation in order to lase. The laser also utilizes external wicking arrangements, that is, wicking arrangements located outside the plasma tube. 5 figs.

  9. Laser induced irreversible absorption changes in alkali halides at 10.6 µm

    NASA Astrophysics Data System (ADS)

    Wu, S.-T.; Bass, M.

    1981-12-01

    Laser induced irreversible changes in the absorption of alkali halides has been observed by using repetitively pulsed laser calorimetry. These changes occur at intensities below that required for laser induced breakdown and necessitate a change in the definition of laser damage threshold. A simple model is proposed to explain these observations based on the accumulation of microscopic failures as a result of each pulse.

  10. Power Enhancement of a Rubidium Vapor Laser With a Master Oscillator Power Amplifier (Postprint)

    DTIC Science & Technology

    2009-09-15

    Phys. Lett. 34, 655-658 (1979). 5 . W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett...Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett. 31 , 353-355 (2006). 10. Y. Wang, T. Kasamatsu, Y.Zheng, H...OPTICS EXPRESS 8050 #94531 - $15.00 USD Received 7 Apr 2008; revised 4 May 2008; accepted 7 May 2008; published 19 May 2008 (DPAL) started rapidly gaining

  11. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  12. Removal of alkali vapors by a fixed granular-bed sorber using activated bauxite as a sorbent

    SciTech Connect

    Lee, S.H.D.; Henry, R.F.; Myles, K.M.

    1985-03-01

    Studies have been conducted to develop a fixed granular-bed sorber for the removal of alkali vapors in a pressurized fluidized-bed combustion (PFBC) combinedcycle system. A laboratory-scale pressurized alkalivapor sorption test unit was used to characterize activated bauxite, the most effective sorbent identified earlier, for its alkali vapor sorption capability in a gas stream with temperature (less than or equal to900/sup 0/C), pressure (10 atm absolute), and composition closely simulating the actual PFBC flue gas. A scale-up of laboratory tests is being conducted in a 15.2-cm-dia (6-in.-dia) PFBC system to demonstrate the granular-bed sorber concept. The NaCl-vapor sorption chemistry of activated bauxite is described. The extent of alkalivapor evolution from the activated bauxite bed itself is discussed, along with an evaluation of the significance of its alkali vapor contribution to a downstream gas turbine. Details of the design of a high-temperature/high-pressure alkali sorber system for the demonstration of the sorber are presented.

  13. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  14. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1982-September 1983

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.; Jonke, A.A.

    1984-06-01

    Under the auspices of US Department of Energy, this work supports the program to develop sorbents for the cleanup of gases from pressurized fluidized-bed coal combustion (PFBC) so that these cleaned hot gases can be used to power downstream gas turbines without causing corrosion. A laboratory-scale pressurized test unit was used to continue the alkali-vapor characterization of activated bauxite and Emathlite at a bed temperature of 850/sup 0/C and a system pressure of 10 atm absolute in a simulated PFBC flue gas stream containing <10 ppMV NaCl vapor. Under the test conditions, preliminary results show a comparable NaCl-vapor capture capability for both activated bauxite and Emathlite. Emathlite was found to capture NaCl vapor essentially by chemical reactions with the vapor to form water-insoluble compounds, probably sodium aluminosilicates, whereas activated bauxite captures the vapor mainly by physical adsorption as sodium sulfate. The test unit was modified and tested to improve the control of NaCl vaporization in the unit required for the source of alkali vapor in the simulated flue gas. Experimental results are also presented on (1) water leachability of both metallic and nonmetallic ions present in activated bauxite when it is cyclically heat-treated in a simulated PFBC flue gas environment and then leached with distilled water, and (2) the effect of heat-treatment of Emathlite in the simulated PFBC flue gas on the changes of its physical and chemical properties.

  15. A fixed granular-bed sorber for measurement and control of alkali vapors in PFBC (pressurized fluidized-bed combustion)

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1990-01-01

    Alkali vapors (Na and K) in the hot flue gas from the pressurized fluidized-bed combustion (PFBC) of coal could cause corrosion problems with the gas turbine blades. In a laboratory-scale PFBC test with Beulah lignite, a fixed granular bed of activated bauxite sorbent was used to demonstrate its capability for measuring and controlling alkali vapors in the PFBC flue gas. The Beulah lignite was combusted in a bed of Tymochtee dolomite at bed temperatures ranging from 850 to 875{degrees}C and a system pressure of 9.2 atm absolute. The time-averaged concentration of sodium vapor in the PFBC flue gas was determined from the analysis of two identical beds of activated bauxite and found to be 1.42 and 1.50 ppmW. The potassium vapor concentration was determined to be 0.10 ppmW. The sodium material balance showed that only 0.24% of the total sodium in the lignite was released as vapor species in the PFBC flue gas. This results in an average of 1.56 ppmW alkali vapors in the PFBC flue gas. This average is more than 1.5 orders of magnitude greater than the currently suggested alkali specification limit of 0.024 ppm for an industrial gas turbine. The adsorption data obtained with the activated bauxite beds were also analyzed mathematically by use of a LUB (length of unused bed)/equilibrium section concept. Analytical results showed that the length of the bed, L{sub o} in centimeters, relates to the break through time, {theta}{sub b} in hours, for the alkali vapor to break through the bed as follows: L{sub o} = 33.02 + 1.99 {theta}{sub b}. This formula provides useful information for the engineering design of fixed-bed activated bauxite sorbers for the measurement and control of alkali vapors in PFBC flue gas. 26 refs., 4 figs., 4 tabs.

  16. Precursor Luminescence near the Collapse of Laser-Induced Bubbles in Alkali-Salt Solutions

    PubMed Central

    Chu, Han-Ching; Vo, Sonny; Williams, Gary A.

    2014-01-01

    A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-created bubbles in alkali-metal solutions. The timing of the emission from neutral Na, Li, and K atoms is strongly dependent on the salt concentration, which appears to result from resonant radiation trapping by the alkali atoms in the bubble. The alkali emission ends at the onset of the blackbody luminescence pulse at the bubble collapse point, and the duration of the blackbody pulse is found to be reduced by up to 30% as the alkali-salt concentration is increased. PMID:19519032

  17. Measurement of alkali vapors in PFBC flue gas and their removal with a fixed granular-bed sorber, October 1, 1985-September 30, 1986

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.

    1986-01-01

    Alkali-metal compounds, such as chlorides and sulfates of sodium and potassium, present in the flue gas of coal combustion could cause hot corrosion of a gas turbine. The current industrial gas-turbine specification limit for alkali-metal compounds in the combustion gas entering a turbine is equivalent to 0.024 ppmW. Spacil and Luthra predict that the quantity of alkali vapor in the flue gas from PFBC could be up to two orders of magnitude greater than this allowable level. In contrast, the recent calculations by Scandrett and Clift suggest that, if the aerosol alkali particulate could be removed, the residual alkali vapor in the flue gas would be less than the limit. Measurements of the alkali vapor in PFBC flue gas have been made by several institutions. The measured alkali vapor concentration in the flue gas is in the order of 0.1 to 10 ppmW. Normally, a conventional batch-type extraction of the flue gas, followed by the analysis of the condensate, has been used in these measurements. It was not until recently that a real-time, on-line alkali analyzer was developed and tested in the gas stream of both coal gasification and combustion. A fixed granular-bed sorber is being developed at Argonne National Laboratory (ANL) for the control of the alkali vapor in PFBC flue gas. After an extensive screening study, activated bauxite was found to be the most effective sorbent in capturing the NaCl, KCl, and K/sub 2/SO/sub 4/ vapors that were doped into a simulated PFBC flue gas. Activated bauxite was also demonstrated to be easily and effectively regenerated for reuse by a simple water-leaching process. A capture efficiency of greater than 99.8% CaCl vapor has been achieved. The effectiveness of activated bauxite for alkali-vapor capture has been confirmed by others. 21 refs., 12 figs., 5 tabs.

  18. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  19. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers.

    PubMed

    Shen, Binglin; Pan, Bailiang; Jiao, Jian; Xia, Chunsheng

    2015-07-27

    Comprehensive analysis of kinetic and fluid dynamic processes in flowing-gas diode-pumped alkali vapor amplifiers is reported. Taking into account effects of the temperature, the amplified spontaneous emission, the saturation power, the excitation of the alkali atoms to high electronic levels and the ionization, a detailed physical model is established to simulate the output performance of flowing-gas diode-pumped alkali vapor amplifiers. Influences of the flow velocity and the pump power on the amplified power are calculated and analyzed. Comparisons between single and double amplifier, longitudinal and transverse flow are made. Results show that end-pumped cascaded amplifier can provide higher output power under the same total pump power and the cell length, while output powers achieved by single- and double-end pumped, double-side pumped amplifiers with longitudinal or transverse flow have a complicated but valuable relation. Thus the model is extremely helpful for designing high-power flowing-gas diode-pumped alkali vapor amplifiers.

  20. [Measurement of atomic number of alkali vapor and pressure of buffer gas based on atomic absorption].

    PubMed

    Zheng, Hui-jie; Quan, Wei; Liu, Xiang; Chen, Yao; Lu, Ji-xi

    2015-02-01

    High sensitivitymagnetic measurementscanbe achieved by utilizing atomic spinmanipulation in the spin-exchange-relaxation-free (SERF) regime, which uses an alkali cell as a sensing element. The atomic number density of the alkali vapor and the pressure of the buffer gasare among the most important parameters of the cell andrequire accurate measurement. A method has been proposed and developedto measure the atomic number density and the pressure based on absorption spectroscopy, by sweeping the absorption line and fittingthe experiment data with a Lorentzian profile to obtainboth parameters. Due to Doppler broadening and pressure broadening, which is mainly dominated by the temperature of the cell and the pressure of buffer gas respectively, this work demonstrates a simulation of the errorbetween the peaks of the Lorentzian profile and the Voigt profile caused by bothfactors. The results indicates that the Doppler broadening contribution is insignificant with an error less than 0.015% at 313-513 K for a 4He density of 2 amg, and an error of 0.1% in the presence of 0.6-5 amg at 393 K. We conclude that the Doppler broadening could be ignored under above conditions, and that the Lorentzianprofile is suitably applied to fit the absorption spectrumobtainingboth parameters simultaneously. In addition we discuss the resolution and the instability due to thelight source, wavelength and the temperature of the cell. We find that the cell temperature, whose uncertainty is two orders of magnitude larger than the instability of the light source and the wavelength, is one of the main factors which contributes to the error.

  1. Broadband Pumping Effects on the Diode Pumped Alkali Laser

    DTIC Science & Technology

    2011-03-01

    vaccuum) Cs…………………………………………………………………………………... Cesium E……………………………………………..………………………..ethane concentration Fr…………………………………………………………………….……………Francium gi... Sodium Ni……………………………………………………………population density of ith level …………...………………….……………………………….….….quantum efficiency r...narrow-banding, laser photon engine [2]. An alkali, typically Rubidium (Rb) or Cesium (Cs), is heated to its gas phase and subject to diode

  2. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, April-June 1980

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Boyd, W.A.

    1980-07-01

    In the application of pressurized fluidized-bed combustors (PFBC) to the generation of electricity, hot corrosion of gas turbine components by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for removing these gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. A granular-bed filter, using either diatomaceous earth or activated bauxite as the bed material, is the concept currently being studied. Results are presented for the testing of diatomaceous earth for alkali vapor sorption at 800/sup 0/C and 9-atm pressure, using a simulated flue gas. Activated bauxite sorbent can be regenerated by leaching with water, and the kinetics of the leaching is under study.

  3. Application of laser Doppler velocimeter to chemical vapor laser system

    NASA Technical Reports Server (NTRS)

    Gartrell, Luther R.; Hunter, William W., Jr.; Lee, Ja H.; Fletcher, Mark T.; Tabibi, Bagher M.

    1993-01-01

    A laser Doppler velocimeter (LDV) system was used to measure iodide vapor flow fields inside two different-sized tubes. Typical velocity profiles across the laser tubes were obtained with an estimated +/-1 percent bias and +/-0.3 to 0.5 percent random uncertainty in the mean values and +/-2.5 percent random uncertainty in the turbulence-intensity values. Centerline velocities and turbulence intensities for various longitudinal locations ranged from 13 to 17.5 m/sec and 6 to 20 percent, respectively. In view of these findings, the effects of turbulence should be considered for flow field modeling. The LDV system provided calibration data for pressure and mass flow systems used routinely to monitor the research laser gas flow velocity.

  4. Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution

    NASA Astrophysics Data System (ADS)

    Horsley, Andrew; Du, Guan-Xiang; Treutlein, Philipp

    2015-11-01

    We report on widefield microwave vector field imaging with sub-100 μ {{m}} resolution using a microfabricated alkali vapor cell. The setup can additionally image dc magnetic fields, and can be configured to image microwave electric fields. Our camera-based widefield imaging system records 2D images with a 6 × 6 mm2 field of view at a rate of 10 Hz. It provides up to 50 μ {{m}} spatial resolution, and allows imaging of fields as close as 150 μ {{m}} above structures, through the use of thin external cell walls. This is crucial in allowing us to take practical advantage of the high spatial resolution, as feature sizes in near-fields are on the order of the distance from their source, and represent an order of magnitude improvement in surface-feature resolution compared to previous vapor cell experiments. We present microwave and dc magnetic field images above a selection of devices, demonstrating a microwave sensitivity of 1.4 μ {{T}} {{Hz}}-1/2 per 50× 50× 140 μ {{{m}}}3 voxel, at present limited by the speed of our camera system. Since we image 120 × 120 voxels in parallel, a single scanned sensor would require a sensitivity of at least 12 {nT} {{Hz}}-1/2 to produce images with the same sensitivity. Our technique could prove transformative in the design, characterization, and debugging of microwave devices, as there are currently no satisfactory established microwave imaging techniques. Moreover, it could find applications in medical imaging.

  5. Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers

    DTIC Science & Technology

    2009-11-04

    vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation...Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4

  6. Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.

    PubMed

    Bar-David, Jonathan; Stern, Liron; Levy, Uriel

    2017-02-08

    In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.

  7. Low-temperature indium-bonded alkali vapor cell for chip-scale atomic clocks

    NASA Astrophysics Data System (ADS)

    Straessle, R.; Pellaton, M.; Affolderbach, C.; Pétremand, Y.; Briand, D.; Mileti, G.; de Rooij, N. F.

    2013-02-01

    A low-temperature sealing technique for micro-fabricated alkali vapor cells for chip-scale atomic clock applications is developed and evaluated. A thin-film indium bonding technique was used for sealing the cells at temperatures of ≤140 °C. These sealing temperatures are much lower than those reported for other approaches, and make the technique highly interesting for future micro-fabricated cells, using anti-relaxation wall coatings. Optical and microwave spectroscopy performed on first indium-bonded cells without wall coatings are used to evaluate the cleanliness of the process as well as a potential leak rate of the cells. Both measurements confirm a stable pressure inside the cell and therefore an excellent hermeticity of the indium bonding. The double-resonance measurements performed over several months show an upper limit for the leak rate of 1.5 × 10-13 mbar.l/s. This is in agreement with additional leak-rate measurements using a membrane deflection method on indium-bonded test structures.

  8. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 3, Appendix B: NO{sub x} and alkali vapor control strategies: Final report

    SciTech Connect

    Not Available

    1990-07-01

    CRS Sirrine (CRSS) is evaluating a novel IGCC process in which gases exiting the gasifier are burned in a gas turbine combustion system. The turbine exhaust gas is used to generate additional power in a conventional steam generator. This results in a significant increase in efficiency. However, the IGCC process requires development of novel approaches to control SO{sub 2} and NO{sub x} emissions and alkali vapors which can damage downstream turbine components. Ammonia is produced from the reaction of coal-bound nitrogen with steam in the reducing zone of any fixed bed coal gasifier. This ammonia can be partially oxidized to NO{sub x} when the product gas is oxidized in a gas turbine combustor. Alkali metals vaporize in the high-temperature combustion zone of the gasifier and laser condense on the surface of small char or ash particles or on cooled metal surfaces. It these alkali-coated materials reach the gas turbine combustor, the alkali will revaporize condense on turbine blades and cause rapid high temperature corrosion. Efficiency reduction will result. PSI Technology Company (PSIT) was contracted by CRSS to evaluate and recommend solutions for NO{sub x} emissions and for alkali metals deposition. Various methods for NO{sub x} emission control and the potential process and economic impacts were evaluated. This included estimates of process performance, heat and mass balances around the combustion and heat transfer units and a preliminary economic evaluation. The potential for alkali metal vaporization and condensation at various points in the system was also estimated. Several control processes and evaluated, including an order of magnitude cost for the control process.

  9. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  10. PRR performance of Cu- and CuBr-vapor lasers

    NASA Astrophysics Data System (ADS)

    Fedorov, V. F.; Evtushenko, Gennadiy S.; Klimkin, Vladimir M.; Polunin, Yu. P.; Soldatov, Anatoly N.; Sukhanov, Viktor B.

    1998-06-01

    Results obtained from comparative analysis of the pulse repetition rate performance of Cu- and CuBr-vapor lasers operated at high pump pulse repetitions (approximately 100 kHz) are reported. For a CuBr laser with a 8 mm diameter discharge tube the laser pulse repetition rate as high as 270 kHz was realized.

  11. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  12. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  13. Raman and nuclear magnetic resonance investigation of alkali metal vapor interaction with alkene-based anti-relaxation coating

    NASA Astrophysics Data System (ADS)

    Tretiak, O. Yu.; Blanchard, J. W.; Budker, D.; Olshin, P. K.; Smirnov, S. N.; Balabas, M. V.

    2016-03-01

    The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonance investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.

  14. Computer simulated rate processes in copper vapor lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. C.

    1980-01-01

    A computer model for metal vapor lasers has been developed which places emphasis on the change of excited state populations of the lasant through inelastic collisions and radiative interaction. Also included are an energy equation for the pumping electrons and rate equations for laser photon densities. Presented are results of calculations for copper vapor with a neon buffer over a range of conditions. General agreement with experiments was obtained.

  15. Investigation of the Atmospheric Propagation of Alkali Lasers in a Maritime Environment Using Tunable Diode Laser Atmospheric Spectroscopy

    DTIC Science & Technology

    2013-03-01

    regions surrounding the cesium (Cs) and rubidium (Rb) DPAL emission lines, 890 to 910 nanometers and 790 to 800 nanometers respectively, were examined...development of Diode Pumped Alkali Lasers (DPAL’s) began in 2003 with Krupke’s demonstration of the first 3 level rubidium (Rb) laser [1]. After this...Bibliography 1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Diode Pumpable Rubidium Laser,” in Advanced Solid-State Photonics, J

  16. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  17. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  18. Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure

    PubMed Central

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-01-01

    Femtosecond laser vaporization-based mass spectrometry can be used to measure protein conformation in vitro at atmospheric pressure. Cytochrome c and lysozyme are vaporized from the condensed phase into the gas phase intact when exposed to an intense (1013 W/cm2), nonresonant (800 nm), ultrafast (75 fs) laser pulse. Electrospray postionization time-of-flight mass spectrometry reveals that the vaporized protein maintains the solution-phase conformation through measurement of the charge-state distribution and the collision-induced dissociation channels. PMID:21746908

  19. Alexandrite laser transmitter development for airborne water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas H.; Ponsardin, Patrick; Higdon, Noah S.; DeYoung, Russell J.; Browell, Edward V.

    1995-01-01

    In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.

  20. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  1. Laser absorption spectroscopy system for vaporization process characterization and control

    SciTech Connect

    Galkowski, J.; Hagans, K.

    1993-09-07

    In support of the Lawrence Livermore National Laboratory`s (LLNL`s) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multi-laser system is capable of simultaneously measuring the line densities of {sup 238}U ground and metastable states, {sup 235}U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL`s LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode-lasers has capabilities far beyond the requirements of its primary mission.

  2. Profiling atmospheric water vapor using a fiber laser lidar system.

    PubMed

    De Young, Russell J; Barnes, Norman P

    2010-02-01

    A compact, lightweight, and efficient fiber laser lidar system has been developed to measure water vapor profiles in the lower atmosphere of Earth or Mars. The line narrowed laser consist of a Tm:germanate fiber pumped by two 792 nm diode arrays. The fiber laser transmits approximately 0.5 mJ Q- switched pulses at 5 Hz and can be tuned to water vapor lines near 1.94 microm with linewidth of approximately 20 pm. A lightweight lidar receiver telescope was constructed of carbon epoxy fiber with a 30 cm Fresnel lens and an advanced HgCdTe APD detector. This system has made preliminary atmospheric measurements.

  3. Microcomponents manufacturing for precise devices by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  4. Alkali-metal-vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1980-September 1981

    SciTech Connect

    Johnson, I.; Lee, S.H.D.

    1982-01-01

    This work supports the program to develop methods for the cleanup of high-temperature, high-pressure combustion gases from pressurized fluidized-bed coal combustors so that the cleaned gases can be used to power downstream gas turbines. Data are presented in this report on the use of activated bauxite in a granular bed filter for the removal of gaseous NaCl from hot (800/sup 0/C), pressurized (less than or equal to 8 atm), wet simulated PFBC flue gas. Also, the sorption mechanisms are discussed. Greater than 99.9% NaCl vapor capture was achieved. Also reported are (1) the effects of several operating variables on the rate of leaching of NaCl that had been adsorbed on activated bauxite and (2) the volatility of alkali metal compounds present as impurities in activated bauxite. Finally, the preliminary estimate of the cost of using activated bauxite as a filter medium for the control of alkali vapors from PFBC flue gas was updated; a conceptual design of a fixed granular-bed filter was presented; and the energy needs and their costs for operating the filter in (a) the once-through and (b) the sorbent-regeneration modes were compared.

  5. New studies of optical pumping, spin resonances, and spin exchange in mixtures of inert gases and alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu

    In this thesis, we present new studies of alkali-hyperfine resonances, new optical pumping of alkali-metal atoms, and the new measurements of binary spin-exchange cross-section between alkali-metal atoms and xenon atoms. We report a large light narrowing effect of the hyperfine end-resonance signals, which was predicted from our theory and observed in our experiments. By increasing the intensity of the circularly polarized pumping beam, alkali-metal atoms are optically pumped into a state of static polarization, and trapped into the hyperfine end-state. Spin exchange between alkali-metal atoms has minimal effect on the end-resonance of the highly spin-polarized atoms. This new result will possibly benefit the design of atomic clocks and magnetometer. We also studied the pressure dependence of the atomic-clock resonance linewidth and pointed out that the linewidth was overestimated by people in the community of atomic clock. Next, we present a series study of coherent population trapping (CPT), which is a promising technique with the same or better performance compared to the traditional microwave spectroscopy. For miniature atomic clocks, CPT method is thought to be particularly advantages. From our studies, we invented a new optical-pumping method, push-pull optical pumping, which can pump atoms into nearly pure 0-0 superposition state, the superposition state of the two ground-state hyperfine sublevels with azimuthal quantum number m = 0. We believe this new invention will bring a big advantage to CPT frequency standards, the quantum state preparation for cold atoms or hot vapor, etc. We also investigated the pressure dependence of CPT excitation and the line shape of the CPT resonance theoretically and experimentally. These two properties are important for CPT applications. A theoretical study of "photon cost" of optical pumping is also presented. Finally, we switch our attention to the problem of spin exchange between alkali-metal atoms and xenon gas. This

  6. CO/sub 2/ laser absorption and saturation studies of molecular impurities in alkali halide crystals

    SciTech Connect

    Sievers, A.J.

    1980-12-01

    The objective of this research program has been to explore the equilibrium and non-equilibrium dynamical properties of ReO/sub 4//sup -/ molecules embedded in alkali halide lattices using electromagnetic radiation. Both incoherent sources and CO/sub 2/ laser radiation have been used to explore the full dynamic range of the molecular vibrational modes. To achieve this objective stable molecular dopant - alkali halide combinations have been fabricated which have vibrational modes near the CO/sub 2/ laser frequencies. In order to uncouple the molecular modes from the lattice modes, to simplify the analysis as much as possible, low temperature spectroscopic measurements were required. In general, it was found that the molecular vibrational modes in the low temperature quiescent lattice had extremely narrow linewidths (less than 0.1 cm/sup -1/) so that most of the coincidences with the CO/sub 2/ laser lines were eliminated.

  7. Monitoring PVD metal vapors using laser absorption spectroscopy

    SciTech Connect

    Braun, D.G.; Anklam, T.M.; Berzins, L.V.; Hagans, K.G.

    1994-04-01

    Laser absorption spectroscopy (LAS) has been used by the Atomic Vapor Laser Isotope Separation (AVLIS) program for over 10 years to monitor the co-vaporization of uranium and iron in its separators. During that time, LAS has proven to be an accurate and reliable method to monitor both the density and composition of the vapor. It has distinct advantages over other rate monitors, in that it is completely non-obtrusive to the vaporization process and its accuracy is unaffected by the duration of the run. Additionally, the LAS diagnostic has been incorporated into a very successful process control system. LAS requires only a line of sight through the vacuum chamber, as all hardware is external to the vessel. The laser is swept in frequency through an absorption line of interest. In the process a baseline is established, and the line integrated density is determined from the absorption profile. The measurement requires no hardware calibration. Through a proper choice of the atomic transition, a wide range of elements and densities have been monitored (e.g. nickel, iron, cerium and gadolinium). A great deal of information about the vapor plume can be obtained from the measured absorption profiles. By monitoring different species at the same location, the composition of the vapor is measured in real time. By measuring the same density at different locations, the spatial profile of the vapor plume is determined. The shape of the absorption profile is used to obtain the flow speed of the vapor. Finally, all of the above information is used evaluate the total vaporization rate.

  8. Temperature Gradients In Diode-pumped Alkali Lasers

    DTIC Science & Technology

    2012-01-18

    radiation from bars or stacks of diode lasers is absorbed by atomic potassium, rubidium , or cesium. Collision-induced energy transfer populates the upper...laser level, and lasing is achieved in the near-IR on the D1 (pump) line. A rubidium laser pumped by a 1.28kW diode stack with a 0.35nm spectral band...negligible, offering the potential for low waste heat loads. However, cycling of atoms by the pump beam can be >109photons/ atom -s. The energy of the spin

  9. Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells using Surface Science Techniques

    DTIC Science & Technology

    2011-02-01

    the surface because it contains no free electron spins and it features a lower adsorption energy than the bare glass, thus re- ducing the residence...in the cell interior and a fluctuating magnetic field gen- erated by the hydrogen nuclei of the paraffin material.3 The adsorption energy for alkali...FTIR spectra of tetracontane (green, top), FR-130 ( blue , middle), and pwMB (black, bottom), with the traces offset vertically for clarity. The

  10. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  11. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, January-March 1981

    SciTech Connect

    Johnson, I.; Lee, S.H.D.

    1981-06-01

    In the application of pressurized fluidized-bed combustion (PFBC) to the generation of electricity, hot corrosion of the gas turbine (downstream from the combustor) by alkali metal compounds in the combustion gas is a potential problem. The objective of this investigation is to develop a method for the removal of gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the turbine. The use of a granular-bed filter for gas cleanup, utilizing activated bauxite as the bed material, is under study. Data are reported on the removal of gaseous NaCl from hot (800/sup 0/C), pessurized (5 atm), wet (3.4% H/sub 2/O) simulated flue gas using activated bauxite. Greater than 99.9% NaCl vapor capture was achieved. The energy needed for the operation of a fixed granular-bed filter has been estimated. The energy needs and cost of using activated bauxite in the once-through and regeneration modes of operation are compared.

  12. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays.

  13. Nd:Glass-Raman laser for water vapor dial

    NASA Technical Reports Server (NTRS)

    Kagann, R. H.; Petheram, J. C.; Rosenberg, A.

    1986-01-01

    A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown.

  14. Study of Laser Created Metal Vapor Plasmas.

    DTIC Science & Technology

    1979-11-16

    the past year. We now have two nitrogen laser pumped dye lasers and a dual wavelength photodetection system. We have a new low pressure ablation chffber...ablation chamber and improved photodetection system is shcw in the foreground An RCA C31034 P’r and a SPEX 1700 monochromator is used in one cha-nel, while...independent, photodetection channels and a new fast dual bean oscilloscope. L13)1S - Theoretical Progrc-=, Over the past two years we have developed

  15. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  16. Water vapor absorption of carbon dioxide laser radiation

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  17. Studies of the regeneration of activated bauxite used as granular sorbent for the control of alkali vapors from hot flue gas of coal combustion

    SciTech Connect

    Lee, S H.D.; Smith, S D; Swift, W M; Johnson, I

    1981-05-01

    Regeneration of activated bauxite was studied by water-leaching and thermal swing (high-temperature desorption) methods. Granular activated bauxite has been identified to be very effective when used as a filter medium (i.e., sorbent) in granular-bed filters to remove gaseous alkali metal compounds from simulated hot flue gas of PFBC. Activated bauxite that had captured alkali chloride vapors was demonstrated to be easily and effectively regenerated for reuse by a simple water-leaching method. Data were obtained on (1) the leaching rate of the adsorbed NaCl, (2) effects on the leaching rate of adsorbed NaCl loading, leaching temperature, and the amount of water, and (3) water retention in activated bauxite after leaching. Observed physical changes and particle attrition of activated bauxite as a result of regeneration are discussed. The sorption mechanisms of activated bauxite toward alkali chloride vapors are interpreted on the basis of (1) the chemical compositions of the leachates from alkali chloride-sorbed activated bauxite and (2) the desorption of adsorbed NaCl vapor from activated bauxite at high temperature.

  18. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  19. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  20. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  1. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.

    PubMed

    Flanigan, Paul; Levis, Robert

    2014-01-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  2. Alkali vapor pressure modulation on the 100 ms scale in a single-cell vacuum system for cold atom experiments

    SciTech Connect

    Dugrain, Vincent; Reichel, Jakob; Rosenbusch, Peter

    2014-08-15

    We describe and characterize a device for alkali vapor pressure modulation on the 100 ms timescale in a single-cell cold atom experiment. Its mechanism is based on optimized heat conduction between a current-modulated alkali dispenser and a heat sink at room temperature. We have studied both the short-term behavior during individual pulses and the long-term pressure evolution in the cell. The device combines fast trap loading and relatively long trap lifetime, enabling high repetition rates in a very simple setup. These features make it particularly suitable for portable atomic sensors.

  3. Low-pressure cesium and potassium diode pumped alkali lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2016-02-01

    This paper presents the results of our experiments on a comparative study of cesium and potassium diode pumped alkali lasers (DPALs) aimed to determine which of these two lasers has more potential to scale to high powers. For both lasers, we have chosen a "low-pressure DPAL approach," which uses buffer gas pressure of about 1 atm for spin-orbit mixing of the excited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power-limiting effects, which affect the performance of these DPALs, and find out how these limiting effects can be mitigated. We studied the performance of both lasers in CW and pulsed modes using both static and flowing gain medium and pump with different pulse duration. We observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, some essential positive and negative features of both DPALs were revealed, which should be taken into account for power-scaling experiments.

  4. Modeling of static and flowing-gas diode pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Auslender, Ilya; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Rosenwaks, Salman

    2016-03-01

    Modeling of static and flowing-gas subsonic, transonic and supersonic Cs and K Ti:Sapphire and diode pumped alkali lasers (DPALs) is reported. A simple optical model applied to the static K and Cs lasers shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. The model reproduces the observed threshold pump power in K DPAL which is much higher than that predicted by standard models of the DPAL. Scaling up flowing-gas DPALs to megawatt class power is studied using accurate three-dimensional computational fluid dynamics model, taking into account the effects of temperature rise and losses of alkali atoms due to ionization. Both the maximum achievable power and laser beam quality are estimated for Cs and K lasers. The performance of subsonic and, in particular, supersonic DPALs is compared with that of transonic, where supersonic nozzle and diffuser are spared and high power mechanical pump (needed for recovery of the gas total pressure which strongly drops in the diffuser), is not required for continuous closed cycle operation. For pumping by beams of the same rectangular cross section, comparison between end-pumping and transverse-pumping shows that the output power is not affected by the pump geometry, however, the intensity of the output laser beam in the case of transverse-pumped DPALs is strongly non-uniform in the laser beam cross section resulting in higher brightness and better beam quality in the far field for the end-pumping geometry where the intensity of the output beam is uniform.

  5. Physico-technical background of metal vapor laser systems and their application in oncology

    NASA Astrophysics Data System (ADS)

    Armichev, A. V.; Ivanov, Andrei V.; Kazaryan, Mishik A.

    1996-01-01

    Some results of the copper and gold vapor lasers and of helium-cadmium lasers used in medical practice are presented. The most in medical use copper vapor laser is commonly applied for low-intensity laser therapy and endoscopic surgery. A universal capability of dye lasers oscillating in 600 - 670 red region for excitation of the preparates used in photodynamic therapy is demonstrated. The copper vapor lasers are shown also to effectively coagulate pre- tumor neoplasms. A new method of laser beams shaping fitted to tumor configuration basing on quantum optical systems including image brightness amplifiers is described. Variability of the irradiating beam contrast is displayed, including the contrast inversion. Possibilities of the copper vapor lasers use for tumors drugless phototherapy and the two-step and two-stage methods of the photodynamic therapy are discussed. Some Russian medical systems based on the copper vapor lasers and dye lasers pumped by them are specified in parameters.

  6. Diode laser based water vapor DIAL using modulated pulse technique

    NASA Astrophysics Data System (ADS)

    Pham, Phong Le Hoai; Abo, Makoto

    2014-11-01

    In this paper, we propose a diode laser based differential absorption lidar (DIAL) for measuring lower-tropospheric water vapor profile using the modulated pulse technique. The transmitter is based on single-mode diode laser and tapered semiconductor optical amplifier with a peak power of 10W around 800nm absorption band, and the receiver telescope diameter is 35cm. The selected wavelengths are compared to referenced wavelengths in terms of random error and systematic errors. The key component of modulated pulse technique, a macropulse, is generated with a repetition rate of 10 kHz, and the modulation within the macropulse is coded according to a pseudorandom sequence with 100ns chip width. As a result, we evaluate both single pulse modulation and pseudorandom coded pulse modulation technique. The water vapor profiles conducted from these modulation techniques are compared to the real observation data in summer in Japan.

  7. Metal Organic-Chemical Vapor Deposition fabrication of semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Thomas, C.

    1980-08-01

    The metal organic chemical vapor deposition (MO-CVD) process was studied and implemented in detail. Single crystal GaAs, and Ga(x)Al(1-x)As films were grown on GaAs by depositing metal organic alkyl gallium compounds in the presence of an arsine mixture. The metal organic chemical vapor deposition process allowed formation of the semiconductor compound directly on the heated substrate in only one hot temperature zone. With MO-CVD, semiconductor films can be efficiently produced by a more economical, less complicated process which will lend itself more easily than past fabrication procedures, to high quantity, high quality reproduction techniques of semiconductor lasers. Clearly MO-CVD is of interest to the communication industry where semiconductor lasers are used extensively in fiber optic communication systems, and similarly to the solar energy business where GaAs substrates are used as photoelectric cells.

  8. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  9. Copper-vapor laser in medical practice: gynecology

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir V.; Zazulya, O. I.; Zemskov, Konstantin I.

    1993-10-01

    About 100 patients were treated for cervical erosion, cervical leukoplakia, and vulval warts in the Gynecology Department of the adult polyclinic of the Zelenograd Center of Medicine. Copper vapor laser (CVL) was used with output average power up to 4 W in two lines (510 nm, 578 nm). Pulse repetition rate was about 10 kHz, pulselength approximately 20 - 40 ns. Four to twelve procedures were sufficient to recover.

  10. High average power magnetic modulator for metal vapor lasers

    DOEpatents

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.; Miller, John L.

    1994-01-01

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  11. Laser scanning confocal microscopy for in situ monitoring of alkali-silica reaction.

    PubMed

    Collins, C L; Ideker, J H; Kurtis, K E

    2004-02-01

    Alkali-silica reaction (ASR) occurs in concrete between reactive siliceous components in the aggregate and the strongly alkaline pore solution, resulting in the formation of a potentially expansive gel product. Lithium additives have been shown to reduce expansion associated with ASR, but the mechanism(s) by which lithium reduces expansion have not been understood. Therefore, development of an in situ method to observe reactions associated with ASR is highly desirable, as it will allow for non-destructive observation of the reaction product formation and damage evolution over time, as the reaction progresses. A technique to image into mortar through glass aggregate by laser scanning confocal microscopy (LSCM), producing three-dimensional representations of the sample was developed. This LSCM technique was utilized to monitor the progress of alkali-silica reaction in mortar samples prepared with alkali-reactive glass aggregate both in the presence and in the absence of lithium additives: LiNO3, LiCl or LiOH. The method proved to be effective in qualitatively monitoring crack formation and growth and product formation, within cracks and at the paste/aggregate interface. In particular, dendritic products were observed at the paste/aggregate interface only in those samples containing lithium, suggesting that these products may play a role in ASR mitigation.

  12. Scaling of strontium-vapor laser active volume

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Polunin, Yu. P.

    2008-01-01

    Variations in the energy performance of a self-terminating Sr-vapor laser (SrVL) are examined. The active laser volume is varied between 20 and 650 cm 3. A linear relation is revealed between the average power delivered by the SrVL and its active volume. The SrVL efficiency is found to increase with active volume and to be comparable with that of a copper-vapor laser for an active volume V = 650 cm 3 (0.45 %). As the volume is increased, the total lasing pulse duration increases from 30 to 120 ns. The beam divergence problems associated with the use of a Fabry-Perot cavity or an unstable resonator of the telescopic type are discussed. A total average power of 13.5 W is obtained from V = 650 cm 3 at a lasing PRR F = 19 kHz. The output power generated at different laser wavelengths is as follows: 10.4 W at λ = 6.456 μm, 2.6 W at λ = 3 μm, and 0.5 W at λ = 1 μm. The wavelength dependence of the lasing pulse duration is considered.

  13. Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization

    NASA Astrophysics Data System (ADS)

    Auslender, Ilya; Cohen, Tom; Lebiush, Eyal; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-01-01

    We present the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. The dependence of the output laser power on the incident pump power was found for varying pump beam cross-section widths and for a constant laser beam. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency 55% was obtained. Non monotonic dependence of the laser power and threshold power on the pump beam radius (at a given pump power) was observed with a maximum laser power and minimum threshold power achieved at the ratio 0.7 between the optimal pump beam and laser beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the incident pump power at different pump beam radii and of the laser power, threshold power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. This model can be applied to different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  14. Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser Linewidth

    DTIC Science & Technology

    2007-11-02

    fiber optic sensors ; atomic frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation and beam control, LIDAR/LADAR...SMC-TR-99-11 AEROSPACE REPORT NO. TR-98(8555)-14 Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role of Laser ...1999 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE Conversion of Laser Phase Noise to Amplitude Noise in a Resonant Atomic Vapor: The Role

  15. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  16. Tm:germanate Fiber Laser for Planetary Water Vapor Atmospheric Profiling

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; De Young, Russell

    2009-01-01

    The atmospheric profiling of water vapor is necessary for finding life on Mars and weather on Earth. The design and performance of a water vapor lidar based on a Tm:germanate fiber laser is presented.

  17. From a metal vapor laser projection microscope to a laser monitor (by the 50 year-anniversary of metal vapor lasers)

    NASA Astrophysics Data System (ADS)

    Evtushenko, G. S.

    2015-12-01

    The paper presents the history of active optical systems development from a laser projection microscope to a laser monitor. The examples of object visualization and diagnostics of high speed processes hidden by the intense background radiation are discussed. These are the processes of laser-surface interaction, self-propagating high-temperature synthesis (SHS), the corona discharge in the air, the nanoparticle production process using a high-power fiber laser, and etc. The results obtained by different research groups suggest that high-speed metal vapor brightness amplifiers and active optical systems based on them need further research, development and novel applications.

  18. Analysis of temporal jitter in a copper vapor laser system

    NASA Astrophysics Data System (ADS)

    Kumar, D. Durga Praveen; Gantayet, L. M.; Singh, Sunita; Rawat, A. S.; Rana, Paramjit; V, Rajasree; Agarwalla, Sandeep K.; Chakravarthy, D. P.

    2012-02-01

    Temporal jitter in a magnetic pulse compression based copper vapor laser (CVL) system is analyzed by considering ripple present in the input dc power supply and ripple present in the magnetic core resetting power supply. It is shown that the jitter is a function of the ratio of operating voltage to the designed voltage, percentage ripple, and the total propagation delay of the magnetic pulse compression circuit. Experimental results from a CVL system operating at a repetition rate of 9 kHz are presented.

  19. Runaway electron beam control for longitudinally pumped metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  20. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  1. Heat-Pipe Bismuth Laser; Examination of Laser Action at 4722A in Bismuth Vapor

    DTIC Science & Technology

    1976-11-01

    Terminating Laser Transitions in Calcium and Strontium. " IEEE J. Quantum Electron. QE-4, 474 (1968). 7. P.Cahuzac, "Raies Laser Infrarouges dans les Vapeurs... Spectroscopy 19. 282(1065). 13. P.A. Rice and D. V. Ragone, "Simultaneous Determination of f Values and Vapor Pressures from Optical Absorption Measurements...approaching 10%6. Beam foil spectroscopy can be included with these more accurate methods if one can be certain that there is no unrecognized

  2. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  3. High-efficiency cluster laser vaporization sources based on Ti: sapphire lasers

    NASA Astrophysics Data System (ADS)

    Pellarin, M.; Cottancin, E.; Lerme, J.; Vialle, J.L.; Wolf, J.P.; Broyer, M.; Paillard, V.; Dupuis, V.; Perez, A.; Perez, J.P.; Tuaillon, J.; Melinon, P.

    1994-07-01

    A new laser vaporization source based on a flashlamp-pumped Ti:sapphire laser has been used to produce cluster beams. The performance is compared to the standard cluster sources based on neodyme YAG lasers. We show that the Ti:sapphire source is much more efficient: the clusters deposition rate are about 30 times higher, and larger clusters are produced. Finally the quality of nanostructured films is comparable to those obtained by the standard source, but the time deposition is 30 times shorter. This opens new possibilites for film growth by cluster deposition.

  4. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori

    2017-01-01

    A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.

  5. The one year outcome after KTP laser vaporization of the prostate according to the calculated vaporized volume.

    PubMed

    Ku, Ja Hyeon; Cho, Jeong Yeon; Cho, Sung Yong; Kim, Soo Woong; Paick, Jae-Seung

    2009-12-01

    The aim of this study was to develop a new simple method for measuring the vaporized volume and to evaluate the outcome of high-power potassium-titanyl-phosphate (KTP) photoselective laser vaporization. A total of 65 patients, with a mean age of 67.7 yr (range 53 to 85), were included in the primary analysis. The vaporized volume was calculated as the pre-operative volume minus the immediate post-operative volume plus the volume of the defect. For all patients, the subjective and objective parameters improved significantly after surgery. Six and 12 months after surgery, the group with a smaller vaporized volume (<15 g) had a lower reduction of the mean International Prostate Symptom Score (P=0.006 and P=0.004) and quality of life index (P=0.006 and P=0.004) when compared to the group with a greater vaporized volume (>or=15 g). There were no differences in the change of the maximum flow rate and post-void residual based on the vaporized volume. Our findings suggest that the subjective improvement, after a high-power KTP laser vaporization, may be dependent on the vaporized volume obtained after the procedure.

  6. Quasi-dynamical analysis and real-time tissue temperature monitoring during laser vaporization

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Ray, Aditi; Jebens, Dave; Chia, Ray; Hasenberg, Tom

    2014-03-01

    Vaporization and coagulation are two fundamental processes that can be performed during laser-tissue ablation. We demonstrated a method allowing quasi-dynamically observing of the cross-sectional images of tissue response during ablation. The results showed that coagulation depth is relatively constant during vaporization, which supports the excellent hemostasis of green laser benign prostate hyperplasia (BPH) treatment. We also verified a new technology for real-time, in situ tissue temperature monitoring, which may be promising for in vivo tissue vaporization degree feedback during laser ablation to improve the vaporization efficiency and avoid complications.

  7. Low pressure cesium and potassium Diode Pumped Alkali Lasers: pros and cons

    NASA Astrophysics Data System (ADS)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Shaffer, Michael K.; Knize, Randall J.

    2015-10-01

    This paper based on the talk presented at the Security plus Defence 2015 Conference held at Toulouse, France in September 2015. In this paper we present the results of our experiments on a comparative study of Cesium and Potassium based DPALs aimed to determine which of these two lasers has better potential for scaling to high powers. For both lasers we have chosen a so called "low pressure DPAL approach", which uses buffer gas pressure of about 1 Atm for spin-orbit mixing of the exited states of alkali atoms to provide population inversion in the gain medium. The goal of this study was to determine power limiting effects, which affect performance of these DPALs, and find out how these limiting effects can be mitigated. The experiments were performed using both static and flowing gain medium. In our experiments, we studied the performance of both lasers in CW and pulsed modes with different pulse duration and observed output power degradation in time from the initial value to the level corresponding to the CW mode of operation. As a result of this study, we revealed some essential positive and negative features of both DPALs, which should be taken into account for power scaling experiments.

  8. Alexandrite laser characterization and airborne lidar developments for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, P.; Higdon, N. S.; Grossmann, B. E.; Browell, E. V.

    1991-01-01

    The spectral characteristics of an Alexandrite laser used for making water vapor DIAL measurements have been evaluated. The optical servo-system used to lock the laser wavelength on a water vapor absorption line is described. A brief description of the DIAL system is given and the data obtained with this lidar during flight tests in March 1990 are also presented.

  9. Gas and metal vapor lasers and applications; Proceedings of the Meeting, Los Angeles, CA, Jan. 22, 23, 1991

    NASA Astrophysics Data System (ADS)

    Kim, Jin J.; Tittel, Frank K.

    Various papers on gas and metal vapor lasers and applications are presented. Individual topics addressed include: high-power copper vapor laser development, modified off-axis unstable resonator for copper vapor laser, industrial applications of metal vapor lasers, newly developed excitation circuit for kHz pulsed lasers, copper vapor laser precision processing, development of solid state pulse power supply for copper vapor laser, multiple spectral structure of the 578.2-nm line for copper vapor laser, adsorption of bromine in CuBr laser, processing of polytetrafluoroethylene with high-power VUV laser radiation, characterization of a subpicosecond XeF(C - A) excimer laser, X-ray preionization for high-repetition-rate discharge excimer lasers. Also discussed are: investigation of microwave-pumped excimer and rare-gas laser transitions, influence of gas composition of XeCl laser performance, output power stabilization of a XeCl excimer laser by HCl gas injection, excimer laser machining of optical fiber taps, diagnostics of a compact UV-preionized XeCl laser with BCl3 halogen donor, blackbody-pumped CO32 lasers using Gaussian and waveguide cavities, chemical problems of high-power sealed-off CO lasers, laser action of Xe and Ne pumped by electron beam, process monitoring during CO2 laser cutting, double-pulsed TEA CO2 laser, superhigh-gain gas laser, high-power ns-pulse iodine laser provided with SBS mirror. (No individual items are abstracted in this volume)

  10. Stabilization and spectral characterization of an alexandrite laser for water vapor lidar measurements

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Higdon, Noah S.; Grossman, Benoist E.; Browell, Edward V.

    1991-01-01

    A description of an optical system used to lock the alexandrite laser frequency on a water vapor absorption line is presented. The laser spectral characteristics, which include the spectral purity, the effect of the laser linewidth on the absorption, and the laser wavelength stability, are evaluated.

  11. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  12. Multiphoton laser ionization for energy conversion in barium vapor

    NASA Astrophysics Data System (ADS)

    Makdisi, Y.; Kokaj, J.; Afrousheh, K.; Mathew, J.; Nair, R.; Pichler, G.

    2013-03-01

    We have studied the ion detection of barium atoms in special heated ovens with a tungsten rod in the middle of the stainless steel tube. The tungsten rod was heated indirectly by the oven body heaters. A bias voltage between the cell body and the tungsten rod of 9 V was used to collect electrons, after the barium ions had been created. However, we could collect the electrons even without the bias voltage, although with ten times less efficiency. We studied the conditions for the successful bias-less thermionic signal detection using excimer/dye laser two-photon excitation of Rydberg states below and above the first ionization limit (two-photon wavelength at 475.79 nm). We employed a hot-pipe oven and heat-pipe oven (with inserted mesh) in order to generate different barium vapor distributions inside the oven. The thermionic signal increased by a factor of two under heat-pipe oven conditions.

  13. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers.

    PubMed

    Sell, J F; Gulyuz, K; Sprouse, G D

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized (208-210)Fr ion beams at beam energies of 5 keV and intensities of 10(5) s(-1). Efficient neutralization (> or = 80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  14. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized F208-210r ion beams at beam energies of 5 keV and intensities of 105 s-1. Efficient neutralization (≥80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  15. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    SciTech Connect

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-15

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized {sup 208-210}Fr ion beams at beam energies of 5 keV and intensities of 10{sup 5} s{sup -1}. Efficient neutralization ({>=}80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  16. Simulation studies of vapor bubble generation by short-pulse lasers

    SciTech Connect

    Amendt, P.; London, R.A.; Strauss, M.

    1997-10-26

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.

  17. Simulation studies of vapor bubble generation by short-pulse lasers

    NASA Astrophysics Data System (ADS)

    Amendt, Peter A.; London, Richard A.; Strauss, Moshe; Glinsky, Michael E.; Maitland, Duncan J.; Celliers, Peter M.; Visuri, Steven R.; Bailey, David S.; Young, David A.; Ho, Darwin; Lin, Charles P.; Kelly, Michael W.

    1998-01-01

    Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generation and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks [Lin and Kelly, SPIE 2391, 294 (1995)].

  18. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T. R.; Newkirk, L. R.

    1986-06-01

    Dielectric breakdown of gas mixtures can be used to deposit thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas-phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 ..mu.. where there is no significant resonant absorption in any of the source gases, homogeneous films from several gas-phase precursors have been sucessfully deposited by gas-phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls representing decomposition chemistry and tungsten from the hexafluoride representing reduction chemistry have been demonstrated. In each case the gas precursor is buffered with argon to reduce the partial pressure of the reactants and to induce breakdown. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, transmission electron microscopy, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size consistent with the low temperature of the substrate and the formation of metastable nickel carbide. Transmission electron microscopy supports this analysis.

  19. The threshold of vapor channel formation in water induced by pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2012-12-01

    Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.

  20. Performance characteristics of a chemical oxygen-iodine laser without a water vapor trap

    NASA Astrophysics Data System (ADS)

    Kikuchi, Toshio; Tsuruyama, Toru; Uchiyama, Taro

    1988-09-01

    The effect of water vapor on the operation of a chemical oxygen-iodine laser without a water vapor trap is described. The maximum CW laser power of 87 W was obtained without the water vapor trap at a Cl2 flow rate of 740 mmol/min. An alkaline H2O2 solution (90 wt pct H2O2, 50 wt pct KOH) was cooled down to about -30 C in order to control the saturated H2O2-H2O vapor pressure to less than 100 mTorr. Two porous pipes made of carbon were utilized as a singlet oxygen generator.

  1. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, October-December 1979

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Jonke, A.A.

    1980-07-01

    This work supports the program to develop methods for the cleanup of combustion gases from pressurized fluidized-bed coal combustors so that the cleaned gases can be used for downstream gas turbines. This report presents the results of studies to develop granular sorbents for removing gaseous alkali metal compounds from high-temperature high-pressure combustion gases. Activated bauxite, one of the sorbents found to be effective, can be reused after removal of the alkali compound by a water-leaching process. Results of testing of this leaching process are reported. An experimental appartus for testing sorbents at high pressure has been built; results of preliminary tests are reported.

  2. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  3. Laser Demonstration and Performance Characterization of an Optically Pumped Alkali Laser System

    DTIC Science & Technology

    2010-09-01

    optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear...section at line center compared to a single Lorentzian approximation by less than 15% for the current experimental conditions.[19] A comparison of... less than predicted by the Lorentzian profile in Figure 12. 36 Figure 20. Slope efficiency reinterpreted as absorbance for (○) 32% output

  4. Metal film deposition by laser breakdown chemical vapor deposition

    SciTech Connect

    Jervis, T.R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO/sub 2/ laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, x-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed x-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  5. Metal film deposition by laser breakdown chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jervis, T. R.

    1985-01-01

    Dielectric breakdown of gas mixtures can be used to deposit homogeneous thin films by chemical vapor deposition with appropriate control of flow and pressure conditions to suppress gas phase nucleation and particle formation. Using a pulsed CO2 laser operating at 10.6 microns where there is no significant resonant absorption in any of the source gases, we have succeeded in depositing homogeneous films from several gas phase precursors by gas phase laser pyrolysis. Nickel and molybdenum from the respective carbonyls and tungsten from the hexafluoride have been examined to date. In each case the gas precursor is buffered to reduce the partial pressure of the reactants and to induce breakdown. The films are spectrally reflective and uniform over a large area. Films have been characterized by Auger electron spectroscopy, X-ray diffraction, pull tests, and resistivity measurements. The highest quality films have resulted from the nickel depositions. Detailed X-ray diffraction analysis of these films yields a very small domain size (approx. 50 A) consistent with rapid quenching from the gas phase reaction zone. This analysis also shows nickel carbide formation consistent with the temperature of the reaction zone and the Auger electron spectroscopy results which show some carbon and oxygen incorporation (8% and 1% respectively). Gas phase transport and condensation of the molybdenum carbonyl results in substantial carbon and oxygen contamination of the molybdenum films requiring heated substrates, a requirement not consistent with the goals of the program to maximize the quench rate of the deposition. Results from tungsten deposition experiments representing a reduction chemistry instead of the decomposition chemistry involved in the carbonyl experiments are also reported.

  6. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, Edward S.; Chang, Yu-chen

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent.

  7. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOEpatents

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  8. Characteristics of a High Intensity, Pulsed, Potassium Vapor Laser in a Heat Pipe

    DTIC Science & Technology

    2011-03-01

    metals form the first column of the periodic table. From the top, this column includes lithium, sodium , potassium, rubidium, and cesium . They...pumped rubidium vapor laser by Krupke [2]. Since then, cesium (Cs), rubidium (Rb), and potassium (K) vapor lasers have been demonstrated and are the...would degrade the population inversion necessary for lasing to occur. Fortunately, the cesium and rubidium DPALs have much greater spin-orbit

  9. Alkali-metal-vapor removal from pressurized fluidized-bed-combustor flue gas. Annual report, October 1981-September 1982

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.; Jonke, A.A.

    1983-03-01

    This work supports the program to develop sorbents for the cleanup of gases from pressurized fluidized-bed coal combustion (PFBC) so that the cleaned hot gases can be used to power downstream gas turbines without causing corrosion. A simulated PFBC flue gas containing NaCl vapor was used to characterize activated bauxite and diatomaceous earth at a bed temperature of 905/sup 0/C and a system pressure of 10 atm absolute. The NaCl vapor was found to be captured by activated bauxite essentially as sodium sulfate, with a small fraction captured as sodium chloride. In contrast, diatomaceous earth captured NaCl vapor by a combined result of (1) a chemical reaction that converts the vapor into condensed sodium sulfate and (2) chemical reactions that transform the captured sodium into water-insoluble silicate compounds. In NaCl-vapor sorption efficiency studies, a 12.7-cm-long activated bauxite bed was tested for 12 h in a gas stream containing 4 to 8 ppmV NaCl-vapor concentration, and >99.8% NaCl-vapor sorption efficiency was achieved. This efficiency compared with 99.1 and 95.3% obtained by a diatomaceous earth bed of the same length tested for 8 h in gas streams containing 28 and 2 ppmV NaCl-vapor concentration, respectively. The addition of HCl to the simulated flue gas had an insignificant effect on the NaCl-vapor sorption behavior and efficiency of activated bauxite. Experimental results are also presented on (1) the water leachability of the sodium captured on activated bauxite, (2) the partial conversion to sodium sulfate of the NaCl sample used as the vapor source for the sorption tests, and (3) the changes in the chemical and physical properties of both sorbents as a result of exposure to the simulated flue gas.

  10. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers.

    PubMed

    Sintov, Yoav; Malka, Dror; Zalevsky, Zeev

    2014-08-15

    By employing large hollow-core Kagome fiber in a double-clad configuration, the performance of a potentially rubidium vapor-based fiber laser is explored. The absorbed power and laser efficiency versus pump power are calculated utilizing a simple laser model. Our results show that a Kagome-based high-power fiber laser is feasible provided that the value of the collisional fine-structure mixing rate will be elevated by increasing the ambient temperature or by increasing the helium pressure.

  11. Determination of flue gas alkali concentrations in fluidized-bed coal combustion by excimer-laser-induced fragmentation fluorescence

    SciTech Connect

    Hartinger, K.T.; Monkhouse, P.B.; Wolfrum, J.; Baumann, H.; Bonn, B.

    1994-12-31

    Gas-phase sodium concentrations were measured for the first time in situ in the flue gas of a fluidized-bed reactor by the excimer-laser-induced fragmentation fluorescence (ELIF) technique. This method involves using ArF-excimer laser light at 193 nm to simultaneously photodissociate the alkali compounds of interest and excite electronically the alkali atoms formed. The resulting fluorescence from Na (3{sup 2}P) atoms can he readily detected at 589 nm. Measured signals were converted to absolute concentrations using a calibration system that monitors alkali compounds under known conditions of temperature, pressure, and composition and rising the same optical setup as at the reactor. Several different coals were investigated under a specific set of reactor conditions at total pressures close to 1 bar. Sodium concentrations ranging from the sub-ppb region to 20 ppb were obtained, and a detection limit for sodium of 0.1 ppb under the present conditions was estimated. Over the course of the reactor program, contrasting concentration histories were observed for the two lignites and the hard coal investigated. In particular, significantly higher sodium concentrations were found for the hard coal, consistent with both the higher chlorine and sodium contents determined in the corresponding coal analysis.

  12. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Annual report, October 1979-September 1980

    SciTech Connect

    Johnson, I.; Swift, W.M.; Lee, S.H.D.

    1980-10-01

    In the application of pressurized fluidized-bed combustion (PFBC) to the generation of electricity, hot corrosion of the gas turbine (downstream from the combustor) by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for the removal of gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. The use of a granular bed filter, with either diatomaceous earth or activated bauxite as the bed material, is under study. Breakthrough data are reported on the sorption of gaseous NaCl by activated bauxite. Results are reported for the regeneration of activated bauxite using water leaching and a thermal swing method.

  13. Energy balance between vaporization and heating in the absorption of CO2 laser radiation by water

    NASA Astrophysics Data System (ADS)

    Mueller, Robert E.; Yam, Henry; Duley, Walter W.

    1997-03-01

    The use of lasers in industrial and medical procedures continues to increase. A fundamental question in many laser- material interactions is how is the incident laser power transferred to the target material, and how is the power distributed among the phases (solid, liquid, vapor) of the material. This paper describes the results of a fundamental calorimetry experiment to determine the fraction of incident carbon-dioxide laser energy which is used to vaporize water from a target volume, and the fraction of power used to simply heat the remaining liquid. The experiment was performed over a range of incident laser powers from 60 to 300 W. Over most of the range of incident power, the fraction used to vaporize water is 30 to 35 percent. This fraction increases at the lowest powers.

  14. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    NASA Astrophysics Data System (ADS)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  15. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  16. Development of a strontium vapor laser with pulse repetition frequency up to 1 MHz

    NASA Astrophysics Data System (ADS)

    Soldatov, A. N.; Yudin, N. A.; Polunin, Yu. P.; Vasilieva, A. V.; Chebotarev, G. D.; Latush, E. L.; Fesenko, A. A.

    2010-09-01

    The problem of obtaining high pulse repetition frequencies in metal vapor lasers is urgent from the viewpoint of laser application to various technologies, increase of productivity of industrial laser systems, study of transient processes, etc. In addition, the high pulse repetition frequency provides large average laser radiation power in spite of a rather low energy extracted from a single lasing pulse. In this work, the possibility of increasing the pulse repetition frequency of a laser on self-terminated strontium ion transitions was investigated. The double pulse method was used to demonstrate experimentally that a pulse repetition frequency of ~1 MHz could be achieved at wavelengths of 1.03 and 1.09 μm of the strontium vapor laser. To explain the results obtained, the kinetics of the active medium was modeled using the self-consistent mathematical model of a He- Sr+ laser.

  17. Vaporization behavior of non-stoichiometric refractory carbide materials and direct observations of the vapor phase using laser diagnostics

    SciTech Connect

    Butt, D.P.; Wantuck, P.J.; Rehse, S.J.; Wallace, T.C. Sr.

    1993-09-01

    Transition metal and actinide carbides, such as ZrC or NbC and UC or ThC, exhibit a wide range of stoichiometry, and therefore vaporize incongruently. At long times, steady state vaporization can be achieved where relative concentrations of atomic species on solid surface equals that in the gas phase. The surface composition under these steady state conditions is termed the congruently vaporizing composition, (CVC). Modeling the vaporization or corrosion behavior of this dynamic process is complex and requires an understanding of how the surface composition changes with time and a knowledge of CVC, which is both temperature and atmosphere dependent. This paper describes vaporization and corrosion behavior of non-stoichiometric refractory carbide materials and, as an example, describes a thermokinetic model that characterizes the vaporization behavior of the complex carbide U{sub x}Zr{sub 1-x}C{sub y} in hydrogen at 2500 to 3200 K. This model demonstrates that steady state corrosion of U{sub x}Zr{sub l-x}C{sub y} is rate limited by gaseous transport of Zr where partial pressure of Zr is determined by CVC. This paper also briefly describes efforts to image and characterize the vapor phase above the surface of ZrC in static and flowing gas environments using planar laser induced fluorescence. We have developed the method for monitoring and controlling the corrosion behavior of nuclear fuels in nuclear thermal rockets. However, the techniques described can be used, to image boundary layers, and could be used verifying corrosion models.

  18. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  19. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  20. Exploratory laser experiments. [measurement of atmospheric water vapor via optical radar

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Experiments are described which were undertaken to explore the application of various dye laser methods for generating laser pulses which could be tuned over H2O absorption lines in the visible and near infrared. Specific topics discussed include: operation of a long pulse dye laser with a tunable, narrow band output at high energies near the 5915 A water vapor absorption bands; assembly and operation of a short duration dye laser near the 5915 A water vapor absorption bands; construction of a dye laser to be pumped to operate in the red and near infrared; and preliminary studies of the beam divergence of the output of the a laser-pumped system. Results are summarized.

  1. A Linearly-Polarized Cesium Vapor Laser with Fundamental Mode Output and Low Threshold

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yong; Tan, Rong-Qing; Huang, Wei; Xu, Cheng

    2014-04-01

    We report a cesium vapor laser with fundamental mode output and a wavelength of 894 nm. The laser is pumped by a laser diode array with an external cavity of a holographic grating by using Littrow's structure. A slope efficiency of 22.4% is obtained by using a pumping source with a linewidth of 0.26 nm and 80 kPa methane as the buffer gas. The threshold pumping power is 1.56 W.

  2. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    SciTech Connect

    Early, J; Bibeau, C; Claude, P

    2003-09-16

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  3. Transfer of spin angular momentum from Cs vapor to nearby Cs salts through laser-induced spin currents

    SciTech Connect

    Ishikawa, K.; Patton, B.; Olsen, B. A.; Jau, Y.-Y.; Happer, W.

    2011-06-15

    Optical pumping of alkali-metal atoms in vapor cells causes spin currents to flow to the cell walls where excess angular momentum accumulates in the wall nuclei. Experiments reported here indicate that the substantial enhancement of the nuclear-spin polarization of salts at the cell walls is primarily due to the nuclear-spin current, with a lesser contribution from the electron-spin current of the vapor.

  4. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita

    1996-01-01

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  5. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOEpatents

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  6. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, January-March 1982

    SciTech Connect

    Lee, S.H.D.; Myles, K.M.; Jonke, A.A.

    1982-07-01

    This work supports the program to develop methods for achieving sufficient cleanup of combustion gases from pressurized fluidized-bed coal combustors (PFBC) so that the cleaned gases can be used to power downstream gas turbines without causing corrosion. A simulated PFBC flue gas was used to characterize the NaCl-vapor sorption behavior of activated bauxite at a bed temperature of 905/sup 0/C and a system pressure of 10 atm absolute. Although the addition of HCl to simulated PFBC flue gas tends to promote the capture of NaCl vapor by activated bauxite as NaCl rather than Na/sub 2/SO/sub 4/, overall, its effect on the activated bauxite's NaCl-vapor sorption behavior was found to be insignificant. Experimental results are also presented on: (1) the partial conversion to Na/sub 2/SO/sub 4/ of the NaCl sample used as the source of NaCl vapor for the test system; and (2) the water leachability of the sodium captured on activated bauxite.

  7. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  8. Carbon dioxide laser vaporization of facial siliconomas: flash in the pan or way of the future?

    PubMed

    Chui, Christopher Hoe Kong; Fong, Poh Him

    2008-03-01

    In 1988, Becker first described the "laser silicone flash" encountered while using the CO2 laser to remove breast siliconosis, but no subsequent use of the CO2 laser to remove siliconomas has been reported since. To our knowledge, lasers have not been described to treat facial silicone granulomas. Three cases of facial silicone granuloma (cheek, upper eyelids, and chin) were treated using the technique of CO2 laser vaporization.We describe a novel and effective method to remove facial siliconomas. This technique could avoid the need for radical resection of functional facial tissues such as nerves. Tiny globules of injected silicone in the face were vaporized without any untoward effects. Whether larger siliconomas can be treated in the same way remains to be seen and is an area of potential study.

  9. [The use of laser vaporization for the treatment of benign prostatic hyperplasia].

    PubMed

    Ustinov, D V; Kholtobin, D P; Kul'chavenia, E V; Aĭzikovich, B I

    2013-01-01

    Results of use of UroBeam laser diode in 72 patients with benign prostatic hyperplasia (BPH) were analyzed. Average prostate volume was 67.29 +/- 26.72 cm3, the duration of vaporization--69.2 +/- 23.7 min. Blood loss was minimal. In the period from 2 weeks to 4 months after surgery, 9 patients have developed acute urinary retention. In the early postoperative period, acute prostatitis was diagnosed in 7 patients and was jugulated using drug treatment. The laser vaporization of BPH led to a three-fold reduction in the severity of urinary disorders and increase the urinary flow rate. The combination of laser vaporization of the prostate with transurethral resection of the prostate allow to improve the recovery of urination after surgery.

  10. Development of Field-deployable Diode-laser-based Water Vapor Dial

    NASA Astrophysics Data System (ADS)

    Pham Le Hoai, Phong; Abo, Makoto; Sakai, Tetsu

    2016-06-01

    In this paper, a field-deployable diode-laser-based differential absorption lidar (DIAL) has been developed for lower-tropospheric water vapor observation in Tokyo, Japan. A photoacoustic cell is used for spectroscopy experiment around absorption peaks of 829.022 nm and 829.054 nm. The water vapor density extracted from the observational data agrees with the referenced radiosonde data. Furthermore, we applied modulated pulse technique for DIAL transmitter. It enables DIAL to measure water vapor profile for both low and high altitude regions.

  11. Nano structured physical vapor deposited coatings by means of picosecond laser radiation.

    PubMed

    Bobzin, K; Bagcivan, N; Ewering, M; Gillner, A; Beckemper, S; Hartmann, C; Theiss, S

    2011-10-01

    Molding of nano structures by injection molding leads to special requirements for the tools e.g., wear resistance and as low as possible release forces of the molded components. On the other hand it is not allowed to affect the replication precision. Physical vapor deposition is one of the promising technologies for applying coatings with adapted properties like high hardness, low roughness, low Young's modulus and less adhesion to the plastics melt. Although physical vapor deposition technology allows the deposition of films on micro structures without changing the structure significantly, film deposition on nano structures and small micro structures leads to a relevant change in surface topography. For this reason direct structuring of physical vapor deposition coatings might be beneficial. In this paper structuring was done using a picoseconds ultraviolet laser, Lumera Laser "Rapid," with a master oscillator power amplifier system at 355 nm. Two different coatings were deposited by magnetron sputter ion plating physical vapor deposition technology for laser structuring tests ((Cr, Al)N, (Cr, Al,Si)N). After deposition, the coatings were analyzed by common techniques regarding hardness, Young's modulus and morphology. The structures were analyzed by scanning electron microscopy. The results show a high potential for laser structuring of coatings deposited via physical vapor deposition. Linear structures with sizes between 400 nm and 10microm were realized.

  12. Continuous wave, 30 W Laser-Diode Bar with 10 GHz Linewidth for Rb Laser Pumping

    DTIC Science & Technology

    2008-01-01

    pumped alkali vapor ( cesium , rubidium, and potassium) lasers . Efficient operation of lower- pressure 1 atm alkali-vapor lasers requires pump sources...spectral width in cw operation for pumping of a 3.2-GHz-wide oxygen molecule transition [20]. However, the laser system had only 0.5 W/A slope...development of a volume Bragg laser (VOBLA) operating at 780 nm with 30 W cw output power. The VOBLA output power is 90% of the free-running LDB power. The

  13. Containerless laser-induced flourescence study of vaporization and optical properties for sapphire and alumina

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Evaporation of aluminum oxide was studied from 1800 to 2327 K by laser-induced flourescence (LIF) detection of Al atom vapor over sapphire and alumina spheres that were levitated in an argon gas jet and heated with a continuous wave CO2 laser. Optical properties were determined from apparent specimen temperatures measured with an optical pyrometer and true temperatures deduced from the LIF intensity versus temperature measurements using the known temperature dependence of the Al atom vapor concentration in equilibrium with Al2O3. The effects of impurities and dissolved oxygen on the high-temperature optical properties of aluminum oxide were discussed.

  14. Laser vaporization for the synthesis of nanoparticles and polymers containing metal particulates

    NASA Astrophysics Data System (ADS)

    Samy El-Shall, M.

    1996-10-01

    The application of laser ablation has been widely used for the synthesis and characterization of nanomaterials and film deposition. Of particular interest are the combinations of laser ablation techniques with other chemical and physical processes to synthesize new materials with novel properties. In this paper, we specifically address two areas of materials chemistry which promise far-reaching progress for the development of novel materials with unusual properties. The first area deals with the synthesis of polymeric materials containing ultrafine metal particles. This has been achieved by combining recent advances in laser vaporization/ionization of metals with the very fast propagation rates characteristic of ionic polymerization. In the experiments, laser vaporization of metal targets is used to generate ultrafine metal particles and cations which are capable of catalyzing the cationic polymerization of isobutylene. High molecular weight polymers containing submicron metal particles have been obtained. This method can lead to the generation of new polymeric materials with unique properties. In the second area, combination of laser vaporization of metals with gas phase chemical reactions followed by controlled condensation from the vapor phase is used to synthesize nanoscale metal oxide, carbide and nitride particles with controlled sizes and compositions. The microscale structures of the SiO 2 and Al 2O 3 particles exhibit interesting web-like morphology with a significant volume of voids. Raman, IR, XPS, mass spectrometric and electron microscopic studies of these particles will be presented. These materials may have special applications in catalysis and as reinforcing agents for liquid polymers.

  15. Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors

    NASA Astrophysics Data System (ADS)

    Gubarev, F. A.; Trigub, M. V.; Klenovskii, M. S.; Li, Lin; Evtushenko, G. S.

    2016-01-01

    The paper presents a study of the effect of excitation conditions in a CuBr vapor brightness amplifier in a monostatic laser monitor on the radial non-uniformity of the radiation bearing the information about the object being visualized. A significant dependence of radial signal distribution on the concentrations of CuBr, HBr and pumping power has been demonstrated. In particular, an increase in CuBr vapor concentration causes the gain profile of the active medium to constrict and the axial gain to increase. The conditions for the most uniform radial distribution of the laser monitor signal are substantially different from those for the maximum radiated power. The paper demonstrates HBr doping to be usable as a tool to correct the non-uniformity of the radial distribution of laser monitor radiation. An addition of ~0.15 Torr HBr broadens and flattens the radiation profile, improving an important aspect of laser monitor image quality.

  16. Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Koter, Robert; Berger, Georg; Krüger, Jörg

    2011-04-01

    Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm 2) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20-40 μm thickness. The remaining laser fluence at the ceramic-metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm 2) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm 2, only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants.

  17. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    PubMed

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  18. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols

    SciTech Connect

    Ghosal, Sutapa; Brown, Matthew A.; Bluhm, Hendrik; Krisch, Maria J.; Salmeron, Miquel; Jungwirth, Pavel; Hemminger, John C.

    2008-12-22

    The chemistry of Br species associated with sea salt ice and aerosols has been implicated in the episodes of ozone depletion reported at Arctic sunrise. However, Br{sup -} is only a minor component in sea salt, which has a Br{sup -}/Cl{sup -} molar ratio of {approx}0.0015. Sea salt is a complex mixture of many different species, with NaCl as the primary component. In recent years experimental and theoretical studies have reported enhancement of the large, more polarizable halide ion at the liquid/vapor interface of corresponding aqueous alkali halide solutions. The proposed enhancement is likely to influence the availability of sea salt Br{sup -} for heterogeneous reactions such as those involved in the ozone depletion episodes. We report here ambient pressure x-ray photoelectron spectroscopy studies and molecular dynamics simulations showing direct evidence of Br{sup -} enhancement at the interface of an aqueous NaCl solution doped with bromide. The experiments were carried out on samples with Br{sup -}/Cl{sup -} ratios in the range 0.1% to 10%, the latter being also the ratio for which simulations were carried out. This is the first direct measurement of interfacial enhancement of Br{sup -} in a multi-component solution with particular relevance to sea salt chemistry.

  19. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    NASA Astrophysics Data System (ADS)

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-02-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1‑xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells.

  20. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells

    PubMed Central

    Altamura, Giovanni; Wang, Mingqing; Choy, Kwang-Leong

    2016-01-01

    Electrostatic Spray-Assisted Vapor Deposition (ESAVD) is a non-vacuum and cost-effective method to deposit metal oxide, various sulphide and chalcogenide at large scale. In this work, ESAVD was used to deposit Cu2ZnSn(S1−xSex)4 (CZTSSe) absorber. Different alkali metals like Na, Li and Rb were incorporated in CZTSSe compounds to further improve the photovoltaic performances of related devices. In addition, to the best of our knowledge, no experimental study has been carried out to test the effect of Li and Rb incorporation in CZTSSe solar cells. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and glow discharge spectroscopy have been used to characterize the phase purity, morphology and composition of as-deposited CZTSSe thin films. Photovoltaic properties of the resulting devices were determined by completing the solar cells as follows: Mo/CZTSSe/CdS/i-ZnO/Al:ZnO/Ni/Al. The results showed that Li, Na and Rb incorporation can increase power conversion efficiency of CZTS devices up to 5.5%. The introduction of a thiourea treatment, has improved the quality of the absorber|buffer interface, pushed the device efficiency up to 6.3% which is at the moment the best reported result for ESAVD deposited CZTSSe solar cells. PMID:26916212

  1. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  2. Ablation of biological tissues by radiation of strontium vapor laser

    SciTech Connect

    Soldatov, A. N. Vasilieva, A. V.

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  3. Chemical vapor synthesis of nanocrystalline perovskites using laser flash evaporation of low volatility solid precursors

    NASA Astrophysics Data System (ADS)

    Winterer, Markus; Srdic, Vladimir V.; Djenadic, Ruzica; Kompch, Alexander; Weirich, Thomas E.

    2007-12-01

    One key requirement for the production of multinary oxide films by chemical vapor deposition (CVD) or nanocrystalline multinary oxides particles by chemical vapor synthesis (CVS) is the availability of precursors with high vapor pressure. This is especially the case for CVS where much higher production rates are required compared to thin films prepared by CVD. However, elements, which form low valent cations such as alkaline earth metals, are typically only available as solid precursors of low volatility, e.g., in form of β-diketonates. This study describes laser flash evaporation as precursor delivery method for CVS of nanocrystalline perovskites. Laser flash evaporation exploits the nonequilibrium evaporation of solid metal organic precursors of low vapor pressure by absorption of the infrared radiation of a CO2 laser. It is shown that stoichiometric, nanocrystalline particles consisting of SrZrO3 and SrTiO3 can be formed from corresponding mixtures of β-diketonates which are evaporated nonselectively and with high rates by laser flash evaporation.

  4. Corona Charged Polypropylene Films Irradiated by CO2 and CuBr Vapor Lasers

    NASA Astrophysics Data System (ADS)

    Yovcheva, T. A.; Eftimov, T. A.; Viraneva, A. P.; Mekishev, G. A.; Yanev, V. C.; Avramova, I. A.

    2007-04-01

    The influence of CuBr vapor (Cu-Br) and CO2 laser radiation on polypropylene corona electrets is investigated in the present paper. The surface potential was measured before (V0) and after (Virr) irradiation using the method of the vibrating electrode with compensation. The sample surfaces were characterized by XPS.

  5. Detection and measurement of middle-distillate fuel vapors by use of tunable diode lasers.

    PubMed

    McNesby, K L; Wainner, R T; Daniel, R G; Skaggs, R R; Morris, J B; Miziolek, A W; Jackson, W M; McLaren, I A

    2001-02-20

    A sensor for the rapid (10-ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline is described. The sensor is based on a previously reported laser-mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region [Appl. Opt. 39, 5006 (2000)] to measure concentrations of gases that have unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths: one that is absorbed by the fuel vapor and one that is not absorbed. Sinusoidally modulating the power of the two lasers at the same frequency but 180 degrees out of phase allows a sinusoidal signal to be generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured by use of standard phase-sensitive detection techniques, is proportional to the fuel-vapor concentration. Limits of detection at room temperature are reported for the vapors of the three fuels studied. Improvements to be incorporated into the next generation of the sensor are discussed.

  6. Spectrophone Measurement of the Water Vapor Continuum at DF Laser Frequencies

    DTIC Science & Technology

    1975-08-01

    afA’afthar^re^ enc " ^^ ^ ^ ^’ ’^ ™ ^ity The water vapor absorption for the DF laser frequencies consists of three components - selective absorption...Rome Air Development Center. (AD 778949) (RADC-TR-74-89) Bell, A.G., Proc. Am. Assoc. Advanced Scie . 29_, (1880), p. 115. Bell, A.G., Phil

  7. Chemical vapor synthesis of nanocrystalline perovskites using laser flash evaporation of low volatility solid precursors.

    PubMed

    Winterer, Markus; Srdic, Vladimir V; Djenadic, Ruzica; Kompch, Alexander; Weirich, Thomas E

    2007-12-01

    One key requirement for the production of multinary oxide films by chemical vapor deposition (CVD) or nanocrystalline multinary oxides particles by chemical vapor synthesis (CVS) is the availability of precursors with high vapor pressure. This is especially the case for CVS where much higher production rates are required compared to thin films prepared by CVD. However, elements, which form low valent cations such as alkaline earth metals, are typically only available as solid precursors of low volatility, e.g., in form of beta-diketonates. This study describes laser flash evaporation as precursor delivery method for CVS of nanocrystalline perovskites. Laser flash evaporation exploits the nonequilibrium evaporation of solid metal organic precursors of low vapor pressure by absorption of the infrared radiation of a CO(2) laser. It is shown that stoichiometric, nanocrystalline particles consisting of SrZrO(3) and SrTiO(3) can be formed from corresponding mixtures of beta-diketonates which are evaporated nonselectively and with high rates by laser flash evaporation.

  8. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  9. Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method.

    PubMed

    Ge, Lun; Hua, Weihong; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2013-01-15

    We use the optogalvanic method to calculate the concentration of rubidium ions produced by photoionization in a Rb diode-pumped alkali laser gain medium. With bias voltage added across the electrodes of a rubidium hollow cathode lamp, the measured optogalvanic current is 2.3×10(-7) A. Further study shows that the rubidium ion concentration is proportional to the pump intensity, and the drift velocity of rubidium ions is proportional to the bias voltage. When the photoionization process reaches dynamic equilibrium, the rubidium ion concentration will not increase with growing rubidium atom density. The calculated rubidium ion concentration is 1.5×10(5)-10(6) according to the experiment, and the ionization degree is less than 2.4×10(-7).

  10. A tunable MWIR laser remote sensor for chemical vapor detection

    NASA Astrophysics Data System (ADS)

    Bunn, Thomas L.; Noblett, Patricia M.; Otting, William D.

    1998-01-01

    The Air Force vision for Global Virtual Presence suggests a need for active remote sensing systems that provide both global coverage and the ability to detect multiple gaseous chemical species at low concentration from a significant standoff distance. The system will need to have acceptable weight, volume, and power characteristics, as well as a long operating lifetime for integration with various surveillance platforms. Laser based remote sensing systems utilizing the differential absorption lidar (DIAL) technique are promising for long range chemical sensing applications. Recent advancements in pulsed, diode pumped solid state laser (DPSSL) technology and in tunable optical parametric oscillators (OPO) make broadly tunable laser transmitters possible for the DIAL system. Also the characteristic narrow spectral bandwidth of these laser devices provides high measurement sensitivity and spectral selectivity with the potential to avoid interfering species. Rocketdyne has built and tested a tunable, midwave infrared (MWIR) DIAL system using DPSSL/OPO technology. The key to the system is a novel tuning and line narrowing technology developed for the OPO. The tuning system can quickly adjust to the desired wavelength and precisely locate a narrow spectral feature of interest. Once the spectral feature is located, a rapid dither tuning technique is employed. The laser pulses are tuned ``on'' and ``off'' the spectral resonance of a molecule with precise and repeatable performance as required to make the DIAL measurement. To date, the breadboard system has been tested by measuring methane, ethane, and sulfur dioxide in a calibrated gas cell at a range of 60 meters.

  11. A new mass spectrometer system for investigating laser-induced vaporization phenomena

    NASA Technical Reports Server (NTRS)

    Lincoln, K. A.

    1974-01-01

    A laser has been combined with a mass spectrometer in a new configuration developed for studies of high-temperature materials. A vacuum-lock, solid-sample inlet is mounted at one end of a cylindrical, high-vacuum chamber one meter in length with a nude ion-source, time-of-flight mass spectrometer at the opposite end. The samples are positioned along the axis of the chamber at distances up to one meter from the ion source, and their surfaces are vaporized by a pulsed laser beam entering via windows on one side of the chamber. The instrumentation along with its capabilities is described, and results from laser-induced vaporization of several graphites are presented.

  12. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: Detection and protection

    SciTech Connect

    Sawchuk, W.S.; Weber, P.J.; Lowy, D.R.; Dzubow, L.M.

    1989-07-01

    Papillomavirus DNA has been reported recently in the vapor (smoke plume) derived from warts treated with carbon dioxide laser; this raises concerns for operator safety. We therefore have studied a group of human and bovine warts to define further the potential risk of wart therapy and to test whether a surgical mask could reduce exposure. Half of each wart was treated with carbon dioxide laser and the other half with electrocoagulation. The vapor produced by each form of therapy was collected with a dry filter vacuum apparatus and analyzed for the presence of papillomavirus. Vapor from human plantar warts was analyzed for the presence of human papillomavirus DNA, because there is no infectivity assay for human papillomavirus. Of plantar warts treated, five of eight laser-derived vapors and four of seven electrocoagulation-derived vapors were positive for human papillomavirus DNA. Greater amounts of papillomavirus DNA were usually recovered in the laser vapor than in the electrocoagulation vapor from the same wart. Bioassay readily detected infectious bovine papillomavirus in the vapor from bovine warts treated with either modality; more virus was present in laser-derived material. A surgical mask was found capable of removing virtually all laser- or electrocoagulation-derived virus, strongly suggesting that such masks can protect operators from potential inhalation exposure to papillomavirus.

  13. Measurement method for the nuclear anapole moment of laser-trapped alkali-metal atoms

    SciTech Connect

    Gomez, E.; Aubin, S.; Sprouse, G. D.; Orozco, L. A.; DeMille, D. P.

    2007-03-15

    Weak interactions within a nucleus generate a nuclear spin dependent, parity-violating electromagnetic moment, the anapole moment. We analyze a method to measure the nuclear anapole moment through the electric dipole transition it induces between hyperfine states of the ground level. The method requires tight confinement of the atoms to position them at the antinode of a standing wave Fabry-Perot cavity driving the anapole-induced microwave E1 transition. We explore the necessary limits in the number of atoms, excitation fields, trap type, interrogation method, and systematic tests necessary for such measurements in francium, the heaviest alkali.

  14. A Theoretical Model Analysis of Absorption of a Three level Diode Pumped Alkali Laser

    DTIC Science & Technology

    2009-03-01

    Properties……..……………………………………………………….5 2. Quantum Defect Parameters of Li, Na, K, R, and Cs……..…………………………....8 3. Hyperfine Multipole Constants for Cs...interaction as well as quantum mechanics and kinetics. First, the properties and structure of alkali atoms will be discussed to the necessary precision...where, n = electronic energy level quantum number l, m = rotational energy level quantum numbers α = , a0 = Bohr Radius

  15. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    DTIC Science & Technology

    2013-03-01

    state, 5 2P3/2. Collisional relaxation with buffer gases cause the alkali atoms to transition to the 52P1/2 excited state. Stimulated emission occurs when...beam to exit the cavity. The 795 nm beam then exits the cavity through the output coupler H. line. The beam propagates to the gain cell heater block...the cavity. The lasing beam then exits the cavity through a dichroic output coupler with 25% transmission and a radius of curvature of 60 cm. The

  16. Removal of Water Vapor in a Mist Singlet Oxygen Generator for Chemical Oxygen Iodine Laser

    NASA Astrophysics Data System (ADS)

    Muto, Shigeki; Endo, Masamori; Nanri, Kenzo; Fujioka, Tomoo

    2004-02-01

    The mist singlet oxygen generator (Mist-SOG) for a chemical oxygen iodine laser (COIL) has been developed in order to increase basic hydrogen peroxide (BHP) utilization. It was clarified that the Mist-SOG generated much more water vapor than conventional SOGs because the heat capacity of BHP is small. The water vapor deactivates the excited iodine and depresses the laser power. Therefore, a jet-cold trap was developed in order to remove the water vapor while maintaining a minimum deactivation of singlet oxygen. In this method, a nozzle was used to spray chilled H2O2 at 238 K as a thin layer directly to the gas flow to achieve a large specific surface area for water vapor. As a result, the water vapor mole fraction was reduced to 7% from 18% with the BHP utilization of 21% at the Cl2 consumption rate of 3.5 mmol/s (Cl2 input flow rate of 8.0 mmol/s) for 65-μm-diameter BHP droplets.

  17. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  18. Regenerable activated bauxite adsorbent alkali monitor probe

    SciTech Connect

    Lee, S.H.D.

    1991-01-22

    This invention relates to a regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor 5 concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC 10 exhaust gases.

  19. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  20. Laser photoacoustic detection of the essential oil vapors of thyme, mint, and anise

    NASA Astrophysics Data System (ADS)

    El-Kahlout, A. M.; Al-Jourani, M. M.; Abu-Taha, M. I.; Laine, Derek C.

    1998-07-01

    Photoacoustic studies of the vapors of the essential oils of thyme, mint and anise have been made using a line-tunable waveguide CO2 laser in conjunction with a heat-pipe type of photoacoustic vapor sample cell operated over the temperature range 20 - 180 degree(s)C. Identifying spectral fingerprint features are found in the 9 - 10 micrometers spectral region for each of the three essential oils investigated. The principal features of the photoacoustic spectrum of each essential oil are associated with the dominant chemicals present i.e. thymol in thyme oil, menthol in mint and anethole in anise.

  1. Interaction of wide band gap single crystals with 248 nm excimer laser radiation. XII. The emission of negative atomic ions from alkali halides

    SciTech Connect

    Kimura, Kenichi; Langford, S. C.; Dickinson, J. T.

    2007-12-01

    Many wide band gap materials yield charged and neutral emissions when exposed to sub-band-gap laser radiation at power densities below the threshold for optical breakdown and plume formation. In this work, we report the observation of negative alkali ions from several alkali halides under comparable conditions. We observe no evidence for negative halogen ions, in spite of the high electron affinities of the halogens. Significantly, the positive and negative alkali ions show a high degree of spatial and temporal overlap. A detailed study of all the relevant particle emissions from potassium chloride (KCl) suggests that K{sup -} is formed by the sequential attachment of two electrons to K{sup +}.

  2. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  3. Atomic vapor laser isotope separation of lead-210 isotope

    SciTech Connect

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  4. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications.

    PubMed

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-09-14

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

  5. Laser light routing in an elongated micromachined vapor cell with diffraction gratings for atomic clock applications

    PubMed Central

    Chutani, Ravinder; Maurice, Vincent; Passilly, Nicolas; Gorecki, Christophe; Boudot, Rodolphe; Abdel Hafiz, Moustafa; Abbé, Philippe; Galliou, Serge; Rauch, Jean-Yves; de Clercq, Emeric

    2015-01-01

    This paper reports on an original architecture of microfabricated alkali vapor cell designed for miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity depth and the beam diameter are reduced, collimation can be performed in a tighter space. This solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. Several cells have been fabricated and characterized in a clock setup using coherent population trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm. PMID:26365754

  6. Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material.

    PubMed

    Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Krüger, Jörg; Berger, Georg

    2010-08-01

    Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 Jcm(-2). In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data.

  7. Signal correlation in the tandem of a spin oscillator and microwave frequency discriminator with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2016-02-01

    We have studied the influence of low-frequency noise on the stability of resonance frequency of a self-oscillating magnetometer on 87Rb vapor with simultaneous monitoring of the signal of radio-optical resonance on the magnetic-field-dependent microwave transition under laser pumping at the D 2 line of the head doublet. The difference of synchronous records of detected signals reduced to the same scale in magnetic field units was processed to determine the Allan variance as a function of the averaging time. The correlation coefficient characterizing the coupling of detected signals determined by the pumping rate and intensity of radio fields generated in the region of the absorption chamber. The self-oscillating magnetometer can only operate provided that there is laser tuning to the long-wavelength component of the electric-dipole transition.

  8. Rubidium Recycling in a High Intensity Short Duration Pulsed Alkali Laser

    DTIC Science & Technology

    2010-03-01

    rubidium laser27 and a 48 W CW cesium laser .28 As time goes on the maximum output power of DPAL devices is 16 expected to rise with this research...greatly over the next couple of years. In 2007 Zhdanov and Knize demonstrated a 10 W CW cesium DPAL.11 This was followed in 2008 by a 17 W CW ...Encyclopedia of Optical Engineering, 901, 2003. 11. Boris Zhadanov and R. J. Knize. Diode-pumped 10 W continuous wave cesium laser . Optics Letters, 32:2167

  9. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.

    PubMed

    Zweiback, Jason; Krupke, William F

    2010-01-18

    We present experimental results for a high-power diode pumped hydrocarbon-free rubidium laser with a scalable architecture. The laser consists of a liquid cooled, copper waveguide which serves to both guide the pump light and to provide a thermally conductive surface near the gain volume to remove heat. A laser diode stack, with a linewidth narrowed to approximately 0.35 nm with volume bragg gratings, is used to pump the cell. We have achieved 24W average power output using 4 atmospheres of naturally occurring helium ((4)He) as the buffer gas and 28W using 2.8 atmospheres of (3)He.

  10. Upper Tropospheric and Lower Stratospheric Measurements of Water Vapor by the JPL Laser Hygrometer Mark 2

    NASA Astrophysics Data System (ADS)

    Troy, R. F.

    2015-12-01

    The concentration of water vapor in the upper troposphere and lower stratosphere has a significant impact on climate. Over the last sixteen years, the JPL Laser Hygrometers have collected a significant data record of atmospheric humidity from several platforms, including the NASA ER-2, WB-57, DC-8, and Global Hawk. Here, we describe the observed relation between atmospheric humidity and temperature in-cloud and out of cloud near the tropopause. The relation between cloud microphysical properties and humidity is also explored. We feature measurements of water vapor from a substantially improved instrument, JPL Laser Hygrometer Mark 2, made during the 2013 NASA SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) field mission.

  11. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    SciTech Connect

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  12. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    SciTech Connect

    Jayakumar, Anupriya Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  13. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  14. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    NASA Astrophysics Data System (ADS)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  15. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media.

    PubMed

    Todt, Michael A; Albert, Daniel R; Davis, H Floyd

    2016-06-01

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9-14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  16. Laser vaporization and excisional techniques in the treatment of cervical intraepithelial neoplasia.

    PubMed

    Monaghan, J M

    1995-03-01

    The CO2 laser proved to be a vital tool in the development of conservative therapy for the treatment of CIN in the 1980s. In conjunction with colposcopy, the laser has allowed many women to achieve the security of identified and treated CIN with the freedom to live their lives normally, including the achievement of pregnancies. The laser may be used either in the ablative (vaporization) or the cutting mode. This flexibility allows patients with unsatisfactory as well as satisfactory colposcopy to be managed. The results of treatment are universally excellent, with clearance rates of 96% being reported. Complications are rare both in the short and long term, most patients returning fully to normal activities within 4 weeks of therapy. Although the laser is being superceded to some extent by the advent of the loop diathermy technique, it will for years to come represent a valuable and useful tool in the treatment of CIN.

  17. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  18. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  19. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    PubMed Central

    Haniam, P.; Kunsombat, C.; Chiangga, S.; Songsasen, A.

    2014-01-01

    Thin films of cobalt oxides (CoO and Co3O4) fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures. PMID:24672354

  20. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  1. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  2. Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser

    NASA Astrophysics Data System (ADS)

    Yu, Jaesok; Chen, Xucai; Villanueva, Flordeliza S.; Kim, Kang

    2016-12-01

    Phase-transition droplets have been proposed as promising contrast agents for ultrasound and photoacoustic imaging. Short pulse laser activated perfluorocarbon-based droplets, especially when in a medium with a temperature below their boiling point, undergo phase changes of vaporization and recondensation in response to pulsed laser irradiation. Here, we report and discuss the vaporization and recondensation dynamics of perfluoropentane droplets containing indocyanine green in response to a short pulsed laser with optical and acoustic measurements. To investigate the effect of temperature on the vaporization process, an imaging chamber was mounted on a temperature-controlled water reservoir and then the vaporization event was recorded at 5 million frames per second via a high-speed camera. The high-speed movies show that most of the droplets within the laser beam area expanded rapidly as soon as they were exposed to the laser pulse and immediately recondensed within 1-2 μs. The vaporization/recondensation process was consistently reproduced in six consecutive laser pulses to the same area. As the temperature of the media was increased above the boiling point of the perfluoropentane, the droplets were less likely to recondense and remained in a gas phase after the first vaporization. These observations will help to clarify the underlying processes and eventually guide the design of repeatable phase-transition droplets as a photoacoustic imaging contrast agent.

  3. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  4. Laser initiation and decay processes in an organic vapor plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  5. High-Efficiency Diode-Pumped Rubidium Laser: Experimental Results (Preprint)

    DTIC Science & Technology

    2007-01-29

    Beach, V.K. Kanz, S.A. Payne, J.T. Early, “New Class of CW High-Power Diode Pumped Alkali Lasers (DPALs),” SPIE High-Power Laser Ablation V......2006). 7. Y. Wang, T. Kasamatsu, Y.Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, and H. Kan, “ Cesium Vapor Laser Pumped by

  6. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas: activated bauxite sorbent regeneration. Quarterly report, October-December 1980

    SciTech Connect

    Johnson, I.; Lee, S.H.D.

    1981-05-01

    This work supports the program to develop methods for the cleanup of combustion gases from pressurized fluidized-bed coal combustors so that the cleaned gases can be used to power downstream gas turbines. Presented here are the results of studies to develop granular sorbents for removing gaseous alkali metal compounds from these combustion gases in a granular-bed filter. Activated bauxite bed material can be reused after the alkali compound is removed by a water-leaching process. In experiments to study the kinetics of leaching, the effects of adsorbed NaCl loading, leaching temperature, and the leaching water to sorbent ratio on the rate of leaching are reported. Also reported are water retention in bauxite after leaching and the effect of volatile alkalis in makeup activated bauxite on the alkali level in flue gas expanded in the gas turbine.

  7. Urethral stricture vaporization with the KTP laser provides evidence for a favorable impact of laser surgery on wound healing

    NASA Astrophysics Data System (ADS)

    Schmidlin, Franz R.; Venzi, Giordano; Jichlinski, Patrice; Oswald, Michael; Delacretaz, Guy P.; Gabbiani, Giulio; Leisinger, Hans-Juerg; Graber, Peter

    1997-12-01

    The objective of this study was to evaluate and compare the safety and efficacy of the KTP 532 laser to direct vision internal urethrotomy (DVIU) in the management of urethral strictures. A total of 32 patients were randomized prospectively in this study, 14 DVIU and 18 KTP 532 laser. Patients were evaluated postoperatively with flowmetry and in the case of recurrence with cystourethrography at 3, 12, 24 weeks. With the KTP 532 laser complete symptomatic and uredynamic success was achieved in 15 (83%) patients at 12 and 24 weeks. Success rate was lower in the DVIU group with 9 (64%) patients at 12 weeks and 8 (57%) patients at 24 weeks. Mean preoperative peak-flow was improved from 6 cc/s to 20 cc/s at 3, 12 and 24 weeks with the KTP laser. With DVIU mean preoperative peak-flow was improved from 5.5 cc/s to 20 cc/s at 3 weeks followed by a steady decrease to 13 cc/s at 12 weeks and to 12 cc/s 24 weeks. No complication was observed in either group of patients. Our results confirm that stricture vaporization with the KTP 532 laser is a safe and efficient procedure. The better results after laser surgery make it also a valuable alternative in the endoscopic treatment of urethral strictures. These findings suggest a favorable influence of laser surgery on wound healing with less wound contraction and scarring. The lack of contraction of laser wounds might be related to the absence and the lack of organization of myofibroblasts in laser induced lesions.

  8. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    SciTech Connect

    Khalil, Osama Mostafa

    2010-10-08

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  9. Determination of gas-discharge plasma parameters in powerful metal halide vapor lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, Krassimir A.; Slaveeva, Stefka I.; Fedchenko, Yulian I.

    2016-01-01

    Powerful metal halide vapor lasers are excited with nanosecond pulsed longitudinal discharge in complex multicomponent gas mixtures. Using a new method, thermal conductivity of various 5- and 6-component gas mixtures is obtained under gas-discharge conditions, which are optimal for laser operation on the corresponding metal atom and ion transitions. Assuming that the gas temperature varies only in the radial direction and using the calculated thermal conductivities, an analytical solution of the steady-state heat conduction equation is found for uniform and radially nonuniform power input in various laser tube constructions. Using the results obtained for time-resolved electron temperature by measurement of electrical discharge characteristics and analytically solving steady-state heat conduction equation for electrons as well, radial distribution of electron temperature is also obtained for the discharge period.

  10. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    NASA Astrophysics Data System (ADS)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  11. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  12. Experimental and theoretical study of the performance of optically pumped cesium vapor laser as a function of the pump-to-laser beam overlap

    NASA Astrophysics Data System (ADS)

    Barmashenko, Boris D.; Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Rosenwaks, Salman

    2016-10-01

    We report on the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. Non monotonic dependence of the laser power (optimized over the temperature) on the pump beam radius was observed with a maximum achieved at the ratio 0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency 55% was obtained. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. The present results combined with results of the application of the model to K DPAL and Ti:Sapphire pumped Cs laser, indicate that the model can describe the operation of different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  13. Elucidating the Structure of Sugars: MW Spectroscopy Combined with Ultrafast UV Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Basterretxea, Francisco J.; Fernandez, Jose A.; Castano, Fernando; Lesarri, Alberto; Grabow, Jens-Uwe; Cimas, Alvaro

    2013-06-01

    Carbohydrates are one of the most versatile biochemicalbuilding blocks, widely acting in energetic, structural or recognition processes. Even the small monosaccharides display unique structural and conformational freedom and may coexist in many open-chain or cyclic forms. We recently initiated the investigation of a series of monosaccharides using a combination of ultrafast laser vaporization and microwave spectroscopy in supersonic jet expansions. We present several structural studies on carbohydrates of aldoses and ketoses of five and six carbon sugars vaporized by UV ultrafast laser vaporization and stabilized in a jet expansion. The experimental evidence confirms that sugars exhibits a α-/β-pyranose conformation (6-membered ring), sharply contrasting with the furanose form (5-membered ring) found in the nature (as component of RNA, sucrose). In addition, thanks to the use of enriched samples, we have experimentally determined the substitution and effective structures. Finally, the structure of several monosaccharides was compared and common structural patterns of their conformational landscape will be showed. E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E. J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B. G. Davis, F. J. Basterretxea, J. A. Fernández and F. Castaño J. Am. Chem. Soc. 135, 2845-2852, 2013.

  14. Reduction of degradation in vapor phase transported InP/InGaAsP mushroom stripe lasers

    SciTech Connect

    Jung, H.; Burkhardt, E.G.; Pfister, W.

    1988-10-03

    The rapid degradation rate generally observed in InP/InGaAsP mushroom stripe lasers can be considerably decreased by regrowing the open sidewalls of the active stripe with low-doped InP in a second epitaxial step using the hydride vapor phase transport technique. This technique does not change the fundamental laser parameters like light-current and current-voltage characteristics. Because of this drastic reduction in degradation, the vapor phase epitaxy regrown InP/InGaAsP mushroom laser seems to be an interesting candidate for application in optical communication.

  15. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  16. Assessment of the application of cascade lasers to stand-off detection of alcohol vapors in moving cars

    NASA Astrophysics Data System (ADS)

    Mlynczak, Jaroslaw; Kubicki, Jan; Kopczynski, Krzysztof; Mierczyk, Jadwiga

    2016-10-01

    The idea of using commercially available cascade lasers for stand-off detection of alcohol vapors in moving cars is presented. Special attention is paid to the optical characteristics of the car windowpanes for the monitoring as well as for the reference laser beams. A special experimental setup was built to investigate the idea. It is shown that using interband cascade lasers operating at 3.45- and 3.59-μm wavelengths, the alcohol vapors inside a car can be successfully detected, even in cars with different windowpanes.

  17. Direct measurement of chemical composition of SOx in impact vapor using a laser gun

    NASA Astrophysics Data System (ADS)

    Ohno, Sohsuke; Kadono, Toshihiko; Kurosawa, Kosuke; Hamura, Taiga; Sakaiya, Tatsuhiro; Sugita, Seiji; Shigemori, Keisuke; Hironaka, Yoichiro; Watari, Takeshi; Matsui, Takafumi

    2011-06-01

    The SO3/SO2 ratio of the impact vapor cloud is a key parameter for understanding the environmental perturbation caused by the impact-induced SOx and the killing mechanism of. the mass extinction at the K-Pg boundary. We conducted hypervelocity impact experiments using a high-speed laser gun (GEKKO XII-HIPER, ILE, Osaka University) and measured the chemical compositions of the SOx released from CaSO4. The experimental result indicates that SOx are dominated by SO3. It implies that the SOx generated by the K-Pg impact would have been also dominated by SO3, because the SO3/SO2 ratio of natural planetary scale impact vapor clouds would have been larger than that of the experimental result of this study.

  18. High-gain inner-shell photoionization laser in Cd vapor pumped by soft-x-ray radiation from a laser-produced plasma source.

    PubMed

    Silfvast, W T; Macklin, J J; Ii, O R

    1983-11-01

    A soft-x-ray-pumped inner-shell photoionization laser has been produced in Cd vapor at 4416 and 3250 A. A gain of 5.6 cm(-1) has been measured at 4416 A, and a reasonably high-energy storage of 0.2 mJ/cm(3) in the upper laser states has been obtained.

  19. Theory and experiments of dye lasers longitudinally pumped by copper vapor laser (CVL)

    NASA Astrophysics Data System (ADS)

    Sun, W.; Tang, C. S.; Zhuge, X. B.; Chen, M. S.

    1986-06-01

    Theoretical and experimental studies were performed on high prf dye lasers longitudinally pumped by CVL. Analytic expressions were derived for the laser output power and efficiency by using a rate equation treatment and taking the influence of excited singlet-state absorption into account. A CuBr laser-pumped dye laser with longitudinally pumped geometry and a jet stream was used in the experiment. A maximum output power of 1.3 W was achieved for Kiton red dye with an efficiency of 40%. Experimental results were in good agreement with theoretical analysis.

  20. Development of a new laser heating system for thin film growth by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fujimoto, Eiji; Sumiya, Masatomo; Ohnishi, Tsuyoshi; Lippmaa, Mikk; Takeguchi, Masaki; Koinuma, Hideomi; Matsumoto, Yuji

    2012-09-01

    We have developed a new laser heating system for thin film growth by chemical vapor deposition (CVD). A collimated beam from a high-power continuous-wave 808 nm semiconductor laser was directly introduced into a CVD growth chamber without an optical fiber. The light path of the heating laser inside the chamber was isolated mechanically from the growth area by bellows to protect the optics from film coating. Three types of heat absorbers, (10 × 10 × 2 mm3) consisting of SiC, Ni/NiOx, or pyrolytic graphite covered with pyrolytic BN (PG/PBN), located at the backside of the substrate, were tested for heating performance. It was confirmed that the substrate temperature could reach higher than 1500 °C in vacuum when a PG/PBN absorber was used. A wide-range temperature response between 400 °C and 1000 °C was achieved at high heating and cooling rates. Although the thermal energy loss increased in a H2 gas ambient due to the higher thermal conductivity, temperatures up to 1000°C were achieved even in 200 Torr H2. We have demonstrated the capabilities of this laser heating system by growing ZnO films by metalorganic chemical vapor deposition. The growth mode of ZnO films was changed from columnar to lateral growth by repeated temperature modulation in this laser heating system, and consequently atomically smooth epitaxial ZnO films were successfully grown on an a-plane sapphire substrate.

  1. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  2. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Sistani, Habiballah; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-01-01

    Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale.

  3. Isolating Protein Charge State Reduction in Electrospray Droplets Using Femtosecond Laser Vaporization

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Sistani, Habiballah; Archer, Jieutonne J.; Shi, Fengjian; Levis, Robert J.

    2017-03-01

    Charge state distributions are measured using mass spectrometry for both native and denatured cytochrome c and myoglobin after laser vaporization from the solution state into an electrospray (ES) plume consisting of a series of solution additives differing in gas-phase basicity. The charge distribution depends on both the pH of the protein solution prior to laser vaporization and the gas-phase basicity of the solution additive employed in the ES solvent. Cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 resulted in the average charge state distribution (Zavg) of 7.0 ± 0.1 (8.2 ± 0.1), 9.7 ± 0.2 (14.5 ± 0.3), and 11.6 ± 0.3 (16.4 ± 0.1), respectively, in ammonium formate ES solvent. The charge distribution shifted from higher charge states to lower charge states when the ES solvent contained amines additives with higher gas-phase basicity. In the case of triethyl ammonium formate, Zavg of cytochrome c (myoglobin) prepared in solutions with pH of 7.0, 2.6, and 2.3 decreased to 4.9 (5.7), 7.4 ± 0.2 (9.6 ± 0.3), and 7.9 ± 0.3 (9.8 ± 0.2), respectively. The detection of a charge state distribution corresponding to folded protein after laser vaporized, acid-denatured protein interacts with the ES solvent containing ammonium formate, ammonium acetate, triethyl ammonium formate, and triethyl ammonium acetate suggests that at least a part of protein population folds within the electrospray droplet on a millisecond timescale.

  4. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.

    PubMed

    Barmashenko, B D; Rosenwaks, S

    2012-09-01

    A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the 2P3/2 and 2P1/2 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20  m/s.

  5. An investigation into the output characteristics of a discharge-heated copper vapor laser

    NASA Astrophysics Data System (ADS)

    Wang, Tieh C.; Yang, Ching Y.

    1989-11-01

    The laser output characteristics of a discharge-heated copper vapor laser (CVL) were investigated at a charging voltage of 14.5 kV, laser tube temperature of 1450 C, pulse repetition rate (PRR) range from 0.5 to 9.5 kHz, and buffer gas pressures of 20 and 75 Torr. Changing buffer gas pressure from 20 to 75 Torr causes no significant variation of the rates of relaxation of metastable atoms. Increase of the current rise of pumping pulse with increasing PRR is the predominant factor for improving the laser behavior when PRR is greater than 3.5 kHz with buffer gas pressure of 20 Torr and when PRR is less than 4.5 kHz with buffer gas pressure of 75 Torr. For short pulse applications, the CVL is preferably operated at high PRR and low buffer gas regime. For the 25-W CVL used here, the prepulse electron density should be higher than 10 to the 13th/cu cm for efficient laser operation. The output power of this CVL can be increased to much higher than 30 W if the thermal insulation is optimized and the PRR is increased.

  6. A single surgeon's experience with contact laser vaporization of the prostate

    NASA Astrophysics Data System (ADS)

    Mueller, Edward J.

    1995-05-01

    Herein, I report on my first 50 contact laser prostatectomies performed with the SLT Nd:YAG laser. The obstructed prostatic urethra is opened via contact laser vaporization of the obstructing adenoma. The average pre-op AUA symptom score was 22.9 (range 14 - 30). The average 3 month post-op AUA symptom score was 2.1 (range 0 -8). Eighteen of the patients had the foley catheter removed approximately 4 - 6 hours post-op and were discharged the same day. Thirty patients had the foley catheter removed the morning following surgery and were discharged. And two patients had the foley catheter removed the morning following surgery, but remained in the hospital for medical reasons unrelated to the TURP. Thus, 48 (96%) of the patients were discharged within 24 hours of admission. No patient had to be readmitted to the hospital for any reason. All patients were allowed to return to full activity within 24 hours of discharge. The average hospital cost for the 48 patients discharged within 24 hours was DOL4,694. This compares to the average hospital cost of an electrocautery TURP of DOL6-8000. In summary, contact laser TURP using the SLT Nd:YAG laser relived the symptoms of an obstructing prostate comparable to electrocautery TURP. However, these results were achieved with a much shorter hospitalization, a quicker return to full activity and at a lower cost.

  7. Optimization of the alexandrite laser tuning elements for a water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Higdon, Noah S.; Browell, Edward V.

    1990-01-01

    An overview of some of the developments completed on an alexandrite laser for making water vapor DIAL measurements is presented in this paper. A computer control for active stabilization of the two intracavity etalons has been implemented and recently tested in an aircraft environment. Long-term frequency drift (i.e., 2 hours) of less than 0.7 pm has been observed in the laboratory. An alignment technique to get the optimum free spectral range ratio for the two etalons is also developed.

  8. Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Sokolow, Adam; Pearlstein, Robert; Edwards, Glenn

    2009-01-01

    Free-electron laser irradiation can superheat tissue water, driving thermal vapor bubbles confined by tissue matrix and leading to mechanical tissue failure (ablation). Acoustic transients propagating from an ablation cavity were recorded with a polarization quadrature, interferometric vibrometer. For 3.0 μm infrared irradiation, the shocklike transients with peak pressures in the megapascal range indicate amplification due to bubble collapse. In contrast, for 6.45 μm irradiation, elastic transients with peak pressures in the 0.1 MPa range indicate tissue failure during bubble growth.

  9. Fabrication of highly ultramicroporous carbon nanofoams by SF6-catalyzed laser-induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hattori, Yoshiyuki; Shuhara, Ai; Kondo, Atsushi; Utsumi, Shigenori; Tanaka, Hideki; Ohba, Tomonori; Kanoh, Hirofumi; Takahashi, Kunimitsu; Vallejos-Burgos, Fernando; Kaneko, Katsumi

    2016-05-01

    We have developed a laser-induced chemical vapor deposition (LCVD) method for preparing nanocarbons with the aid of SF6. This method would offer advantages for the production of aggregates of nanoscale foams (nanofoams) at high rates. Pyrolysis of the as-grown nanofoams induced the high surface area (1120 m2 g-1) and significantly enhanced the adsorption of supercritical H2 (16.6 mg g-1 at 77 K and 0.1 MPa). We also showed that the pyrolized nanofoams have highly ultramicroporous structures. The pyrolized nanofoams would be superior to highly microporous nanocarbons for the adsorption of supercritical gases.

  10. Evaluation of metal vapor laser designs with radial separation of the active medium

    NASA Astrophysics Data System (ADS)

    Soldatov, Anatoly N.; Polunin, Yu. P.; Chausova, L. N.

    1995-08-01

    Recent advances in self-terminating metal-vapor lasers have largely resulted from the feasibility of scaling laser characteristics in the cylindrical configuration of the active medium and longitudinal pulsed discharge, which makes it possible to provide the average power W > 100W from a large bore laser tube. Increasing the active volume, however, at the expense of a larger bore for this geometry of the gas discharge channel substantially reduces the specific energy Esp and the average specific power Wsp. Notably, the best laser characteristics have been realized with a low average specific input power Psp. The latter ranged between 1.5 and 0.5 W/cm3 for 6-12 cm bore tubes. As Psp was increased above a certain value, Wsp and W were found to decrease. As that took place, there appeared high radial inhomogeneities in the laser power distribution. Among the things which interfere with further increase of W, Wsp, and Esp as the input energy is increased, are radially nonuniform overheating of the active medium and very high degree of ionization. Given high input energies, these factors will give rise to a substantial deficit of ground state metal atoms N(O) at the center of the laser tube. As Psp is increased, the valley in the radial thermal distribution N(R) gets deeper due to ambipolar diffusion. The N(R) variation with excitation conditions has been studied experimentally for cylindrical laser tubes. The primary processes involved have been examined by means of the saturated power model. In this work we have studied laser action from Cu, I, and AuI in a tube whose configuration allows us to ameliorate the effect of a number of limiting factors on the output energy performance, on the one hand, and provides transversely separated excitation zones on the other, which, in turn, makes it possible to realize optimal thermophysical characteristics of the active medium, manipulate the spatial distribution of metal vapor, including the case of simultaneous excitation of

  11. Preliminary results on diode-laser assisted vaporization of prostate tissue

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Seitz, Michael; Reich, Oliver; Bachmann, Alexander; Steinbrecher, Verena; Ackermann, Alexander; Stief, Christian

    2007-07-01

    Introduction and objectives: The aim was to identify the capability and the laser parameter of under water tissue vaporisation by means of a diode laser (1470 nm). Afterwards the feasibility and postoperative clinical outcome of vaporization of the prostate was investigated. Method: After acquiring suitable laser parameters in in-vitro experiments using a perfused tissue model patients (n=10) suffering from bladder outlet obstruction due to benign prostatic hyperplasia (BPH) were treated by diode laser. Their clinical outcome, in terms of acceptance and post-operatively voiding were evaluated. The diode laser emitted light of the wavelength of 1470 nm at 50 W (Biolitec GmbH) and delivered to the tissue by means of a side-fire fibre introduced through a 24F continuous-flow cystoscope. Normal saline was used for irrigation with an additive of 1% ethanol. The prostatic lobes (volume range 35-80ml) were vaporized within the prostatic capsular using sweeping and push and pull technique. The mean time of laser application was 2400 sec (1220-4000 sec) resulting in applied energies of 121 kJ in the mean (range: 61-200kJ). Results: During laser treatment none of the 10 patients showed any significant blood loss or any fluid absorption (no ethanol uptake). Foley catheters were removed between 18 and 168 hours postoperatively (mean: 49.8h+/-46h). After removal of the catheter the mean peak urine flow rate increased from 8.9ml/s +/- 2.9ml/s pre-operatively in comparison to 15.7ml/s +/- 5 ml/s (p=0.049) post-operatively. 8/10 patients were satisfied with their voiding outcome. None of the patients showed appearance of urgency, dysuria, hematuria, or incontinence but two patients required re-catheterization. After a follow-up of 1month, 8/10 patients showed evidence of good results and are satisfied with the outcome. Two patients required consecutive TUR-P. After a follow-up of 6-month the 8 patients are still satisfied. Conclusions: This very early and limited experience using

  12. Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption

    SciTech Connect

    Becerra, F. E.; Willis, R. T.; Rolston, S. L.; Orozco, L. A.

    2009-07-15

    We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor using a two-photon process in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5S{sub 1/2}, 5P{sub 3/2}, and 5D{sub 5/2} levels. This atomic configuration can show electromagnetically induced transparency and absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5 GHz off atomic resonance.

  13. A pneumatically powered mechanical translator-rotator for the direct laser vaporization of solid materials

    NASA Astrophysics Data System (ADS)

    Stone, Earle G.; Bach, Stephan B. H.

    1997-03-01

    A pneumatically powered mechanical translator-rotator system has been designed and constructed for use in the direct laser vaporization (DLV) of materials. This translator-rotator was initially developed for the reproducible DLV production of refractory metal atoms to be reacted with small molecules and characterized in matrix isolation experiments, but has applications wherever a reproducible DLV stream of a material is required, such as matrix assisted laser desorption ionization. Key features of the new translator-rotator design are the employment of an inexpensive air ratchet to provide power for the translator-rotator mechanism, the elimination of magnetic relays and electrical limit switches through the use of an all mechanical gear and slot mechanism, and a triple O-ring gland capable of maintaining high vacuum, 10-7 Torr, while the translator-rotator is in operation.

  14. Gas-dynamic acceleration of laser-ablation plumes: Hyperthermal particle energies under thermal vaporization

    SciTech Connect

    Morozov, A. A.; Evtushenko, A. B.; Bulgakov, A. V.

    2015-02-02

    The expansion of a plume produced by low-fluence laser ablation of graphite in vacuum is investigated experimentally and by direct Monte Carlo simulations in an attempt to explain hyperthermal particle energies for thermally vaporized materials. We demonstrate that the translation energy of neutral particles, ∼2 times higher than classical expectations, is due to two effects, hydrodynamic plume acceleration into the forward direction and kinetic selection of fast particles in the on-axis region. Both effects depend on the collision number within the plume and on the particles internal degrees of freedom. The simulations allow ablation properties to be evaluated, such as ablation rate and surface temperature, based on time-of-flight measurements. Available experimental data on kinetic energies of various laser-produced particles are well described by the presented model.

  15. Formation of rare-earth upconverting nanoparticles using laser vaporization controlled condensation

    NASA Astrophysics Data System (ADS)

    Glaspell, Garry; Wilkins, James R.; Anderson, John; El-Shall, M. Samy

    2008-04-01

    Rare earth doped upconverting nanoparticles have been synthesized via laser vaporization controlled condensation (LVCC) and their photoluminescence properties were characterized using 980 nm laser diode excitation. This procedure is highly tunable, specifically by increasing the Yb 3+ to Er 3+ concentration the observed green emission decreases and the observed red emission increases. We have also shown that nearly equal peaks of blue, green and red emissions producing a virtually white upconverter could be synthesized by appropriately mixing Tm 3+, Ho 3+, and Er 3+. We have also investigated the upconversion efficiency in a variety of lattices including Y IIO 3, Gd IIO 3 and La IIO 3. TEM confirmed that the as-formed particles were ~ 10 nm in size and XRD indicated that the overall crystal structure was predominately cubic.

  16. KTP laser selective vaporization of the prostate in the management of urinary retention due to BPH

    NASA Astrophysics Data System (ADS)

    Kleeman, M. W.; Nseyo, Unyime O.

    2003-06-01

    High-powered photoselective vaporization of the prostate (PVP) is a relatively new addition in the armamentarium against bladder outlet obstruction due to BPH. With BPH, the prostate undergoes stromal and epithelial hyperplasia, particularly in the transitional zone, mediated by dihydrotestosterone (DHT). This periurethral enlargement can compress the prostatic urethra leading to bladder outlet obstruction and eventually urinary retention. Treatment of uncomplicated symptomatic BPH has evolved from the standard transurethral resection of the prostate (TURP) to multiple medical therapies and the putative minimally invasive surgical procedures. These include microwave ablation, needle ablation, balloon dilation, stents, as well as fluid based thermo-therapy, ultrasound therapy and cryotherapy. Different forms of lasers have been applied to treat BPH with variable short and long term benefits of urinary symptoms. However, the controversy remains about each laser regarding its technical applicability and efficacy.

  17. Double resonance fequency light shift compensation in optically oriented laser-pumped alkali atoms

    SciTech Connect

    Baranov, A. A. Ermak, S. V.; Sagitov, E. A.; Smolin, R. V.; Semenov, V. V.

    2015-09-15

    The contributions of the vector and scalar components to the magnetically dependent microwave transition frequency light shift are analyzed and the compensation of these components is experimentally demonstrated for the {sup 87}Rb atoms optically oriented by a laser tuned to the D{sub 2} line of the head doublet. The Allan variance is studied as a function of the averaging time for a tandem of optically pumped quantum magnetometers (OPQMs), one of which is based on a low-frequency spin oscillator while another is based on a quantum microwave discriminator with a resonance frequency that corresponds to magnetically dependent transitions between HFS sublevels with the extremal value of the magnetic quantum number. It is shown that the compensation of the scalar and vector components of the light shift in OPQMs reduces the Allan variance at averaging times that exceed hundreds of seconds compared to a quantum discriminator based on the magnetically independent 0–0 transition. In this case, the minimal Allan variance in OPQMs at the end resonance is achieved at considerably longer averaging times than in the case of the quantum discriminator that is tuned to the 0–0 transition frequency.

  18. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  19. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-12-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6{und M}-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  20. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Schmalzer, D.K.; Steindler, M.J.; Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of Pressurized fluidized bed combustion (PFBC) technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an alternative to the on-line alkali analyzer for field application. RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no high temperature/high pressure (HTHP) sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-reaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial-grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6[und M]-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed in the following.

  1. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-01-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  2. Measurement of alkali in PFBC exhaust

    SciTech Connect

    Lee, S.H.D.; Swift, W.M.

    1992-11-01

    This project supports the DOE/METC Fossil Energy Program for the development of PFBC technology. Based on the analytical activated-bauxite sorber-bed technique, we are developing the RABSAM as an altemative to the on-line alkali analyzer for field application. As shown in Fig. 1, the RABSAM is a sampling probe containing a regenerable activated-bauxite adsorbent (RABA). It can be inserted directly into the PFBC exhaust duct and requires no HTHP sampling line. Alkali vapors are captured by the adsorbent purely through physical adsorption. The adsorbent is regenerated by a simple water-leaching process, which also recovers the adsorbed alkalis. The alkali analysis of the leachate by atomic absorption (AA) provides a basis for calculating the time-averaged alkali-vapor concentration in the PFBC exhaust. If the RABA is to use commercial grade activated bauxite, the clay impurities in activated bauxite can react with alkali vapors and, therefore, need to be either removed or deactivated. In earlier work, a 6M-LiCl-solution impregnation technique was shown to deactivate these impurities in fresh activated bauxite [8]. During this year, RABA prepared by this technique was tested in a pressurized alkali-vapor sorption test unit to determine its NaCl-vapor capture efficiency and the regenerability of the sorbent by water extraction. Results of this study are presented and discussed.

  3. Kinetics of laser-pulse vaporization of uranium carbide by mass spectrometry. [LMFBR

    SciTech Connect

    Tehranian, F.

    1983-06-01

    The kinetics of uranium carbide vaporization in the temperature range 3000 K to 5200 K was studied using a Nd-glass laser with peak power densities from 1.6 x 10/sup 5/ to 4.0 x 10/sup 5/ watts/cm/sup 2/. The vapor species U, UC/sub 2/, C/sub 1/ and C/sub 3/ were detected and analyzed by a quadrupole mass spectrometer. From the mass spectrometer signals number densities of the various species in the ionizer were obtained as functions of time. The surface of the irradiated uranium carbide was examined by scanning electron microscope and the depth profile of the crater was obtained. In order to aid analysis of the data, the heat conduction and species diffusion equations for the solid (or liquid) were solved numerically by a computer code to obtain the temperature and composition transients during laser heating. A sensitivity analysis was used to study the effect of uncertainties in the input parameters on the computed surface temperatures.

  4. Probing heat diffusion after pulsed-laser-induced breakdown in a metal vapor

    SciTech Connect

    Zapka, W.; Tam, A.C.

    1982-02-01

    We have used a pulsed dye-laser beam at 6010 A, of 1-..mu..sec duration and < or approx. =1-mJ energy, to produce a line plasma in a Cs metal vapor. This produces a line source of large thermal energy. The heat diffusion after the laser pulse can be studied by transmission monitoring of a weak cw He--Ne laser beam that is parallel to but separated from the pulse laser beam by an adjustable displacement. This is possible because the He--Ne beam is absorbed by the minority Cs/sub 2/ molecules but not by the majority Cs atoms; as the heat pulse diffuses through the probe beam, the transient temperature increase causes a corresponding change in the population distribution of the Cs/sub 2/ molecules and hence a transient increase in transmission of the probe beam. In other words, the Cs/sub 2/ workd like a thermometer. Our work demonstrates a new and simple method to measure heat diffusion in a well-defined geometry, and it is especially suitable for use in a hot corrosive system because it is a noncontact method.

  5. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    PubMed

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  6. Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble.

    PubMed

    Zheng, Yajian; Liu, Hui; Wang, Yi; Zhu, Cong; Wang, Shuming; Cao, Jingxiao; Zhu, Shining

    2011-11-21

    Through the enhanced photothermal effect, which was achieved using a silver film, a low power weakly focused continuous-wave laser (532 nm) was applied to create a vapor bubble. A convective flow was formed around the bubble. Microparticles dispersed in water were carried by the convective flow to the vapor bubble and accumulated on the silver film. By moving the laser spot, we easily manipulated the location of the bubble, allowing us to direct-write micropatterns on the silver film with accumulated particles. The reported simple controllable accumulation method can be applied to bimolecular detection, medical diagnosis, and other related biochip techniques.

  7. Critical Fluences And Modeling Of CO{sub 2} Laser Ablation Of Polyoxymethylene From Vaporization To The Plasma Regime

    SciTech Connect

    Sinko, John E.; Phipps, Claude R.; Tsukiyama, Yosuke; Ogita, Naoya; Sasoh, Akihiro; Umehara, Noritsugu; Gregory, Don A.

    2010-05-06

    A CO{sub 2} laser was operated at pulse energies up to 10 J to ablate polyoxymethylene targets in air and vacuum conditions. Critical effects predicted by ablation models are discussed in relation to the experimental data, including specifically the threshold fluences for vaporization and critical plasma formation, and the fluence at which the optimal momentum coupling coefficient is found. Finally, we discuss a new approach for modeling polymers at long wavelengths, including a connection formula that links the vaporization and plasma regimes for laser ablation propulsion.

  8. Spectral diagnostics of a vapor-plasma plume produced during welding titanium with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Petrovskiy, V. N.; Bykovskiy, D. P.; Mironov, V. D.; Prokopova, N. M.; Tret'yakov, E. V.

    2015-03-01

    This work is devoted to the research of welding plume during high power ytterbium fiber laser welding of a titanium alloy in the Ar shielding gas environment. High speed video observation of a vapor-plasma plume for visualization of processes occurring at laser welding was carried out. The coefficient of the inverse Bremsstrahlung absorption of laser radiation is calculated for a plasma welding plume by results of spectrometer researches. The conclusion deals with the impact of plasma on a high-power fiber laser radiation.

  9. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Metal-organic vapor phase epitaxy of (GaAl)As for 0.85-μm laser diodes

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Bugge, F.; Butzke, G.; Lehmann, L.; Schimko, R.

    1988-11-01

    Metal-organic vapor phase epitaxy was used to grow stripe heterolaser diodes that were hitherto fabricated by liquid phase epitaxy. The main relationships between the growth parameters (partial input pressures, temperatures) and the properties of materials (thicknesses, solid-solution compositions, carrier densities) were investigated. The results were in full agreement with the mechanism of growth controlled by a vapor-phase diffusion. The results achieved routinely in the growth of GaAs are reported. It is shown that double heterostructure laser diodes fabricated by metal-organic vapor phase epitaxy compete favorably with those grown so far by liquid phase epitaxy, including their degradation and reliability.

  10. Measurement of vapor/liquid distributions in a binary-component fuel spray using laser imaging of droplet scattering and vapor absorption

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhang, Yuyin; Wu, Shenqi; Xu, Bin

    2014-08-01

    Fuel volatility has a great effect on its evaporation processes and the mixture formation and thus combustion and emissions formation processes in internal combustion engines. To date, however, instead of the actual gasoline or diesel fuel, many researchers have been using single-component fuel in their studies, because the composition of the former is too complicated to understand the real physics behind the evaporation and combustion characteristics. Several research groups have reported their results on droplets evaporation in a spray of multi-component fuel, carried out both numerically and experimentally. However, there are plenty of difficulties in quantitative determination of vapor concentration and droplet distributions of each component in a multicomponent fuel spray. In this study, to determine the vapor phase concentration and droplet distributions in an evaporating binary component fuel spray, a laser diagnostics based on laser extinction by droplet scattering and vapor absorption was developed. In practice, measurements of the vapor concentration distributions of the lower (n-tridencane) and higher (n-octane) volatility components in the binary component fuel sprays have been carried out at ambient temperatures of 473K and 573K, by substituting p-xylene for noctane or α-methylnaphthalene for n-tridecane. p-Xylene and α-methylnaphthalene were selected as the substitutes is because they have strong absorption band near 266nm and transparent near 532nm and, their thermo-physical properties are similar to those of the original component. As a demonstration experiment, vapor/liquid distribution of the lower boiling point (LBP) and higher boiling point (HBP) components in the binary component fuel spray have been obtained.

  11. Spectral diagnostics of a vapor-plasma plume produced during welding with a high-power ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Uspenskiy, S. A.; Shcheglov, P. Yu.; Petrovskiy, V. N.; Gumenyuk, A. V.; Rethmeier, M.

    2013-07-01

    We have conducted spectroscopic studies of the welding plasma formed in the process of welding with an ytterbium fiber laser delivering output power of up to 20 kW. The influence of shielding gases (Ar, He) on different parts of the welding plume is investigated. The absorption coefficient of the laser radiation by the welding-plume plasma is estimated. Scattering of 532-nm probe radiation from particles of the condensed metal vapor within the caustic of a high-power fiber laser beam is measured. Based on the obtained results, conclusions are made on the influence of the plasma formation and metal vapor condensation on the radiation of the high-power fiber laser and the stability of the welding process.

  12. Dy3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses for LASER and white LED applications

    NASA Astrophysics Data System (ADS)

    Annapurna Devi, Ch. B.; Mahamuda, Sk.; Venkateswarlu, M.; Swapna, K.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2016-12-01

    A new-fangled series of Dy3+ ions doped Single and Mixed Alkali Fluoro Tungsten Tellurite Glasses have been prepared by using melt quenching technique and their spectroscopic behaviour was investigated by using XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dysbnd O bond in the present glasses. From the absorption spectra, the Judd-Ofelt (J-O) intensity parameters have been determined and in turn used to determine various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and yellow regions corresponding to the transitions 4F9/2 → 6H15/2 (483 nm) and 4F9/2 → 6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of tungsten tellurite glass (TeWK:1Dy). The highest emission cross-section and branching ratio values observed for the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By correlating the experimental lifetimes (τexp) measured from the decay spectral features with radiative lifetimes (τR), the quantum efficiencies (η) for all the glasses have been evaluated and found to be maximum for potassium combination tungsten tellurite (TeWK:1Dy) glass. The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The chromaticity colour coordinates evaluated for all the glasses fall within the white light region and white light emission can be tuned by varying the composition of the glass. From all these studies, it was concluded that 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and white-LED applications.

  13. Mid-IR laser absorption diagnostics for hydrocarbon vapor sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Klingbeil, Adam Edgar

    unburned fuel, engine performance can be characterized and future engine designs can be improved to utilize all of the fuel supplied to the engine. Simultaneous measurement of absorption at two wavelengths is used as a basis for hydrocarbon detection in severe environments. A novel wavelength-tunable mid-IR laser is modified to rapidly switch between two wavelengths, improving the versatility of this laser system. The two-wavelength technique is then exploited to measure vapor concentration while rejecting interferences such as scattering from liquid droplets and absorption from other species. This two-wavelength laser is also used to simultaneously determine temperature and vapor concentration. These techniques, in combination with the library of temperature-dependent hydrocarbon spectra, lay the groundwork necessary to develop fuel diagnostics for laboratory experiments and tests in pulse detonation engines and internal combustion engines. The temperature-dependent spectroscopy of gasoline is examined to develop a sensor for fuel/air ratio in an internal combustion engine. A wavelength was selected for good sensitivity to gasoline concentration. A spectroscopic model is developed that uses the relative concentrations of five structural classes to predict the absorption spectrum of gasoline samples with varying composition. The model is tested on 21 samples of gasoline for temperatures ranging from 300 to 1200 K, showing good agreement between model and measurements over the entire temperature range. Finally, a two-wavelength diagnostic was developed to measure the post-evaporation temperature and n-dodecane concentration in an aerosol-laden shock tube. The experimental data validate a model which calculates the effects of shock-wave compression on a two-phase mixture. The measured post-shock temperature and vapor concentration compare favorably for gas-phase and aerosol experiments. The agreement between the two fuel-loading techniques verifies that this aerosol shock

  14. Study of Pulse Laser Assisted Metalorganic Vapor Phase Epitaxy of InGaN with Large Indium Mole Fraction

    NASA Astrophysics Data System (ADS)

    Kangawa, Yoshihiro; Kawaguchi, Norihito; Hida, Ken-nosuke; Kumagai, Yoshinao; Koukitu, Akinori

    2004-08-01

    The indium composition of the InGaN film increases with decreasing growth temperature; however, the crystalline quality of the film is poor when it is grown at low temperatures. To form a high-quality InGaN film with a large indium mole fraction, Nd: YAG pulse laser assisted metalorganic vapor phase epitaxy (MOVPE) was carried out at low temperatures. The results suggest that film quality can be improved by pulse laser irradiation on the surface of the film.

  15. Laser-Based Measurements of OH, Temperature, and Water Vapor Concentration in a Hydrocarbon-Fueled Scramjet (POSTPRINT)

    DTIC Science & Technology

    2008-07-01

    its cowl wall. The combustor had over 200 pressure taps instrumented on all four walls, including measurements at the combustor exit and in the base...connect hydrocarbon-fueled scramjet combustor . Planar laser- induced fluorescence (PLIF) of the OH radical is used to examine the flame structure...within the combustor . Tunable diode laser- based absorption spectroscopy (TDLAS) is used to measure water vapor concentration and static temperature near

  16. Microstructure of metastable metallic alloy films produced by laser breakdown chemical vapor deposition and ion implantation

    SciTech Connect

    Menon, S.K.; Jervis, T.R.; Nastasi, M.

    1986-01-01

    Thin films produced by laser breakdown chemical vapor deposition from nickel and iron carbonyls and by implanting Ni foils with varying levels of C have been characterized by transmission electron microscopy. Decomposition of Ni(CO)/sub 4/ produces polycrystalline films of fcc Ni and metastable ordered hexagonal Ni/sub 3/C. This metastable phase is identical to that produced by gas carburization, rapid solidification of Ni-C melts, and ion implantation of C into Ni at low concentrations. Increasing the H/sub 2/ content in the gas mixture during laser deposition reduces the grain size of the films significantly with grain sizes smaller than 10 nanometers produced. Laser decomposition of Fe(CO)/sub 5/ produces films with islands of fcc gamma-Fe and finely dispersed metastable Fe/sub 3/C (Cementite). In addition, the ferrous oxides Fe/sub 2/O/sub 3/ and Fe/sub 3/O/sub 4/ were found in these samples. Implants of C into pure Ni foils at 77/sup 0/K and at a concentration of 35 at. % produced amorphous layers. Implants at the same dose at room temperature did not produce amorphous layers.

  17. A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser

    SciTech Connect

    Wang, L.G.; Vay, S.

    1995-12-31

    H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

  18. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    NASA Astrophysics Data System (ADS)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  19. C-BN patterned single-walled nanotubes synthesized by laser vaporization.

    PubMed

    Enouz, Shaïma; Stéphan, Odile; Cochon, Jean-Lou; Colliex, Christian; Loiseau, Annick

    2007-07-01

    We report on the synthesis of C-BN single-walled nanotubes made of BN nanodomains embedded into a graphene layer. The synthesis process consists of vaporizing, by a continuous CO2 laser, a target made of carbon and boron mixed with a Co/Ni catalyst under N2 atmosphere. High-resolution transmission electron microscopy (HRTEM) and nanoelectron energy loss spectroscopy (nanoEELS) provide direct evidence that boron and nitrogen co-segregate with respect to carbon and form nanodomains within the hexagonal lattice of the graphene layer in a sequential manner. A growth model is proposed to account for the observed C-BN self-organization and to explain how kinetics and local energetics at intermediate states can tailor ultimate single layer BN-C heterojunctions.

  20. Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique.

    PubMed

    Arenal, Raul; Stephan, Odile; Cochon, Jean-Lou; Loiseau, Annick

    2007-12-26

    We present a detailed study of the growth mechanism of single-walled boron nitride nanotubes synthesized by laser vaporization, which is the unique route known to the synthesis of this kind of tube in high quantities. We have performed a nanometric chemical and structural characterization by transmission electron microscopy (high-resolution mode (HRTEM) and electron energy loss spectroscopy) of the synthesis products. Different boron-based compounds and other impurities were identified in the raw synthesis products. The results obtained by the TEM analysis and from the synthesis parameters (temperature, boron, and nitrogen sources) combined with phase diagram analysis to provide identification of the fundamental factors determining the nanotube growth mechanism. Our experiments strongly support a root-growth model that involves the presence of a droplet of boron. This phenomenological model considers the solubility, solidification, and segregation phenomena of the elements present in this boron droplet. In this model, we distinguish three different steps as a function of the temperature: (1) formation of the liquid boron droplet from the decomposition of different boron compounds existing in the hexagonal boron nitride target, (2) reaction of these boron droplets with nitrogen gas present in the vaporization chamber and recombination of these elements to form boron nitride, and (3) incorporation of the nitrogen atoms at the root of the boron particle at active reacting sites that achieves the growth of the tube.

  1. In vitro study on the vaporization ratio of 2-microm laser in human prostatic tissue.

    PubMed

    Yang, Yong; Sun, Dongchong; Wei, Zhitao; Xu, Feng; Hong, Baofa; Zhang, Xu

    2010-04-01

    In this study, the vaporization ratio of the 2-mum laser in the prostatic tissue with benign prostatic hyperplasia was examined in vitro, to explore a technique to estimate the clearance rate of prostatic tissue during the transurethral vaporesection of the prostate. A total of 9 fresh prostatic tissue specimens were obtained by open surgery and the wet weight of the prostatic tissue were measured immediately after the sample collection. Under the simulated conditions of transurethral vaporesection of the prostate by 2-microm laser, each prostate gland was completely vaporesected into fragments with a diameter of less than 1.0 cm in vitro. After the vaporesection, the whole fragments of prostatic tissue were collected and measured. Then the lost weight of prostatic tissue, the weight of the collected prostatic tissue and the ratio of the lost weight of prostatic tissue to the wet weight of the prostate glandular organ specimen were calculated. The correlation between the weight of collected prostatic tissue and the weight of the whole glandular organ was analyzed. All the experimental procedures were carried out by one operator. Wet weight of the prostatic gland specimen and the weight of the harvested prostatic tissues after the procedure were recorded. With respect to the wet weight of prostate gland specimen, the percentage of the weight of collected prostatic tissue was (34.45 + or - 1.51) %, and the percentage of the lost weight of prostatic tissue was (65.55 + or - 1.51)%. Satisfactory linear relationship was observed between the weight of collected prostatic tissue and the wet weight of prostate gland specimen [y = 3.245 x -6.475 (t=15.097, P=0.000)]. It is concluded that under the simulated conditions of transurethral vaporesection of the prostate by 2-mum laser, the vaporization ratio of prostatic tissue can be calculated on the basis of the weight of collected prostatic tissue, and thereby the clearance of prostatic tissue during the formal operation by 2

  2. Kinetics of laser chemical vapor deposition of carbon and refractory metals

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    2000-10-01

    Three-dimensional laser chemical vapor deposition (3D-LCVD) has been used to grow rods of carbon, tungsten, titanium, and hafnium from a variety of hydrocarbons and metal halide-based precursors. A novel computerized 3D-LCVD system was designed and successfully used in the experiments. A focused Nd:Yag laser beam (lambda = 1.06 mum) was utilized to locally heat up a substrate to deposition temperature. The rods, which grew along the axis of the laser beam, had a typical diameter of 30--80 mum and a length of about 1 mm. The precursors for carbon deposition were the alkynes: propyne, butyne, pentyne, hexyne, and octyne. Propyne gave the highest deposition rate, in excess 3 mm/s at high laser powers (0.45 W) and high partial pressures (3000 mbar). the temperature dependence and pressure dependence were both non-linear functions of the growth rate. the temperature dependence could be separated into two regions---the kinetically limited region, which obeys the Arrhenius relationship, and the transport limited region, which is explained by diffusion of the precursors to the reaction zone. The pressure dependence showed that the reaction order for the different precursors varied from 2.5 for propyne to 1.3 for octyne. The precursors used deposit the refractory metals were tungsten hexafloride, titanium tetraiodide and hafnium chloride. The only successful precursor was tungsten hexafluoride, which readily produced tungsten rods when mixed with hydrogen. Rod diameters typically ranged from 50 mum to 400 mum and the average length of the rods were about 1 mm. Much lower deposition rates, less than 4.5 mum/s were obtained in this case as compared to carbon deposition. By an optimization of the LCVD process, it was possible to deposit high-quality single crystal tungsten rods. They were all oriented in the <100> direction.

  3. Nonresonant femtosecond laser vaporization with electrospray postionization for ex vivo plant tissue typing using compressive linear classification.

    PubMed

    Judge, Elizabeth J; Brady, John J; Barbano, Paolo Emilio; Levis, Robert J

    2011-03-15

    Laser electrospray mass spectrometry (LEMS) with offline classification is used to discriminate plant tissues at atmospheric pressure using an intense (10(13) W cm(-2)), nonresonant (800 nm) femtosecond laser pulse to vaporize cellular content for subsequent mass analysis. The tissue content of the plant within the 0.05 mm(2) laser interaction region is vaporized into the electrospray plume where the molecules are ionized prior to transfer into the mass spectrometer. The measurements for a flower petal, leaf, and stem of an impatiens plant reveal mass spectral signatures that enable discrimination as performed using a compressive linear classifier. The statistical analysis of the plant tissue samples reveals reproducibility of the data for replicate tissue samples and within a single tissue sample. A similar degree of discrimination was achieved for the green and white regions of aphelandra squarrosa (zebra plant) leaves.

  4. Primary Vaginal Adenocarcinoma Arising in Vaginal Adenosis After CO2 Laser Vaporization and 5-Fluorouracil Therapy

    PubMed Central

    Paczos, Tamera A.; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2016-01-01

    Summary We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO2 laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma. PMID:20173507

  5. Primary vaginal adenocarcinoma arising in vaginal adenosis after CO2 laser vaporization and 5-fluorouracil therapy.

    PubMed

    Paczos, Tamera A; Ackers, Stacey; Odunsi, Kunle; Lele, Shashikant; Mhawech-Fauceglia, Paulette

    2010-03-01

    We present a case of a 45-year-old woman with a long-standing history of persistent cervical dysplasia that resulted in a hysterectomy. Subsequent vaginal smears revealed high-grade vaginal intraepithelial neoplasia (VAIN III) on Pap smear with positive human papilloma virus (HPV) testing. Over the course of 2 years, the patient underwent 2 CO(2) laser vaporization procedures of the upper vagina and intermittent 5-fluorouracil therapy. A biopsy performed at the time of the second laser procedure revealed endocervical-type well-differentiated adenocarcinoma, associated with VAIN III. HPV in situ hybridization for HPV types 16 and 18 was positive in both the glandular and squamous mucosa. The patient has no known history of intrauterine diethylstilbestrol exposure or mullerian developmental abnormalities. Subsequently, the patient underwent a radical upper vaginetcomy with bilateral pelvic lymph nodes dissection and bilateral salpingo-oophorectomy. The vaginectomy specimen showed residual adenocarcinoma associated with VAIN-III and extensive vaginal adenosis with free resection margins. This is the second reported case in the literature of adenocarcinoma arising in vaginal adenosis after 5-fluorouracil. Herein, we highlight these important findings and shed some light on the pathogenesis of vaginal adenosis and the subsequent development of vaginal adenocarcinoma.

  6. Rapid and Localized Synthesis of Single-Walled Carbon Nanotubes on Flat Surface by Laser-Assisted Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kasuya, Keigo; Nagato, Keisuke; Jin, Yusuke; Morii, Hiroshi; Ooi, Takeshi; Nakao, Masayuki

    2007-04-01

    The synthesis of single-walled carbon nanotubes (SWNTs) at a controlled position on a flat surface was demonstrated by laser-assisted chemical vapor deposition (CVD). The developed multilayer substrate including an energy-confining layer (ECL) enabled the efficient heating of catalysts on the surface, resulting in the rapid and localized syntheses of SWNTs. Using a Nd:YAG laser as a heat source, we achieved the rapid synthesis with laser irradiation for 1 s and the localized synthesis in an area of approximately 1 μm diameter. In addition, the scanning of the laser irradiation spot at a rate of 1 μm/s enabled the line-patterned synthesis of SWNTs at a linewidth of 2 μm. The resulting synthesis of SWNTs on a flat surface by laser-assisted CVD will lead to the easy and controllable fabrication of SWNT-based nanodevices.

  7. Hydrocarbon-free resonance transition 795-nm rubidium laser

    SciTech Connect

    Wu, S Q; Soules, T F; Page, R H; Mitchell, S C; Kanz, V K; Beach, R J

    2008-01-09

    An optical resonance transition rubidium laser (5{sup 2}P{sub 1/2} {yields} 5{sup 2}S{sub 1/2}) is demonstrated with a hydrocarbon-free buffer gas. Prior demonstrations of alkali resonance transition lasers have used ethane as either the buffer gas or a buffer gas component to promote rapid fine-structure mixing. However, our experience suggests that the alkali vapor reacts with the ethane producing carbon as one of the reaction products. This degrades long term laser reliability. Our recent experimental results with a 'clean' helium-only buffer gas system pumped by a Ti:sapphire laser demonstrate all the advantages of the original alkali laser system, but without the reliability issues associated with the use of ethane.

  8. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    NASA Technical Reports Server (NTRS)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  9. Mathematical simulation of heating effects in a static diode-pumped vapor rubidium cell

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, You; Han, Juhong; Cai, He; Xue, Liangping; Wang, Hongyuan

    2015-02-01

    Diode-pumped alkali lasers (DPALs) have attracted a lot of interests in the recent years because of their high Stokes efficiency, good beam quality, compact size, and near-infrared emission wavelengths. Until now, the thermal features have been only analyzed in an open alkali cell. In this report, we established a mathematical model to examine the heating effect of a static sealed rubidium cell by means of a Finite Difference (FD) procedure. After assuming the absorption coefficient of the alkali vapor, the temperature distributions of a real sealed rubidium vapor cell have been acquired for different powers and beam waists of the pump. The analytic conclusions would be helpful in designing a feasible DPAL.

  10. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives.

    PubMed

    Lohbauer, Ulrich; Wagner, Andrea; Belli, Renan; Stoetzel, Christian; Hilpert, Andrea; Kurland, Heinz-Dieter; Grabow, Janet; Müller, Frank A

    2010-12-01

    Zirconia nanoparticles prepared by laser vaporization were incorporated into the primer or into the adhesive of a commercial adhesive system in order to evaluate its effect on bond strength to dentin. Zirconia nanoparticles (20-50nm) were prepared using a particular laser vaporization technique and incorporated into the primer (P) or into the adhesive (A) of the Adper Scotchbond Multi-Purpose (SBMP) system at 5, 10, 15 and 20wt.% by means of mechanical mixing (stirring) and ultrasonication. Control (unfilled) and experimental groups (filled) were applied, according to the manufacturer's instructions, onto flat mid-coronal human dentin. Composite crowns were built up, stored in distilled water for 24h at 37°C and cut into 0.65±0.05mm² beams following a non-trimming microtensile technique. Specimens were fractured in tension using a universal testing machine (Zwick) and examined by scanning electron microscopy for fractographic analysis. Microtensile bond strength (μTBS) data were analyzed using a two-way ANOVA and modified LSD test at α=0.05. Analysis of the nanofiller distribution and ultramorphological characterization of the interface were performed by transmission electron microscopy (TEM). Zirconia nanoparticle incorporation into the primer or into the adhesive of SBMP significantly increased μTBS to dentin. Filler concentration only affected μTBS significantly in the P group. Statistically significant differences between groups P and A occurred only at 20wt.% filler content, with a significantly higher μTBS in group P. TEM micrographs revealed nanoparticle deposition on top of a hybrid layer when incorporated into the primer, whereas they remained dispersed through the adhesive layer in group A. Zirconia nanoparticles incorporation into SBMP increased bond strength to dentin by reinforcing the interface adhesive layer. Nanofiller incorporation into the primer solution showed a tendency of increasing bond strength with increasing concentration. At high

  11. Analysis of Amphiphilic Lipids and Hydrophobic Proteins Using Nonresonant Femtosecond Laser Vaporization with Electrospray Post-Ionization

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-04-01

    Amphiphilic lipids and hydrophobic proteins are vaporized at atmospheric pressure using nonresonant 70 femtosecond (fs) laser pulses followed by electrospray post-ionization prior to being transferred into a time-of-flight mass spectrometer for mass analysis. Measurements of molecules on metal and transparent dielectric surfaces indicate that vaporization occurs through a nonthermal mechanism. The molecules analyzed include the lipids 1-monooleoyl-rac-glycerol, 1,2-dihexanoyl- sn-glycero-3-phosphocholine, 1,2-dimyristoyl- sn-glycero-3-phosphocholine, and the hydrophobic proteins gramicidin A, B, and C. Vaporization of lipids from blood and milk are also presented to demonstrate that lipids in complex systems can be transferred intact into the gas phase for mass analysis.

  12. Intra-operative power measurement of laser fibers during photoselective vaporization of the prostate using the 80W-KTP-Greenlight laser

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Baumgartner, Martin K.; Fatzer, Markus; Rey, Julien M.; Sigrist, Markus W.; Seifert, Hans-Helge

    2008-02-01

    Photoselective vaporization of the Prostate (PVP) using the 80W-Greenlight-PV (R) Laser System (Laserscope (R), San Jose, USA) has been established as a treatment option for patients suffering from obstructive symptoms caused by benign prostatic hyperplasia. However, longer operation time compared to standard trans-urethral resection of the prostate (TURP) and the high costs of the laser fibers are specific problems of this technique. In addition, many clinicians performing PVP complain about a reduced effectiveness of vaporization during treatment. Therefore, power measurement was performed during PVP using the 80W-Greenlight-PV (R) Laser System. Power output was measured at the beginning and also regularly throughout the operation. A total of 40 fibers were investigated in 35 patients. Damage to the tip of the fibers was regularly visible and increased as more energy was supplied. Additionally, in 90% of all fibers a decrease of power output was detectable during the operation. This became pronounced after the application of 200kJ, resulting in an end of lifespan (i.e. 275kJ) median power output of only 20% of the starting value. Corresponding to the clinical observations the impressive damage to the emission window was associated with a substantial decrease of power output during PVP. These observations might explain the impaired vaporization during PVP and a longer operation time compared to conventional TURP. Hence, improvements in the quality of the laser fibers are necessary to advance the efficiency of this promising technology.

  13. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  14. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  15. Stable and efficient operation of a large-bore copper vapor laser with funnel-shaped, grooved copper electrodes

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, R.; Pasandideh, K.; Zand, M.; Nazari Mahroo, H.

    2017-03-01

    Using an appropriate design of electrodes and adjustment of the thyratron decoupling circuit as a high-repetition-rate and high-voltage switch, very stable operation of a copper vapor laser at high pressures was obtained. This was achieved by canceling the intense filamentation in the laser plasma at the higher pressures. The transverse grooves on the inner surface of the funnel-shaped copper electrodes permit operation of the laser up to 100 torr. This design reduces the cathode-fall voltage, and as a result reduces the thermal loading in the cathode-fall region. The optimum pressure was 80 torr. At this condition the output power was more than that observed with expensive molybdenum electrodes in a similar laser system.

  16. Growth of thick GaN layers on laser-processed sapphire substrate by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Koyama, Koji; Aida, Hideo; Kim, Seong-Woo; Ikejiri, Kenjiro; Doi, Toshiro; Yamazaki, Tsutomu

    2014-10-01

    A 600 μm thick GaN layer was successfully grown by hydride vapor phase epitaxy by replacing the standard sapphire substrate with that processed by a focused laser beam within the substrate. The effects of the laser processing on the curvature and cracking of the GaN layer were investigated. Microscopic observations of the interior of the thick GaN layer revealed that the laser-processed substrate suppressed the generation of microcracks in the GaN layer. In addition, the laser processing was also found to reduce the change in the curvature during the GaN layer growth in comparison to that on the standard substrate. It is shown that the overlapping microcracks observed in the GaN layer on the standard sapphire substrate lead to serious cracking after thick GaN layer growth.

  17. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  18. THERMODYNAMIC AND TRANSPORT PROPERTIES OF RUBIDIUM VAPOR AND CESIUM VAPOR

    DTIC Science & Technology

    consideration. It is assumed that the vapors are comprised of alkali atoms whose interactions are the pairwise Lennard - Jones (6 - 12) type. On the basis of...the 2 parameters which occur in the Lennard - Jones potential for interactions between some alkalis and noble gas atoms and the known parameters for the

  19. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  20. Collimated, single-pass atom source from a pulsed alkali metal dispenser for laser-cooling experiments

    SciTech Connect

    Moore, Kevin L.; Purdy, Thomas P.; Murch, Kater W.; Leslie, Sabrina; Gupta, Subhadeep; Stamper-Kurn, Dan M.

    2005-02-01

    We have developed an improved scheme for loading atoms into a magneto-optical trap (MOT) from a directed rubidium alkali metal dispenser in <10{sup -10} Torr ultrahigh vacuum conditions. A current-driven dispenser was surrounded with a cold absorbing 'shroud' held at {<=}0 deg. C, pumping rubidium atoms not directed into the MOT. This nearly eliminates background atoms and reduces the detrimental rise in pressure normally associated with these devices. The system can be well-described as a current-controlled, rapidly switched, two-temperature thermal beam, and was used to load a MOT with 3x10{sup 8} atoms.

  1. MW Spectroscopy Coupled with Ultrafast UV Laser Vaporization: Succinic Acid in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Mendez, Estibaliz; Ecija, Patricia; Cocinero, Emilio J.; Castano, Fernando; Basterretxea, Francisco J.; Godfrey, Peter D.; McNaughton, Don; Jahn, Michaela K.; Nair, K. P. Rajappan; Grabow, Jens-Uwe

    2013-06-01

    Recent lab and field measurements have indicated critical roles of organic acids in enhancing new atmospheric aerosol formation. In order to understand the nucleation process, here we report an experimental and theoretical investigation of chemical structure of succinic acid. We have used the technique of Fourier Transform Microwave Spectroscopy (FTMW). Succinic acid was vaporized by UV ultrafast laser ablation to suppress thermal decomposition processes^a and seeded into an expanding stream of Ne forming a supersonic jet. The rotational spectrum detected the presence of a single most stable conformation in the cm- mm- wave regions for which accurate rotational and centrifugal distortion parameters have been determined. The study was extended to all monosubstituted isotopic species (^{13}C, ^{18}O, D(O)), which were positively identified, leading to an accurate determination of the effective and substitution structures of the molecule. The experimental study was supplemented by ab initio (MP2) and DFT (M06-2X and B3LYP) calculations. ^{a} E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño, Angew. Chem. Int. Ed., 51, 3119-3124, 2012.

  2. Numerical simulation of transient, incongruent vaporization induced by high power laser

    SciTech Connect

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.

  3. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.

    PubMed

    Wang, Yuliang; Zaytsev, Mikhail E; The, Hai Le; Eijkel, Jan C T; Zandvliet, Harold J W; Zhang, Xuehua; Lohse, Detlef

    2017-02-28

    Microbubbles produced by exposing water-immersed metallic nanoparticles to resonant light play an important role in emerging and efficient plasmonic-enhanced processes for catalytic conversion, solar energy harvesting, biomedical imaging, and cancer therapy. How do these bubbles form, and what is their gas composition? In this paper, the growth dynamics of nucleating bubbles around laser-irradiated, water-immersed Au plasmonic nanoparticles are studied to determine the exact origin of the occurrence and growth of these bubbles. The microbubbles' contact angle, footprint diameter, and radius of curvature were measured in air-equilibrated water (AEW) and degassed water (DGW) with fast imaging. Our experimental data reveals that the growth dynamics can be divided into two regimes: an initial bubble nucleation phase (regime I, < 10 ms) and, subsequently a bubble growth phase (regime II). The explosive growth in regime I is identical for AEW and DGW due to the vaporization of water. However, the slower growth in regime II is distinctly different for AEW and DGW, which is attributed to the uptake of dissolved gas expelled from the water around the hot nanoparticle. Our scaling analysis reveals that the bubble radius scales with time as R(t) ∝ t(1/6) for both AEW and DGW in the initial regime I, whereas in the later regime II it scales as R(t) ∝ t(1/3) for AEW and is constant for perfectly degassed water. These scaling relations are consistent with the experiments.

  4. Spectroscopically pure metal vapor source for highly charged ion spectroscopy and capillary discharge soft x-ray lasers.

    PubMed

    Tomasel, F G; Shlyaptsev, V N; Rocca, J J

    2008-01-01

    We describe a compact, pulsed metal vapor source used for the production of dense plasma columns of interest for both soft x-ray laser research and spectroscopy of highly ionized plasmas. The source generates spectroscopically pure cadmium vapor jets in a room-temperature environment by rapidly heating an electrode with a capacitive discharge. In the configuration described herein, the metal vapor jet produced by the source is axially injected into a fast (up to 15 kA/ ns), high current (up to 200 kA peak) capillary discharge to generate highly ionized cadmium plasma columns. Spectroscopic analysis of the discharge emission in the 12-25 nm spectral range evidences the dominance of Cu-like (CdXX) and Ni-like (CdXXI) lines and shows strong line emission at 13.2 nm from the 4d (1)S(0)-4p (1)P(1) laser transition of Ni-like Cd. Hydrodynamic/atomic physics simulations performed to describe the dynamics of the plasma column and compute the optimum discharge conditions for laser amplification are discussed.

  5. Role of zinc coating at liquid-vapor interface during laser material processing of zinc coated steel

    NASA Astrophysics Data System (ADS)

    Hwan Lee, Seung; Mazumder, Jyoti

    2013-07-01

    In laser material processing, one of the major interests is characterizing interfacial phenomena induced by thermal phase changes of materials. The interfacial characteristics in the laser processing of multi-coated materials show different behaviors compared to those of single material processing. The difference in thermo-physical properties of the coated and primary materials induces the contrasting characteristics of multiple interfacial phenomena including temperature, recoil pressure, capillary force, and thermo capillary force. The influence of coating layer to the interfacial physics evolutions is difficult to be modeled mathematically when the laser beam penetrates the multi-coated material layer by layer. This paper addresses the role of the zinc coating at the liquid-vapor interface during the laser processing of zinc coated steel, as a representative case of multi-coated materials. Computational modules incorporating the zinc layers were established and selectively applied at the locations where the zinc coatings exist to investigate the interfacial phenomena. The level set method was integrated with the modules to track the evolution of the liquid-vapor interface in a self-consistent manner. The interfacial phenomena characteristics were estimated by a 3D mathematical simulation study. A reflective topography method was employed to validate the mathematical model and to supplement our understandings of the interfacial evolution.

  6. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  7. Conformational effects on cationization of poly(ethylene glycol) by alkali metal ions in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Matsuyama, Shigetomo; Saito, Takeshi; Kinugasa, Shinichi; Nagahata, Ritsuko; Kawabata, Shin-Ichirou

    2005-12-01

    Conformational effects of polymer chains on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) were studied by using an equimolar mixture of uniform poly(ethylene glycol)s (PEGs) and by molecular dynamics simulations. Uniform PEGs with degrees of polymerization n = 8-39 were separated from commercial PEG samples by preparative supercritical fluid chromatography. MALDI-TOFMS spectra of an equimolar mixture of the uniform PEGs in aqueous ethanol were measured by adding a mixture of 2,5-dihydroxybenzoic acid (as a matrix reagent) and five alkali metal chlorides (LiCl, NaCl, KCl, RbCl, and CsCl). After optimization of the matrix concentration and laser power, five types of adduct cationized by Li+, Na+, K+, Rb+, and Cs+ could be identified simultaneously in the same spectrum. In the lower molecular-mass region around 103, the spectral intensity increase rapidly with increasing molecular mass of PEG; this rapid increase in the spectral intensity started at a lower molecular mass for smaller adduct cations. Molecular dynamics simulations were used to calculated the affinity of PEG for the adduct cations. These experimental and simulated results showed that the observed spectral intensities in MALDI-TOFMS were markedly affected by the species of adduct cations and the degree of polymerization of the PEG, and that they were dependent on the stability of the PEG-cation complex.

  8. Study of Doped ZnO Films Synthesized by Combining Vapor Gases and Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, Sandor L.; George, M. A.

    2000-01-01

    The properties and structure of the ZnO material are similar to those of the GaN. Since an excitonic binding energy of ZnO is about 60 meV, it has strong potential for excitonic lasing at the room temperature. This makes synthesizing ZnO films for applications attractive. However, there are several hurdles in fabricating electro-optical devices from ZnO. One of those is in growing doped p-type ZnO films. Although techniques have been developed for the doping of both p-type and n-type ZnO, this remains an area that can be improved. In this presentation, we will report the experimental results of using both thermal vapor and pulsed laser deposition to grow doped ZnO films. The films are deposited on (0001) sapphire, (001) Si and quartz substrates by ablating a ZnO target. The group III and V elements are introduced into the growth chamber using inner gases. Films are characterized by x-ray diffraction, scanning probe microscopy, energy dispersive spectroscopy, Auger electron spectroscopy, and electrical measurements. The full width at half maximum of theta rocking curves for epitaxial films is less than 0.5 deg. In textured films, it rises to several degrees. Film surface morphology reveals an island growth pattern, but the size and density of these islands vary with the composition of the reactive gases. The electrical resistivity also changes with the doped elements. The relationship between the doping elements, gas composition, and film properties will be discussed.

  9. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  10. Nonlinear infrared generation in alkali metal vapors: Steady state susceptibilities and dynamic behavior. Effective relaxation rates and preliminary Raman gain predictions for the Cs system

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    Effective relaxation rates for atomic cesium pumped by doubled Alexandrite radiation are presented. Laser radiation levels are 8S 1/2 and 9S 1/2; resonance levels 3 = 8P 1/2 and 8P 1/2, respectively. In addition, Raman gain is represented in two graphs which plot chi per atom (10 to the -13 power) at Raman peak versus the infrared wave number per centimeter and the corresponding doubled Alexandrite wave number. One graph covers resonance level 8P, the other 9P; in both cases cesium is pumped with a peak pulse height of 0.5 MW in a 200 micron diameter spot size.

  11. Investigation on 447.3 nm blue-violet laser by extra-cavity frequency doubling of a diode-pumped cesium vapor laser

    NASA Astrophysics Data System (ADS)

    Xu, Dongdong; Chen, Fei; Guo, Jin; Shao, Mingzhen; Xie, Jijiang

    2016-09-01

    447.3 nm blue-violet lasers are investigated by extra-cavity single-pass second harmonic generation (SHG) of diode-pumped cesium vapor lasers (Cs-DPALs) using a LBO crystal. Two types of 894.6 nm Cs-DPAL are constructed, and the beam quality factors are Mx2=1.02, My2=1.13 and Mx2=2.13, Mx2=2.66, respectively. The maximum output powers for the two types of Cs-DPAL operating in pulsed mode are 0.692 W and 2.6 W, and the corresponding maximum second harmonics (SH) powers are 9.5 μW and 11.2 μW at optimal focusing parameter of 1.68, respectively. The relative insensitivity of SH power to the LBO crystal temperature and the influence of Cs laser beam quality on the SHG efficiency are analyzed qualitatively.

  12. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor. Progress report, January-June 1987

    SciTech Connect

    Lawandy, N.M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  13. Alkali sorber (RABSAM), September 1, 1990--August 30, 1991

    SciTech Connect

    Lee, S.H.D.; Swift, M.W.

    1991-01-01

    The objective of this work is to develop a regenerable activated-bauxite sorber alkali monitor that requires no high-temperature/high-pressure sampling line for the reliable in situ measurement of alkali-vapor concentration in the exhaust from the pressurized fluidized-bed combustion of coal. 11 refs., 2 figs., 1 tab.

  14. Alkali Metal Thermal to Electric Converter (AMTEC) Technology Development for Potential Deep Space Scientific Missions

    NASA Technical Reports Server (NTRS)

    Mondt, J.; Sievers, R.

    1998-01-01

    This paper describes the alkali metal thermal to electric converter (AMTEC) technology development effort over the past year. The vapor-vapor AMTEC cell technology is being developed for use with either a solar or nuclear heat sources for space.

  15. Progress toward a water-vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Meng, Lei S.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2005-08-01

    Water vapor is one of the most significant constituents of the atmosphere because of its role in cloud formation, precipitation, and interactions with electromagnetic radiation, especially its absorption of longwave infrared radiation. Some details of the role of water vapor and related feedback mechanisms in the Earth system need to be characterized better if local weather, global climate, and the water cycle are to be understood. A Differential Absorption LIDAR (DIAL) with a compact laser diode source may be able to provide boundary-layer water vapor profiles with improved vertical resolution relative to passive remote sensors. While the tradeoff with small DIAL systems is lower vertical resolution relative to large LIDARs, the advantage is that DIAL systems can be built much smaller and more robust at less cost, and consequently are the more ideal choice for creating a multi-point array or satellite-borne system. This paper highlights the progress made at Montana State University towards a water vapor DIAL using a widely tunable amplified external cavity diode laser (ECDL) transmitter. The ECDL is configured in a Littman-Metcalf configuration and was built at Montana State University. It has a continuous wave (cw) output power of 20 mW, a center wavelength of 832 nm, a coarse tuning range of 17 nm, and a continuous tuning range greater than 20 GHz. The ECDL is used to injection seed a tapered amplifier with a cw output power of 500 mW. The spectral characteristics of the ECDL are transferred to the output of the tapered amplifier. The rest of the LIDAR uses commercially available telescopes, filter optics, and detectors. Initial cw and pulsed absorption measurements are presented.

  16. Diode laser frequency locking using Zeeman effect and feedback in temperature.

    PubMed

    Martins, Weliton Soares; Grilo, Mayara; Brasileiro, Manoel; di Lorenzo, Orlando; Oriá, Marcos; Chevrollier, Martine

    2010-02-10

    We demonstrate the stabilization of a laser diode frequency, using the circular dichroism of an alkali vapor and feeding back the correction signal to the temperature actuator of the junction. The conditions of operation and the performance of such a system are discussed.

  17. Rock Degradation by Alkali Metals: A Possible Lunar Erosion Mechanism.

    PubMed

    Naughton, J J; Barnes, I L; Hammond, D A

    1965-08-06

    When rocks melt under ultrahigh-vacuum conditions, their alkali components volatilize as metals. These metal vapors act to comminute polycrystalline rocks to their component minerals. The resultant powder is porous and loosely packed and its characteristics may be compatible with the lunar surface as revealed by the Ranger photographs. If meteorite impact or lunar volcanism has produced vaporization or areas of molten lava, alkali erosion may have given dust of this character in adjacent solid areas.

  18. Ex vivo evaluation of safety and efficacy of vaporization of the prostate using a 300 W high-power laser diode with the wavelength of 980 nm

    NASA Astrophysics Data System (ADS)

    Takada, Junya; Honda, Norihiro; Hazama, Hisanao; Awazu, Kunio

    2014-03-01

    Laser vaporization of the prostate is one of the promising technique for less-invasive treatment of benign prostatic hyperplasia. However, shorter operative duration and higher hemostatic ability are expected. The wavelength of 980 nm offers a high simultaneous absorption by water and hemoglobin, so that it combines the efficient vaporization with good hemostasis. Therefore, we have evaluated the safety and efficacy of vaporization of the prostate using a recently developed 300 W high-power laser diode with the wavelength of 980 nm. First, validity of bovine prostate tissue as the sample was confirmed by measuring the optical properties of bovine and human prostate tissue using a double integrating sphere optical system. Next, contact and non-contact ex vivo irradiations were performed for various irradiation powers and times, and vaporized and coagulated depths were measured. In the contact irradiation, the vaporized depth at the power of 300 W was significantly deeper than that at the power of 100 W, while the difference was relatively smaller for the coagulated depths at 300 and 100 W. In the non-contact irradiation, coagulation as thick as that in the contact irradiation was observed almost without vaporization. Therefore, it is suggested that the treatment in the contact irradiation using the high-power laser diode can vaporize the prostate more efficiently without increasing the risk of perforation. Hemostasis with the coagulation would be possible in both irradiation methods. To prevent the postoperative perforation, operators need to understand the relationship between the coagulated depth and the irradiation conditions.

  19. Development of Tunable Diode Laser Absorption Tomography for Determination of Spatially Resolved Distributions of Water Vapor Temperature and Concentration

    NASA Astrophysics Data System (ADS)

    Bryner, Elliott

    Optical diagnostic techniques used in high speed, high enthalpy flows, such as in a supersonic ramjet (scramjet) combustor, allow direct measurement of temperature and species concentration. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is a common laser based measurement technique for measuring temperature and species concentration in harsh environments such as chemically reacting flows. TDLAS is a one-dimensional, path integrated measurement that provides average values of the measured quantities and can be affected by gradients in the measurement space. By combining TDLAS with tomographic image reconstruction a two-dimensional spatially resolved distribution can be obtained. This technique is called Tunable Diode Laser Absorption Tomography. TDLAT has been developed for the purpose of making temperature and species concentration measurements on the supersonic combustion facility at the Aerospace Research Laboratory. TDLAT has been developed for the purpose of making two-dimensional measurements of water vapor concentration, which when combined with Stereoscopic Particle Image Velocimetry can be used to calculate supersonic combustion efficiency of a scramjet combustor. This measurement system has been used in measurements of a flat flame burner from which two-dimensional distributions of temperature and water vapor concentration have been calculated. The calculated temperatures were then compared to measurements made on the same flat flame burner. Reconstructions of temperature and concentration show the structure of the flat flame burner, resolving regions of ambient room air, nitrogen co-flow, mixing layer and hot burner core. The TDLAT system was then installed on the supersonic combustion facility, where measurements were made for a known mole fraction of steam injected into the free stream. The TDLAT system was then used to measure water vapor concentration and temperature for clean-air combustion for an equivalence ratio of 0.17. The resulting values

  20. Atomic physics with vapor-cell clocks

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart Hunter

    The most widely used atomic frequency standards (or clocks) are based on the microwave resonant frequencies of optically pumped vapors of alkali-metal atoms in glass cells filled with buffer gas. These vapor-cell clocks are secondary, not primary frequency standards mainly because of the light and pressure shifts, which alter the resonant frequencies of the alkali-metal atoms. This dissertation presents studies of atomic physics important to vapor-cell clocks and, in particular, their accuracy. First, we report a simple method to suppress the light shift in optical pumping systems. This method uses only frequency modulation of a radio frequency or microwave source, which excites an atomic resonance, to simultaneously lock the source frequency to the atomic resonance and lock the pumping light frequency to suppress the light shift. This technique can be applied to many optical pumping systems that experience light shifts. It is especially useful for atomic clocks because it improves the long-term performance, reduces the influence of a pumping laser, and requires less equipment than previous methods. Next, we present three studies of the pressure shift, starting with an estimation of the hyperfine-shift potential that is responsible for most of the pressure shift. We then show that the microwave resonant frequencies of ground-state Rb and Cs atoms in Xe buffer gas have a relatively large nonlinear dependence on the Xe pressure, presumably because of short-lived RbXe and CsXe van der Waals molecules. The Xe data show striking discrepancies with the previous theory for nonlinear shifts, most of which is eliminated by accounting for the spin-rotation interaction in addition to the hyperfine-shift interaction in the molecules. To the limit of our experimental accuracy, the shifts of Rb and Cs in He, Ne, and N2 were linear with pressure. We then consider the prospects for suppressing the pressure shift with buffer-gas mixtures and feedback. Finally, we report an

  1. Temporal compression of cw diode-laser output into short pulses with cesium-vapor group-velocity dispersion.

    PubMed

    Choi, K; Menders, J; Ross, D; Korevaar, E

    1993-11-15

    Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s(1/2)-to-6p(3/2) cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms.

  2. Subscale Ship Airwake Studies Using Novel Vortex Flow Devices with Smoke, Laser-Vapor-Screen and Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.

    2007-01-01

    Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.

  3. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    SciTech Connect

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  4. Biodiversity Mapping via Natura 2000 Conservation Status and Ebv Assessment Using Airborne Laser Scanning in Alkali Grasslands

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N.

    2016-06-01

    Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy mapping-derived class probabilities as proxies for species presence and absence.

  5. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    NASA Technical Reports Server (NTRS)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  6. Flow speed of the ablation vapors generated during laser drilling of CFRP with a continuous-wave laser beam

    NASA Astrophysics Data System (ADS)

    Faas, S.; Freitag, C.; Boley, S.; Berger, P.; Weber, R.; Graf, T.

    2017-03-01

    The hot plume of ablation products generated during the laser drilling process of carbon fiber reinforced plastics (CFRP) with a continuous-wave laser beam was analyzed by means of high-speed imaging. The formation of compression shocks was observed within the flow of the evaporated material, which is an indication of flow speeds well above the local speed of sound. The flow speed of the hot ablation products can be estimated by analyzing the position of these compression shocks. We investigated the temporal evolution of the flow speed during the drilling process and the influence of the average laser power on the flow speed. The flow speed increases with increasing average laser powers. The moment of drilling through the material changes the conditions for the drilling process and was confirmed to influence the flow speed of the ablated material. Compression shocks can also be observed during laser cutting of CFRP with a moving laser beam.

  7. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer.

  8. Growth of normally-immiscible materials (NIMs), binary alloys, and metallic fibers by hyperbaric laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.

    2008-06-01

    This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.

  9. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    PubMed

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  10. Nonlinear absorption, scattering, and extinction of laser radiation by two-layered spherical system-gold nanoparticle and vapor shell in water

    NASA Astrophysics Data System (ADS)

    Pustovalov, V. K.; Astafyeva, L. G.

    2011-12-01

    Nonlinear absorption, scattering and extinction of laser radiation with wavelengths 532, 633 nm by spherical gold nanoparticles (NPs) with radii in the range of 5-100 nm placed in water and heated by laser radiation with formation and expansion of vapor nanoshells is theoretically investigated. Decrease of absorption, decrease and subsequent increase of scattering and extinction with increasing of shell radius beginning from the initial period of shell expansion is established. Optical indicatrixes and nonlinear behavior of scattered radiation are investigated including the examination of these characteristics during the adiabatic expansion of vapor shell. Formation of vapor nanoshells (bubbles) as a result of the action of short laser pulses on NPs placed in tissue was proposed for cutting of tissue.

  11. Study on alkali removal technology from coal gasification gas

    SciTech Connect

    Inai, Motoko; Kajibata, Yoshihiro; Takao, Shoichi; Suda, Masamitsu

    1999-07-01

    The authors have proposed a new coal based combined cycle power plant concept. However, there are certain technical problems that must be overcome to establish this system. Major technical problem of the system is hot corrosion of gas turbine blades caused by sulfur and alkali vapor, because of high temperature dust removal without sulfur removal from the coal gas. So the authors have conducted several fundamental studies on dry type alkali removal sorbents for the purposed of reducing the corrosion on gas turbine blades. Based on the fundamental studies the authors found preferable alkali removal sorbents, and made clear their alkali removal performance.

  12. Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy.

    PubMed

    Persson, Linda; Lewander, Märta; Andersson, Mats; Svanberg, Katarina; Svanberg, Sune

    2008-04-20

    We report on a dual-diode laser spectroscopic system for simultaneous detection of two gases. The technique is demonstrated by performing gas measurements on absorbing samples such as an air distance, and on absorbing and scattering porous samples such as human tissue. In the latter it is possible to derive the concentration of one gas by normalizing to a second gas of known concentration. This is possible if the scattering and absorption of the bulk material is equal or similar for the two wavelengths used, resulting in a common effective pathlength. Two pigtailed diode lasers are operated in a wavelength modulation scheme to detect molecular oxygen ~760 nm and water vapor ~935 nm within the tissue optical window (600 nm to 1.3 mum). Different modulation frequencies are used to distinguish between the two wavelengths. No crosstalk can be observed between the gas contents measured in the two gas channels. The system is made compact by using a computer board and performing software-based lock-in detection. The noise floor obtained corresponds to an absorption fraction of approximately 6x10(-5) for both oxygen and water vapor, yielding a minimum detection limit of ~2 mm for both gases in ambient air. The power of the technique is illustrated by the preliminary results of a clinical trial, nonintrusively investigating gas in human sinuses.

  13. Monitoring of temperature increase and tissue vaporization during laser interstitial thermotherapy of ex vivo swine liver by computed tomography.

    PubMed

    Schena, E; Saccomandi, P; Giurazza, F; Del Vescovo, R; Mortato, L; Martino, M; Panzera, F; Di Matteo, F M; Beomonte Zobel, B; Silvestri, S

    2013-01-01

    Laser interstitial thermotherapy (LITT) is a minimally invasive technique used to thermally destroy tumour cells. Being based on hyperthermia, LITT outcome depends on the temperature distribution inside the tissue. Recently, CT scan thermometry, based on the dependence of the CT number (HU) on tissue temperature (T) has been introduced during LITT; it is an attractive approach to monitor T because it overcomes the concerns related to the invasiveness. We performed LITT on nine ex vivo swine livers at three different laser powers, (P=1.5 W, P=3 W, P=5 W) with a constant treatment time t=200 s; HU is averaged on two ellipsoidal regions of interest (ROI) of 0.2 cm2, placed at two distances from the applicator (d=3.6 mm and d=8.7 mm); a reference ROI was placed away from the applicator (d=30 mm). The aim of this study is twofold: 1) to evaluate the effect of the T increase in terms of HU variation in ex vivo swine livers undergoing LITT; and 2) to estimate the P value for tissue vaporization. To the best of our knowledge, this is the first study focused on the HU variation in swine livers undergoing LITT at different P. The reported findings could be useful to assess the effect of LITT on the liver in terms of both T changes and tissue vaporization, with the aim to obtain an effective therapy.

  14. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    NASA Astrophysics Data System (ADS)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  15. Effect of laser power on orientation and microstructure of Ba2TiO4 film prepared by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Guo, Dongyun; Goto, Takashi; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2012-08-01

    Ba2TiO4 films were prepared on Pt/Ti/SiO2/Si substrates by laser chemical vapor deposition method. The effect of laser power (PL) on orientation and microstructure was investigated. With increasing PL from 52 to 93 W, the deposition temperature (Tdep) increased from 845 to 946 K. With increasing Tdep from 845 to 927 K, the preferred orientation of Ba2TiO4 films changed from (0 9 1) to (1 0 3), the surface morphologies changed from faceted to rectangular, and the columnar cross-section became thicker. The films prepared at high Tdep (931-946 K) had the porous cross-section consisted of powder-like grains. Ba2TiO4 film prepared at 881 K had high deposition rate (Rdep) of 51.4 μm h-1, which was advantageous to industrial production.

  16. Chemical vapor deposition of highly adherent diamond coatings onto co-cemented tungsten carbides irradiated by high power diode laser.

    PubMed

    Barletta, M; Rubino, G; Valle, R; Polini, R

    2012-02-01

    The present investigation deals with the definition of a new eco-friendly alternative to pretreat Co-cemented tungsten carbide (WC-Co) substrates before diamond deposition by hot filament chemical vapor deposition (HFCVD). In particular, WC-5.8 wt %Co substrates were submitted to a thermal treatment by a continuous wave-high power diode laser to reduce surface Co concentration and promote the reconstruction of the WC grains. Laser pretreatments were performed both in N(2) and Ar atmosphere to prevent substrate oxidation. Diamond coatings were deposited onto the laser pretreated substrates by HFCVD. For comparative purpose, diamond coatings were also deposited on WC-5.8 wt %Co substrates chemically etched by the well-known two-step pretreatment employing Murakami's reagent and Caro's acid. Surface morphology, microstructure, and chemical composition of the WC-5.8 wt %Co substrates after the different pretreatments and the deposition of diamond coatings were assessed by surface profiler, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction analyses. Wear performance of the diamond coatings was checked by dry sliding linear reciprocating tribological tests. The worn volume of the diamond coatings deposited on the laser pretreated substrates was always found lower than the one measured on the chemically etched substrates, with the N(2) atmosphere being particularly promising.

  17. Diffusion of Rubidium Vapor through Hollow-Core Fibers for Gas-Phased Fiber-Lasers

    DTIC Science & Technology

    2011-03-01

    is used to collisionally relax the electron to the 2P1/2 excited (D1) state. If a population inversion is present on the D1 level, the system will...ends with flowing chilled water. Buffer gases are introduced to collisionally relax the excited electrons from the 2P3/2 state to the 2P1/2 state. heat...Creating a DPAL system within a fiber would create an abundant number of collisions between the alkali atoms and the fiber walls, which would broaden the

  18. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  19. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    NASA Astrophysics Data System (ADS)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  20. Broadband infrared light-emitting patterns in optical glass by laser-induced nanostructuring of NiO-doped alkali-gallium germanosilicates.

    PubMed

    Lotarev, S V; Lipatiev, A S; Golubev, N V; Ignat'eva, E S; Malashkevich, G E; Mudryi, A V; Priseko, Y S; Lorenzi, R; Paleari, A; Sigaev, V N

    2013-02-15

    In this Letter, we show functionalization of NiO-doped 7.5Li(2)O·2.5Na(2)O·20Ga(2)O(3)·35SiO(2)·35GeO(2) glass by space-selective nanocrystallization via exposure to the focused beam of a pulsed copper vapor laser (510.6 and 578.2 nm) at temperature close to the glass transition point (570°C). Irradiated areas drastically change their color, caused by electronic transitions of Ni(2+) dopant ions, without any alteration of the optical quality. Importantly, irradiated regions acquire broadband infrared luminescence (centered at about 1400 nm and possessing 400 nm effective bandwidth) typical of Ni(2+) ions in crystalline environment, and by positive change of refractive index (more than 10(-3)). Spectroscopic and diffractometric data of the irradiated regions indeed resemble those previously observed in thermally nanocrystallized glass, with Ni(2+) ions embedded in γ-Ga(2)O(3) nanocrystals. The results demonstrate the possibility of laser writing nanocrystallized multifunction patterns in germanosilicate glasses for the fabrication of active integrated devices.

  1. Highly Forbidden Transitions in Alkalis: Preparations for a Parity Violation Experiment

    NASA Astrophysics Data System (ADS)

    Oliveira, Claudia

    Preparatory steps for the experimental investigation of the highly forbidden 5s → 6s transition in rubidium using an atom trap and laser cooling are reported. A magneto-optical trap (MOT) has been assembled including saturation spectroscopy and a dichroic vapor laser lock. A frequency-doubled diode laser system has been installed to perform the spectroscopy of the forbidden transition with cold Rb atoms in the trap. The properties of the ns → n's transition in the presence of an external electric field have been investigated theoretically. A first measurement will be exploring the Stark-induced transition amplitude and the very faint magnetic dipole amplitude. The rubidium experiment is a precursor study for a long-term project at TRIUMF, Canada's National Laboratory for nuclear and particle physics, to measure atomic parity violation in the equivalent 7s → 8s transition in francium, the heaviest alkali atom which has no stable isotopes.

  2. AMTEC vapor-vapor series connected cells

    NASA Technical Reports Server (NTRS)

    Underwood, Mark L. (Inventor); Williams, Roger M. (Inventor); Ryan, Margaret A. (Inventor); Nakamura, Barbara J. (Inventor); Oconnor, Dennis E. (Inventor)

    1995-01-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  3. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  4. The band systems of alkali vapors

    NASA Technical Reports Server (NTRS)

    Weizel, W.; Kulp, M.

    1988-01-01

    A number of band edges of the molecules, Na2, K2, NaK, NaCs, LiK, LiRb, LiCs, and NaRb are arranged in edge schemes. The vibrational quanta of the base terms and the upper terms can be approximately determined. Viewpoints are produced for interpreting electron terms. The terms Na2 are interpreted as terms of a photo-electron.

  5. Ambient Molecular Analysis of Biological Tissue Using Low-Energy, Femtosecond Laser Vaporization and Nanospray Postionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Shi, Fengjian; Flanigan, Paul M.; Archer, Jieutonne J.; Levis, Robert J.

    2016-03-01

    Direct analysis of plant and animal tissue samples by laser electrospray mass spectrometry (LEMS) was investigated using low-energy, femtosecond duration laser vaporization at wavelengths of 800 and 1042 nm followed by nanospray postionization. Low-energy (<50 μJ), fiber-based 1042 nm LEMS (F-LEMS) allowed interrogation of the molecular species in fresh flower petal and leaf samples using 435 fs, 10 Hz bursts of 20 pulses from a Ytterbium-doped fiber laser and revealed comparable results to high energy (75-1120 μJ), 45 fs, 800 nm Ti:Sapphire-based LEMS (Ti:Sapphire-LEMS) measurements. Anthocyanins, sugars, and other metabolites were successfully detected and revealed the anticipated metabolite profile for the petal and leaf samples. Phospholipids, especially phosphatidylcholine, were identified from a fresh mouse brain section sample using Ti:Sapphire-LEMS without the application of matrix. These lipid features were suppressed in both the fiber-based and Ti:Sapphire-based LEMS measurements when the brain sample was prepared using the optimal cutting temperature compounds that are commonly used in animal tissue cryosections.

  6. Surrogate measurement of chlorine concentration on steel surfaces by alkali element detection via laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Le Berre, S.; Hartig, K. C.; Motta, A. T.; Jovanovic, I.

    2017-04-01

    Chlorine can play an important role in the process of stress corrosion cracking of dry cask storage canisters for used nuclear fuel, which are frequently located in marine environments. It is of significant interest to determine the surface concentration of chlorine on the stainless steel canister surface, but measurements are often limited by difficult access and challenging conditions, such as high temperature and high radiation fields. Laser-induced breakdown spectroscopy (LIBS) could enable chlorine concentration measurements while meeting the other constraints of this application, but suffers from high excitation energy of chlorine and the interference of the atomic emission lines of iron, thus limiting the sensitivity of detection, especially when LIBS has to be delivered over an optical fiber. We demonstrate that chlorine surface concentrations in the range of 0.5-100 mg/m2 can be inferred by the detection and quantification of sodium contained in chlorine salts if the speciation and neutralization of salts are not of major concern, whereas minor components of sea salt such as magnesium and potassium are less attractive as surrogates for chlorine due to the lower sensitivity of LIBS for their detection and quantification. The limit of detection, measurement accuracy, and other features and limitations of this surrogate measurement approach are discussed.

  7. Laser Velocimeter for Studies of Microgravity Combustion Flowfields

    NASA Technical Reports Server (NTRS)

    Varghese, P. L.; Jagodzinski, J.

    2001-01-01

    We are currently developing a velocimeter based on modulated filtered Rayleigh scattering (MFRS), utilizing diode lasers to make measurements in an unseeded gas or flame. MFRS is a novel variation of filtered Rayleigh scattering, utilizing modulation absorption spectroscopy to detect a strong absorption of a weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption and semiconductor diode lasers generate the relatively weak Rayleigh scattered signal. Alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry; the compact, rugged construction of diode lasers makes them ideally suited for microgravity experimentation. Molecular Rayleigh scattering of laser light simplifies flow measurements as it obviates the complications of flow-seeding. The MFRS velocimeter should offer an attractive alternative to comparable systems, providing a relatively inexpensive means of measuring velocity in unseeded flows and flames.

  8. Comparison of cervical dysplasia treatment with leep-loop method and CO2 laser vaporization

    NASA Astrophysics Data System (ADS)

    Wozniak, Jakub; Rzymski, Pawel; Opala, Tomasz; Wilczak, Maciej; Sajdak, Stefan

    2003-10-01

    There are several methods of treating cervical dysplasia, including surgical and electric conisation, laservaporisation. The aim of our study was to evaluate leep-loop method and laservaporisation wtih CO2 laser. Material consisted of 49 women, 28 underwent leep-loop conisation and 21 lavervaporisation. The effectiveness of laser treatment was 90,4% and with leep-loop 96,4%, but the difference was not statistically significant. Mean time of wound healing and frequency of pain was shorter after laser treatment, but the differences were not statistically significant. Conclusions: Effect treatment with both methods is comparable.

  9. Efficacy of a vaporization-resection of the prostate median lobe enlargement and vaporization of the prostate lateral lobe for benign prostatic hyperplasia using a 120-W GreenLight high-performance system laser: the effect on storage symptoms.

    PubMed

    Kim, Kang Sup; Choi, Sae Woong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Kim, Sae Woong

    2015-05-01

    GreenLight laser photoselective vaporization of the prostate (PVP) was established as a minimally invasive procedure to treat patients with benign prostatic hyperplasia (BPH). However, it may be difficult to achieve adequate tissue removal from a large prostate, particularly those with an enlarged median lobe. The purpose of this study was to investigate the feasibility and clinical effect of a 120-W GreenLight high-performance system laser vaporization-resection for an enlarged prostate median lobe compared with those of only vaporization. A total of 126 patients from January 2010 to January 2014 had an enlarged prostate median lobe and were included in this study. Ninety-six patients underwent vaporization only (VP group), and 30 patients underwent vaporization-resection for an enlarged median lobe (VR group). The clinical outcomes were International Prostate Symptoms Score (IPSS), quality of life (QOL), maximum flow rate (Q max), and post-void residual urine volume (PVR) assessed at 1, 3, 6, and 12 months postoperatively between the two groups. The parameters were not significantly different preoperatively between the two groups, except for PVR. Operative time and laser time were shorter in the VR group than those in the VP group. (74.1 vs. 61.9 min and 46.7 vs. 37.8 min; P = 0.020 and 0.013, respectively) and used less energy (218.2 vs. 171.8 kJ, P = 0.025). Improved IPSS values, increased Q max, and a reduced PVR were seen in the two groups. In particular, improved storage IPSS values were higher at 1 and 3 months in the VR group than those in the VP group (P = 0.030 and 0.022, respectively). No significant complications were detected in either group. Median lobe tissue vaporization-resection was complete, and good voiding results were achieved. Although changes in urinary symptoms were similar between patients who received the two techniques, shorter operating time and lower energy were superior with the vaporization-resection technique. In

  10. Photodynamic Therapy Combined with CO2 Laser Vaporization on Disseminated Superficial Actinic Porokeratosis: A Report of 2 Cases on the Face

    PubMed Central

    Kim, Hei Sung; Baek, Ji Hye; Park, Young Min; Kim, Hyung Ok

    2011-01-01

    Disseminated superficial actinic porokeratosis (DSAP) is a skin condition that usually shows a poor response to different modalities of treatment. Herein we describe 2 patients with DSAP on the face, each treated with 3 to 4 sessions of photodynamic therapy combined with laser vaporization. PMID:22148053

  11. Vaporization front in the interaction of a high-energy laser with aerosols - A solitary wave

    NASA Astrophysics Data System (ADS)

    Lee, C. T.; Miller, T. G.

    1982-06-01

    If a high-energy laser beam were to propagate through highly absorbent aerosols, the aerosols might be subject to extinction by evaporation. This could occur, for instance, if a high-energy CO2 laser beam were to propagate through a medium containing a mist of water droplets. The incident energy would evaporate the droplets, thus increasing the transmission with time. In this paper, solitary waves are obtained as the asymptotic solution to the coupled nonlinear equations describing such an interaction.

  12. Self-generating magnetometer with laser pumping employment in “end resonance” wall coated vapor cell atomic clocks

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Smolin, R. V.; Semenov, V. V.

    2016-06-01

    This paper presents the results of two double resonance signals correlation investigation. These signals were observed synchronously in optically oriented Rb87 vapors with laser pumping in a dual scheme: low frequency Mx-magnetometer and microwave frequency discriminator. Analytical studies of the scalar and vector light shift components contribution to the frequency instability of the end resonance microwave transitions are presented. An experimental demonstration of the light shift components mutual compensation in optically pumped Rb87 atoms was provided. The results were processed in terms of Allan variance, which demonstrated an effect of decreasing frequency variation at averaging times more than 100 s for a joint scheme of the end resonance microwave transition and selfgenerating (Mx) magnetometer.

  13. Real-time vapor detection of nitroaromatic explosives by catalytic thermal dissociation blue diode laser cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Taha, Youssef M.; Odame-Ankrah, Charles A.; Osthoff, Hans D.

    2013-09-01

    A compact blue diode laser catalytic thermal dissociation cavity ring-down spectrometer (cTD-CRDS) to detect vapors of nitroaromatic explosives is described. The instrument uses heated platinum(IV) oxide catalyst to convert nitroaromatic compounds to NO2, which is detected at 405 nm. Using the relatively volatile nitrobenzene as a test compound, we show by Fourier Transform Infrared Spectroscopy (FTIR) in off-line experiments that nitroaromatics can be quantitatively converted to NO2. The cTD-CRDS detection limit was 0.3 parts-per-billion by volume (ppbv) and sufficiently low to allow the detection of a room temperature sample of 2,4,6-trinitrotoluene (TNT) without sample preconcentration.

  14. Operational efficiency increase in a copper vapor laser due to the replacement of vacuum jacket brewster windows with flat windows

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Witherspoon, Ned; Holloway, John; Price, Brian; Miller, Robert

    1989-01-01

    The vacuum integrity of the discharge tube of a copper vapor laser (CVL) is normally protected by Brewster angled windows. In an attempt to increase the operating efficiency of the CVL, flat windows were used to replace the Brewster windows. Experimental data confirm that the overall efficiency of the CVL does increase when such windows are used. The experimental results are discussed in terms of a computer model found in the literature. The cause of the efficiency increase appears due to a double optical cavity set up by the flat windows. However, the variation of the efficiency due to changes in the pulse repetition frequency (PRF) and buffer gas pressure are less well understood.

  15. Different CO2 laser vaporization protocols for the therapy of oral precancerous lesions and precancerous conditions: a 10-year follow-up.

    PubMed

    Deppe, Herbert; Mücke, Thomas; Hohlweg-Majert, Bettina; Hauck, Wolfgang; Wagenpfeil, Stefan; Hölzle, Frank

    2012-01-01

    Use of the CO(2) laser (λ = 10.6 μm, continuous wave, defocused) is an established procedure for the treatment of premalignant lesions. Through employment of the sp-mode as well as scanners, thermal laser effects can be reduced but, on the other hand, a lesser degree of destruction of dysplastic cells could lead to an increased recurrence rate. The purpose of this study was to prospectively evaluate the recurrence rates resulting from different methods of CO(2) laser vaporization. From May 1995 to May, 2005, 145 patients with a total of 148 premalignant lesions of the oral mucosa were treated in a prospective clinical study. Sixty-two lesions in 62 patients were vaporized with the defocused CO(2) laser (group 1). In a further 45 lesions (43 patients, group 2), a scanner was additionally employed. In the remaining 41 lesions (40 patients, group 3), vaporization was carried out in the sp-mode in which the scanner was also used. In September, 2005, recurrence rates in the three groups were evaluated. Use of the scanner in sp-mode resulted in the most irregular tissue vaporization. This can be accounted for by the irregular paths of the laser beam and the pulsed delivery of the laser energy. Statistically significant lowest recurrence rates were yielded by the defocused cw-technique followed by the cw-scanner and the sp-mode. These results indicate that for CO(2) laser treatment of premalignant lesions of the oral mucosa, the best results can be achieved with the defocused technique. It may be assumed that other methods with lesser penetration of thermal effects (e.g. sp, scanner) do not reach the deeper-lying cells and, consequently, render higher rates of recurrence.

  16. Quantitative Imaging of Ozone Vapor Using Photofragmentation Laser-Induced Fluorescence (LIF).

    PubMed

    Larsson, Kajsa; Hot, Dina; Ehn, Andreas; Lantz, Andreas; Weng, Wubin; Aldén, Marcus; Bood, Joakim

    2017-01-01

    In the present work, the spectral properties of gaseous ozone (O3) have been investigated aiming to perform quantitative concentration imaging of ozone by using a single laser pulse at 248 nm from a KrF excimer laser. The O3 molecule is first photodissociated by the laser pulse into two fragments, O and O2. Then the same laser pulse electronically excites the O2 fragment, which is vibrationally hot, whereupon fluorescence is emitted. The fluorescence intensity is found to be proportional to the concentration of ozone. Both emission and absorption characteristics have been investigated, as well as how the laser fluence affects the fluorescence signal. Quantitative ozone imaging data have been achieved based on calibration measurements in known mixtures of O3. In addition, a simultaneous study of the emission intensity captured by an intensified charge-coupled device (ICCD) camera and a spectrograph has been performed. The results show that any signal contribution not stemming from ozone is negligible compared to the strong fluorescence induced by the O2 fragment, thus proving interference-free ozone imaging. The single-shot detection limit has been estimated to ∼400 ppm. The authors believe that the presented technique offers a valuable tool applicable in various research fields, such as plasma sterilization, water and soil remediation, and plasma-assisted combustion.

  17. Study of the Characteristics of a Laser Based on the Cr2+-Ion Doped ZnS Polycrystal Obtained by the Method of Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Egorov, A. S.; Savikin, A. P.; Eremeikin, O. N.; Ikonnikov, V. B.; Gavrishchuk, E. M.; Savin, D. V.

    2016-01-01

    We study the lasing characteristics of the Cr2+:ZnS-crystal laser pumped by the pulsed-periodic Tm3+:YLF laser, as well as the lasing polarization properties. The Cr2+:ZnS sample was obtained by chemical vapor deposition of zinc sulfide doped by the chrome ions in the hightemperature isostatic processing. Total efficiency of the pump-power conversion to lasing power at a level of 33% was reached, which corresponds to a laser differential efficiency of about 55% in terms of the absorbed power.

  18. Development of Solid State Laser Materials for Application in Lasers for Atmospheric Ozone and Water Vapor Sensing

    NASA Technical Reports Server (NTRS)

    Noginov, Makhail A.; Loutts, G. B.

    2002-01-01

    We have grown neodymium doped mixed apatite crystals, (Sr(x)Ba(l-x)5(PO4)3F, Sr5(P(1-x)V(x)O4)3F, and Ba5(P(1-x)V(x)O4)3F, and spectroscopically studied them as potential gain media for a laser source for atmospheric water sensing operating at 944.11 nm0. We conclude that an appropriate apatite host material for a 944.11 nm laser should be a mixture of Sr5(PO4)3F with a small fraction of Ba5(PO4)3F. The precise wavelength tuning around 944.11 nm can be accomplished by varying the host composition, temperature, and threshold population inversion. In apatite crystals of mixed composition, the Amplified Spontaneous Emission (ASE) loss at 1.06 microns is predicted to be significantly smaller than that in the end members.

  19. Highly uniform and reproducible vertical-cavity surface emitting lasers grown by metalorganic chemical vapor deposition

    SciTech Connect

    Hou, H.Q.; Chui, H.C.; Choquette, K.D.; Hammons, B.E.; Breiland, W.G.; Geib, K.M.

    1996-01-01

    We show that the uniformity of the lasing wavelength of vertical-cavity surface emitting lasers (VCSELs) can be as good as {plus_minus}0.3% across a entire 3 in. wafer in MOCVD growth with a similar run-to-run reproducibility.

  20. Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells

    NASA Astrophysics Data System (ADS)

    Xiong, Ranhua; Raemdonck, Koen; Peynshaert, Karen; Lentacker, Ine; De Cock, Ine; Demeester, Jo; De Smedt, Stefaan C.; Skirtach, Andre G.; Braeckmans, Kevin

    2015-03-01

    Macromolecular agents such as nucleic acids and proteins need to be delivered into living cells for therapeutic purposes. Among physical methods to deliver macromolecules across the cell membrane, laser-induced photoporation using plasmonic nanoparticles is a method that is receiving increasing attention in recent years. By irradiating gold nanoparticles bound to the cell membrane with laser light, nanosized membrane pores can be created. Pores are formed by localized heating or by vapour nanobubbles (VNBs) depending on the incident laser energy. Macromolecules in the surrounding cell medium can then diffuse through the transiently formed pores into the cytoplasm. While both heating and VNBs have been reported before for permeabilization of the cell membrane, it remains unclear which of both methods is more efficient in terms of cell loading with minimal cytotoxicity. In this study we report that under condition of a single 7 ns laser pulse VNBs are substantially more efficient for the cytosolic delivery of macromolecules. We conclude that VNB formation is an interesting photoporation mechanism for fast and efficient macromolecular delivery in live cells.

  1. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  2. A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Zwillenberg, M. L.

    1975-01-01

    Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).

  3. Kr/sup +/ laser-induced chemical vapor deposition of W

    SciTech Connect

    Zhang, G.Q.; Szoerenyi, T.; Baeuerle, D.

    1987-07-15

    Kr/sup +/ laser-induced pyrolytic direct writing of W stripes by H/sub 2/ reduction of WF/sub 6/ has been investigated. The reproducibility of the process and the morphology and electrical properties of deposits depend heavily on the partial pressures of both WF/sub 6/ and H/sub 2/; the best results have been obtained with p(WF/sub 6/) = 5 mbar and 100 mbarless than or equal top(H/sub 2/)less than or equal to800 mbar. For a laser focus of 2w/sub 0/ = 7 ..mu..m and laser powers between 30 and 200 mW, the widths of stripes varied between 1.5 and 15 ..mu..m with corresponding thicknesses between 0.1 to 3 ..mu..m. The width of stripes is independent of the scanning speed within the range 20 ..mu..m/sless than or equal toV/sub s/ less than or equal to400 ..mu..m/s. The electrical resistivities of these stripes were about a factor of 1.3--2.3 larger than the bulk value.

  4. Suitability of laser-induced breakdown spectroscopy in screening potential additives to mitigate fouling deposits

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S.; Midhun Reddy, V.; Mehta, A.; Vasa, N. J.; Nagarajan, R.

    2016-04-01

    Alkali vapors present in the flue gas generated during coal-based combustion form fouling deposits as they condense. An additive added to coal can trap alkali elements in ash, therefore suppress the growth rate of fouling deposits, and increase thermal efficiency of a coal-fired thermal power plant. Laser-induced breakdown spectroscopy (LIBS) technique is proposed and demonstrated to screen potential additives to trap alkali elements in ash. Five additives—namely, kaolinite, alumina, silica, magnesia, and pumice—were analyzed for their effectiveness on four Indian coals for retaining/confining alkali elements in ash during coal combustion. Ratio analysis based on LIBS emission intensity values clearly shows that kaolinite and pumice are promising additives to trap sodium. Similarly, kaolinite, pumice, and silica exhibited good potassium retention.

  5. Does prostate configuration affect the efficacy and safety of GreenLight HPS™ laser photoselective vaporization prostatectomy (PVP)?

    PubMed

    Gu, Xiao; Strom, Kurt; Spaliviero, Massimiliano; Wong, Carson

    2013-02-01

    We evaluate the efficacy and safety of GreenLight HPS™ laser photoselective vaporization prostatectomy (PVP) for the treatment of benign prostatic hyperplasia (BPH) with different prostate configuration. Patients were stratified into two groups: bilobe (group I) and trilobe (group II) BPH. Transurethral PVP was performed using a 120 W GreenLight HPS™ side-firing laser system. American Urological Association Symptom Score (AUASS), Quality of Life (QoL) score, maximum flow rate (Q max), and postvoid residual (PVR) were measured preoperatively and at 1 and 4 weeks and 3, 6, 12, 18, 24 and 36 months postoperatively. A number of 160 consecutive patients were identified (I: 86, II: 74). Among the preoperative parameters, there were significant differences (p < 0.05) in prostate volume (I: 46.0 ± 19.8; II: 87.5 ± 39.6 ml), Q max (I: 9.9 ± 3.9; II: 8.7 ± 3.5 ml/sec), PVR (I: 59.2 ± 124.6; II: 97.7 ± 119.1 ml) and PSA (I: 1.4 ± 1.4; II: 3.6 ± 2.6 ng/ml), while AUASS and QoL were similar (p > 0.05). Significant differences (p < 0.05) in laser utilization (I: 9.5 ± 6.6; II: 19.5 ± 11.6 min) and energy usage (I: 63.1 ± 43.9; II: 132.5 ± 81.1 kJ) were noted. Clinical outcomes (AUASS, QoL, Q max, and PVR) showed immediate and stable improvement from baseline (p < 0.05) within each group, but no significant differences between the two groups were observed during the follow-up period (p > 0.05). The incidences of adverse events were low and similar in both groups. Our experience suggests that BPH configuration has little effect on the efficacy and safety of GreenLight HPS™ laser PVP.

  6. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  7. Venous gas embolism caused by fibrin sealant application to the prostate during greenlight laser photoselective vaporization.

    PubMed

    Lee, Alexander; Vazquez, Rafael

    2015-04-15

    Venous gas embolism is a complication of fibrin sealant application and is a well-described event during various modes of prostate resection. We describe the case of a nitrogen venous gas embolism during Greenlight laser photovaporization of the prostate during the application of fibrin sealant to the operative site for hemostasis. Fibrin sealant application by a compressed gas applicator is a cause of venous air embolism, and this case highlights the need to keep venous gas embolism in mind when compressed gas applicators are used.

  8. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    DTIC Science & Technology

    2014-03-27

    time, energy must be provided to the laser system from an external source. The process of exciting constituents of the active medium into a higher...This process is repeated as long as the photons aren’t lost to the laser system. This implies that the third property that a laser must have is an...optical feedback system in order to maintain the stimulated emission process . Diode Pumped Alkali Lasers Diode Pumped Alkali Laser (DPAL) has an active

  9. A quantum cascade laser-based water vapor isotope analyzer for environmental monitoring

    SciTech Connect

    Wang, W. E.; Tsai, T.; Wysocki, G.; Michel, A. P. M.; Wang, L.; Baeck, M. L.; Smith, J. A.

    2014-09-15

    A field-deployable mid-infrared quantum cascade laser-based spectrometer was designed and developed for measurements of H{sub 2}{sup 16}O and H{sub 2}{sup 18}O at 7.12 μm. H{sub 2}{sup 16}O and H{sub 2}{sup 18}O absorption features at 1390.52 cm{sup −1} and 1389.91 cm{sup −1}, respectively, accessible within current tuning range of the laser, were targeted. The target lines were carefully selected to assure similar absorption levels and similar temperature sensitivities of the line strength due to comparable lower state energies. A real-time spectral fitting algorithm was implemented for isotopic concentration retrieval. Detection limits for H{sub 2}{sup 16}O and H{sub 2}{sup 18}O of 2.2 ppm and 7.0 ppb, respectively, were achieved at a dew point of 14 °C (volume mixing ratio of 15 766 ppm) in 1 s integration time, which resulted in a δ{sup 18}O isotopic ratio measurement precision of 0.25‰. The ultimate minimum detection limits obtained after 160 s integration time for H{sub 2}{sup 16}O and H{sub 2}{sup 18}O, and δ{sup 18}O measurements were 0.6 ppm, 1.7 ppb, and 0.05‰, respectively.

  10. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    2004-01-01

    Chemical kinetic models for the nucleation and growth of clusters and single-walled carbon nanotube (SWNT) growth are developed for numerical simulations of the production of SWNTs. Two models that involve evaporation and condensation of carbon and metal catalysts, a full model involving all carbon clusters up to C80, and a reduced model are discussed. The full model is based on a fullerene model, but nickel and carbon/nickel cluster reactions are added to form SWNTs from soot and fullerenes. The full model has a large number of species--so large that to incorporate them into a flow field computation for simulating laser ablation and arc processes requires that they be simplified. The model is reduced by defining large clusters that represent many various sized clusters. Comparisons are given between these models for cases that may be applicable to arc and laser ablation production. Solutions to the system of chemical rate equations of these models for a ramped temperature profile show that production of various species, including SWNTs, agree to within about 50% for a fast ramp, and within 10% for a slower temperature decay time.

  11. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    NASA Astrophysics Data System (ADS)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  12. Vapor cell based sodium laser guide star mechanism study lab-bench

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Li, Lihang; Luo, Ruiyao; Li, Lei; Ning, Yu; Xi, Fengjie; Xu, Xiaojun

    2016-07-01

    Sodium laser guide star (LGS) is the key for the success of modern adaptive optics (AO) supported large ground based telescopes, however, for many field applications, Sodium LGS's brightness is still a limited factor. Large amounts of theoretical efforts have been paid to optimize Sodium LGS exciting parameters, that is, to fully discover potential of harsh environment surrounding mesospheric extreme thin sodium atoms under resonant excitation, whether quantum or Monte Carlo based. But till to now, only limited proposals are demonstrated with on-sky test due to the high cost and engineering complexities. To bridge the gap between theoretical modeling and on-sky test, we built a magnetic field controllable sodium cell based lab-bench, which includes a small scale sum-frequency single mode 589nm laser, with added amplitude, polarization, and phase modulators. We could perform quantitative resonant fluorescence study under single, multi-frequency, side-band optical re-pumping exciting with different polarization, also we could perform optical field modulation to study Larmor precession which is considered as one of devils of Sodium LGS, and we have the ability to generate beams contain orbital angular moment. Our preliminary sodium cell based optical re-pumping experiments have shown excellent consistence with Bloch equation predicted results, other experimental results will also be presented in the report, and these results will give a direct support that sodium cell based lab-bench study could help a Sodium LGS scientists a lot before their on-sky test.

  13. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    PubMed

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air.

  14. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume

    PubMed Central

    Kim, Kang Sup; Choi, Jin Bong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Kim, Sae Woong

    2016-01-01

    Objective Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Methods Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters—such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications—were compared between the groups. Results PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001). There was no significant difference in postoperative complications between the two groups. Conclusion Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume. PMID:27227564

  15. CO oxidation activity of Cu-CeO2 nano-composite catalysts prepared by laser vaporization and controlled condensation

    NASA Astrophysics Data System (ADS)

    Sundar, Rangaraj S.; Deevi, Sarojini

    2006-08-01

    Ceria supported copper catalysts were synthesized by laser vaporization and controlled condensation method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and temperature programmed reduction (TPR). The catalytic activity of the nanopowders for CO oxidation reaction was tested in a fixed bed flow tube reactor in Ar-20%O2-4%CO mixture. Irrespective of the copper content, the catalytic activity of the nanopowders is similar in the initial CO test, and the catalytic activity improves (i.e. the light-off temperature decreases) during a subsequent run. The lowest light-off temperature during the second run is recorded in the material with 20% copper. TEM studies on 20%Cu-CeO2 sample in the as-prepared condition and after CO test exhibit two types of ceria particles namely, polygonal particles 3-5 nm in size and spherical particles of 15-20 nm in size. Rapid cooling of the nanoparticles formed during the laser ablation results in incorporation of a large amount of copper within the ceria as solid solution. Presence of solid solution of copper is confirmed by EDAX and electron diffraction analyses. In addition, copper-rich surface layer of Cu2O is found over the spherical particles. The cerium oxide components are essentially identical before and after CO test, except that the polygonal CeO2 particles contain newly formed fine crystals of CuO. TPR results reveal two reduction peaks, which further supports, the presence of two different copper species in the material. The shift in light-off temperature during the second run is attributed to the synergistic interaction between newly formed CuO crystals with the CeO2 matrix.

  16. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Klehr, Andreas; Vu, Thi Nghiem; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Micro-DIAL (differential absorption LIDAR) systems require light sources with peak powers in the range of several 10 W together with a spectral line width smaller than the width of absorption lines under study. For water vapor at atmospheric pressure this width should be smaller than 10 pm at 975 nm. In this paper, an all semiconductor master oscillator power amplifier system at an emission wavelength of 975 nm will be presented. This spectral range was selected with respect to a targeted absorption path length of 5000 m and H2O line strengths. A distributed feedback (DFB) ridge waveguide diode laser operated in continuous wave is used as master oscillator whereas a tapered amplifier consisting of a RW section and a flared section is implemented as power amplifier. The RW section acts as optical gate. The current pulses injected into the RW part have a length of 8 ns and the tapered part is driven with 15 ns long pulses. The delay between the pulses is adjusted for optimal pulse shape. The repetition rate is in both cases 25 kHz. A maximal pulse output power of about 16 W limited by the available current supply is achieved. The spectral line width of the system determined by the properties of the DFB laser is smaller than 10 pm. The tuning range amounts 0.9 nm and a SMSR of 40 dB is observed. From the dependence of the peak power on the power injected into the tapered amplifier, the saturation power is determined to 5.3 mW.

  17. Answer to Critical Remarks or one More Time About the Mechanism of Limitation on the Energy Characteristics of a Copper Vapor Laser

    NASA Astrophysics Data System (ADS)

    Yudin, N. A.

    2014-05-01

    This work presents an additional analysis of the main positions of the publication by N. A. Yudin, M. R. Tret'yakova, and N. N. Yudin, "Influence of electrophysical processes in the discharge circuit on the energy characteristics of a copper vapor laser" (Russ. Phys. J., 55, No. 9, 1080 - 1090 (2013)) in response to the conclusion drawn in the work of P. A. Bokhan "On the question of the existence of high-frequency oscillations in the power supply circuits of a copper vapor laser and their influence on the lasing mechanism" (Russ. Phys. J., 57, No. 1, 124 - 127 (2014)) that the main positions of the given publication are in error. The analysis performed here confirms the validity of the main positions of publication [2].

  18. Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence.

    PubMed

    Zigan, Lars; Trost, Johannes; Leipertz, Alfred

    2016-02-20

    This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.

  19. On the Question of the Existence of High-Frequency Oscillations in the Power Supply Circuits of a Copper Vapor Laser and Their Influence on the Lasing Mechanism

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.

    2014-05-01

    The statement of the problem and conclusions in the publication by N. A. Yudin, M. R. Tret'yakova, and N. N. Yudin "Influence of electrophysical processes in the discharge circuit on the energy characteristics of a copper vapor laser" (Russ. Phys. J., 55, No. 9, 1080 - 1090 (2013)) is considered. It is shown that the main positions of the publication touching on relaxation of the populations of metastable states in the afterglow and their influence on the frequency-energy characteristics of lasers are mistaken.

  20. Vaporization and deposition of an intact polyimide precursor by resonant infrared pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Schriver, K. E.; Haglund, R. F., Jr.

    2006-02-01

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent N-methyl pyrrolidinone (NMP). RIR-PLD transferred material showed two distinct geometries, droplets and string-like moieties. The unaltered nature of the deposited PAA was confirmed by Fourier transform infrared spectroscopy (FTIR). Thermal curing was achieved by heating for one hour on a 250°C hotplate, and the transformation to polyimide was demonstrated from changes in the FTIR spectrum following curing. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, with additional contrast shown between the various resonant frequencies used.

  1. Forced convection and transport effects during hyperbaric laser chemical vapor deposition

    SciTech Connect

    Maxwell, James L; Chavez, Craig A; Espinoza, Miguel; Black, Marcie; Maskaly, Karlene; Boman, Mats

    2009-01-01

    This work explores mass transport processes during HP-LCYD, including the transverse forced-flow of precursor gases through a nozzle to enhance fiber growth rates. The use of laser trapping and suspension of nano-scale particles in the precursor flow is also described, providing insights into the nature of the gas flow, including jetting from the fiber tip and thermodiffusion processes near the reaction zone. The effects of differing molecular-weight buffer gases is also explored in conjunction with the Soret effect, and it is found that nucleation at the deposit surface (and homogeneous nucleation in the gas phase) can be enhanced/ retarded, depending on the buffer gas molecular weight. To demonstrate that extensive microstructures can be grown simultaneously, three-dimensional fiber arrays are also grown in-parallel using diffractive optics--without delatory effects from neighboring reaction sites.

  2. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  3. Detection of carbon-fluorine bonds in organofluorine compounds by Raman spectroscopy using a copper-vapor laser

    NASA Astrophysics Data System (ADS)

    Sharts, Clay M.; Gorelik, Vladimir S.; Agoltsov, A. M.; Zlobina, Ludmila I.; Sharts, Olga N.

    1999-02-01

    The Raman spectra of fluoro-organic compounds show specific emission bands for carbon-fluorine bonds in the range 500- 800 wave numbers (cm-1)). With very limited exceptions, biological materials do not contain carbon- fluorine bonds. Fluoro-organic compounds introduced into biological samples can be detected by a Raman emission signal. Normal mode C-F bond bands are observed: (1) at 710- 785 cm -1 for trifluoromethyl groups; (2) at 530-610 cm -1 for aromatic organofluorine bonds; (3) a range centered at 690 cm -1 for difluoromethylene groups. Specific examples of normal mode C-F bond emissions for organofluorine compounds containing trifluoromethyl groups are: 1-bromoperfluorooctane, 726 cm -1; perfluorodecanoic acid, 730 cm -1; triperfluoropropylamine, 750 cm -1; 1,3,5-tris- (trifluoromethyl)-benzene, 730 cm -1; Fluoxetine (Prozac) commercial powdered pill at 782 cm -1. Compounds containing aromatic C-F bonds are: hexafluorobenzene, 569 cm MIN1; pentafluoropyridine, 589 cm -1. Difluoromethylene groups: perfluorodecalin, 692 cm-1; perfluorocyclohexane, 691 cm -1. Raman spectra were observed with a standard single monochromator. The 510.8 nm light source was a copper-vapor laser operated at 3-10 watts with 10-12 nanosecond pulses at 10 kHz repetition rate. Detection was made with a time-gated photomultiplier tube. Resonance Raman spectra were also observed at 255.4 nm, using a frequency doubling crystal. Observed spectra were free of fluorescence with very sharp strong C-F lines.

  4. Improvement of the antifungal activity of Litsea cubeba vapor by using a helium-neon (He-Ne) laser against Aspergillus flavus on brown rice snack bars.

    PubMed

    Suhem, Kitiya; Matan, Narumol; Matan, Nirundorn; Danworaphong, Sorasak; Aewsiri, Tanong

    2015-12-23

    The aim of this study was to improve the antifungal activity of the volatile Litsea cubeba essential oil and its main components (citral and limonene) on brown rice snack bars by applying He-Ne laser treatment. Different volumes (50-200 μL) of L. cubeba, citral or limonene were absorbed into a filter paper and placed inside an oven (18 L). Ten brown rice snack bars (2 cm wide × 4 cm long × 0.5 cm deep) were put in an oven and heated at 180 °C for 20 min. The shelf-life of the treated snack bars at 30 °C was assessed and sensory testing was carried out to investigate their consumer acceptability. A count of total phenolic content (TPC) and Fourier transform infrared spectroscopy (FTIR) on the properties of essential oil, citral, and limonene before and after the laser treatment was studied for possible modes of action. It was found that the laser treatment improved the antifungal activity of the examined volatile L. cubeba and citral with Aspergillus flavus inhibition by 80% in comparison with those of the control not treated with the laser. L. cubeba vapor at 100 μL with the laser treatment was found to completely inhibit the growth of natural molds on the snack bars for at least 25 days; however, without essential oil vapor and laser treatment, naturally contaminating mold was observed in 3 days. Results from the sensory tests showed that the panelists were unable to detect flavor and aroma differences between essential oil treatment and the control. Laser treatment caused an increase in TPC of citral oil whereas the TPC in limonene showed a decrease after the laser treatment. These situations could result from the changing peak of the aliphatic hydrocarbons that was revealed by the FTIR spectra.

  5. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  6. Systematics of Alkali and PB Abundances in Meteoritic and Lunar Samples

    NASA Astrophysics Data System (ADS)

    Kita, N. T.

    1996-03-01

    The alkali depletion is not a unique characteristic of the moon, but is common to eucrites, angrites, and the earth. Because the moon and the earth are depleted in more volatile Pb in a similar degree to both chondrites and achondrites, it is hard to assume that alkali depletion was caused by vaporization loss during the giant impact event. Alkali and volatile depletion might have originated from their source material which accreted to the planets.

  7. Kinetic Global Modeling of Rare Gas Lasers

    NASA Astrophysics Data System (ADS)

    Parsey, Guy; Verboncoeur, John; Christlieb, Andrew

    2016-10-01

    Akin to diode-pumped alkali metal lasers, electronically excited states of rare gases (e.g. Ar and Kr) have been shown to operate as chemically inert three-level gain media for an optically pumped laser system. As opposed to vaporization heating, these systems rely on electric discharge to efficiently maintain a population of metastable states acting as the bottom laser level. We propose that a modified electron energy distribution (EEDF) in the electric heating can tune optically pumped rare gas laser (OPRGL) efficiencies. The EEDF factors into all plasma phase chemistry within the underlying reaction network, and is assumed to be maintained by discharge and electron sources. Using parameter scanning methods within the kinetic global modeling framework (KGMf), optimized EEDFs are found for metastable production and increasing OPRGL operational efficiencies. Finally, we investigate the feasibility of using a modified EEDF to drive a rare gas laser system without optical pumping. Supported by AFOSR and an MSU SPG.

  8. IR and UV laser-induced chemical vapor deposition: Chemical mechanism for a-Si:H and Cr (O,C) film formation

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    The characteristic features of laser-induced chemical vapor deposition in the parallel and perpendicular laser beam/surface configurations are discussed. Low temperature chemical processing with directed and spatially localized energy deposition in the system is investigated. Results obtained for the deposition of hydrogenated amorphous silicon (a-Si:H) films in the parallel configuration employing CO 2 and KrFlasers and SiH 4 and Si 2H 6 as precursors are presented. As a second example, the growth of oxygen- and carbon-containing chromium films Cr(O,C) from chromium hexacarbonyl as the precursor using cw and pulse uv lasers is discussed. The chemical pathways leasing to film formation are investigated in detail.

  9. Raman-Ramsey multizone spectroscopy in a pure rubidium vapor cell

    SciTech Connect

    Failache, H.; Lenci, L.; Lezama, A.

    2010-02-15

    In view of application to a miniaturized spectroscopy system, we consider an optical setup that splits a laser beam into several parallel narrow light sheets allowing an effective beam expansion and consequently longer atom-light interaction times. We analyze the multizone coherent population trapping (MZCPT) spectroscopy of alkali-metal-vapor atoms, without buffer gas, in the presence of a split light beam. We show that the MZCPT signal is largely insensitive to intensity broadening. Experimentally observed spectra are in qualitative agreement with the predictions of a simplified model that describes each spectrum as an integral over the atomic velocity distribution of Ramsey multizone spectra.

  10. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Sargent, M. R.; Sayres, D. S.; Smith, J. B.; Witinski, M.; Allen, N. T.; Demusz, J. N.; Rivero, M.; Tuozzolo, C.; Anderson, J. G.

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT/LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT/LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons, in

  11. A new direct absorption tunable diode laser spectrometer for high precision measurement of water vapor in the upper troposphere and lower stratosphere.

    PubMed

    Sargent, M R; Sayres, D S; Smith, J B; Witinski, M; Allen, N T; Demusz, J N; Rivero, M; Tuozzolo, C; Anderson, J G

    2013-07-01

    We present a new instrument for the measurement of water vapor in the upper troposphere and lower stratosphere (UT∕LS), the Harvard Herriott Hygrometer (HHH). HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell. The direct absorption technique provides a direct link between the depth of the observed absorption line and the measured water vapor concentration, which is calculated based on spectroscopic parameters in the HITRAN database. While several other tunable diode laser (TDL) instruments have been used to measure water vapor in the UT∕LS, HHH is set apart by its use of an optical cell an order of magnitude smaller than those of other direct absorption TDLs in operation, allowing for a more compact, lightweight instrument. HHH is also unique in its integration into a common duct with the Harvard Lyman-α hygrometer, an independent photo-fragment fluorescence instrument which has been thoroughly validated over 19 years of flight measurements. The instrument was flown for the first time in the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) on NASA's WB-57 aircraft in spring, 2011, during which it demonstrated in-flight precision of 0.1 ppmv (1 s) with 1-sigma uncertainty of 5% ± 0.7 ppmv. Since the campaign, changes to the instrument have lead to improved accuracy of 5% ± 0.2 ppmv as demonstrated in the laboratory. During MACPEX, HHH successfully measured water vapor at concentrations from 3.5 to 600 ppmv in the upper troposphere and lower stratosphere. HHH and Lyman-α, measuring independently but under the same sampling conditions, agreed on average to within 1% at water vapor mixing ratios above 20 ppmv and to within 0.3 ppmv at lower mixing ratios. HHH also agreed with a number of other in situ water vapor instruments on the WB-57 to within their stated uncertainties, and to within 0.7 ppmv at low water. This agreement constitutes a significant improvement over past in situ comparisons

  12. The 532-nm 180-W (GreenLight®) laser vaporization of the prostate for the treatment of lower urinary tract symptoms: how durable is the new side-fire fiber with integrated cooling system?

    PubMed

    Brunken, Claus; Munsch, Maximilian; Tauber, Stephan; Schmidt, Rainer; Seitz, Christian

    2014-05-01

    The 532-nm side-fire laser vaporization is established for the treatment of symptomatic benign prostate hyperplasia. Meanwhile, the third generation of this system is offered by American Medical Systems, Inc. The laser power increased from 80 and 120 to 180 W from the first to the third generation. Despite good functional results, with the 80- and 120-W systems, the removal of prostate tissue is limited because of fiber degradation. To overcome this problem, the fiber was designed newly with an integrated cooling system and a sensor for decreasing the laser energy in case of overheating. We evaluate whether the new fiber still suffers from degradation with consecutive drop of power transmission during the procedure. The power output of the cooled fiber was measured in vitro and during prostate vaporization in ten patients. Laser beam power was measured at baseline and after the application each of 50 kJ during laser vaporization. Power emission of the fiber remains constant at 20, 80, and 180 W of power settings over the whole 40-kJ lifespan. During the transurethral procedure, a median total energy of 276 kJ (standard deviation 153 kJ) was applied for vaporization. Median power output from the fiber at the end of the procedure was 97% from the baseline value. There were no fiber malfunctions observed. In contrast to former generations, the third-generation laser fiber is durable without significant power loss during prostate vaporization.

  13. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    PubMed

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km.

  14. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mironenko, V. R.; Kuritsyn, Yu. A.; Bolshov, M. A.; Liger, V. V.

    2016-12-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm-1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected - (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  15. Enhancing vapor generation at a liquid-solid interface using micro/nanoscale surface structures fabricated by femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Anderson, Troy P.; Wilson, Chris; Zuhlke, Craig A.; Kruse, Corey; Gogos, George; Ndao, Sidy; Alexander, Dennis

    2015-03-01

    Femtosecond Laser Surface Processing (FLSP) is a versatile technique for the fabrication of a wide variety of micro/nanostructured surfaces with tailored physical and chemical properties. Through control over processing conditions such as laser fluence, incident pulse count, polarization, and incident angle, the size and density of both micrometer and nanometer-scale surface features can be tailored. Furthermore, the composition and pressure of the environment both during and after laser processing have a substantial impact on the final surface chemistry of the target material. FLSP is therefore a powerful tool for optimizing interfacial phenomena such as wetting, wicking, and phasetransitions associated with a vapor/liquid/solid interface. In the present study, we utilize a series of multiscale FLSPgenerated surfaces to improve the efficiency of vapor generation on a structured surface. Specifically, we demonstrate that FLSP of stainless steel 316 electrode surfaces in an alkaline electrolysis cell results in increased efficiency of the water-splitting reaction used to generate hydrogen. The electrodes are fabricated to be superhydrophilic (the contact angle of a water droplet on the surface is less than 5 degrees). The overpotential of the hydrogen evolution reaction (HER) is measured using a 3-electrode configuration with a structured electrode as the working electrode. The enhancement is attributed to several factors including increased surface area, increased wettability, and the impact of micro/nanostructures on the bubble formation and release. Special emphasis is placed on identifying and isolating the relative impacts of the various contributions.

  16. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    PubMed

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  17. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  18. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  19. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble-water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system.

  20. Tungsten-carbon multilayers for x-ray optics prepared by ArF excimer-laser-induced chemical vapor deposition

    SciTech Connect

    Mutoh, K.; Yamada, Y.; Iwabuchi, T.; Miyata, T. )

    1990-08-01

    The authors have studied the characteristics of tungsten (W) and carbon (C) thin films, and W/C multilayers prepared by ArF excimer-laser-induced chemical vapor deposition using tungsten hexafluoride and benzene gases. Amorphous W and C films with very smooth surfaces were obtained at substrate temperatures of 100--200 {degree}C and 100--300 {degree}C, respectively. In small-angle x-ray scattering measurements for the multilayers deposited at 200 {degree}C, a first order of multilayer reflections were clearly observed. Furthermore, Auger electron spectroscopy showed that W and C layers in the multilayers were periodically deposited.

  1. Tungsten-carbon multilayers for x-ray optics prepared by ArF excimer-laser-induced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mutoh, Katsuhiko; Yamada, Yuka; Iwabuchi, Takashi; Miyata, Takeo

    1990-08-01

    The authors have studied the characteristics of tungsten (W) and carbon (C) thin films, and W/C multilayers prepared by ArF excimer-laser-induced chemical vapor deposition using tungsten hexafluoride and benzene gases. Amorphous W and C films with very smooth surfaces were obtained at substrate temperatures of 100-200 °C and 100-300 °C, respectively. In small-angle x-ray scattering measurements for the multilayers deposited at 200 °C, a first order of multilayer reflections were clearly observed. Furthermore, Auger electron spectroscopy showed that W and C layers in the multilayers were periodically deposited.

  2. Fabrication of photonic crystal structures by tertiary-butyl arsine-based metal-organic vapor-phase epitaxy for photonic crystal lasers

    NASA Astrophysics Data System (ADS)

    Yoshida, Masahiro; Kawasaki, Masato; De Zoysa, Menaka; Ishizaki, Kenji; Hatsuda, Ranko; Noda, Susumu

    2016-06-01

    The fabrication of air/semiconductor two-dimensional photonic crystal structures by air-hole-retained crystal regrowth using tertiary-butyl arsine-based metal-organic vapor-phase epitaxy for GaAs-based photonic crystal lasers is investigated. Photonic crystal air holes with filling factors of 10-13%, depths of ˜280 nm, and widths of 120-150 nm are successfully embedded. The embedded air holes exhibit characteristic shapes due to the anisotropy of crystal growth. Furthermore, a low lasing threshold of ˜0.5 kA/cm2 is achieved with the fabricated structures.

  3. The application of 120-W high-performance system GreenLight laser vaporization of the prostate in high-risk patients.

    PubMed

    Tao, Wei; Xue, BoXin; Zang, Yachen; Sun, ChuanYang; Yang, Dongrong; Zhang, Yuanyuan; Shan, YuXi

    2013-07-01

    The purpose of this study is to evaluate the safety and efficacy of 120-W potassium titanyl phosphate (KTP) laser vaporization in patients with benign prostatic hyperplasia (BPH) who also had cardiopulmonary diseases who were taking long-term anticoagulants and were at high risk of bleeding complications. The prospective study included 188 patients with severe lower urinary tract symptoms who underwent 120-W KTP laser vaporization of the prostate. All patients were at high cardiopulmonary risk, having presented with an American Society of Anesthesiology score of 3 or greater. Of those, 45 patients were taking oral anticoagulants, and 1 had a severe bleeding disorder. BPH was successfully treated with 120-W KTP laser vaporization in all patients. Mean preoperative prostate volume ± SD was 66 ± 23.1 ml, and mean operative time was 50.8 ± 15.5 min. There were no major complications intraoperatively or postoperatively, and no blood transfusions were required. Postoperatively, only 14 patients (7.4 %) required bladder irrigation. Average catheterization time was 1.9 ± 1.5 days (range, 1-5 days). Three patients required reoperation due to enlarged prostates from residual adenoma. At 3-, 6,- 12-, and 24-month follow-ups, mean urinary peak flow increased from 8.0 ± 3.6 ml/s to 19.1 ± 5.6, 19.2 ± 4.7, 19.1 ± 4.65, and 19.2 ± 4.34 ml/s, respectively. Mean International Prostate Symptom Scores decreased over time, from 25.6 ± 5.1 (3 months) to 9.4 ± 2.8, 7.05 ± 1.46, 6.24 ± 1.36, and 6.20 ± 1.32 (24 months), respectively. 120-W HPS KTP laser vaporization is a safe and effective treatment option in BPH patients at high risk and those on anticoagulation therapy who have severe LUTS secondary to BPH.

  4. Plasmakinetic enucleation of prostate versus 160-W laser photoselective vaporization for the treatment of benign prostatic hyperplasia

    PubMed Central

    Wang, Si-Jun; Mu, Xiao-Nan; Chen, Ji; Jin, Xun-Bo; Zhang, Shi-Bao; Zhang, Long-Yang

    2017-01-01

    To evaluate the safety and efficacy of plasmakinetic enucleation of the prostate (PKEP) for the treatment of symptomatic benign prostatic hyperplasia (BPH) compared with 160-W lithium triboride laser photoselective vaporization of the prostate (PVP). From February 2011 to July 2012, a prospective nonrandomized study was performed. One-hundred one patients underwent PKEP, and 110 underwent PVP. No severe intraoperative complications were recorded, and none of the patients in either group required a blood transfusion. Shorter catheterization time (38.14 ± 23.64 h vs 72.54 ± 28.38 h, P < 0.001) and hospitalization (2.32 ± 1.25 days vs 4.07 ± 1.23 days, P < 0.001) were recorded in the PVP group. At 12-month postoperatively, the PKEP group had a maintained and statistically improvement in International Prostate Symptom Score (IPSS) (4.07 ± 2.07 vs 5.00 ± 2.10; P < 0.001), quality of life (QoL) (1.08 ± 0.72 vs 1.35 ± 0.72; P = 0.007), maximal urinary flow rate (Qmax) (24.75 ± 5.87 ml s−1 vs 22.03 ± 5.04 ml s−1; P < 0.001), postvoid residual urine volume (PVR) (14.29 ± 6.97 ml vs 17.00 ± 6.11 ml; P = 0.001), and prostate-specific antigen (PSA) value (0.78 ± 0.57 ng ml−1 vs 1.27 ± 1.07 ng ml−1; P < 0.001). Both PKEP and PVP relieve low urinary tract symptoms (LUTS) due to BPH with low complication rates. PKEP can completely remove prostatic adenoma while the total amount of tissue removed by PVP is less than that can be removed by PKEP. Based on our study of the follow-up, PKEP provides better postoperative outcomes than PVP. PMID:26732101

  5. FAR-INFRARED SPECTROSCOPY OF CATIONIC POLYCYCLIC AROMATIC HYDROCARBONS: ZERO KINETIC ENERGY PHOTOELECTRON SPECTROSCOPY OF PENTACENE VAPORIZED FROM LASER DESORPTION

    SciTech Connect

    Zhang Jie; Han Fangyuan; Pei Linsen; Kong Wei; Li Aigen

    2010-05-20

    The distinctive set of infrared (IR) emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m are ubiquitously seen in a wide variety of astrophysical environments. They are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. However, not a single PAH species has yet been identified in space, as the mid-IR vibrational bands are mostly representative of functional groups and thus do not allow one to fingerprint individual PAH molecules. In contrast, the far-IR (FIR) bands are sensitive to the skeletal characteristics of a molecule, hence they are important for chemical identification of unknown species. With an aim to offer laboratory astrophysical data for the Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy, and similar future space missions, in this work we report neutral and cation FIR spectroscopy of pentacene (C{sub 22}H{sub 14}), a five-ring PAH molecule. We report three IR active modes of cationic pentacene at 53.3, 84.8, and 266 {mu}m that may be detectable by space missions such as the SAFARI instrument on board SPICA. In the experiment, pentacene is vaporized from a laser desorption source and cooled by a supersonic argon beam. We have obtained results from two-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy photoelectron (ZEKE) spectroscopy. Several skeletal vibrational modes of the first electronically excited state of the neutral species and those of the cation are assigned, with the aid of ab initio and density functional calculations. Although ZEKE is governed by the Franck-Condon principle different from direct IR absorption or emission, vibronic coupling in the long ribbon-like molecule results in the observation of a few IR active modes. Within the experimental resolution of {approx}7 cm{sup -1}, the frequency values from our calculation agree with the experiment for the cation, but differ for the electronically excited intermediate state. Consequently, modeling of the

  6. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  7. Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by use of Optically Pumped Trace-Sodium Vapor

    NASA Astrophysics Data System (ADS)

    Dobson, Chris C.

    1999-06-01

    Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  8. Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by use of Optically Pumped Trace-Sodium Vapor

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.

    1998-01-01

    Sodium fluorescence induced by a narrow bandwidth tunable laser has been used to measure temperature, pressure, axial velocity and species concentrations in wind tunnels, rocket engine exhausts and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  9. Laser-Induced Fluorescence Measurements of Translational Temperature and Relative Cycle Number by use of Optically Pumped Trace-Sodium Vapor

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.

    1999-01-01

    Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity, The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  10. Laser-induced fluorescence measurements of translational temperature and relative cycle number by use of optically pumped trace-sodium vapor.

    PubMed

    Dobson, C C

    1999-06-20

    Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

  11. In situ metalorganic vapor phase epitaxy control of GaAs/AlAs Bragg reflectors by laser reflectometry at 514 nm

    NASA Astrophysics Data System (ADS)

    Raffle, Y.; Kuszelewicz, R.; Azoulay, R.; Le Roux, G.; Michel, J. C.; Dugrand, L.; Toussaere, E.

    1993-12-01

    In situ reflectometry with a 514-nm laser beam was used to monitor AlAs and GaAs layer thicknesses grown by metalorganic vapor phase epitaxy. The effective optical indices of these materials have been calibrated at the growth temperature by using an original method based on ex situ double crystal x-ray diffraction measurement. According to these measured indices, the in situ laser reflectometry at 514 nm appears to be well suited for a real-time thickness control of the GaAs/AlAs based Bragg reflectors. Finally, Bragg reflectors centered at 980 nm have been grown using the reflectometry at 514 nm. X-ray diffraction and reflectivity measurements performed on these reflectors confirm a 1% reproducibility and accuracy of the wavelength stop band center.

  12. Spin-Exchange Optical Pumping of Solid Alkali Compounds

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Ishikawa, Kiyoshi; Jau, Yuan-Yu; Happer, William

    2007-03-01

    Spin-exchange optical pumping of noble gases has been used for many years to create highly non-equilibrium spin populations, with applications ranging from fundamental physics[1] to medical imaging[2]. In this procedure, angular momentum is transferred from circularly-polarized laser light to the electron spins of an alkali vapor and ultimately to the nuclei of a gas such as ^3He or ^129Xe. Here we show experimentally that a similar process can be used to polarize the nuclei of a solid film of cesium hydride which coats the walls of an optical pumping cell. We present nuclear magnetic resonance (NMR) data which demonstrate that the nuclear polarization of ^133Cs in CsH can be enhanced above the Boltzmann limit in a 9.4-Tesla magnetic field. Possible spin-exchange mechanisms will be discussed, as well as the extension of this technique to other compounds. [1] T. W. Kornack, R. K. Ghosh, and M. V. Romalis, Phys. Rev. Lett. 95, 23080 (2005). [2] M. S. Conradi, D. A. Yablonskiy, et al., Acad. Radiol. 12, 1406 (2005).

  13. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  14. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  15. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  16. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  17. High-speed growth of YBa2Cu3O7 - δ film with high critical temperature on MgO single crystal substrate by laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Ito, Akihiko; Tu, Rong; Goto, Takashi

    2010-12-01

    a-axis- and c-axis-oriented YBa2Cu3O7 - δ films were prepared on a (100) MgO single crystal substrate by chemical vapor deposition enhanced by a continuous wave Nd:YAG laser. A c-axis-oriented YBCO film with a critical temperature of 89 K was prepared at a high deposition rate of 57 µm h - 1, about 2-600 times higher than that of conventional chemical vapor deposition.

  18. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  19. Optical Properties of Tm(3+) Ions in Alkali Germanate Glass

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Barnes, Norman P.; Reichle, Donald J.; Jiang, Shibin

    2006-01-01

    Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 m diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser performance studies confirm this prediction by showing a quantum efficiency of 1.69.

  20. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  1. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  2. Influence of laser sources with different spectral properties on the performance of vapor cell atomic clocks based on lin||lin CPT.

    PubMed

    Breschi, Evelina; Kazakov, George; Lammegger, Roland; Matisov, Boris; Windholz, Laurentius; Mileti, Gaetano

    2009-05-01

    We evaluate the influence of 2 types of laser sources with different spectral profiles on the performance of vapor cell atomic clocks based on lin||lin coherent population trapping (CPT) resonances. We show that a short-term stability of 1-2 x 10(-11) tau(-1/2) may be reached in a compact system using a modulated vertical cavity surface-emitting laser. Here the stability is limited by the detection noise level and can be improved up to a factor of 4 by increasing the lock-in detection frequency to several tens of kilohertz, which is not possible in standard double resonance atomic clocks. We compare these results with CPT prepared under the same experimental conditions, using 2 phase-locked extended cavity diode lasers, with which we predict a challenging short-term stability of 1-3 x 10(-13) tau(-1/2), comparable to the state-of-the-art laser-pumped Rb-clocks.

  3. A comparison of incidences of bladder neck contracture of 80- versus 180-W GreenLight laser photoselective vaporization of benign prostatic hyperplasia.

    PubMed

    Hu, Bo; Song, Zhenyu; Liu, Hui; Qiao, Liang; Zhao, Yong; Wang, Muwen; Song, Wei; Zhang, Dong; Jin, Xunbo; Zhang, Haiyang

    2016-11-01

    Bladder neck contracture (BNC) after GreenLight laser photoselective vaporization (PVP) of benign prostatic hyperplasia is a common complication. In the present study, data of patients received 80 or 180 W PVP were collected. Perioperative parameters, including applied energy, irradiation time, catheter removal time, and hospital stay, were recorded. Postoperative parameters, including maximum urinary flow rate, International Prostate Symptom Score, post-void residual volume, and incidences of BNC, were recorded at 3 and 12 months after operations. Bladder neck tissues were taken at 3 months after operations for immunohistochemical staining and western blot analysis to examine the expressions of collagen I, matrix metalloproteinase-3 (MMP-3), and transforming growth factor-β (TGF-β). Sample size of patients was calculated with a power of 80 %. Chi-square test and one-way analysis of variance were performed as statistical methods. Three hundred twenty-six patients who received potassium titanyl phosphate (KTP) laser and 256 who received X-ray photoelectron spectroscopy (XPS) laser entered into the study. Perioperative parameters were comparable, except for shorter irradiation time in 180 W group (P = 0.032). Postoperative parameters were also similar, except for higher incidence of BNC in 80 W group at 3 months after operations (P = 0.022). Immunohistochemical staining and western blot analysis showed higher expressions of collagen I, MMP-3, and TGF-β in 80 W group than in 180 W group. In conclusion, 80 W GreenLight laser showed a comparable efficacy with 180-W laser in PVP but showed a higher incidence of BNC in short term, which might be the result of up-regulated fibrotic factors in bladder neck triggered by lasers.

  4. Chlor-Alkali Technology.

    ERIC Educational Resources Information Center

    Venkatesh, S.; Tilak, B. V.

    1983-01-01

    Chlor-alkali technology is one of the largest electrochemical industries in the world, the main products being chlorine and caustic soda (sodium hydroxide) generated simultaneously by the electrolysis of sodium chloride. This technology is reviewed in terms of electrochemical principles and manufacturing processes involved. (Author/JN)

  5. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor

    NASA Astrophysics Data System (ADS)

    Carl, Shaun A.; Minh Thi Nguyen, Hue; Elsamra, Rehab M. I.; Tho Nguyen, Minh; Peeters, Jozef

    2005-03-01

    The rate coefficient of the gas-phase reaction C2H+H2O→products has been experimentally determined over the temperature range 500-825K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C2H) were generated by pulsed 193nm photolysis of C2H2 in the presence of H2O vapor and buffer gas N2 at 15Torr. The relative concentration of C2H radicals was monitored as a function of time using a CH * chemiluminescence method. The rate constant determinations for C2H+H2O were k1(550K)=(2.3±1.3)×10-13cm3s-1, k1(770cm3s-1, and k1(825cm3s-1. The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C2H3O in its doublet electronic ground state has been investigated using density functional theory B3LYP /6-311++G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311++G(3df,2p) basis set [(U)CCSD(T)/6-311++G(3df,2p)] and using UCCSD(T )/6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C2H2+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)/6-311++G(3df,2p)//(U)CCSD(T)/6-311++G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlöf and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17kJmol-1 and 15kJmol-1, respectively. Transition-state theory rate constant

  6. REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Panchenko, Vladislav Ya

    1986-07-01

    CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717

  7. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  8. On the prospects of using runaway electron beams generated in an open discharge for the pumping of metal-vapor lasers

    SciTech Connect

    Arlantsev, S.V.; Borovich, B.L.; Yurchenko, N.I.

    1995-03-01

    The excitation of gas lasers with the help of electron beams (e-beams) is, at the present time, one of the most promising methods of pumping. In most of the conventional methods, an electron beam is produced as a result of a collisionless acceleration of electrons due to the low gas density in a diode of an accelerator. Because of this, an accelerative gap should be hermetically isolated from a laser cell, which makes the technique of e-beam injection into the active region quite complicated. A radical solution to the problem would be the production of an e-beam in the gas whose density in the accelerative gap corresponds to the working pressure of the laser. This would allow one to place an accelerator in one chamber with the laser. The generation of a beam in a high-density gas would become possible when one provides the conditions for an effective transition of electrons into the runaway regime. Such a motion of electrons can be achieved in a strong electric field as a result of the decreasing cross section of the electron-atom interaction as sufficiently high energy. The runaway effect is manifested in the case where the electrons moving under the action of a strong external field obtain kinetic energy comparable with the potential difference. The kinetic energy is many times greater than that spent in one collision. Despite the considerable number of collisions, the electrons are transmitted into the steady acceleration regime, and their motion becomes almost directed, thus forming a beam. The present paper is devoted to the development of a physical-mathematical model of an open discharge, the calculation of its characteristics, and the estimation of the potentialities of e-beam pumping of metal-vapor lasers.

  9. Copper Vapor Generator

    DTIC Science & Technology

    1974-09-01

    percent measured during this program in a static copper vapor apparatus developed at PIB . This efficiency has been calculated by dividing the energy of a... laser medium. A measure of beam quality may be defined in terms ot the energy delivered in the tar field in relatum to the energy delivered by a...phase of the work the homogeneity requirements for the medium of a high -power laser was reviewed. These requirements were translated into measurable

  10. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    NASA Technical Reports Server (NTRS)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  11. A two-channel, tunable diode laser-based hygrometer for measurement of water vapor and cirrus cloud ice water content in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2015-01-01

    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of upper troposphere/lower stratosphere water vapor and enhanced total water (vapor + inertially enhanced condensed phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure, and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An onboard calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cloud water content sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on the NASA Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1σ) of better than 0.17 parts per million (ppm, 10-6 mol mol-1), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33 to 48 for ice particles larger than 8 μm in diameter, depending primarily on aircraft altitude. The resulting ice water content detection limit (2σ) was 0.023-0.013 ppm, corresponding to approximately 2 μg m

  12. The NOAA Water Instrument: A Two-Channel, Tunable Diode Laser-Based Hygrometer for Measurement of Water Vapor and Cirrus Cloud Ice Water Content

    NASA Astrophysics Data System (ADS)

    Fahey, D. W.; Thornberry, T. D.; Rollins, A. W.; Gao, R. S.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.

    2014-12-01

    The recently developed NOAA Water instrument is a two-channel, closed-path, tunable diode laser absorption spectrometer designed for the measurement of water vapor and enhanced total water (vapor + inertially enhanced condensed-phase) from the NASA Global Hawk unmanned aircraft system (UAS) or other high-altitude research aircraft. Combining the measurements from the two channels allows the determination of cloud ice water content (IWC), an important metric for evaluating the radiative properties of cirrus clouds. The instrument utilizes wavelength-modulated spectroscopy with second harmonic detection near 2694 nm to achieve high precision with a 79 cm double-pass optical path. The detection cells are operated under constant temperature, pressure and flow conditions to maintain a constant sensitivity to H2O independent of the ambient sampling environment. An on-board calibration system is used to perform periodic in situ calibrations to verify the stability of the instrument sensitivity during flight. For the water vapor channel, ambient air is sampled perpendicular to the flow past the aircraft in order to reject cloud particles, while the total water channel uses a heated, forward-facing inlet to sample both water vapor and cloud particles. The total water inlet operates subisokinetically, thereby inertially enhancing cloud particle number in the sample flow and affording increased cirrus IWC sensitivity. The NOAA Water instrument was flown for the first time during the second deployment of the Airborne Tropical TRopopause EXperiment (ATTREX) in February-March 2013 on board the Global Hawk UAS. The instrument demonstrated a typical in-flight precision (1 s, 1 σ) of better than 0.17 parts per million (ppm, 10-6 mol/mol), with an overall H2O vapor measurement uncertainty of 5% ± 0.23 ppm. The inertial enhancement for cirrus cloud particle sampling under ATTREX flight conditions ranged from 33-48 for ice particles larger than 8 µm in diameter, depending primarily

  13. Push-pull laser-atomic oscillator.

    PubMed

    Jau, Y-Y; Happer, W

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the "field-independent 0-0 frequency" of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  14. Push-Pull Laser-Atomic Oscillator

    SciTech Connect

    Jau, Y.-Y.; Happer, W.

    2007-11-30

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs.

  15. Alkalis in alternative biofuels

    SciTech Connect

    Miles, T.R.; Miles, T.R. Jr.; Bryers, R.W.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1994-12-31

    The alkali content and behavior of inorganic material of annually produced biofuels severely limits their use for generating electrical power in conventional furnaces. A recent eighteen-month investigation of the chemistry and firing characteristics of 26 different biofuels has been conducted. Firing conditions were simulated in the laboratory for eleven biofuels. This paper describes some results from the investigation including fuel properties, deposits, deposition mechanisms, and implications for biomass boiler design, fuel sampling and characterizations. Urban wood fuel, agricultural residues, energy crops, and other potential alternate fuels are included in the study. Conventional methods for establishing fuel alkali content and determining ash sticky temperatures were deceptive. The crux of the problem was found to be the high concentration of potassium in biofuels and its reactions with other fuel constituents which lower the ``sticky temperature`` of the ash to the 650 C to 760 C (1,200 F-1,400 F).

  16. Nonlinear infrared generation in alkali metal vapors: steady state susceptibilities and dynamic behavior. Effective relaxation rates and preliminary Raman gain predictions for the Cs system. Technical progress report, 1 July-31 December 1986

    SciTech Connect

    Lawandy, N.M.

    1986-12-01

    Effective relaxation rates for atomic cesium pumped by doubled Alexandrite radiation are presented. Laser radiation levels are 8S 1/2 and 9S 1/2; resonance levels 3 = 8P 1/2 and 8P 1/2, respectively. In addition, Raman gain is represented in two graphs which plot chi per atom (10 to the -13 power) at Raman peak versus the infrared wave number per centimeter and the corresponding doubled Alexandrite wave number. One graph covers resonance level 8P, the other 9P; in both cases cesium is pumped with a peak pulse height of 0.5 MW in a 200 micron diameter spot size.

  17. Water vapor lidar

    NASA Technical Reports Server (NTRS)

    Ellingson, R.; Mcilrath, T.; Schwemmer, G.; Wilkerson, T. D.

    1976-01-01

    The feasibility was studied of measuring atmospheric water vapor by means of a tunable lidar operated from the space shuttle. The specific method evaluated was differential absorption, a two-color method in which the atmospheric path of interest is traversed by two laser pulses. Results are reported.

  18. DPAL: A New Class of Lasers for CW Power Beaming at Ideal Photovoltaic Cell Wavelengths

    SciTech Connect

    Krupke, W F; Beach, R J; Payne, S A; Kanz, V K; Early, J T

    2003-09-15

    The new class of diode pumped alkali vapor lasers (DPALs) offers high efficiency cw laser beams at wavelengths which efficiently couple to photovoltaic (PV) cells: silicon cells at 895 nm (cesium), and GaAs cells at 795 nm (rubidium) and at 770 nm (potassium). DPAL electrical efficiencies of 25-30% are projected, enabling PV cell efficiencies {approx}40% (Si) and {approx}60% (GaAs). Near-diffraction-limited DPAL device power scaling into the multi-kilowatt regime from a single aperture is projected.

  19. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  20. Fabrication and laser performance of Yb3+/Al3+ co-doped photonic crystal fiber synthesized by plasma nonchemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Xia, Changming; Zhou, Guiyao; Liu, Jiantao; Wang, Chao; Han, Ying; Zhang, Wei; Yuan, Jinhui

    2015-10-01

    In this paper, the bulk Yb3+/Al3+ co-doped silica glass with 1.3 Yb2O3-2.5Al2O3-96.2SiO2 (wt%) are synthesized by plasma nonchemical vapor deposition method combining solution doping technology, where the inductively coupled plasma is used as the heat source. The influence of different O2/N2 ratios on the fluorescence properties of Yb3+/Al3+ co-doped silica glass are investigated. The large mode area photonic crystal fiber (PCF) is fabricated by using the bulk Yb3+/Al3+ co-doped silica glass as fiber core. The laser performance of Yb3+/Al3+ co-doped photonic crystal fiber is studied.

  1. Electrical Properties of Polycrystalline Cadmium Sulfide Films Produced by Laser-Driven Physical Vapor Deposition for Cadmium Sulfide/cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Tsien, Li-Hua

    1992-01-01

    Electrical conductivity, carrier density, and mobilities have been measured for CdS films grown on glass substrates by laser-driven physical vapor deposition (LDPVD). This work was part of an overall effort to gain a better understanding of the processes that are important in determining the efficiency of CdTe-based thin film solar cells. Films were grown from several target materials including pure CdS, CdS doped with indium, and CdS mixed with cadmium chloride. Some films were also subjected to post-growth chemical and thermal treatments. Generally, grain boundary effects dominate the mobility between 80K and 350K. The data is interpreted using a model for polycrystalline and powdered semiconductors which was developed by Orton and Powell (J. S. Orton and M. J. Powell, Rep. Prog. Phys. 43, 81 (1980)) and is discussed using the concept of effective doping levels.

  2. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  3. Vapor Intrusion

    EPA Pesticide Factsheets

    Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.

  4. ARTICLES: Coumarin 6 as the active medium of a dye vapor laser with wide-band optical pumping and specific characteristics of such lasers

    NASA Astrophysics Data System (ADS)

    Trusov, K. K.

    1982-11-01

    An experimental investigation was made of the efficiency of conversion of flashlamp pump radiation to fluorescence of coumarin 6 at a buffer gas pressure of 0-1 MPa. The lasing dynamics of the flashlamppumped vapor of this compound was also studied. It was found that the fluorescence quantum efficiency averaged over the absorption spectrum, which characterized the pump conversion efficiency, was langηrang<=0.3 at a buffer gas pressure of 0-1 MPa. Dependences of langηrang and the rate constant for optical bleaching of the dye on the buffer gas pressure were determined. A comparative analysis of the lasing dynamics of coumarin 6 in vapors and in an ether solution showed that the gas phase had a higher lasing threshold (18-20 times higher) and a larger increment of loss growth in the spectral range of lasing (four times higher). It also had a shorter maximum lasing duration (tmaxapprox500 nsec).

  5. Use of precalciners to remove alkali from raw materials in the cement industry. Final report, July 1978-July 1980

    SciTech Connect

    Gartner, E.M.

    1980-07-01

    The objective of this work was to develop an efficient means of removing alkali metal compounds (alkalies) from high-alkali aluminosilicate raw materials of the type commonly used as part of cement raw mixes in order to increase the energy efficiency of cement manufacture. The intention of this project was to determine whether the high-alkali raw materials could be pyroprocessed separately to remove the alkalies before they entered the rotary kiln, where they would be mixed with the other raw feed components. If this could be achieved, considerable savings could be made in the energy required to remove alkalies, compared to conventional methods in which the cement raw mix must be treated as a whole. Two different methods of alkali removal were examined, namely, vaporization of alkalies at relatively low temperatures; and alkali-rich melt separation at relativey high temperatures. The results showed that the removal of alkalies by pyroprocessing of high-alkali raw feed components separate from the other cement raw mix components is not likely to be a practical alternative to the best available conventional precalciner technology. (LCL)

  6. Adding nickel formate in alkali lignin to increase contents of alkylphenols and aromatics during fast pyrolysis.

    PubMed

    Geng, Jing; Wang, Wen-Liang; Yu, Yu-Xiang; Chang, Jian-Min; Cai, Li-Ping; Shi, Sheldon Q

    2017-03-01

    The composition of pyrolysis vapors obtained from alkali lignin pyrolysis with the additive of nickel formate was examined using the pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). Characterization of bio-chars was performed using X-ray diffraction (XRD). Results showed that the nickel formate significantly increased liquid yield, simplified the types of alkali lignin pyrolysis products and increased individual component contents. The additive of nickel formate increased contents of alkylphenols and aromatics from alkali lignin pyrolysis. With an increase in temperature, a greater amount of the relative contents can be achieved. The nickel formate was thermally decomposed to form hydrogen, resulting in hydrodeoxygenation of alkali lignin during pyrolysis. It was also found that Ni is in favor of producing alkylphenols. The analysis based on the experimental result provided evidences used to propose reaction mechanism for pyrolysis of nickel formate-assisted alkali lignin.

  7. Superconductivity in an Alkali Doped Polycyclic Aromatic Hydrocarbon, Picene

    NASA Astrophysics Data System (ADS)

    Tokumoto, Madoka; Shimizu, Fumihiko; Hata, Yoshiaki; Sawai, Shinya; Han, Jing; Inoue, Katsuya

    2010-03-01

    The effect of carrier doping into polycyclic aromatic hydrocarbons, including perylene and pentacene, has been extensively studied.[1] As a result of halogen or alkali metal doping, a drastic increase in electrical conductivity was observed. However, superconductivity has not been reported except the one by Sch"on et al.[2] Recently, Kubozono reported that one of them, i.e. picene (C22H14) showed superconductivity at 20 K by doping with potassium.[3] We anticipate that it will lead to surprising findings of hidden organic molecular superconductors. In this presentation, we will report on the characterization of superconducting properties of alkali doped picene. Instead of ordinary vapor phase alkali metal doping, we employ thermal decomposition of alkali azides, i.e. AN3 where A = K, Rb. We followed the doping procedure of thermal decomposition applied to fullerene C60.[4] A systematic variation of the superconducting transition temperature and fraction are studied as a function of alkali metal composition. [1] H. Akamatu, H. Inokuchi, and Y. Matsunaga, Nature 173 (1954) 168. [2] J. H. Sch"on, Ch. Kloc & B. Batlogg, Nature 406 (2000) 702; retraction, Nature 422 (2003) 93. [3] R. Mitsuhashi, Y. Kubozono et al.: private communication. [4] M. Tokumoto, et al. , J. Phys. Chem. Solids, 54 (1993) 1667.

  8. Theoretical studies of Resonance Enhance Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  9. Theoretical studies of resonance enhance stimulated raman scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor. Semiannual report

    SciTech Connect

    Lawandy, N.M.

    1986-01-01

    It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields.

  10. Ground state lasing at 1.30 microm from InAs/GaAs quantum dot lasers grown by metal-organic chemical vapor deposition.

    PubMed

    Guimard, Denis; Ishida, Mitsuru; Bordel, Damien; Li, Lin; Nishioka, Masao; Tanaka, Yu; Ekawa, Mitsuru; Sudo, Hisao; Yamamoto, Tsuyoshi; Kondo, Hayato; Sugawara, Mitsuru; Arakawa, Yasuhiko

    2010-03-12

    We investigated the effects of post-growth annealing on the photoluminescence (PL) characteristics of InAs/GaAs quantum dots (QDs) grown by metal-organic chemical vapor deposition (MOCVD). The onset temperature at which both the peak linewidth and the PL intensity degraded and the blueshift of the ground state emission wavelength occurred was found to depend on both the QD density and the In composition of the capping layer. This behavior is particularly important in view of QD integration in photonic devices. From the knowledge of the dependences of the PL characteristics after annealing on the QD and capping growth conditions, ground state lasing at 1.30 microm could be demonstrated from InAs/GaAs QDs grown by MOCVD. Finally, we compared the laser characteristics of InAs/GaAs QDs with those of InAs/Sb:GaAs QDs, grown according to the antimony-mediated growth technique, and showed that InAs/Sb:GaAs QDs are more appropriate for laser fabrication at 1.3 microm by MOCVD.

  11. High-power (80-w) KTP laser vaporization of the prostate in the management of urinary retention: long-term follow up

    NASA Astrophysics Data System (ADS)

    Kleeman, M.; Nseyo, Unyime O.

    2004-07-01

    Introduction and Objectives: We have previously reported the use of high-powered photoselective vaporization of the prostate (PVP) for patients in urinary retention due to benign prostatic hyperplasia (BPH). PVP is a relatively new treatment for bladder outlet obstruction due to BPH, using laser energy to vaporize obstructing prostatic tissue. This study investigates the long-term follow up of patients treated with PVP for urinary retention. Materials and Methods: All participants signed informed consent, and were treated with high power 80 W quasi-continuous wave potassium-titanyl-phosphate (KTP) laser. Ten patients underwent the procedure from December 2001 until the present. One patient was excluded from the study for failure to return for follow-up. Mean patient follow-up was nine months, maximum of twelve months. Results: The mean pre-operative gland size by trans-rectal ultrasound was 48 grams. Mean urethral length was 3.2 cm. Mean laser time was 48.2 minutes and the mean energy usage was 82.2 kJoules. There were no peri-operative complications such as sepsis or measurable postoperative bleeding. The preoperative AUA Symptom Score (AUASS) decreased from a mean of 22.6 preoperatively to 17 at nine months postoperatively (p = 0.032). The Quality of Life Score (QOL) decreased from 4.6 preoperatively to 3.25 at 12 months postoperatively (p = 0.26). The maximum urine flow rate increased from a mean of 7.7 cc/sec preoperatively to 14.5 cc/sec at six months follow-up (p = 0.03). Conclusions: This follow-up study suggests that HP-KTP has a durable response in patients treated specifically for retention. It significantly improved urine flow rate and symptom score, and had a trend towards improvement in subjective quality of life. HP-KTP prostatectomy should be considered in treating patients in retention, especially those with significant co-morbidities or taking anticoagulation.

  12. Thermal effects in Cs DPAL and alkali cell window damage

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Rotondaro, M. D.; Shaffer, M. K.; Knize, R. J.

    2016-10-01

    Experiments on power scaling of Diode Pumped Alkali Lasers (DPALs) revealed some limiting parasitic effects such as alkali cell windows and gain medium contamination and damage, output power degradation in time and others causing lasing efficiency decrease or even stop lasing1 . These problems can be connected with thermal effects, ionization, chemical interactions between the gain medium components and alkali cells materials. Study of all these and, possibly, other limiting effects and ways to mitigate them is very important for high power DPAL development. In this talk we present results of our experiments on temperature measurements in the gain medium of operating Cs DPAL at different pump power levels in the range from lasing threshold to the levels causing damage of the alkali cell windows. For precise contactless in situ temperature measurements, we used an interferometric technique, developed in our lab2 . In these experiments we demonstrated that damage of the lasing alkali cell starts in the bulk with thermal breakdown of the hydrocarbon buffer gas. The degradation processes start at definite critical temperatures of the gain medium, different for each mixture of buffer gas. At this critical temperature, the hydrocarbon and the excited alkali metal begin to react producing the characteristic black soot and, possibly, some other chemical compounds, which both harm the laser performance and significantly increase the harmful heat deposition within the laser medium. This soot, being highly absorptive, is catastrophically heated to very high temperatures that visually observed as bulk burning. This process quickly spreads to the cell windows and causes their damage. As a result, the whole cell is also contaminated with products of chemical reactions.

  13. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    SciTech Connect

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  14. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  15. Development and application of a high-speed planar laser-induced fluorescence imaging system to evaluate liquid and vapor phases of sprays from a multi-hole diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Parrish, S. E.; Zink, R. J.

    2013-02-01

    A high-speed imaging system capable of acquiring elastic scattering images and planar laser-induced fluorescence (PLIF) images in a near-simultaneous fashion has been developed. Acquiring both elastic scattering and PLIF images enables the liquid phase to be discriminated from the vapor phase. High-speed imaging allows the temporal evolution of flow structures to be evaluated. Images of sprays from a multi-hole diesel fuel injector operating under engine-like conditions were acquired. The vapor phase images reveal intricate fluid dynamic structures that exhibit a high degree of variability, indicative of a turbulent gas jet.

  16. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  17. Coumarin 6 as the active medium of a dye vapor laser with wide-band optical pumping and specific characteristics of such lasers

    SciTech Connect

    Trusov, K.K.

    1982-11-01

    An experimental investigation was made of the efficiency of conversion of flashlamp pump radiation to fluorescence of coumarin 6 at a buffer gas pressure of 0--1 MPa. The lasing dynamics of the flashlamp-pumped vapor of this compound was also studied. It was found that the fluorescence quantum efficiency averaged over the absorption spectrum, which characterized the pump conversion efficiency, was < or =0.3 at a buffer gas pressure of 0--1 MPa. Dependences of and the rate constant for optical bleaching of the dye on the buffer gas pressure were determined. A comparative analysis of the lasing dynamics of coumarin 6 in vapors and in an ether solution showed that the gas phase had a higher lasing threshold (18--20 times higher) and a larger increment of loss growth in the spectral range of lasing (four times higher). It also had a shorter maximum lasing duration (t/sub max/roughly-equal500 nsec).

  18. Optical frequency standard by using a 1560 nm diode laser locked to saturated absorption lines of rubidium vapor

    SciTech Connect

    Masuda, Shin; Seki, Atsushi; Niki, Shoji

    2007-07-20

    A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled1560 nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems,exhibiting uncertainty less than at least 100 kHz, was successfully realized for the first time to the best of our knowledge.

  19. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The third phase of research will focus on the propagation and energy extraction of the pump and SERS beams in a variety of configurations including oscillator structures. In order to address these questions a numerical code capable of allowing for saturation and full transverse beam evolution is required. The method proposed is based on a discretized propagation energy extraction model which uses a Kirchoff integral propagator coupled to the three level Raman model already developed. The model will have the resolution required by diffraction limits and will use the previous density matrix results in the adiabatic following limit. Owing to its large computational requirements, such a code must be implemented on a vector array processor. One code on the Cyber is being tested by using previously understood two-level laser models as guidelines for interpreting the results. Two tests were implemented: the evolution of modes in a passive resonator and the evolution of a stable state of the adiabatically eliminated laser equations. These results show mode shapes and diffraction losses for the first case and relaxation oscillations for the second one. Finally, in order to clarify the computing methodology used to exploit the speed of the Cyber's computational speed, the time it takes to perform both of the computations previously mentioned to run on the Cyber and VAX 730 must be measured. Also included is a short description of the current laser model (CAVITY.FOR) and a flow chart of the test computations.

  20. Tunable Optical Delay in Doppler-Broadened Cesium Vapor

    DTIC Science & Technology

    2010-12-01

    maximum of 78% in a narrow region of 110 MHz in agreement with a Kramers- Kronig model prediction. Diode-pumped alkali laser (DPAL) systems depend on...8 Kramers- Kronig Relations...26 III. Kramers- Kronig Delay Calculation