Science.gov

Sample records for alkali earth elements

  1. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  2. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    NASA Technical Reports Server (NTRS)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  3. Alkali element depletion by core formation and vaporization on the early Earth

    NASA Technical Reports Server (NTRS)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  4. Surface disposal of produced waters in western and southwestern Pennsylvania: potential for accumulation of alkali-earth elements in sediments

    USGS Publications Warehouse

    Skalak, Katherine J.; Engle, Mark A.; Rowan, Elisabeth L.; Jolly, Glenn D.; Conko, Kathryn M.; Benthem, Adam J.; Kraemer, Thomas F.

    2014-01-01

    Waters co-produced with hydrocarbons in the Appalachian Basin are of notably poor quality (concentrations of total dissolved solids (TDS) and total radium up to and exceeding 300,000 mg/L and 10,000 pCi/L, respectively). Since 2008, a rapid increase in Marcellus Shale gas production has led to a commensurate rise in associated wastewater while generation of produced water from conventional oil and gas activities has continued. In this study, we assess whether disposal practices from treatment of produced waters from both shale gas and conventional operations in Pennsylvania could result in the accumulation of associated alkali earth elements. The results from our 5 study sites indicate that there was no increase in concentrations of total Ra (Ra-226) and extractable Ba, Ca, Na, or Sr in fluvial sediments downstream of the discharge outfalls (p > 0.05) of publicly owned treatment works (POTWs) and centralized waste treatment facilities (CWTs). However, the use of road spreading of brines from conventional oil and gas wells for deicing resulted in accumulation of Ra-226 (1.2 ×), and extractable Sr (3.0 ×), Ca (5.3 ×), and Na (6.2 ×) in soil and sediment proximal to roads (p < 0.05). Although this study is an important initial assessment of the impacts of these disposal practices, more work is needed to consider the environmental consequences of produced waters management.

  5. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  6. Electrical Resistivity of Alkali Elements.

    DTIC Science & Technology

    1976-01-01

    rubidium, cesium, and francium ) and contains recommended reference values (or provisional or typical values). The compiled data include all the...and information on the electrical resistivity of alkali elements (lithium, sodium, potassium, rubidium, cesium, and francium ) and contains...107Ic. Magnetic Flux Density Dependence o.. .. ... .... 112 4.6. Francium ..........................115j a. Temperature Dependence

  7. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups

    NASA Astrophysics Data System (ADS)

    Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe

    2014-05-01

    This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.

  8. Dirac Node Lines in Pure Alkali Earth Metals.

    PubMed

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-26

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well.

  9. Dirac Node Lines in Pure Alkali Earth Metals

    NASA Astrophysics Data System (ADS)

    Li, Ronghan; Ma, Hui; Cheng, Xiyue; Wang, Shoulong; Li, Dianzhong; Zhang, Zhengyu; Li, Yiyi; Chen, Xing-Qiu

    2016-08-01

    Beryllium is a simple alkali earth metal, but has been the target of intensive studies for decades because of its unusual electron behavior at surfaces. The puzzling aspects include (i) severe deviations from the description of the nearly free-electron picture, (ii) an anomalously large electron-phonon coupling effect, and (iii) giant Friedel oscillations. The underlying origins for such anomalous surface electron behavior have been under active debate, but with no consensus. Here, by means of first-principles calculations, we discover that this pure metal system, surprisingly, harbors the Dirac node line (DNL) that in turn helps to rationalize many of the existing puzzles. The DNL is featured by a closed line consisting of linear band crossings, and its induced topological surface band agrees well with previous photoemission spectroscopy observations on the Be (0001) surface. We further reveal that each of the elemental alkali earth metals of Mg, Ca, and Sr also harbors the DNL and speculate that the fascinating topological property of the DNL might naturally exist in other elemental metals as well.

  10. Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25°C

    NASA Astrophysics Data System (ADS)

    Xie, Zhixin; Walther, John V.

    1994-06-01

    The Ca 2+/H + exchange reaction on the wollastonite surface was investigated at 25°C with both short-term (<2.5 h) and long-term (>48 h) dissolution studies. In acidic solutions, the dissolution of wollastonite is nonstoichiometric with a greater release of Ca than Si relative to the wollastonite stoichiometry. Both short-term and long-term Ca 2+/H + exchange reaction stoichiometries are 0.5. Rapid desorption of Ca 2+ from the surface of untreated wollastonite caused a rise of the suspension pH to about 10 in a couple of minutes. Therefore, potentiometric titrations were performed with an acidreacted wollastonite where most surface detachable Ca 2+ had been removed. Addition of alkali and alkaline earth metal chloride solutions to the acid-reacted wollastonite suspension results in a pH decrease with K +> Na + > Ba 2+ > Mg 2+ > Ca 2+ in equal molal solutions. This suggests that the cations in these solutions are adsorbed to the wollastonite surface. Surface protonation properties of the acid-reacted wollastonite are found to be similar to those of microporous silica but with the point of zero salt effect (pzse) of 4.5-5.5 rather than the 3.0 of microporous silica. The surface protonation-deprotonation as a function of pH is modeled with a one-site double layer model which includes Na adsorption from the background electrolyte to reasonable accuracy. The adsorption of CrO 42-, MoO 42-, Ca 2+, Mg 2+, Ba 2+, and Na + from aqueous solutions to the acidreacted wollastonite/water interface was determined as a function of the pH and ionic strength of the solution. CrO 42- and MoO 42- were not adsorbed to the wollastonite surface at pH above 3. The extent of cation adsorption increases with increasing pH and decreases with increasing ionic strength. Ca 2+ adsorption depends on both the surface area of wollastonite and total amount of Ca 2+ in the suspension. For alkaline earth metals at the same concentration, the adsorption sequence is Ba 2+> Ca 2+> Mg 2+. At pH 8.5, the

  11. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  12. Ultrasonic coal washing to leach alkali elements from coals.

    PubMed

    Balakrishnan, S; Reddy, V Midhun; Nagarajan, R

    2015-11-01

    Deposition of fly ash particles onto heat-transfer surfaces is often one of the reasons for unscheduled shut-downs of coal-fired boilers. Fouling deposits encountered in convective sections of a boiler are characterized by arrival of ash particles in solidified (solid) state. Fouling is most frequently caused by condensation and chemical reaction of alkali vapors with the deposited ash particles creating a wet surface conducive to collect impacting ash particles. Hence, the amount of alkali elements present in coals, which, in turn, is available in the flue gas as condensable vapors, determines the formation and growth of fouling deposits. In this context, removal of alkali elements becomes vital when inferior coals having high-ash content are utilized for power generation. With the concept of reducing alkali elements present in a coal entering the combustor, whereby the fouling deposits can either be minimized or be weakened due to absence of alkali gluing effect, the ultrasonic leaching of alkali elements from coals is investigated in this study. Ultrasonic water-washing and chemical-washing, in comparison with agitation, are studied in order to estimate the intensification of the alkali removal process by sonication.

  13. Effect of cavitation on removal of alkali elements from coal

    NASA Astrophysics Data System (ADS)

    Srivalli, H.; Nirmal, L.; Nagarajan, R.

    2015-12-01

    The main impurities in coal are sulphur, ash and alkali. On combustion, the volatile forms of these impurities are either condensed on the boilers, or emitted in the form of potentially hazardous gases. The alkali elements present in coal help the fly ash particles adhere to boiler surfaces by providing a wet surface on which collection of these particles can take place. Use of ultrasonic techniques in cleaning of coal has stirred interest among researchers in recent times. Extraction of alkali elements by cavitation effect using low-frequency ultrasound, in the presence of reagents (HNO3 and H2O2) is reported in this paper. Powdered coal was dissolved with the reagent and exposed to ultrasonic fields of various frequencies at different time intervals. The treated solution is filtered and tested for alkali levels.

  14. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  15. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure.

    PubMed

    Hinwood, A L; Stasinska, A; Callan, A C; Heyworth, J; Ramalingam, M; Boyce, M; McCafferty, P; Odland, J Ø

    2015-09-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children.

  16. Tin as reducing agent in ? doped alkali-earth fluorophosphates

    NASA Astrophysics Data System (ADS)

    Dafinova, R.; Caralampydu, A.

    1998-07-01

    The blue europium band in alkali-earth fluorophosphates, determining the 0953-8984/10/27/017/img2 allowed electric-dipole transitions in the 0953-8984/10/27/017/img3 ion, is studied. The simultaneous doping with 0953-8984/10/27/017/img4 provides a possibility of the realization of 0953-8984/10/27/017/img5 transitions and of formation of 0953-8984/10/27/017/img3 ions as blue emission centres of high intensity. The 0953-8984/10/27/017/img7 position is assumed for the 0953-8984/10/27/017/img3 ions in the apatite structure of the matrix.

  17. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  18. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  19. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper.

  20. Ab initio study of NMR shielding of alkali earth metal ions in water complexes and magnetic moments of alkali earth metal nuclei

    NASA Astrophysics Data System (ADS)

    Antušek, Andrej; Rodziewicz, Pawel; Keḑziera, Dariusz; Kaczmarek-Keḑziera, Anna; Jaszuński, Michał

    2013-11-01

    Ab initio calculations of NMR shielding constants of alkali earth metal ions in the series of water clusters are presented. The shielding constants for systems modeling the structure of the solvation layer of these ions are determined by adding to the coupled cluster singles-and-doubles (CCSD) results the calculated relativistic corrections. The relative magnitude of the dynamical effects, estimated for a typical solvated ion from Car-Parrinello molecular dynamics, is very small. The computed shielding constants are used next to obtain new values of the nuclear magnetic dipole moments of alkali earth metal nuclei.

  1. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  2. Tungstate-ferrates of some alkali and alkaline-earth metals

    SciTech Connect

    Gruba, A.I.; Danileiko, L.A.; Moroz, Ya.A.; Zyats, M.N.

    1988-02-01

    Tungstate-ferrates of some alkali and alkaline-earth metals with the ratio Fe:W = 2:11, the iron ions in which are found in two types of coordination, tetrahedral and octahedral, were synthesized. The similarity of the IR spectra of the compounds obtained and known compounds with the anion structure of the Keggin type with the composition M/sub X/(XZW/sub 11/O/sub 40/H/sub m/) x nH/sub 2/O indicates that their heteropolyanions are isostructural. The thermal stability of the compounds studied and the structure of the products of thermolysis depend on the charge and radius of the extrasphere cation. When the ratio of the radii of the extrasphere cation of the alkali or alkaline-earth metal to the radius of the ion of the central 3d element, appearing in the coordination sphere of the heteropolytungstates, exceeds 1.6, the most likely products of thermolysis of heteropolycompounds are the compounds of the pyrochlore family and tungsten bronzes.

  3. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  4. Calculation of Radiative Corrections to E1 matrix elements in the Neutral Alkalis

    SciTech Connect

    Sapirstein, J; Cheng, K T

    2004-09-28

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkalis but significantly larger for the heavier alkalis, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  5. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility.

  6. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  7. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  8. The fate of minor alkali elements in the chemical evolution of salt lakes

    PubMed Central

    2011-01-01

    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434

  9. Rare earth elements: end use and recyclability

    USGS Publications Warehouse

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  10. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  11. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  12. Recycling of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  13. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  14. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  15. Calculation of radiative corrections to E1 matrix elements in the neutral alkali metals

    SciTech Connect

    Sapirstein, J.; Cheng, K.T.

    2005-02-01

    Radiative corrections to E1 matrix elements for ns-np transitions in the alkali-metal atoms lithium through francium are evaluated. They are found to be small for the lighter alkali metals but significantly larger for the heavier alkali metals, and in the case of cesium much larger than the experimental accuracy. The relation of the matrix element calculation to a recent decay rate calculation for hydrogenic ions is discussed, and application of the method to parity nonconservation in cesium is described.

  16. Rare Earth Element Mines, Deposits, and Occurrences

    USGS Publications Warehouse

    Orris, Greta J.; Grauch, Richard I.

    2002-01-01

    Data on rare earth (including yttrium) mines, deposits, and occurrences were compiled as part of an effort by the USGS and the University of Arizona Center for Mineral Resources to summarize current knowledge on the supply and demand outlook and related topics for this group of elements. Economic competition and environmental concerns are increasingly constraining the mining and processing of rare earths from the Mountain Pass mine in California. For many years, the deposit at Mountain Pass was the world's dominant source of rare earth elements and the United States was essentially self-sufficient. Starting approximately 10 years ago, the U.S. has become increasingly dependent (> 90 percent of separated rare earths) upon imports from China, now the dominant source of rare earths. A knowledge of the known economic and noneconomic sources of rare earths is basic to evaluating the outlook for rare earth supply and associated issues.

  17. Moving KML geometry elements within Google Earth

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  18. Radical ions in glassy rare-earth phosphates containing various alkali modifiers

    SciTech Connect

    Kornienko, L.S.; Denker, B.I.; Osiko, V.V.; Rybal'tovskii, A.O.; Tikhomirov, V.A.

    1985-07-01

    This report studies the use of ESR to investigate the structural features of glassy phosphates of rare-earth elements which are widely used in quantum electronics as active laser materials. The study used alkali lanthanum phosphate glasses that were irradiated with gamma quanta from a Co/sup 60/ source in doses of 10/sup 6/-10/sup 8/ rad at liquid-nitrogen temperature and at room temperature. Under the action of gamma radiation, broad bands of additional optical absorption (BAA) arise in phosphate glass. These bands cover the UV and visible regions of the spectrum. When phosphate glasses and other inorganic compounds containing PO/sub 4/ tetrahedra are irradiated, PO/sup 2 -//sub 4/ and PO/sup 2 -//sub 3/ radicals of the phosphorus-oxygen complexes arise. The formation of either of these radicals is associated with the existence of particular structural groups in which the relationships between them is determined by the structure of the glass network.

  19. Effect of alkaline-earth ions on the dynamics of alkali ions in bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2005-12-01

    The effect of alkaline earth ions on the dynamics of Li+ ions in bismuthate glasses has been studied in the temperature range 353-503K and in the frequency range 10Hz-2MHz . The dc conductivity increases and activation energy decreases with the increase of a particular alkaline earth content for the glasses with a fixed alkali content. The increased modification of the network due to the increase in alkaline earth content in the compositions is responsible for the increasing conductivity. Also the compositions with smaller alkaline earth ions were found to exhibit higher conductivity. Although the conductivity increases with the decrease of ionic radii of alkaline earth ions, the activation energy shows a maximum for the Sr ion. The electric modulus and the conductivity formalisms have been employed to study the relaxation dynamics of charge carriers in these glasses. The alkali ions were observed to change their dynamics with the change of the alkaline earth ions. The same anomalous trend for activation energy for the conductivity relaxation frequency and the hopping frequency was also observed for glasses containing SrO. It was also observed that the mobile lithium ion concentrations are independent of nature of alkaline earth ions in these glasses.

  20. Mineral resource of the month: rare earth elements

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on rare earth elements, which are group of 17 natural metallic elements. The rare earth elements are scandium, yttrium and lanthanides and classified into light rare earth elements (LREE) and heavy rate earth elements (HREE). The principal ores of the rare earth elements are identified. An overview of China's production of 97 percent of the rare earths in the world is provided. Commercial applications of rare earths are described.

  1. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  3. Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1987-01-01

    The Na, K, Rb, Cs, and P abundances in eucrites, diogenites, basaltic clasts from polymict eucrite, howardites, and mesosiderites are examined, and compared with an average of highly incompatible refractory (AHIR) elements normalized to cosmic abundances. It is observed that basaltic eucrites and basaltic clasts show a positive correlation between K, Rb, and Cs, and alkali element/AHIR ratios; the volatile loss of the alkali elements from the basalt affects the parent body inventory of volatile elements. The data reveal that for diogenites, the alkali /AHIR ratios are 1.4-2 times greater than in basaltic eucrites and are more variable; and the negative relation between K, Rb, Cs, and the alkali/AHIR ratio correlate with progressive alkali loss through volatile outgassing during crystallization of one or more magmas resulting in a greater than 90 percent loss of the volatile element inventory from the parent body. It is also detected that P displays volatile loss from the basaltic eucrites and elevated P/AHIR ratios in diogenites.

  4. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  5. IUPAC-NIST Solubility Data Series. 79. Alkali and Alkaline Earth Metal Pseudohalides

    NASA Astrophysics Data System (ADS)

    Hála, Jiri

    2004-03-01

    This volume presents solubility data of azides, cyanides, cyanates, and thiocyanates of alkali metals, alkaline earth metals, and ammonium. Covered are binary and ternary systems in all solvents. No solubility data have been found for some of the compounds of alkali metals, alkaline metals, and ammonium. These include beryllium and magnesium azides, lithium, rubidium cesium, ammonium, and alkaline earth cyanates and cyanides, and beryllium thiocyanate. Likewise, no solubility data seem to exist for selenocyanates of the mentioned metals and ammonium. The literature has been covered up to the middle of 2001, and there was a great effort to have the literature survey as complete as possible. The few documents which remained unavailable to the editor, and could not be included in the volume, are listed in the Appendix. For some compounds it was not possible to show the Chemical Abstracts registry numbers since these have not been assigned. For this reason, the registry number index is incomplete.

  6. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential (Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A) to –48.02more » ± 1.85 kJ/mol per TO2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  7. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    SciTech Connect

    Sun, Hui; Wu, Di; Liu, Kefeng; Guo, Xiaofeng; Navrotsky, Alexandra

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential (Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A) to –48.02 ± 1.85 kJ/mol per TO2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.

  8. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  9. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  10. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  11. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  12. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  13. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  17. First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals.

    PubMed

    Roy, Ria Sinha; Mondal, Avijit; Nandi, Prasanta K

    2017-03-01

    In the present investigation, the first hyperpolarizability of alkali and alkaline earth metal derivatives of cyclooctatetraene (COT) has been calculated using BHHLYP and CAM-B3LYP functional for 6-311++G(d,p), 6-311++G(3df,3pd), and aug-pc 2 basis sets. Introduction of Na/K atoms at the axial position of COT and Li, Na, K/Be, Mg, Ca metal atoms and cyanide groups at the equatorial sites leads to lager enhancement of first hyperpolarizability. The ring charge density can account for the variation of first hyperpolarizability. The two state model has been invoked to explain the variation of first hyperpolarizability.

  18. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  19. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  20. Tipping elements in the Earth's climate system

    SciTech Connect

    Lenton, T.M.; Held, H.; Lucht, W.; Rahmstorf, S.; Kriegler, E. |; Hall, J.W.; Schellnhuber, H.J. |

    2008-02-12

    The term 'tipping point' commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here the authors introduce the term 'tipping element' to describe large-scale components of the Earth system that may pass a tipping point. They critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and they assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then the authors explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  1. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  2. Rare Earth Elements in Global Aqueous Media

    NASA Astrophysics Data System (ADS)

    Noack, C.; Karamalidis, A.; Dzombak, D. A.

    2012-12-01

    We are examining the occurrence and abundance of rare earth elements (REE) associated with produced waters from shale gas development, and factors controlling aqueous REE concentrations in geochemical environments, to provide information for: (1) potential recovery of REE as a valuable byproduct, and (2) utilization of unique REE signatures as a risk assessment tool. REE include the lanthanide series of elements - excluding short-lived, radioactive promethium - and yttrium. These elements are critical to a wide variety of high-tech, energy efficient applications such as phosphors, magnets, and batteries. Escalating costs of REE resulting from divergent supply and demand patterns motivates the first goal. The second goal relates to the search for a reliable, naturally occurring tracer to improve understanding of fluid migration and water-rock interactions during hydraulic fracturing and natural gas recovery. We compiled data from 100 studies of REE occurrence and concentrations in groundwaters, ocean waters, river waters, and lake waters. In the groundwater systems documented, total dissolved REE concentrations ranged over eight orders of magnitude; however the average concentrations across the lanthanides varied by less than two orders of magnitude. This leads to exceptional inter-element correlations, with a median correlation coefficient greater than 0.98, implying potential usefulness of REE ratios for groundwater signatures. Reports describing reactions governing REE solubilization were also investigated. We assembled information about important solution chemistries and performed equilibrium modeling using PHREEQC to examine common hypotheses regarding the factors controlling REE compositions. In particular, effects of pH, Eh, and common complexing ligands were evaluated. Produced and connate waters of the Marcellus shale are well characterized for their major chemical elements. There is a dearth of knowledge, however, regarding the occurrence of REE in

  3. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    SciTech Connect

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  4. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  5. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  6. ION EXCHANGE IN FUSED SALTS. II. THE DISTRIBUTION OF ALKALI METAL AND ALKALINE EARTH IONS BETWEEN CHABAZITE AND FUSED LINO3, NANO3, AND KNO3,

    DTIC Science & Technology

    ION EXCHANGE, SALTS ), (*ALKALI METALS, ION EXCHANGE), (*ALKALINE EARTH METALS, ION EXCHANGE), (*NITRATES, ION EXCHANGE), SODIUM , CALCIUM, POTASSIUM...BARIUM, RUBIDIUM, CESIUM, LITHIUM COMPOUNDS, SODIUM COMPOUNDS, POTASSIUM COMPOUNDS, DISTRIBUTION, MINERALS, IONS

  7. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  8. Rare earths and other trace elements in Luna 16 soil.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.

    1972-01-01

    An analysis has been made of four small samples of material brought to earth by the Luna 16 mission, with the aim to determine rare earths and other trace elements in these samples. The analytical results are tabulated, and the rare earth abundances are compared with the average for chondrites. A comparison is also made with the results of similar analyses of Apollo samples.

  9. How PNNL Extracts Rare Earth Elements from Geothermal Brine

    SciTech Connect

    2016-07-12

    By looking at a problem at a nanoscale level, PNNL researchers are developing an economic way to extract valuable rare earth elements from geothermal fluids. This novel approach may help meet the high demand for rare earth elements that are used in many clean energy technologies.

  10. Rare earth element diffusion in natural enstatite

    NASA Astrophysics Data System (ADS)

    Cherniak, Daniele J.; Liang, Yan

    2007-03-01

    diopside [Van Orman, J.A., Grove, T.L., Shimizu, N., 2001. Rare earth element diffusion in diopside; influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib. Mineral. Petrol.141, 687-703]. These differences in diffusive behavior of REE between diopside and enstatite, as well as Eu 2+ and Eu 3+ in enstatite, can result in significant REE fractionation between coexisting pyroxenes during partial melting, melt migration, and subsolidus reequilibration processes in the Earth's mantle and that of the Moon.

  11. Rare earth elements in Hamersley BIF minerals

    NASA Astrophysics Data System (ADS)

    Alibert, Chantal

    2016-07-01

    Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.

  12. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  13. [Content of rare earth elements in wild Hypericum japonicum Thunb].

    PubMed

    Wei, Zhen-Lin; Rui, Yu-Kui; Tian, Zhi-Huan

    2009-06-01

    Rare earth elements are important nutritional elements for human health, and today more and more attention has been paid to the effective components in Chinese traditional medicine, especially to rare earth elements. Fifteen rare earth elements in wild hypericum japonicum Thunb were analyzed by the methods of ICP-MS. The results showed that the concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm, Lu and Y ranged from 6 ng x g(-1) x DW to 14 522 ng x g(-1) x DW, and among them the concentrations of La, Ce and Nd were higher than 2 000 ng x g(-1) x DW. Compared with the concentration of rare earth elements in rice, corn, wheat and barley, the total concentration of rare earth elements in hypericum japonicum Thunb was much higher, which could be the mechanism of curative effect of hypericum japonicum Thunb on liverish diseases. The character of elements and the content of rare earth elements in soil should be responsible for the difference, but the distributive mechanism of rare earth elements in hypericum japonicum Thunb should be further studied.

  14. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  15. Earth, Air, Fire and Water in Our Elements

    ERIC Educational Resources Information Center

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  16. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  17. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  18. Rare earth element enrichment using membrane based solvent extraction

    NASA Astrophysics Data System (ADS)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G.

    2017-01-01

    The chemical, catalytic, electrical, magnetic, and optical properties of rare earth elements are required in broad applications. Rare earth elements have similar physical and chemical properties thus it is difficult to separate one from each other. Rare earth element is relatively abundant in earth's crust but rarely occur in high concentrated deposits. Traditionally, ion-exchange and solvent extraction techniques have been developed to separate and purify single rare earth solutions or compounds. Recently, membrane starts to gain attention for rare earth separation by combining membrane and proven technologies such as solvent extraction. Membrane-based process offers selective, reliable, energy efficient and easy to scale up separation. During membrane-based separation process, one phase passes through membrane pores while the other phase is rejected. There is no direct mixing of two phases thus the solvent loss is very low. Membrane can also lower solvent physical properties requirement (viscosity, density) and backmixing, eliminate flooding phenomenon and provide large interfacial area for mass transfer. This paper will summarize research efforts in developing membrane technology for rare earth element separation. Special attention will be given to solvent extraction related process as the commonly used method for rare earth element separation. Furthermore, membrane configuration and its potentials will also be discussed.

  19. Flavonoids, alkali earth and rare earth elements affect germination of pecan pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The factors regulating pecan [Carya illinoinensis (Wangenh.) K. Koch] pollen grain germination on receptive stigmatic flower surfaces in vivo or in vitro in pollen viability assays are poorly understood. While there are many potential regulating factors, there is evidence for involvement of flavonol...

  20. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses.

    PubMed

    Sato, K; Hatta, T

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  1. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Sato, K.; Hatta, T.

    2015-03-01

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO2 glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  2. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  3. Implications of Competition for Rare Earth Elements (REE) in Africa

    DTIC Science & Technology

    2011-03-15

    Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that...2010). 3 Marc Humphries , ―Rare Earth Elements: The Global Supply Chain,‖ Congressional Research Service Report for Congress R41347 (September 30...101026_Verrastro_Geopolitics_web.pdf (accessed October 14, 2010). 10 Humphries , ―Rare Earth Elements: The Global Supply Chain,‖ (September 30, 2010): 4

  4. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    NASA Astrophysics Data System (ADS)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  5. Alkali-earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis.

    PubMed

    Kang, Fuxing; Wang, Qian; Shou, Weijun; Collins, Chris D; Gao, Yanzheng

    2017-01-01

    Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali-earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca(2+) or Mg(2+)) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca(2+) and Mg(2+) (0-3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance.

  6. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  7. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  8. Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.

    SciTech Connect

    Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

    2001-05-01

    Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

  9. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance.

  10. MaRGEE: Move and Rotate Google Earth Elements

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  11. Modeling rammed earth wall using discrete element method

    NASA Astrophysics Data System (ADS)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  12. Systematic variation of rare-earth elements in cerium-earth minerals

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.; Glass, J.J.

    1957-01-01

    In a continuation of a study reported previously, rare-earth elements and thorium have been determined in monazite, allanite, cerite, bastnaesite, and a number of miscellaneous cerium-earth minerals. A quantity called sigma (???), which is the sum of the atomic percentages of La, Ce, and Pr, is proposed as an index of composition of all cerium-earth minerals with respect to the rare-earth elements. The value of ??? for all of the minerals analysed falls between 58 and 92 atomic per cent. Monazites, allanites, and cerites cover the entire observed range, whereas bastnaesites are sharply restricted to the range between 80 and 92 atomic per cent. The minimum value of ??? for a cerium-earth mineral corresponds to the smallest possible unit-cell size of the mineral. In monazite, this structurally controlled minimum value of ??? is estimated to be around 30 atomic per cent. Neodymium, because of its abundance, and yttrium, because of its small size, have dominant roles in contraction of the structure. In the other direction, the limit of variation in composition will be reached when lanthanum becomes the sole rare-earth element in a cerium-earth mineral. Cerium-earth minerals from alkalic rocks are all characterized by values of ??? greater than 80 atomic per cent, indicating that the processes that formed these rocks were unusually efficient in fractionating the rare-earth elements-efficient in the sense that a highly selected assemblage is produced without eliminating the bulk of these elements. Analyses of inner and outer parts of two large crystals of monazite from different deposits show no difference in ??? in one crystal and a slightly smaller value of ??? in the outer part of the other crystal compared to the inner part. The ??? of monazites from pegmatites that intrude genetically related granitic rocks in North Carolina is found to be either higher or lower than the ??? of monazites in the intruded host rock. These results indicate that the fractionation of the

  13. Exchange Processes in Shibasaki's Rare Earth Alkali Metal BINOLate Frameworks and Their Relevance in Multifunctional Asymmetric Catalysis.

    PubMed

    Robinson, Jerome R; Gu, Jun; Carroll, Patrick J; Schelter, Eric J; Walsh, Patrick J

    2015-06-10

    Shibasaki's rare earth alkali metal BINOLate (REMB) catalysts (REMB; RE = Sc, Y, La - Lu; M = Li, Na, K; B = 1,1-bi-2-naphtholate; RE/M/B = 1/3/3) are among the most successful enantioselective catalysts and have been employed in a broad range of mechanistically diverse reactions. Despite the phenomenal success of these catalysts, several fundamental questions central to their reactivity remain unresolved. Combined reactivity and spectroscopic studies were undertaken to probe the identity of the active catalyst(s) in Lewis-acid (LA) and Lewis-acid/Brønsted-base (LA/BB) catalyzed reactions. Exchange spectroscopy provided a method to obtain rates of ligand and alkali metal self-exchange in the RE/Li frameworks, demonstrating the utility of this technique for probing solution dynamics of REMB catalysts. Isolation of the first crystallographically characterized REMB complex with substrate bound enabled stoichiometric and catalytic reactivity studies, wherein we observed that substrate deprotonation by the catalyst framework was necessary to achieve selectivity. Our spectroscopic observations in LA/BB catalysis are inconsistent with previous mechanistic proposals, which considered only tris(BINOLate) species as active catalysts. These findings significantly expand our understanding of the catalyst structure in these privileged multifunctional frameworks and identify new directions for development of new catalysts.

  14. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    SciTech Connect

    Pete McGrail

    2016-03-14

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The rare earth element uptake testing was conducted at room temperature.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  17. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    USGS Publications Warehouse

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  18. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  19. Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2011-03-31

    light rare earths (lanthanum, cerium, praseodymium , neodymium, promethium, samarium) and heavy rare earths (europium, gadolinium, terbium, dysprosium...rare earth elements cerium, lanthanum, praseodymium , and neodymium. However, the Mountain Pass mine will not immediately be able to refine rare earth

  20. Relativistic Quantum Chemistry of Heavy Elements: Interatomic potentials and Lines Shift for Systems 'Alkali Elements-Inert Gases'

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Mischenko, E.

    2009-03-09

    New relativistic approach, based on the gauge-invariant perturbation theory (PT) with using the optimized wave functions basis's, is applied to calculating the inter atomic potentials, hyper fine structure (hfs) collision shift for alkali atoms in atmosphere of inert gases. Data for inter atomic potentials, collision shifts of the Rb and Cs atoms in atmosphere of the inert gas He are presented.

  1. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium.

  2. Heterogeneous accretion and the moderately volatile element budget of Earth.

    PubMed

    Schönbächler, M; Carlson, R W; Horan, M F; Mock, T D; Hauri, E H

    2010-05-14

    Several models exist to describe the growth and evolution of Earth; however, variables such as the type of precursor materials, extent of mixing, and material loss during accretion are poorly constrained. High-precision palladium-silver isotope data show that Earth's mantle is similar in 107Ag/109Ag to primitive, volatile-rich chondrites, suggesting that Earth accreted a considerable amount of material with high contents of moderately volatile elements. Contradictory evidence from terrestrial chromium and strontium isotope data are reconciled by heterogeneous accretion, which includes a transition from dominantly volatile-depleted to volatile-rich materials with possibly high water contents. The Moon-forming giant impact probably involved the collision with a Mars-like protoplanet that had an oxidized mantle, enriched in moderately volatile elements.

  3. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    PubMed

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium.

  4. Coal fly ash as a resource for rare earth elements.

    PubMed

    Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena

    2015-06-01

    Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.

  5. Uncovering the end uses of the rare earth elements.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies.

  6. Contamination in the Rare-Earth Element Orthophosphate Reference Samples

    PubMed Central

    Donovan, John J.; Hanchar, John M.; Picolli, Phillip M.; Schrier, Marc D.; Boatner, Lynn A.; Jarosewich, Eugene

    2002-01-01

    Several of the fourteen rare-earth element (plus Sc and Y) orthophosphate standards grown at Oak Ridge National Laboratory in the 1980s and widely distributed by the Smithsonian Institution’s Department of Mineral Sciences, are significantly contaminated by Pb. The origin of this impurity is the Pb2P2O7 flux that is derived from the thermal decomposition of PbHPO4. The lead pyrophosphate flux is used to dissolve the oxide starting materials at elevated temperatures (≈1360 °C) prior to the crystal synthesis. Because these rare-earth element standards are extremely stable under the electron beam and considered homogenous, they have been of enormous value to electron probe micro-analysis (EPMA). The monoclinic, monazite structure, orthophosphates show a higher degree of Pb incorporation than the tetragonal xenotime structure, orthophosphates. This paper will attempt to describe and rationalize the extent of the Pb contamination in these otherwise excellent materials. PMID:27446762

  7. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    NASA Astrophysics Data System (ADS)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for

  8. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  9. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  10. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  11. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.

  12. Uncovering the global life cycles of the rare earth elements.

    PubMed

    Du, Xiaoyue; Graedel, T E

    2011-01-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements.

  13. Uncovering the Global Life Cycles of the Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyue; Graedel, T. E.

    2011-11-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging, critical technologies. Knowledge of the life cycles of REE remains sparse, despite the current heightened interest in their future availability. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supplies vulnerable to short and long-term disruption. To provide an improved perspective we derived the first quantitative life cycles (for the year 2007) for ten REE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and yttrium (Y). Of these REE, Ce and Nd in-use stocks are highest; the in-use stocks of most REE show significant accumulation in modern society. Industrial scrap recycling occurs only from magnet manufacture. We believe there is no post-customer recycling of any of these elements.

  14. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.

  15. The Earth Based Ground Stations Element of the Lunar Program

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis; Schier, James; Lee, Charles

    2007-01-01

    The Lunar Architecture Team (LAT) is responsible for developing a concept for building and supporting a lunar outpost with several exploration capabilities such as rovers, colonization, and observatories. The lunar outpost is planned to be located at the Moon's South Pole. The LAT Communications and Navigation Team (C&N) is responsible for defining the network infrastructure to support the lunar outpost. The following elements are needed to support lunar outpost activities: A Lunar surface network based on industry standard wireless 802.xx protocols, relay satellites positioned 180 degrees apart to provide South Pole coverage for the half of the lunar 28-day orbit that is obscured from Earth view, earth-based ground stations deployed at geographical locations 120 degrees apart. This paper will focus on the Earth ground stations of the lunar architecture. Two types of ground station networks are discussed. One provides Direct to Earth (DTE) support to lunar users using Kaband 23/26Giga-Hertz (GHz) communication frequencies. The second supports the Lunar Relay Satellite (LRS) that will be using Ka-band 40/37GHz (Q-band). This paper will discuss strategies to provide a robust operational network in support of various lunar missions and trades of building new antennas at non-NASA facilities, to improve coverage and provide site diversification for handling rain attenuation.

  16. Germanium and Rare Earth Element accumulation in woody bioenergy crops

    NASA Astrophysics Data System (ADS)

    Hentschel, Werner

    2016-04-01

    Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg-1 (Ge 1.6 mgṡkg-1, Nd 25 mgṡkg-1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg-1Nd) were several times higher than in herbaceous species (0.05 mgṡkg-1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within the tree

  17. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    PubMed

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  18. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    SciTech Connect

    Laul, J.C.; Lepel, E.A.

    1986-04-21

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10/sup -4/ g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization.

  19. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  20. Binding in alkali and alkaline-earth tetrahydroborates: Special position of magnesium tetrahydroborate

    NASA Astrophysics Data System (ADS)

    Łodziana, Zbigniew; van Setten, Michiel J.

    2010-01-01

    Compounds of light elements and hydrogen are currently extensively studied due to their potential application in the field of hydrogen or energy storage. A number of new interesting tetrahydroborates that are especially promising due to their very high gravimetric hydrogen content were recently reported. However, the determination and understanding of their complex crystalline structures has created considerable debate. Metal tetrahydroborates, in general, form a large variety of structures ranging from simple for NaBH4 to very complex for Mg(BH4)2 . Despite the extensive discussion in the literature no clear explanation has been offered for this variety so far. In this paper we analyze the structural and electronic properties of a broad range of metal tetrahydroborates and reveal the factors that determine their structure: ionic bonding, the orientation of the BH4 groups, and the coordination number of the metal cation. We show, in a simple way, that the charge transfer in the metal tetrahydroborates rationally explains the structural diversity of these compounds. Being ionic systems, the metal tetrahydroborates fall into the classification of Linus Pauling. By using the ionic radius for the BH4 group as determined in this paper, this allows for structural predictions for new and mixed compounds.

  1. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, R.C.; Nordstrom, D.K.; Taylor, H.E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  2. Mimicking the magnetic properties of rare earth elements using superatoms.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  3. Mineralogical, chemical composition and distribution of rare earth elements in clay-rich sediments from Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Odoma, A. N.; Obaje, N. G.; Omada, J. I.; Idakwo, S. O.; Erbacher, J.

    2015-02-01

    Cretaceous claystone sediments from Enugu, Southeastern, Nigeria were analyzed for their mineralogy and chemistry. Major minerals are quartz and kaolinite while montmorillonite is in minor quantity. The sediments are silica-rich, but showed low values of Al, Fe, Sc and Cr. The values of the chemical index of alteration (CIA) ranged from 89.9 to 94.5 and the values of chemical index of weathering (CIW) ranged from 95.1 to 98.9. Low contents of the alkali and alkali earth elements (Na, K, Mg, Al, Ca) of the clay-rich sediments suggest a relatively more intense weathering of source area. Depleted Ba, Rb, Ca, and Mg suggest that they were probably flushed out by water during sedimentation. The mineralogical composition, REE contents, and elemental ratios in the sediments suggest a provenance from mainly felsic rocks, with only minor contributions from basic sources. Despite intense weathering the REE, Th, and Sc remained in the clays suggesting that they were immobile.

  4. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India.

    PubMed

    Emmanuel, E S Challaraj; Ananthi, T; Anandkumar, B; Maruthamuthu, S

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  5. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  6. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  7. Bacterial Cell Surface Adsorption of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  8. Diagenetic uptake of rare earth elements by conodont apatite

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.

    2015-12-01

    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly <40 (mean ~33), values that are consistent with derivation of >90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1

  9. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  10. Behavior of Rare Earth Elements in Fractured Aquifers

    NASA Astrophysics Data System (ADS)

    Lee, S.; Kim, Y.; Lee, K.

    2003-12-01

    An understanding of the geochemistry of potential host rocks is very important in the site evaluation for construction of an underground geologic repository for radioactive waste. Because of similar valence and ionic radii and high similarity in electronic structure with trivalent actinides (such as Am3+ and Cm3+), the rare earth elements (REEs) have been used to predict the behavior of actinide-series elements in solution. For Am and Cm, which occur only in the trivalent states in most waste-disposal repository environments, the analogy with the REEs is particularly relevant. Krauskopf calculated the retardation factors for radionuclides in various rock materials based on some compiled data. But, in general, because the transuranic actinides do not occur naturally in appreciable quantities, their behaviors in repository environments cannot be predicted from evidence of their movement in geologic environments (mainly in groundwater) over geologic timespans. Predictions about long-term future behavior of transuranic actinides have therefore been made by extrapolation from short-term observations of their chemical properties in laboratory experiments or in field tests, but such extrapolation is fraught with uncertainty. In order to verify the behavior of Eu in various geological environments, we estimated the abundance of rare earth elements in three gneiss bodies originated from different geological environments and volcanic tuff. We also carried out some leaching experiment of fracture-filling calcite precipitated due to changes of geochemical environment in paleo-groundwater. Of the three gneisses, two gneisses are granitic-granodioritic origin and the other is tonaltic-trondjemitic origin. As a result, we could observe that Eu had a close relationship with fracture-filling calcite precipitation due to water-rock interaction. Our results show that Eu is the most variable element of REEs for the hydrogeological environment such as change of oxidation-reduction and

  11. The chemistry of rare earth elements in the solar nebula

    NASA Technical Reports Server (NTRS)

    Larimer, J. W.; Bartholomay, H. A.; Fegley, B.

    1984-01-01

    The high concentration of rare earth elements (REE) in primitive CaS suggests that the REE along with the other normally lithophile elements form stable sulfides under the unusual conditions which existed during the formation of enstatite chrondites. In order to acquire a more quantitative framework in which to interpret these data, the behavior of the REE in systems with solar, or slightly fractionated solar, composition is being studied. These new data introduce modest changes in the behavior of some of the REE when compared to previous studies. For example, the largest differences are in the stabilities of the gaseous monoxides of Ce, Eu, Tb, Ho, and Tm, all of which now appear to be less stable than previously thought, and YbO(g) which is somewhat more stable. Much more significant are the changes in REE distribution in the gas phase in fractionated systems, especially those made more reducing by changing the C/O ratio from the solar value of 0.6 to about 1.0. In almost all cases, the exceptions being Eu, Tm and Yb whose elemental gaseous species dominate, the monosulfides become more abundant. Moreover, the solid oxides of Eu, Tm and Yb become less stable under more reducing conditions which, in effect, should reduce the condensation temperature of all REE in more reduced systems.

  12. Revisiting the rare earth elements in foraminiferal tests [rapid communication

    NASA Astrophysics Data System (ADS)

    Haley, Brian A.; Klinkhammer, Gary P.; Mix, Alan C.

    2005-10-01

    Are the rare earth elements (REEs) in foraminifera a valuable proxy for use in paleoceanographic and climate change studies? In order to investigate this, we attempted a comprehensive study of REEs in planktonic and benthic foraminifera. Several different cleaning protocols were tested. Although the hydroxylamine used to clean all foraminifera in this study removes an unidentified source of REE contamination, it seems to remobilize metal oxides that are otherwise unaffected in flow-through dissolution. The calculated REE distribution coefficients, KD(REE)s, are between 100 and 500 for both planktonic and benthic foraminifera. These KDs are high compared to other elements in biogenic calcite but can be explained through a general model of element incorporation during foraminiferal calcification. From data taken from eight core tops in the southeast Pacific, we conclude that the REEs in planktonic foraminifera are, indeed, useful as a proxy for upper ocean water mass and mixed layer biogenic productivity. Alternatively, the REEs in benthic foraminifera are useful as a proxy for carbon flux to the sea floor. These proxies should be robust down core unless the sediments have undergone anoxic diagenesis, which stabilizes Fe carbonate thus overprinting the primary REE signature. However, it is clear from REE distributions in foraminiferal tests if anoxic conditions have occurred.

  13. Lunar anorthosites: rare-Earth and other elemental abundances.

    PubMed

    Wakita, H; Schmitt, R A

    1970-11-27

    Elemental abundances of major (Ti, Al, Fe, and Ca), minor (Na, Mn, and Cr), and trace elements [14 rare-earth elements (REE), Y, In, Cd, Rb, Cs, Ba, Co, and Sc] in lunar anorthosites separated from Apollo 11 sample 10085 coarse fines have been determined by means of instrumental and radiochemical neutron activation analysis. The REE distribution pattern of lunar anorthosites, relative to ordinary chondrites, has a positive Eu anomaly. On the assumption that (i) the lunar composition is similar to that of ordinary chondritic meteorites low in total Fe ( approximately 13 percent); (ii) lunar anorthosites are derived from highland cratering events and are representative of the highlands; and (iii) the moon differentiated into olivine, hypersthene, and basaltic and anorthositic phases, and plagioclase crysstallization began after approximately 93 percent solidification, then mass balance calculations yield approximately 30-kilometer and approximately 10-kilometer thicknesses for the lunar highlands for the melting and chemical differentiation of the entire moon and of the upper 200 kilometers, respectively. Corresponding thicknesses of the basaltic basement rocks were approximately 5 kilometers and approximately 2 kilometers, respectively. Alternatively, if the anorthosites of this study are representative of the highlands and the onset of plagioclase crystallization occurred after approximately 50 percent solidification of the initially melted moon, calculations with REE and Ba partition coefficients suggest that the REE and Ba abundances in the primeval moon were similar to those observed in basaltic achondrites.

  14. The elements of the Earth's magnetism and their secular changes between 1550 and 1915

    NASA Technical Reports Server (NTRS)

    Fritsche, H.

    1983-01-01

    The results of an investigation about the magnetic agents outside the Earth's surface as well as the Earth's magnetic elements for the epochs 1550, 1900, 1915 are presented. The secular changes of the Earth's magnetic elements during the time interval 1550 - 1900 are also included.

  15. The Marine Geochemistry of the Rare Earth Elements

    DTIC Science & Technology

    1983-09-01

    C3): 2045-2056. BACON, M.P., P.G. BREWER, D.W. SPENCER, T.W. MURRAY & T. GODDARD (1980). Lead - 210 , polonium - 210 , manganese and iron in the Cariaco...191 La and Pr 197 Ce: its oxidation and reduction 197 Eu 207 4.5. Conclusions 210 CHAPTER 5. Behaviour of the Rare Earth Elements in anoxic waters of...0.142 140Ce(n, )14ICe 0.58 0.48 2.89 0.0053 41Pr(n,e.)142Pr 11.5 14.1 57.4 0.17 l46Nd(n,a-)l47Nd 1.4 3.2 6.98 0.0039 152Sni(n,a)153Sm 210 2530 1047

  16. Rare earth elements in parasol mushroom Macrolepiota procera.

    PubMed

    Falandysz, Jerzy; Sapkota, Atindra; Mędyk, Małgorzata; Feng, Xinbin

    2017-04-15

    This study aimed to investigate occurrence and distribution of 16 rare earth elements (REEs) in edible saprobic mushroom Macrolepiota procera, and to estimate possible intake and risk to human consumer. Mushrooms samples were collected from sixteen geographically diverse sites in the northern regions of Poland. The results showed that for Ce as the most abundant among the RREs in edible caps, the mean concentration was at 0.18±0.29mgkg(-1)dry biomass. The mean concentration for Σ16 REEs determined in caps of fungus was 0.50mgkg(-1)dry biomass and in whole fruiting bodies was 0.75mgkg(-1)dry biomass. From a point of view by consumer, the amounts of REEs contained in edible caps of M. procera could be considered small. Hence, eating a tasty caps of this fungus would not result in a health risk for consumer because of exposure to the REEs.

  17. Lunar Volatiles: An Earth-Moon Perspective

    NASA Technical Reports Server (NTRS)

    Jones, John H.

    2011-01-01

    It has generally been accepted that the Moon is depleted in volatile elements. However, the recent discovery of measurable water in lunar glasses and apatites suggests that volatiles are not as depleted as was once thought. And, in fact, some authors have claimed that water contents of the lunar and terrestrial mantles are similar. Moderately volatile alkali elements may have a bearing on this issue. In general, bulk Moon alkalis are depleted relative to the bulk silicate Earth. Although the bulk lunar chemical composition is difficult to reconstruct, good correlations of alkali elements with refractory lithophile incompatible trace elements make this conclusion robust. These observations have been taken to mean that the Moon overall is depleted in volatiles relative to the Earth. Since water is more volatile than any of the alkali elements, presumably this conclusion is true for water, or even more so.

  18. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere.

  19. Rare Earth elements in individual minerals in Shergottites

    NASA Technical Reports Server (NTRS)

    Wadhwa, Meenakshi; Crozaz, Ghislaine

    1993-01-01

    Shergottites (i.e., Shergotty, Zagami, EETA79001, ALHA77005, and LEW88516) are an important set of achondrites because they comprise the majority of the SNC group of meteorites (nine, in total, known to us), which are likely to be samples of the planet Mars. Study of these meteorites may therefore provide valuable information about petrogenetic processes on a large planetary body other than Earth. Rare earth element (REE) distributions between various mineral phases were found to be useful in geochemically modeling the petrogenesis of various rock types (terrestrial and meteoritic). However, with the exception of a few ion microprobe studies and analyses of mineral separates, there has previously not been any comprehensive effort to characterize and directly compare REE in individual minerals in each of the five known shergottites. Ion microprobe analyses were made on thin sections of each of the shergottites. Minerals analyzed were pyroxenes (pigeonite and augite), maskelynite, and whitlockite. The REE concentrations in each mineral type in each shergottite is given.

  20. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  1. Alkali element enrichments on the BABBs at the IODP Expedition 333 Site C0012 in the northern Shikoku Basin

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Nakamura, K.; Fujinaga, K.

    2015-12-01

    The Shikoku Basin is a back arc basin located westside of the Izu-Ogasawara (Bonin) arc, spreading was from 25 to 15 Ma. The drilling of the DSDP, ODP and IODP recovered the backarc basin basalt (BABB) of the Shikoku Basin. Site C0012, south of the Kii Peninsula, was operated during the IODP Exp 333, and BABB was recovered 100m thickness under the 520m of sediment. This BABB is divided into upper aphyric pillow (Unit 1) and lower massive flow (Unit 2) divided at the 560 mbsf, and show variable degree of alteration, clay mineral and zeolite depositions. SiO2 and MgO contents of these basalts are 47-55 and 5-8 wt%. These basalts show wide variation of enrichment of alkali elements, 2.3-7.5 and 0.4-4.2 wt% of Na2O and K2O. Na2O+K2O contents show 3.2-8.0 wt%, and 2 wt% higher trends than other BABBs in the Shikoku Basin at the same SiO2 contents. Na2O and K2O show proportional and anti-proportional trends with increasing LOI. Therefore, both alkali element enrichments in these rocks are caused by secondary mineralization, and host phase of Na2O is hydrous and that of K2O is anhydrous minerals. Secondary mineral phases was mainly identified by XRD. The identified host phases of Na are analcime and thomsonite. Analcime is observed in rocks of more than 4 wt% of Na2O. Chlorite and smectite are identified to clay minerals. This mineral assemblage indicates the high-temperature zeolite facies alteration. The host phases of K are mainly identified into K-feldspar. We assume that secondary mineralization of K-fd is associated with low-temperature albitization. Compared to the lithostratigraphy, the Na enrichment is prominent in the Unit 1 and upper 20 m of the Unit 2, and the K enrichment is prominent in lower part of the Unit 2. We consider that the Na enrichment associated with zeolite depositions occurred under high water/rock ratio with active hydrothermal circulation because of high water permeability of pillow lava, and K enrichment associated with albitization occurred

  2. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish.

    PubMed

    Wang, Lihong; Huang, Xiaohua; Zhou, Qing

    2008-09-01

    In order to investigate the effects of rare earth elements (REEs) on horseradish, the distribution of the mineral elements and heavy metals in different organs of horseradish have been studied by using inductively coupled plasma-atomic emission spectrometry (ICP-AES). Meanwhile, three variable major parameters, namely the concentration of REEs, the type of REEs, and the growth stage of plant were chosen. The results indicated that the test REEs, Ce(III) and Tb(III), could be accumulated in leaves, stems and roots of horseradish. In addition, we found that the content of mineral elements was increased in horseradish treated with 20mgl(-1) of Ce(III), but not those with the 20mgl(-1) of Tb(III). Moreover, the content of mineral elements in horseradish was decreased with the increasing concentration of REEs (100, 300mgl(-1)). Furthermore, we found that there were the opposite effects on the content of the heavy metals in horseradish treated with REEs. Finally, we found that the effect of REEs on the accumulation of REEs, and the content of mineral elements or heavy metals of horseradish during vigorous growth stage, no matter positive or negative, was more obvious than that of the other growth stages. These results demonstrated that the distribution behaviors of mineral elements and heavy metals in horseradish can be affected by the type and concentration of REEs, and the growth period of plant.

  3. Separation/Preconcentration Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Bin; He, Man; Chen, Beibei; Jiang, Zucheng

    2016-10-01

    The main aim of this chapter exactly characterizes the contribution. The analytical chemistry of the rare earth elements (REEs) very often is highly complicated and the determination of a specific element is impossible without a sample pre-concentration. Sample preparation can be carried out either by separation of the REEs from the matrix or by concentrating the REEs. The separation of REEs from each other is mainly made by chromatography. At the beginning of REE analysis, the method of precipitation/coprecipitation was applied for the treatment of REE mixtures. The method is not applicable for the separation of trace amounts of REEs. The majority of the methods used are based on the distribution of REEs in a two-phase system, a liquid-liquid or a liquid-solid system. Various techniques have been developed for the liquid-liquid extraction (LLE), in particular the liquid phase micro-extraction. The extraction is always combined with a pre-concentration of the REEs in a single drop of extractant or in a hollow fiber filled with the extractant. Further modified techniques for special applications and for difficult REE separation have been developed. Compared to the LLE, the solid phase micro-extraction is preferred. The method is robust and easy to handle, in which the solid phase loaded with the REEs can be used directly for subsequent determination methods. At present, very new solid materials, like nanotubes, are developed and tested for solid phase extraction.

  4. Pb and rare earth element diffusion in xenotime

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of Pb and the rare earth elements Sm, Dy and Yb have been characterized in synthetic xenotime under dry conditions. The synthetic xenotime was grown via a Na 2CO 3-MoO 3 flux method. The sources of diffusant for the rare earth diffusion experiments were REE phosphate powders, with experiments run using sources containing a single REE. For Pb, the source consisted a mixture of YPO 4 and PbTiO 3. Experiments were performed by placing source and xenotime in Pt capsules, and annealing capsules in 1 atm furnaces for times ranging from 30 min to several weeks, at temperatures from 1000 to 1500 °C. The REE and Pb distributions in the xenotime were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relations are obtained for diffusion in xenotime, normal to (101): D=1.5×10exp⁡(-441±12 kJmol/R⁢T)ms.D=9.0×10exp⁡(-349±16 kJmol/R⁢T)ms.D=3.9×10exp⁡(-362±13 kJmol/R⁢T)ms. Diffusivities among the REE do not differ greatly in xenotime over the investigated temperature range, in contrast to findings for the REE in zircon [Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997. Rare earth diffusion in zircon. Chem. Geol. 134, 289-301.], where the LREE diffuse more slowly, and with higher activation energies for diffusion, than the heavier rare earths. In zircon, these differences among diffusion of the rare earths are attributed to the relatively large size of the REE with respect to Zr, for which they likely substitute in the zircon lattice. With the systematic increase in ionic radius from the heavy to lighter REE, this size mismatch becomes more pronounced and diffusivities of the LREE are as consequence slower. Although xenotime is isostructural with zircon, the REE are more closely matched in size to Y, so in xenotime this effect appears much smaller and the REE diffuse at similar rates. In addition, the process of diffusion in xenotime likely involves simple REE + 3 → Y + 3 exchange, without charge compensation as needed

  5. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  6. Rare Earth Elements reveal past earthquakes on limestone normal faults

    NASA Astrophysics Data System (ADS)

    Manighetti, I.; Boucher, E.; Chauvel, C.; Schlagenhauf, A.; Benedetti, L.

    2009-12-01

    In 2008, we suggested that the chemical composition of the rocks which form well preserved, seismically exhumed fault scarps might record past major earthquakes (Carcaillet et al., 2008) because those scarp surfaces consist of a vertical succession of zones that have been exposed at different times by the repeating earthquakes, thus weathered over different time spans. In this pioneer study, we validated this hypothesis using the changes in chemical compositions (major and trace elements) of 15 carbonate rock samples collected from the base to the top of the seismically exhumed, 10 m-high Magnola normal fault scarp (Abruzzes, Central Italy). However, the number of available samples was insufficient to fully assess the validity of the model. Here we present trace element data on 27 additional samples collected systematically every 25 cm along the Magnola scarp, as well as on 7 scarp samples buried below the colluvium hence representing the first 4 meters of the scarp before exhumation. The scarp rocks buried in the first meter of the ground appear significantly enriched in Rare Earth elements (REE): they contain 60% more REE than the rocks located either deeper in the ground or immediately above the ground level. This concentration peak most probably results from enrichment of the scarp rocks by interaction with the impurity-doped, acidic, upper soil. Above the ground surface and along the scarp, most element concentrations (70%) decrease up-dip, generally by more than 50%; we attribute this trend to leaching and dissolution-recrystallization of purer calcite through time. The top of the scarp having been exposed for a longer period of time, its surface lost more of the trace elements contained in the rocks. However, the upward decrease in REE contents is not linear and 4 REE concentration peaks can be recognized along the exposed scarp. The position of these 4 peaks coincide with the zones identified by Schlagenhauf et al. (2009) and Palumbo et al. (2004) as

  7. Geochemical characteristics of rare earth elements in soil of the Ditru Massif, Eastern Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Ion, Adriana

    2013-04-01

    The present paper describes the level of rare earth elements in soils developed from Ditrău massif area for evaluating of the background of these elements and accurate assessment of environmental impact. Also this paper contributed to understanding the important role of parent rocks in pedogenic processes. The Ditrău Alkaline Massif represent an intrusion body with a internal zonal structure, which was emplaced into pre-Alpine metamorphic rocks of the Bucovinian nappe complex close the Neogene - Quaternary volcanic arc of the Calimani-Guurghiu- Harghita Mountain chain. The center of massif was formed by nepheline syenite, which is surrounded by syenite and monazonite. North-western and north-eastern marginal sectors are composed of hornblende gabbro/hornblendite, alkali diorite, monzodiorite, monzosyenites and alkali granite. Small discrete ultramafic bodies (kaersutite-bearing peridotite, olivine, pyroxenite and hornblendite) and alkali gabbros occur in the Jolotca area. All this rocks are cut by late-stage dykes with a large variety of composition including tinguaite, phonolite, nepheline syenite, microsyenite, and aplite. The types of soils predominant in this zone are lithosoils. These soils are shallow developed, have low content in organic matter and reflects mineralogical and geochemical composition of the bedrock. The soil samples were collected from 70 location for all type of representative rocks (approximately 10 soil sampling points for each type of rock). The samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The pH values of these samples varied from 3.6 to 7.3, in general, the soils from massif area are acid or weakly acidic. The pH controls the abundance of REE in soil, the concentration of REE increases with decreasing pH values. In soil samples analyzed the contents of REE follow the order: Ce > La > Nd > Pr > Sm > Eu > Gd > Dy > Yb > Er > Tb > Ho >Tm. ∑ REE varied from 52.59 μg g-1 to 579.2 μg g-1 , the average

  8. Rare earth elements exploitation, geopolitical implications and raw materials trading

    NASA Astrophysics Data System (ADS)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  9. Targeting heavy rare earth elements in carbonatite complexes

    NASA Astrophysics Data System (ADS)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  10. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers.

    PubMed

    WERMAN, R; GRUNDFEST, H

    1961-05-01

    Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K(+) is diminished, all effects which indicate diminished K(+) conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na(+), since its presence in low concentrations potentiates the effects of Ba(++), but the alkali-earth ions and TEA can also carry inward charge. Ba(++), Sr(++), and TEA appear to be more effective than is Ca(++) in its normal role, which is probably to depress K(+) conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.

  11. Rare earth elements as a fingerprint of soil components solubilization

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Grybos, M.; Gruau, G.; Pédrot, M.; Dia, A.

    2009-04-01

    The retention of rare earth element (REE) in the soil profile are mainly controlled by three factors, (i) the stability of the primary REE-carrying minerals, (ii) the presence of secondary phases as clays and Fe- and Mn-oxyhydroxides and (ii) the concentration of colloidal organic matter (OM). Considering that each soil phases (mineral or organic) displays (ii) various surface properties, such as specific area, surface sites density and nature and (ii) their own REE distribution inherited from the rock weathering, their mobilization through various chemical reactions (dissolution, colloidal release….) may involve the development of various shaped REE patterns in the soil solutions. REE fractionation from the different soil phases may therefore be used to identify the response of the soil system to a particular chemical process such as reductive and/or acidic dissolution. To test this purpose, an organic-rich wetland soil sample was incubated under anaerobic condition at both pH 5 and uncontrolled pH. The REE patterns developed in the soil solution were then compared to the REE patterns obtained through either aerobic at pH 3 and 7 incubations or a chemical reduction experiment (using hydroxylamine). REE patterns in anaerobic and aerobic at pH 7 experiments exhibited the same middle rare earth element (MREE) downward concavity significant of the complexation of REE with soil OM. By contrast, under acidic condition, the REE pattern exhibited a positive Eu anomaly due to the dissolution of soil feldspar. Finally, REE pattern obtained from the chemical reducing experiment showed an intermediary flat shape corresponding to a mixing between the soil organic and mineral phases dissolution. The comparison of the various REE pattern shapes allowed to conclude that (i) biological reduction of wetland soil involved amorphous Fe(III) colloids linked to OM and, (ii) that the REE mobility was controlled by the dynamic of OM in wetland soil. They also evidence the potential of

  12. Rare earth elements in scleractinian cold-water corals

    NASA Astrophysics Data System (ADS)

    Raddatz, J.; Liebetrau, V.; Hathorne, E. C.; Rüggeberg, A.; Dullo, W.; Frank, M.

    2012-12-01

    The Rare Earth Elements (REE) have a great potential to trace continental input, particle scavenging and the oxidation state of seawater. These REE are recorded in the skeleton of the cosmopolitan cold-water corals Lophelia pertusa. Here we use an online preconcentration ICP-MS method (Hathorne et al. 2012) to measure REE concentrations in seawater and associated cold-water coral carbonates in order to investigate their seawater origin. Scleractinian cold-water corals were collected in-situ and alive and with corresponding seawater samples covering from the European Continental Margin. The seawater REE patterns are characterized by the typical negative cerium anomaly of seawater, but are distinct for the northern Norwegian Margin and the Oslo Fjord, probably related to continental input. Initial results for the corresponding coral samples suggest that these distinct REE patterns of ambient seawater are recorded by the coral skeletons although some fractionation during incorporation into the aragonite occurs. This indicates that scleractinian cold-water corals can serve as a valuable archive for seawater derived REE signatures, as well radiogenic Nd isotope compositions. In a second step we analysed fossil coral samples from various locations, which were oxidatively and reductively cleaned prior to analysis. Initial results reveal that sediment-buried fossil (early Pleistocene to Holocene) coral samples from the Norwegian Margin and the Porcupine Seabight (Challenger Mound, IODP Site 1317) do not show the expected seawater REE patterns. In particular, the fossil coral-derived REE patterns lack a negative cerium anomaly suggesting that fossil coral-REE patterns do not represent ambient seawater. Thus, we suggest that the oxidative-reductive cleaning method widely used for cleaning of marine carbonates such as foraminifera prior to measurements of seawater-derived trace metal and isotope compositions are not sufficient for REE and Nd isotopes in sediment-buried coral

  13. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  14. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  15. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    NASA Technical Reports Server (NTRS)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  16. Effects of spraying rare earths on contents of rare Earth elements and effective components in tea.

    PubMed

    Wang, Dongfeng; Wang, Changhong; Ye, Sheng; Qi, Hongtao; Zhao, Guiwen

    2003-11-05

    Rare earth (RE) fertilizer is widely applied in China to increase the yield and the quality of crops including tea. However, the effects of spraying RE fertilizer on the contents of rare earth elements (REE) and effective components in tea are unknown. The results from basin and field experiments show that the values of the REE concentrations in new shoots of tea plants and the concentration of REE in the soil (REE/REEs) either from control basins or from treatment basins were smaller than those in other parts of tea plant and similar between control and treatment. The longer the interval between spraying RE fertilizer and picking the shoots of tea plants, the less the effects from spraying. About 80% summation operator REE (the sum of the concentrations of 15 REE) in tea, whether it came from spraying or not, was insoluble in the infusion. About 10% the soluble REE of summation operator REE in tea infusion was bound to polysaccharide, and the amount of REE bound polysaccharide decreased over time. At least a 25 day safety interval is needed between spraying and picking if the microelement fertilizer is used, in order to enhance tea output and to ensure tea safety.

  17. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  18. Spectroscopy of Luminescent Crystals Containing Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Chen, Meng-Ling; Lii, Kwang-Hwa; Chang, Bor-Chen

    2013-06-01

    We have studied the spectroscopy of luminescent crystals containing rare earth elements such as KEuGe_2O_6, Cs_3EuSi_6O_{15}, K_4[(UO_2)Eu_2(Ge_2O_7)_2], and R_2(C_8H_{10}O_4)_3 (R= Y, Tb, or Eu). The emission and excitation spectra of these compounds were recorded at ambient temperature. These spectra are consistent with the structures which were determined by single crystal X-ray diffraction. Crystals containing hybrid luminescent centers were also synthesized and interesting energy transfer mechanisms were observed. For example, dramatic luminescence quenching was found in KEu_xNd_{1-x}Ge_2O_6 (x= 0.98, 0.96, 0.94, and 0.84) as well as in Cs_3Eu_{0.98}Nd_{0.02}Si_6O_{15}, while different compositions of Y_xEu_yTb_{2-x-y}(C_8H_{10}O_4)_3 exhibit different emission colors. Emission lifetimes were also measured for these compounds, and the results shed light on the energy transfer mechanisms. Detailed results of our research will be presented. P.-L. Chen, P.-Y. Chiang, H.-C. Yeh, B.-C. Chang, and K.-H. Lii, Dalton Trans., 1721 (2008). M.-Y. Hung, Y.-H. Chen, B.-C. Chang, and K.-H. Lii, Chem. Mater. 17, 5743 (2005).

  19. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  20. Rare earth element budgets in subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2012-12-01

    Subduction zone fluids play a fundamental role in the geochemical cycle of the Earth. The nature and composition of these fluids are determined by complex processes and still poorly understood. As a result of a variety of metasomatic and partial melting events, arc-related magmas display a typical trace element abundance spectrum, in which the rare earth elements' (REE) signature is an important record of petrogenetic processes. Therefore, investigating the behavior of REE in fluids at high pressure (P) and temperature (T) conditions is crucial for constraining fluid composition, as well as understanding subduction-zone processes in general. However, up to date, the experimental studies on REE solubility and speciation are limited to quite low P-T conditions (300 °C, saturated water vapor pressure) [1]. The theoretical predictions of the stability of REE complexes have been performed up to 350 °C [2] and 1000 °C, 0.5 GPa [3] by the extrapolation of thermodynamic data obtained at ambient conditions. In this study we present new experimental data on REE silicate (REE2Si2O7) solubility in aqueous quartz saturated fluids, containing various ligands, at conditions relevant for subducting slabs (600, 700, 800 °C, 2.6 GPa). The aim of the experiments was to investigate the relative effect of temperature and ligands on the solubility of REE. The experiments were conducted in an end-loaded piston-cylinder apparatus and the fluids were in situ sampled at P-T in the form of primary fluid inclusions in quartz [4]. The gold capsule was typically loaded with a chip of synthetic REE silicate (La,Nd,Gd,Dy,Er,Yb)2Si2O7, an aqueous fluid (~20 wt.%) and a piece of natural quartz. During the experiment (24-48 h) a thermal gradient along the capsule promoted intensive dissolution of quartz at the hottest part and precipitation of new quartz at the cooler part of the capsule, allowing the primary fluid inclusions to be trapped (~30-50 μm). Rubidium and cesium were added to the

  1. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  2. Recovery and Separation of Rare Earth Elements Using Salmon Milt

    PubMed Central

    Takahashi, Yoshio; Kondo, Kazuhiro; Miyaji, Asami; Watanabe, Yusuke; Fan, Qiaohui; Honma, Tetsuo; Tanaka, Kazuya

    2014-01-01

    Recycling rare earth elements (REEs) used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i) salmon milt has a sufficiently high affinity to adsorb REEs and (ii) the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy) and lutetium (Lu) LIII-edge extended x-ray absorption fine structure (EXAFS) spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid) revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption–desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt. PMID:25490035

  3. Attenuation of rare earth elements in a boreal estuary

    NASA Astrophysics Data System (ADS)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity < 6‰). Surface water was collected in a transect from the creek mouth to the outer estuary, and settling (particulate) material in sediment traps moored at selected locations in the estuary. Ultrafiltration, high-resolution ICP-MS and modeling were applied on the waters, and a variety of chemical reagents were used to extract metals from the settling material. Aluminium, Fe and REE transported by the acidic creek were extensively removed in the inner/central estuary where the acidic water was neutralised, whereas Mn was relatively persistent in solution and thus redistributed to particles and deposited further down the estuary. The REE removal was caused by several contemporary mechanisms: co-precipitation with oxyhydroxides (mainly Al but also Fe), complexation with flocculating humic substances and sorption to suspended particles. Down estuary the dissolved REE pool, remaining after removal, was fractionated: the <1 kDa pool became depleted in the middle REE and the colloidal (0.45 μm-1 kDa) pool depleted in the middle and heavy REE. This fractionation was controlled by the removal process, such that those REE with highest affinity for the settling particles became most depleted in the remaining dissolved pool. Modeling, based on Visual MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  4. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  5. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    NASA Technical Reports Server (NTRS)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  6. Miocene Coral Skeleton Rare Earth Element Patterns Reflect River Discharge

    NASA Astrophysics Data System (ADS)

    Mertz-Kraus, R.; Brachert, T. C.; Jochum, K. P.

    2010-12-01

    Rare Earth Element (REE) patterns of modern coral skeletons usually reflect the REE composition of ambient seawater which is characterized by heavy REE enriched relative to light REE with NASC (North American Shale Composite) normalized La/Lu ratios of typically <0.4. The REE concentration in coral aragonite is enriched by 3 to 4 orders of magnitude compared to ambient seawater. Here we report trace element data including REE of coral skeletons of Late Miocene age (~9 Ma, Tortonian) from Crete (Eastern Mediterranean). Analyses were done using a 213 nm Nd:YAG laser coupled to an Element2 ICP-MS along the growth axis of the coral skeletons. The profiles show that Ba/Ca ratios have a seasonally induced pattern with high values around the winter months which are identified by δ18O analyses. REE/Ca ratios co-vary with Ba/Ca ratios. Since the Ba/Ca ratio is a proxy used to monitor river discharge, the co-variation suggests the REE/Ca ratio to be a proxy of comparable quality. NASC-normalized REE patterns of the Tortonian corals have negative Ce anomalies like modern corals. However, the Tortonian corals have REE patterns highly enriched in LREE with (La/Lu)N ratios of 4 to 30 which is 1 to 2 orders of magnitude higher compared to modern corals. Al concentrations are low (<10 ppm) and do not correlate with REE concentrations indicating an insignificant fraction of terrigenous material included in the skeleton. Applying distribution coefficients typical for modern corals, the REE composition of the Tortonian ambient water yields (La/Lu)N of about 2 to 16. This range can be explained by binary mixing of modern Eastern Mediterranean sea surface water ((La/Lu)N=0.35, sea surface salinity (SSS) ~38 ‰) with highly LREE-enriched river water ((La/Lu)N >3, salinity ~0.5 ‰) transporting suspended and colloid phases, also highly enriched, especially in LREE, at a ratio of ~9 (seawater):1 (river water). The river water component is considered because paleoenvironmental

  7. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    DOEpatents

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  8. Relative sensitivity of rare earth elements in spark-source mass spectrometry.

    PubMed

    Roaldset, E

    1970-07-01

    A method for calculating the relative sensitivity factors for the rare earth elements in geological material is outlined. A close correlation is found between the relative sensitivity factors calculated and isotopic mass and the first ionization potential for the elements. The points are grouped in the vicinity of a regression line, which may be used to determine the relative sensitivity factors for all the rare earth elements.

  9. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  10. Rare Earth elements as sediment tracers in Mangrove ecosystems

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. L.; Swathi, S.

    2013-05-01

    Rare earth elements have been widely used as geochemical source fingerprints of rocks and sediments to study processes involving cosmo-chemistry, igneous petrology, tectonic setting and for investigations of water-rock interactions and weathering processes including transport of weathering products to the oceans.Many studies have addressed the use of REEs in investigating the environmental impact of human activity and demonstrated that the REE natural distribution in sediment from densely industrialised and populated regions can be altered by anthropogenic influences.The coastal wetlands like Mangroves are ultimate sinks for all the material derived from the terrestrial and marine environment.The high productivity and low ratio of sediment respiration to net primary production gives mangrove sediments the potential for long-term sequestration of these pollutants/metals before reaching the coastal ocean. Geochemical study of REE in these sedimentary systems is useful for determining the nature of the biogeochemical processes. In particular, REE show a great sensitivity to pH changes, redox conditions and adsorption/ desorption reactions. So, they may be used as markers of discharge provenance, weathering processes, changes in environmental conditions in the water and sediments of Mangrove/wetland systems. Our study aims to establish the abundance, distribution and enrichment of REEs to track the sediment sources and biogeochemical processes occurring in the mangrove environment.Core sediments were collected from the different environmental settings within the Pichavaram mangrove area.Higher REE concentration in Pichavaram sediments indicated greater input from sources like terrestrial weathering and anthropogenic activities which in turn are affected by saline mixing and dynamic physico-chemical processes occurring in the mangrove environment. REE enrichment order was attributed to the alkaline pH (7-8.5) and reducing conditions prevailing in the mangrove

  11. Modelling of Rare Earth Elements Complexation With Humic Acid

    NASA Astrophysics Data System (ADS)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  12. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  13. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  14. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    EPA Science Inventory

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  15. [Effects of exogenous spermidine on the nitrogen metabolism and main mineral elements contents of tomato seedlings under saline-alkali stress].

    PubMed

    Zhang, Yi; Shi, Yu; Hu, Xiao-Hui; Zou, Zhi-Rong; Cao, Kai; Zhang, Hao

    2013-05-01

    Taking two tomato cultivars Zhongza No. 9 and Jinpengchaoguan as test objects, a hydroponic experiment was conducted to study the effects of exogenous spermidine (Spd) on the tomato seedling nitrogen metabolism and main mineral elements contents under saline-alkali stress. Under the stress, the seedling dry biomass decreased significantly, and the plant growth was inhibited. The activities of nitrate reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) and the contents of nitrate nitrogen (NO3(-)-N) and total N, K, Ca2+, and Mg2+ in leaves and roots decreased significantly, while the contents of ammonium nitrogen (NH4(+)-N), and Na+ had a significant increase. The activity of glutamate dehydrogenase (GDH) in the leaves of the two cultivars and in the roots of Zhongza No. 9 increased significantly, but that in the roots of Jinpengchaoguan had less change. The total P content in the leaves of the two cultivars decreased significantly, while that in the roots of Jinpengchaoguan and Zhongza No. 9 had a significant increase and less change, respectively. Applying exogenous Spd increased the assimilation of NH4+ by the plants through increasing the NR, GS and GOGAT activities, alleviated the nitrogen metabolic disturbance caused by the saline-alkali stress, and further, promoted the absorption, release, or transportation of P, K, Ca, Mg, and Na in different organs, maintained a proper balance among the nutrients, and improved the plant saline-alkali resistance. Zhongza No. 9 was more sensitive to the saline-alkali stress than Jinpengchaoguan, and the alleviation effect of exogenous Spd on the nitrogen metabolic disturbance and nutritional out-of-balance of Zhongza No. 9 was more obvious.

  16. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  17. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  18. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.

    PubMed

    Kim, Hugh I; Beauchamp, J L

    2008-01-30

    We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.

  19. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    NASA Technical Reports Server (NTRS)

    Righter, Kevin; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of volatile siderophile elements (VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd) in mantles of Earth and Moon, constrain the origin of volatile elements in these bodies, and the overall depletion of volatile elements in Moon relative to Earth. A satisfactory explanation has remained elusive [1,2]. We examine the depletions of VSE in Earth and Moon and quantify the amount of depletion due to core formation and volatility of potential building blocks. We calculate the composition of the Earth's PUM during continuous accretion scenarios with constant and variable fO2. Results suggest that the VSE can be explained by a rather simple scenario of continuous accretion leading to a high PT metal-silicate equilibrium scenario that establishes the siderophile element content of Earth's PUM near the end of accretion [3]. Core formation models for the Moon explain most VSE, but calculated contents of In, Sn, and Zn (all with Tc < 750 K) are all still too high after core formation, and must therefore require an additional process to explain the depletions in the lunar mantle. We discuss possible processes including magmatic degassing, evaporation, condensation, and vapor-liquid fractionation in the lunar disk.

  20. Input impedance and gain of monopole elements with disk ground planes on flat earth

    NASA Astrophysics Data System (ADS)

    Weiner, M. M.

    1990-12-01

    This paper extends previously reported results for a quarterwave monopole element on a disk ground plane in free space to the case where the disk ground plane rests on flat earth. Numerical results are obtained by utilizing Richmond's method of moments computer program for disk ground planes over flat earth.

  1. Trace Element Inputs to the Upper West Pacific from Nd Isotopes and Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Behrens, M. K.; Pahnke, K.; Schnetger, B.; Brumsack, H. J.

    2015-12-01

    Neodymium isotopes (143Nd/144Nd, expressed as ɛNd) and rare earth element (REE) concentrations in the ocean trace water mass transport and margin-seawater exchange processes. The distinct ɛNd and REE signatures of the lithogenic components of margin sediments of the West Pacific allow characterization of trace element inputs to the Pacific Ocean. We present dissolved ɛNdand REE concentrations from twelve vertical profiles of a transect from South Korea to Fiji. Near South Korea, surface waters are marked by unradiogenic ɛNd (as low as -7.3), high REE concentrations (e.g., Nd = 15.3 pmol/kg) and low salinity. Towards the open ocean, these parameters gradually change towards typical Pacific open ocean values (ɛNd = -3.3, [Nd] = 5.55 pmol/kg). Subsurface waters show REE depletions, followed by the typical REE increase with increasing water depth. These distributions indicate trace element input near South Korea and enhanced subsurface scavenging, as indicated by strong heavy REE to light REE fractionation. In the tropical West Pacific (10°N-15°S), high surface and subsurface water ɛNd values (+0.7) and positive Eu anomalies trace the influence of volcanic islands. Yet, absolute REE concentrations are extremely low at these depths (e.g., Nd = 2.77 pmol/kg). Using shale-normalized Nd/Er and Ho/Dy ratios, that show a much stronger surface to subsurface decrease in coastal waters compared to the open ocean, we suggest enhanced scavenging in this area. Eastward flowing intermediate waters (NPIW, AAIW) have ɛNd values up to +1.9 (NPIW) and +3.7 (AAIW) higher than those entering the tropical West Pacific from north and south, respectively. Modified ɛNd at intermediate depths and no change in REE patterns suggest that boundary exchange along volcanic island margins modifies the seawater ɛNd without changing the REE budget.

  2. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    SciTech Connect

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  3. (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements

    DTIC Science & Technology

    2016-02-02

    AFRL-AFOSR-VA-TR-2016-0091 (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements George...2012 – 31/10/2015 4. TITLE AND SUBTITLE (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements... Science and Eng., Raleigh, NC (Profs. Justin Schwartz and Carl C. Koch). Their team performed all manufacturing and experimental measurements. 14

  4. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  5. An Integrated Rare Earth Elements Supply Chain Strategy

    DTIC Science & Technology

    2011-02-24

    Disruption in the global supply of rare earths poses a significant concern for America‘s energy security and clean energy objectives, its future defense...World Trade Organization rules by limiting clean energy imports, while incentivizing clean energy exports.54 If accurate, this speculation supports...resource scarcity and secure our supply chains. The NSS further declares the U.S. ―has a window of opportunity to lead in the development of clean energy technology

  6. Process for recovering alkali metals and sulfur from alkali metal sulfides and polysulfides

    DOEpatents

    Gordon, John Howard; Alvare, Javier

    2016-10-25

    Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.

  7. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  8. Synchrotron X-Ray Characterization of Alkali Elements at Grain Boundaries in Cu(In, Ga)Se2 Solar Cells

    SciTech Connect

    West, Bradley; Stuckelberger, Michael; Guthrey, Harvey; Chen, Lei; Lai, Barry; Maser, Jorg; Rose, Volker; Dynes, James J.; Shafarman, William; Al-Jassim, Mowafak; Bertoni, Mariana I.

    2016-11-21

    It is well known that the addition of alkali elements such as Na and K during and after growth of Cu(In, Ga)Se2 (CIGS) has beneficial effects on the electronic properties of bulk material, improving device performance significantly. While the device level effects have been measured and reported, a direct observations of the localization of Na including its chemical nature are missing, and the impact of Na on elemental and phase segregation during CIGS growth is not fully understood. We investigate these aspects to shine light on the role of Na in CIGS solar cells with the ultimate goal of increasing their conversion efficiency. Utilizing a suite of synchrotron based x-ray characterization techniques, we discuss the challenges and advantages of these techniques for investigating segregation of main constituents of CIGS, Na distribution, chemical bonding of Na, and collection efficiency in CIGS as well as their correlations.

  9. Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis.

    PubMed

    El-Taher, A

    2010-09-01

    Twenty representative geological samples (tonalite, granodiorite, adamellite, syenogranite, rapakivi syenogranite, alkali feldspar granite and monzogranite) were collected from G. Kattar area in Eastern Desert, Egypt, for analysis by instrumental neutron activation as a sensitive nondestructive analytical tool for the determination of 14 rare earth elements (REEs) and to find out the following: (1) what information could be obtained about the REEs and distribution patterns of REEs in geological samples under investigation, (2) to estimate the accuracy, reproducibility and detection limit of the INAA method in case of the given samples. The samples were properly prepared together with standard reference material and simultaneously irradiated in a neutron flux of 7x10(11)n/cm(2)s in the TRIGA Mainz research reactor facilities. The gamma spectra were collected by an HPGe detector and the analysis was done by means of a computerized multichannel analyzer. The choice of the nuclear reaction, irradiation and decay times, and of the proper gamma radiation in counting are presented and discussed. The results are found to be in good agreement with certified values.

  10. Experimental productivity rate optimization of rare earth element separation through preparative solid phase extraction chromatography.

    PubMed

    Knutson, Hans-Kristian; Max-Hansen, Mark; Jönsson, Christian; Borg, Niklas; Nilsson, Bernt

    2014-06-27

    Separating individual rare earth elements from a complex mixture with several elements is difficult and this is emphasized for the middle elements: Samarium, Europium and Gadolinium. In this study we have accomplished an overloaded one-step separation of these rare earth elements through preparative ion-exchange high-performance liquid chromatography with an bis (2-ethylhexyl) phosphoric acid impregnated column and nitric acid as eluent. An inductively coupled plasma mass spectrometry unit was used for post column element detection. The main focus was to optimize the productivity rate, subject to a yield requirement of 80% and a purity requirement of 99% for each element, by varying the flow rate and batch load size. The optimal productivity rate in this study was 1.32kgSamarium/(hmcolumn(3)), 0.38kgEuropium/(hmcolumn(3)) and 0.81kgGadolinium/(hmcolumn(3)).

  11. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media.

    PubMed

    Shao, Haiyan; Muduli, Subas K; Tran, Phong D; Soo, Han Sen

    2016-02-18

    New salicylaldimine nickel complexes, comprising only earth-abundant elements, have been developed for electrocatalytic hydrogen evolution in aqueous media. The second-sphere ether functionalities on the periphery of the complexes enhance the electrocatalytic activity in the presence of alkali metal cations. The electrocatalysts demonstrate improved performances especially in the economical and sustainable seawater reaction medium.

  12. Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system.

    PubMed

    Day, James M D; Pearson, D Graham; Taylor, Lawrence A

    2007-01-12

    A new combined rhenium-osmium- and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post-core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (approximately 0.02% lunar mass) and terminated earlier than for Earth.

  13. Vanadium oxide bronzes containing rare-earth elements

    SciTech Connect

    Volkov, V.L.; Zubkov, V.G.; Fedyukov, A.S.; Zainulin, Yu.G.

    1988-05-01

    We attempted to make phases having the general formula Ln/sub x/V/sub 2/O/sub 5/ (Ln = La, Eu, Yb) without success; the specimens usually consisted of three phases: the rare-earth orthovanadate LnVO/sub 4/, vanadium(V) oxide, and VO/sub 2/. To shift the process to give Ln/sub x/V/sub 2/O/sub 5/, heat treatment was applied to mixtures of the initial high-purity substances. The x-ray patterns were recorded with a DRON-UM1 apparatus with Cr K..cap alpha.. radiation and were processed by the Poroshok program. The IR spectra were recorded with UR-20 spectrometer with oil mulls.

  14. Mobile DNA Elements: The Seeds of Organic Complexity on Earth.

    PubMed

    Habibi, Laleh; Pedram, Mehrdad; AmirPhirozy, Akbar; Bonyadi, Khadijeh

    2015-10-01

    Mobile DNA or transposable elements (TEs) are genomic sequences capable of moving themselves independently into different parts of the genome. Viral invasion of eukaryotic genomes is assumed to be the main source of TEs. Selfish transposition of these elements could be a serious threat to the host cell, as they can insert themselves into the middle of coding genes and/or induce genomic instability. In response, through millions of years of evolution, cells have come up with various mechanisms such as genomic imprinting, DNA methylation, heterochromatin formation, and RNA interference to deactivate them. Interestingly, these processes have also greatly contributed to important cellular functions involved in cell differentiation, development, and differential gene expression. Propagation of TE copies during the course of evolution have resulted in increasing the genome size and providing proper space and flexibility in shaping the genome by creating new genes and establishing essential cellular structures such as heterochromatin, centromere, and telomeres. Yet, these elements are mostly labeled for playing a role in pathogenesis of human diseases. Here, we attempt to introduce TEs as factors necessary for making us human rather than just selfish sequences or obligatory guests invading our DNA.

  15. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  16. Heating temperature dependence of Cr(III) oxidation in the presence of alkali and alkaline earth salts and subsequent Cr(VI) leaching behavior.

    PubMed

    Verbinnen, Bram; Billen, Pieter; Van Coninckxloo, Michiel; Vandecasteele, Carlo

    2013-06-04

    In this paper, the temperature dependence of Cr(III) oxidation in high temperature processes and the subsequent Cr(VI) leaching was studied using synthetic mixtures. It was experimentally shown that in the presence of alkali and alkaline earth salts, oxidation of Cr(III) takes place, consistent with thermodynamic calculations. Heating of synthetic mixtures of Cr2O3 and Na, K, or Ca salts led to elevated leaching of Cr(VI); in the presence of Na, more than 80% of the initial Cr(III) amount was converted to Cr(VI) at 600-800 °C. Kinetic experiments allowed explanation of the increase in Cr(VI) leaching for increasing temperatures up to 600-800 °C. After reaching a maximum in Cr(VI) leaching at temperatures around 600-800 °C, the leaching decreased again, which could be explained by the formation of a glassy phase that prevents leaching of the formed Cr(VI). By way of illustration, Cr(VI) formation and leaching was evaluated for a case study, the fabrication of ceramic material from contaminated sludge. Based on the proposed reaction mechanisms, countermeasures to prevent Cr oxidation (addition of NH4H2PO4, heating under inert atmosphere) were proposed and successfully tested for synthetic mixtures and for the case study.

  17. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  18. [Application of ICP-MS to Detect Rare Earth Elements in Three Economic Macroalgaes in China].

    PubMed

    Zhao, Yan-fang; Shang, De-rong; Zhai, Yu-xiu; Ning, Jin-song; Ding, Hai-yan; Sheng, Xiao-feng

    2015-11-01

    In order to investigate the content and distribution of rare earth elements (REE) in main economic macroalgaes in our country, fifteen rare earth elements in three economic macroalgaes (including 30 samples of kelp, 30 samples of laver and 15 samples of Enteromorpha) were detected using ICP-MS method. Results showed that the total content of REE in different species of macroalgaes was different. The highest total content of REE was in Enteromorpha (16,012.0 ng · g⁻¹), while in kelp and laver, the total REE was similar for two macroalgaes (3887.4 and 4318.1 ng · g⁻¹ respectively). The content of fifteen rare earth elements in kelp ranged from 7.9 to 1496.4 ng · g⁻¹; in laver, it ranged from 8.2 to 1836.6 ng · g⁻¹. For Enteromorpha, the concentration of 15 rare earth elements were between 19.2 and 6014.5 ng · g⁻¹. In addition, the content and distribution of different rare earth elements in different macroalgaes was also different. For kelp, the highest content of REE was Ce (1 496.4 ng · g⁻¹), and the second was La (689.1 ng · g⁻¹). For laver, the highest was Y (1836.6 ng · g⁻¹), and the second was Ce (682.2 ng · g⁻¹). For Enteromorpha, the highest was Ce (6014.5 ng · g⁻¹), and the second was La (2902.9 ng · g⁻¹). Present results also showed that three macroalgaes accumulated the light rare earth elements much more than the high rare earth elements. The light rare earth elements occupied 90.9%, 87.3% and 91.1% for kelp, laver and Enteromorpha respectively. The result that the Enteromorpha had high content of rare earth elements could provide important support for opening new research directions for the utilization of Enteromorpha.

  19. Research of the entry of rare earth elements Eu3+ and La3+ into plant cell.

    PubMed

    Gao, Yongsheng; Zeng, Fuli; Yi, An; Ping, Shi; Jing, Lanhua

    2003-03-01

    Whether rare earth elements can enter into plant cells remains controversial. This article discusses the ultracellular structural localization of lanthanum (La(3+)) and europium (Eu(3+)) in the intact plant cells fed by rare earth elements Eu(3+) and La(3+). Eu-TTA fluorescence analysis of the plasmalemma, cytoplast, and mitochondria showed that Eu(3+) fluorescence intensities in such structures significantly increased. Eu(3+) can directly enter or be carried by the artificial ion carrier A23187 into plant cells through the calcium ion (Ca(2+)) channel and then partially resume the synthesis of amaranthin in the Amaranthus caudatus growing in the dark. Locations of rare earth elements La(3+) and Eu(3+) in all kinds of components of cytoplasmatic organelles were determined with transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray microanalysis. The results of energy-dispersive X-ray microanalysis indicated that Eu(3+) and La(3+) can be absorbed into plant cells and bind to the membranes of protoplasm, chloroplast, mitochondrion, cytoplast, and karyon. These results provide experimental evidence that rare earth elements can be absorbed into plant cells, which would be the basis for interpreting physiological and biochemical effects of rare earth elements on plant cells.

  20. Rare earths and other trace elements in Apollo 14 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Haskin, L. A.; Korotev, R. L.; Ziege, K. E.

    1972-01-01

    REE and other trace elements have been determined in igneous rocks 14053, 14072, and 14310, in breccias 14063 and 14313, and in fines 14163. All materials analyzed have typical depletions of Eu except for feldspar fragments from the breccias and igneous fragments from 14063. Igneous rocks 14072 and 14053 have REE concentrations very similar to Apollo 12 basalts; 14310 has the highest REE concentrations yet observed for a large fragment of lunar basalt. The effects of crystallization of a basaltic liquid as a closed system on the concentrations of Sm and Eu in feldspar are considered. Small anorthositic fragments may have originated by simple crystallization from very highly differentiated basalt (KREEP) or by closed-system crystallization in a less differentiated starting material. Application of independent models of igneous differentiation to Sm and Eu in massive anorthosite 15415 and to Sm and Eu in lunar basalts suggests a common starting material with a ratio of concentrations of Sm and Eu about the same as that in chondrites and with concentrations of those elements about 15 times enriched over chondrites.

  1. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  2. U.S. trade dispute with China over rare earth elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-03-01

    The U.S. government has brought a new trade case against China over rare earth elements (REE) as well as tungsten and molybdenum, President Barack Obama announced on 13 March. Japan and the European Union also have taken similar actions against China about REEs, which are a group of 17 chemically similar metallic elements that are used in a variety of electronic, optical, magnetic, and catalytic applications. REEs are plentiful in the Earth's crust, although China currently has about 37% of the world's reserves and accounts for more than 95% of the world's production of the elements, according to the British Geological Survey. The United States has requested consultations with China at the World Trade Organization (WTO) concerning "China's unfair export restraints on rare earths, as well as tungsten and molybdenum," the Office of the United States Trade Representative announced in a 13 March statement.

  3. The capacity of hydrous fluids to transport and fractionate incompatible elements and metals within the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Adam, John; Locmelis, Marek; Afonso, Juan Carlos; Rushmer, Tracy; Fiorentini, Marco L.

    2014-06-01

    silicate melts and aqueous fluids are thought to play critical roles in the chemical differentiation of the Earth's crust and mantle. Yet their relative effects are poorly constrained. We have addressed this issue by measuring partition coefficients for 50 trace and minor elements in experimentally produced aqueous fluids, coexisting basanite melts, and peridotite minerals. The experiments were conducted at 1.0-4.0 GPa and 950-1200°C in single capsules containing (either 40 or 50 wt %) H2O and trace element-enriched basanite glass. This allowed run products to be easily identified and analyzed by a combination of electron microprobe and LAM-ICP-MS. Fluid and melt compositions were reconstructed from mass balances and published solubility data for H2O in silicate melts. Relative to the basanite melt, the solutes from H2O-fluids are enriched in SiO2, alkalis, Ba, and Pb, but depleted in FeO, MgO, CaO, and REE. With increasing pressure, the mutual solubility of fluids and melts increases rapidly with complete miscibility between H2O and basanitic melts occurring between 3.0 and 4.0 GPa at 1100°C. Although LREE are favored over HREE in the fluid phase, they are less soluble than the HFSE (Nb, Ta, Zr, Hf, and Ti). Thus, the relative depletions of HFSE that are characteristic of arc magmas must be due to a residual phase that concentrates HFSE (e.g., rutile). Otherwise, H2O-fluids have the capacity to impart many of the geochemical characteristics that distinguish some rocks and melts from the deep mantle lithosphere (e.g., MARID and lamproites).

  4. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    NASA Astrophysics Data System (ADS)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  5. Development of Electronic Tongue for Detection of Rare Earth Elements in Natural Surroundings

    NASA Astrophysics Data System (ADS)

    Sarkar, Subrata; Purkait, Monirul; Roy, Jayanta Kumar; Datta, C.; Bhattacharyya, Nabarun; Sarkar, D.; Datta, Jagannath; Chowdhury, D. P.

    2011-09-01

    The rare earth elements (like lanthanum) and other metals like zirconium, arsenic, potassium, copper etc. are some of the elements, which are found in the natural surrounding. Since these metals have immense utility in the field of medical science, energy efficient electronic devices, nuclear energy domain, early and easy detection of such metals is very important. In the present work, voltammetric electronic tongue for detection and quantitative determination of these elements has been explored. A sensor array comprising of noble metals (like gold, iridium, rhodium etc) has been developed and it exhibits remarkable sensitivity and promising results for detection and analysis of these elements.

  6. Enriched asthenosphere melting beneath the nascent North African margin: trace element and Nd isotope evidence in middle-late Triassic alkali basalts from central Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Cirrincione, Rosolino; Fiannacca, Patrizia; Lustrino, Michele; Romano, Vanessa; Tranchina, Annunziata; Villa, Igor M.

    2016-03-01

    During the dismembering of the Pangea supercontinent, middle-late Triassic sub-volcanic alkaline rocks were emplaced in central Sicily. These rocks have an alkali basaltic composition and show OIB-like incompatible element patterns in primitive mantle-normalized diagrams (e.g., enrichments in HFSE and LREE coupled with high HFSE/LILE ratios), as well as slightly positive \\varepsilon_{Nd} values. Only subtle effects of crustal contamination at shallow depths emerge from geochemical data. These characteristics are very different compared with the Permian calcalkaline magmas from elsewhere in SW Europe still carrying the geochemical signature of modifications related to the Variscan orogeny. The mineralogical, geochemical and isotopic compositions of the investigated samples from central Sicily are also different from the coeval shoshonitic volcano-plutonic formations of Southern Alps (Dolomites). The incompatible element composition and Nd isotopic ratios are consistent with low-degree partial melting of a moderately depleted asthenospheric mantle source, with a negligible involvement of the thinned continental crust. The studied alkaline basalts represent the only known evidence of a segment of the Triassic rift system associated with early Pangea breakup in central Sicily. The close similarity of the central Sicily Triassic alkali basalts with coeval basalts emplaced along former orogenic sutures across the peri-Mediterranean area suggests a common origin related, at least partly, to asthenospheric passive upwelling following the tectonic collapse of the Variscan Belt. These rocks provide new constraints on the spatial-temporal distribution, magma source evolution and geodynamic meaning of the widespread Permo-Triassic basic magmatism developed after the end of the Variscan Orogeny in southwestern Europe.

  7. Immiscible separation of metalliferous Fe/ Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning

    NASA Astrophysics Data System (ADS)

    Hurai, Vratislav; Simon, Klaus; Wiechert, Uwe; Hoefs, Jochen; Konečný, Patrik; Huraiová, Monika; Pironon, Jacques; Lipka, Jozef

    Globules of iron-dominated (59-69 wt% FeOtot) and titanium-dominated (43.5 wt% TiO2) oxide melts have been detected in igneous xenoliths from Pliocene-to-Pleistocene alkali basalts of the Western Carpathians. Fluid inclusion and mineral composition data indicate immiscible separation of the high-iron-oxide melt (HIM) at magmatic temperatures. The HIM separation occurred during clinopyroxene (augite) accumulation in an alkali trachybasalt and continued during crystallization of amphibole (kaersutite) and K-feldspar (anorthoclase), the latter coexisting with trachyte and alkalic rhyolite residual melts. Some HIM was also expelled from sub-alkalic rhyolite (70-77% SiO2), coexisting with An27-45 plagioclase and quartz in granitic (tonalite-trondhjemite) xenoliths. Oxygen fugacities during HIM separation range from -1.4to +0.6log units around the QFM buffer. A close genetic relationship between HIM-hosted xenoliths and mantle-derived basaltic magma is documented by mineral 18O values ranging from 4.9 to 5.9‰ V-SMOW. δD values of gabbroic kaersutite between -61 and -86‰ V-SMOW are in agreement with a presumed primary magmatic water source. Most trace elements, except Li, Rb and Cs, have preferentially partitioned into the HIM. The HIM/Si-melt partition coefficients for transition elements (Sc, V, Cr, Co, Ni) and base metals (Zn, Cu, Mo) are between 2-160, resulting in extreme enrichment in the HIM. La and Ce also concentrate in the silicic melt, whereas Tb-Tm in the HIM. Hence, the immiscible separation causes REE fractionation and produces residual silicic melt enriched in LREE and depleted in HREE. The weak fractionation among Tb-Tm and Yb, Lu can be attributed to recurrent extraction of the HIM from the magmatic system, while flat HREE chondrite-normalized patterns are interpreted to indicate no or little loss of the HIM.

  8. Rare Earth Element Fractionation During Evaporation of Chondritic Material

    NASA Astrophysics Data System (ADS)

    Wang, J.; Davis, A. M.; Clayton, R. N.

    1993-07-01

    Evaporation experiments suggest that enrichments in the heavy isotopes of oxygen, magnesium, and silicon in some CAIs are caused by kinetic effects during evaporation [1]. Volatility-fractionated REE patterns found in some CAIs have been modeled with some success using equilibrium thermodynamics [2,3], but little is known about kinetic effects on REE patterns. We have begun an investigation of REE fractionation under conditions where large isotope effects are produced by the kinetic isotope effect. We synthesized a starting material containing CI chondritic relative proportions of MgO, Al2O3, SiO2, CaO, TiO2, and FeO, and doped it with 100 ppm each of the REE. Samples of this material were evaporated in a vacuum furnace [4] at 10^-6 torr and 1800 or 2000 degrees C for periods of a few seconds to 5 hr. The mass fraction evaporated ranged from 7.6 to 95.4%. Most residues consist of olivine and glass. Chemical compositions of the residues were determined by electron and ion microprobe. Results for selected elements are shown in Fig. 1. There is no significant evaporation of Ca, Al, and Ti up to 95% mass loss; the evaporation behavior of Mg, Si, and Fe is similar to that found by Hashimoto [5]. There is no significant evaporation of most of the REE up to 95% mass loss. Ce is much more volatile than the other REE under these conditions: a tenfold negative Ce anomaly developed between 60 and 70% mass loss and the anomaly reached 5 X 10^-4 at 95% mass loss. A small Pr anomaly (50% Pr loss) also appeared in the highest-mass-loss residue. Thermodynamic calculations show that Ce has approximately the same volatility as other LREE under solar nebular oxygen fugacity, but is much more volatile than the other REE under oxidizing conditions [6]. We suspect that conditions in the residue in our vacuum evaporation experiments became oxidizing because evaporation reactions involving most major element oxides involve release of oxygen. The four known HAL-type hibonite

  9. [Geochemical characteristics of rare earth elements on sunflower growing area in the west of Jilin Province].

    PubMed

    Li, Shu-Jie; Dou, Sen; Wang, Li-Min; Liu, Zhao-Shun

    2011-07-01

    Soil and plant samples were collected from the sunflower growing area in the west of Jilin province. A variety of ancillary methods were used to determine the soil element content. Then the rare earth elements geochemistry in soil was studied, and the correlation of REEs in this region with other elements and the quality of plant was investigated. The results show that, (1) REE content of the soil in Nong'an is relatively higher to those in Daan and Tongyu. Distribution pattern of rare earth elements in soil for the right tilt of the light rare earth enrichment patterns which is consistent with the national distribution pattern of rare earth elements; (2) REE contents in the three studying areas in the soil are different, and this primarily relates to the soil parent materials; (3) The REEs which positively correlate with soil available potassium are Se, Fe2O3, Ti, P, Mn, Cu, Zn, Cr, Mo, B, F. The protein content of sunflower seeds has a negative correlation with REE. With the exception of Lu, all REEs show a similar correlation.

  10. Rare earth element content of thermal fluids from Surprise Valley, California

    DOE Data Explorer

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  11. Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method

    NASA Technical Reports Server (NTRS)

    Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.

    1974-01-01

    An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.

  12. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    NASA Astrophysics Data System (ADS)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  13. Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption.

    PubMed

    Cheng, Cheng; Wang, Jinnan; Yang, Xin; Li, Aimin; Philippe, Corvini

    2014-01-15

    Novel chelating sponge (PVA-M-H) was prepared with polyvinyl alcohol by graft polymerization and nucleophilic substitution. E.A, SEM, FT-IR, (13)CNMR, and XPS analyses were used to characterize PVA-M-H. The equilibrium adsorption capacities of PVA-M-H for Ni(II) and Cd(II) were 65.39 and 125.11mgg(-1), respectively. Within the range of 278-308K, the adsorption enthalpy changes of Ni(II) and Cd(II) on PVA-M-H were about 36.39-37.72kJmol(-1), and the free energy were about -13.27 to -1.7kJmol(-1). Both pseudo-first- and -second-order equations fit the adsorption kinetic curves well, and the initial adsorption rates of Ni(II) and Cd(II) onto PVA-M-H were 17.83 and 34.81mg (gmin)(-1), respectively. Although the presence of alkali-earth metal ions in solution decreased Ni(II) and Cd(II) removal, PVA-M-H still retained more than 60 and 80% of its adsorption capacity even as the concentration of Ca(2+) and Mg(2+) was up to 10mmolL(-1), respectively. Both 0.1M HCl and 0.1M EDTA solution could desorb Ni(II) and Cd(II) from PVA-M-H effectively, and the adsorption capacity of PVA-M-H for Ni(II) and Cd(II) could still maintain more than 90% level without any obvious decrease at the fifth cycle.

  14. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  15. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    PubMed

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-07

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively.

  16. Imaging Earth's Interior based on Spectral-Element and Adjoint Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Zhu, H.; Bozdag, E.

    2013-12-01

    We use spectral-element and adjoint methods to iteratively improve 3D tomographic images of Earth's interior, ranging from global to continental to exploration scales. The spectral-element method, a high-order finite-element method with the advantage of a diagonal mass matrix, is used to accurately calculate three-component synthetic seismograms in a complex 3D Earth model. An adjoint method is used to numerically compute Frechét derivatives of a misfit function based on the interaction between the wavefield for a reference Earth model and a wavefield obtained by using time-reversed differences between data and synthetics at all receivers as simultaneous sources. In combination with gradient-based optimization methods, such as a preconditioned conjugate gradient or L-BSGF method, we are able to iteratively improve 3D images of Earth's interior and gradually minimize discrepancies between observed and simulated seismograms. Various misfit functions may be chosen to quantify these discrepancies, such as cross-correlation traveltime differences, frequency-dependent phase and amplitude anomalies as well as full-waveform differences. Various physical properties of the Earth are constrained based on this method, such as elastic wavespeeds, radial anisotropy, shear attenuation and impedance contrasts. We apply this method to study seismic inverse problems at various scales, from global- and continental-scale seismic tomography to exploration-scale full-waveform inversion.

  17. Radioluminescence and thermoluminescence of rare earth element and phosphorus-doped zircon

    SciTech Connect

    Karali, T.; Can, N.; Townsend, P.D.; Rowlands, A.P.; Hanchar, J.M.

    2000-06-01

    The radioluminescence and thermoluminescence spectra of synthetic zircon crystals doped with individual trivalent rare earth element (REE) ions (Pr, Sm, Eu, Gd, Dy, Ho, Er, and Yb) and P are reported in the temperature range 25 to 673 K. Although there is some intrinsic UV/blue emission from the host lattice, the dominant signals are from the rare-earth sites, with signals characteristic of the REE{sup 3+} states. The shapes of the glow curves are different for each dopant, and there are distinct differences between glow peak temperatures for different rare-earth lines of the same element. Within the overall set of signals there are indications of linear trends in which some glow peak temperatures vary as a function of the ionic size of the rare earth ions. The temperature shifts of the peaks are considerable, up to 200{degree}, and much larger than those cited in other rare-earth-doped crystals of LaF{sub 3} and Bi{sub 4}Ge{sub 3}O{sub 12}. The data clearly suggest that the rare-earth ions are active both in the trapping and luminescence steps, and hence the TL occurs within localized defect complexes that include REE{sup 3+} ions.

  18. Composition of the earth's upper mantle. I - Siderophile trace elements in ultramafic nodules

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1981-01-01

    The considered investigation is concerned with a reexamination of the question of the distribution of siderophile elements in the earth's upper mantle, taking into account a more unified data base which is now available. A comprehensive suite of ultramafic inclusions was collected as part of the Basaltic Volcanism Study Project and has been analyzed by instrument neutron activation analysis for major, minor, and some lithophile trace elements. In addition, 18 of these rocks and the important sheared garnet lherzolite PHN 1611 have been analyzed by means of radiochemical neutron activation analysis for 7 siderophile elements (Au, Ge, Ir, Ni, Os, Pd, and Re) and 9 volatile elements (Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn). The siderophile element data reveal interesting inter-element correlations, which were not apparent from the compiled abundance tables of Ringwood and Kesson (1976) and Chou (1978).

  19. Fluid rare earth element anlayses from wells RN-12 and RN-19, Reykjanes, Iceland

    SciTech Connect

    Andrew Fowler

    2015-07-24

    Results for fluid rare earth elment analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples preconcetrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using and Element magnetic sctor ICP-MS.

  20. Interactions between exogenous rare earth elements and phosphorus leaching in packed soil columns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rare earth elements (REEs) increasingly used in agriculture as an amendment for crop growth may help to lessen environmental losses of phosphorus (P) from heavily fertilized soils. The vertical transport characteristics of P and REEs, lanthanum (La), neodymium (Nd), samarium (Sm), and cerium (Ce), w...

  1. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  2. Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

    SciTech Connect

    Dean Stull

    2016-05-24

    This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine doped with known mineral concentrations.

  3. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    EPA Science Inventory

    A new EPA technical information resource, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues” has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  4. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  5. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  6. Concentrations of rare-earth elements in soils of the Prioksko-Terrasnyi state biospheric reserve

    NASA Astrophysics Data System (ADS)

    Perelomov, L. V.; Asainova, Zh. S.; Yoshida, S.; Ivanov, I. V.

    2012-10-01

    The concentrations of rare-earth elements were studied in the profiles of soddy podburs and mucky-humus gley soils. The soil horizons differed significantly in the contents of Corg (0-26%), the physical clay (<0.01 mm) fraction (3-31%), the acidity (pH 4 to 5.5), and the presence/absence of Al-Fe-humus accumulations. The most significant relationship was observed between the concentrations of rare-earth elements and the physical clay content, particularly for Nd: x(Nd, mg/kg) = 7 + 1.6 y (fraction <0.01 mm, %). Weak biogenic accumulations in the upper horizons were observed for Nd, Ce, and Dy; Nd, Pr, and La accumulated in the Al-Fe-humus illuvial horizon. The concentrations of rare-earth elements in the studied soils formed the following sequence (mg/kg): Nd (20-101)-Ce (10-44)-La, Sm, Gd, Dy, Yb (3-20)-Pr (1-4)-Ho (0.1-0.4)-Tm, Lu, and Tl (0.0). A clear trend was observed to higher contents of even-numbered elements as compared with odd-numbered elements, excluding La.

  7. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  8. Study on Orbital Decay of Near Earth Satellites with KS Orthogonal Elements

    NASA Astrophysics Data System (ADS)

    Ps, Sandeep

    STUDY ON ORBITAL DECAY OF NEAR EARTH SATELLITES WITH KS ORTHOGONAL ELEMENTS SANDEEP P S The knowledge of satellite orbit decay and its expected life prior to launch is necessary for mission planning purpose. Several sets of data for various parametric studies is sought quite often, it is necessary to minimize computational time involved for generating decay predictions, keeping the prediction accuracy normally good. A number of factors play dominant role in perturbation modelling for near earth satellites such as oblateness of the Earth, presence of the atmosphere, luni-solar attraction and solar radiation pressure. This paper concerns with the study of orbital decay of near earth satellites with KS orthogonal elements, which provide accurate orbit predictions at low computational time. Perturbations considered are due to oblateness of the Earth and the atmospheric drag. The Earth’s zonal harmonic terms J2 to J6 are included and the drag is modeled with an analytical diurnally oblate atmosphere. Effect of Earth’s geomagnetic and solar activity is included in density and density scale height computations. JACCHIA77 atmospheric model is utilized. The developed software is validated with the orbital data of decayed objects taken from www.space-track.org.

  9. Siderophile Element Compositions of Lunar Impact Breccias: Implications for the Cataclysm and Early Earth

    NASA Astrophysics Data System (ADS)

    Norman, M.; Bennett, V.; Ryder, G.

    2001-12-01

    Highly siderophile element signatures of the two main textural and compositional groups of Apollo 17 impact melt breccias (poikilitics and aphanites) are consistent with EH chondrite impactor(s). Similar siderophile element signatures in both types of breccias implies either that multiple EH chondritic impactors were delivered to the Serenitatis region of the Moon within a narrow time interval, or that the two groups of breccias are petrogenetically related to a single impact event. To the extent that these breccias can be linked with the Serenitatis basin-forming event, this identifies one type of planetesimal responsible for creating a large nearside lunar basin, possibly during a terminal cataclysm. Owing to its larger size and greater gravitational focusing, the Earth would have experienced a significantly greater cratering rate (20x) and mass accretion rate (100x) compared to the Moon. If there was a terminal cataclysm, the Earth must have been hit by several large impacts during the crucial period in which the oldest preserved continental crust was forming and early life was evolving. If EH chondrites are found to be an important population for creating the 3.8 to 4.0 Ga lunar basins, their fractionated HSE pattern may have contributed to mantle heterogeneity on Earth. However, the dry and highly reduced nature of EH chondrites would preclude a significant contribution from these planetesimals to the volatile budget of the Earth and the oxidation of the terrestrial mantle. Additional studies of highly siderophile elements in lunar impact breccias and ancient terrestrial rocks are needed to establish the composition of infalling planetesimals on the early Earth and Moon, and the contribution of large impact events to the subsequent evolution of the Earth and other terrestrial planets.

  10. Heavy metals and rare earth elements source-sink in some Egyptian cigarettes as determined by neutron activation analysis.

    PubMed

    Nada, A; Abdel-Wahab, M; Sroor, A; Abdel-Haleem, A S; Abdel-Sabour, M F

    1999-07-01

    Heavy metals and rare earth elements in two types of cigarettes were studied. The contents of trace elements were determined by using delayed neutron activation analysis. In the present study 11 elements have been detected in popular and fine brand cigarettes marketed in Egypt. Evaluation of these elements with their potential hazards for smokers is briefly discussed. The material balance (source and sink) for each element was determined. Also the ratio of element recovery to the total amount was assessed.

  11. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  12. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    PubMed

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg(-1) and 38.67 μg kg(-1), respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg(-1) and 81.24 μg kg(-1) for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg(-1) and 24.63 μg kg(-1) for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg(-1) d(-1) and 0.28 μg kg(-1) d(-1) for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg(-1) d(-1)). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children.

  13. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    NASA Astrophysics Data System (ADS)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  14. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.

    PubMed

    Rubie, David C; Laurenz, Vera; Jacobson, Seth A; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K; Frost, Daniel J

    2016-09-09

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  15. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Pourmand, Ali

    2015-08-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The measurements were done in dynamic mode using multi-collector inductively coupled plasma mass spectrometers (MC-ICPMS), allowing precise quantification of mono-isotopic REEs (Pr, Tb, Ho and Tm). The CI-chondrite-normalized REE patterns (LaN/LuN; a proxy for fractionation of light vs. heavy REEs) and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed (petrologic types 4-6) than in unequilibrated (types 1-3) chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. A model is presented that predicts the dispersion of elemental and isotopic ratios due to the nugget effect when the analyzed sample mass is limited and elements are concentrated in minor grains. The dispersion in REE patterns of equilibrated ordinary chondrites is reproduced well by this model, considering that REEs are concentrated in 200 μm-size phosphates, which have high LaN/LuN ratios and negative Eu anomalies. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ∼-4.5% relative to CI chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (∼+10%). These anomalies are similar to those found in group II refractory inclusions in meteorites but of much smaller magnitude. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust and carried positive Tm anomalies or (ii) CI chondrites are enriched in refractory dust and are not representative of solar composition for

  16. Analytical approach using KS elements to near-earth orbit predictions including drag

    NASA Astrophysics Data System (ADS)

    Sharma, Ram Krishnan

    1991-04-01

    An analytical theory for the motion of near-earth satellite orbits with the air drag effect is evolved in terms of the KS elements, using an analytical oblate exponential atmospheric density model. Due to the symmetry of the KS element equations, only one of the eight equations is integrated analytically to acquire the state vector at the close of each revolution. In the numerical studies performed, it is shown that after 100 revolutions, with a ballistic coefficient of 50, a maximum difference of 39 meters is found in the semimajor axis comparison for a very small eccentricity (0.001) instance having an initial perigee height of 391.425 km.

  17. Bishop tuff revisited: new rare Earth element data consistent with crystal fractionation.

    PubMed

    Cameron, K L

    1984-06-22

    The Bishop Tuff of eastern California is the type example of a high-silica rhyolite that, according to Hildreth, supposedly evolved by liquid-state differentiation. New analyses establish that the Bishop Tuff "earlyllate" rare earth element trend reported by Hildreth mimics the relations between groundmass glasses and whole rocks for allanite-bearing pumice. Differences in elemental concentrations between whole rock and groundmass are the result of phenocryst precipitation; thus the data of Hildreth are precisely those expected to result from crystal fractionation.

  18. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    PubMed

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future.

  19. A possible new host mineral of large-ion elements in the Earth's deep interior

    NASA Astrophysics Data System (ADS)

    Kawai, K.; Tsuchiya, T.

    2015-12-01

    The radiogenic heat production as well as the secular cooling is essential in order to better understand the thermal history and dynamics in the Earth. Potassium is thought to be one of the important radioactive elements in the Earth's interior. Although these elements are concentrated in the continental and oceanic crusts due to chemical differentiations through partial melting at plate boundaries due to their large ion-radii, they have been considered to return into the deep mantle accompanied with subducting slab through time . However, since there are few studies on host minerals of potassium in the high P,T condition, it has yet to be clear how much and where host rocks of such radioactive elements exist in the Earth. Hence, it is important to understand the fate of the potassium-bearing phase subducted into the deep Earth's interior. Here we have studied the high-pressure stability and elasticity of KMg2Al5SiO12 hexagonal aluminous phase (K-Hex with three different size of cation cites, by means of the density functional computation method. Results indicate that the K-Hex phase remains mechanically stable up to 150 GPa and also energetically more stable than an isochemical form with the calcium-ferrite (K-CF) and calcium-titanate (K-CT) type structure with two different size of cation cites. In addition, when the spinel composition coexists with the K-hollandite (K-Hol) phase, which is ), which is considered to be able to host potassium the K-Hex phase becomes more stable than the K-Hol phase at pressures above ~27 GPa. These demonstrate that the Hex phase is substantially stable in the lower mantle, suggesting that it could be a potential host of potassium and other incompatible large-ion elements.

  20. Transport of rare earth element-tagged soil particles in response to thunderstorm runoff.

    PubMed

    Matisoff, G; Ketterer, M E; Wilson, C G; Layman, R; Whiting, P J

    2001-08-15

    The downslope transport of rare earth element-tagged soil particles remobilized during a spring thunderstorm was studied on both a natural prairie and an agricultural field in southwestern Iowa (U.S.A.). A technique was developed for tagging natural soils with the rare earth elements Eu, Tb, and Ho to approximately 1,000 ppm via coprecipitation with MnO2. Tagged material was replaced in target locations; surficial soil samples were collected following precipitation and runoff; and rare earth element concentrations were determined by inductively coupled plasma mass spectrometry. Diffusion and exponential models were applied to the concentration-distance data to determine particle transport distances. The results indicate that the concentration-distance data are well described by the diffusion model, butthe exponential model does not simulate the rapid drop-off in concentrations near the tagged source. Using the diffusion model, calculated particle transport distances at all hillside locations and at both the cultivated and natural prairie sites were short, ranging from 3 to 73 cm during this single runoff event. This study successfully demonstrates a new tool for studying soil erosion.

  1. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    PubMed

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-03

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  2. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-03-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  3. Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Laul, J. C.

    1982-01-01

    Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.

  4. Siku: A Sea Ice Discrete Element Method Model on a Spherical Earth

    NASA Astrophysics Data System (ADS)

    Kulchitsky, A. V.; Hutchings, J. K.; Johnson, J.

    2014-12-01

    Offshore oil and gas exploration and production activities in the Beaufort and Chukchi Seas can be significantly and adversely affected by sea ice. In the event of an oil spill, sea ice complicates the tracking of ice/oil trajectories and can hinder cleanup operations. There is a need for a sea ice dynamics model that can accurately simulate ice pack deformation and failure to improve the ability to track ice/oil trajectories and support oil response operations. A discrete element method (DEM) model, where each ice floe is represented by discrete elements that are initially bonded (frozen) together will be used to address the difficulty continuum modeling approaches have with representing discrete phenomena in sea ice, such as the formation of leads and ridges. Each discrete element in the DEM is a rigid body driven by environmental forcing (wind, current and Coriolis forces) and interaction forces with other discrete elements (compression, shear, tension, bond rupture and regrowth). We introduce a new DEM model ``Siku'', currently under development, to simulate ice drift of an ice floe on a spherical Earth. We will present initial free-drift results. Siku is focused on improving sea ice interaction mechanics and providing an accurate geometrical representation needed for basin scale and regional simulations. Upon completion, Siku will be an open source GNU GPL licensed user friendly program with embedded python capability for setting up simulations "scenarios" and coupling with other models to provide forcing fields. We use a unique quaternion representation for position and orientation of polygon sea-ice elements that use a second order integration scheme of sea-ice element motion on the Earth's sphere that does not depend on the location of the element and, hence, avoids numerical problems near the pole.

  5. Mining and Exploitation of Rare Earth Elements in Africa as an Engagement Strategy in US Africa Command

    DTIC Science & Technology

    2011-06-17

    Globalsecurity.org, 2010, 2. 3 Geology.com, “REE Rare Earth Elements and their Uses,” Geology.com, http://geology.com/ articles /rare-earth-elements/ (accessed...controversy for decades.36 Jasper, in his article “Engineered Extinction” specifically mentions U.S. rare earth mining. He details the impact that...35 Justin Rohrlich, “How China Came to Dominate the Rare Earths Market,” December 29, 2010, http://www.minyanville.com/businessmarkets/ articles

  6. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    USGS Publications Warehouse

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  7. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    PubMed

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China.

  8. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    NASA Technical Reports Server (NTRS)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  9. Cocrystallization of certain 4f and 5f elements in the bivalent state with alkali metal halides

    SciTech Connect

    Mikheev, N.B.; Kamenskaya, A.M.; Veleshko, I.E.; Kulyukhin, S.A.

    1987-01-01

    The cocrystallization of Fm/sup 2 +/, Es/sup 2 +/, Cf/sup 2 +/, Am/sup 2 +/, Yb/sup 2 +/, Eu/sup 2 +/ and Sr/sup 2 +/ with NaCl, KCl and KBr in tetrahydrofuran (THF), hexamethylphosphorotriamide (HMPA), and ethanol has been studied. It is shown that in water-ethanol medium An/sup 2 +/ cocrystallize with KCl by the formation of anomalous mixed crystals and Ln/sup 2 +/ do not cocrystallize. In HMPA neither Ln/sup 2 +/ nor An/sup 2 +/ are observed to transfer into the KBr solid phase, while in THF both Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with NaCl. The change in the behavior on Ln/sup 2 +/ and An/sup 2 +/ cocrystallize with a change from one solvent to another is caused by the difference in the effective ionic radii of these elements, which arises from the large nephelauxetic effect for An/sup 2 +/ as well as by the different solvating power of these solvents.

  10. Multi-element including rare earth content of lichens, bark, soils, and waste following industrial closure.

    PubMed

    Rusu, Ana-Maria; Chimonides, P D James; Jones, Gary C; Garcia-Sanchez, Raquel; Purvis, O William

    2006-08-01

    The fate of rare earth and other rare elements entering the environment is largely unknown. The lichen Hypogymnia physodes was transplanted over a 40 km long transect centered on a major metallurgical waste dump close to the Zlatna town center two weeks after smelter closure. Lichens, bark, soil, and waste dump materials were analyzed for 56 elements (including REE). Lichen and bark multi-element compositions were alike, reflecting fixation of elements of environmental concern and the ability for tree canopies to concentrate substances leading to enhanced deposition to both lichens and bark. Higher REE enrichment in lichens than in soil confirm efficient fixation in lichens. The negative europium anomaly in lichens and soil, similar to that in upper crust, confirm a strong crustal influence on lichen signatures across the transect area. Multi-element analysis supports the view that epiphytic lichens, unlike trees, are not influenced by lower groundwater, and they are excellent indicators for REE and other rare elements entering the surface environment, difficult to detect by conventional means.

  11. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    DOE PAGES

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; ...

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages rangingmore » from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.« less

  12. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    SciTech Connect

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-10-21

    In this paper, a study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. Finally, these studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  13. Quantification of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi; Martin, Rodger C.; Allman, Steve; Brice, Deanne; Wymore, Ann; Andre, Nicolas

    2015-12-01

    A study of the optical emission as a function of concentration of laser-ablated yttrium (Y) and of six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), has been evaluated using the laser-induced breakdown spectroscopy (LIBS) technique. Statistical methodology using multivariate analysis has been used to obtain the sampling errors, coefficient of regression, calibration, and cross-validation of measurements as they relate to the LIBS analysis in graphite-matrix pellets that were doped with elements at several concentrations. Each element (in oxide form) was mixed in the graphite matrix in percentages ranging from 1% to 50% by weight and the LIBS spectra obtained for each composition as well as for pure oxide samples. Finally, a single pellet was mixed with all the elements in equal oxide masses to determine if we can identify the elemental peaks in a mixed pellet. This dataset is relevant for future application to studies of fission product content and distribution in irradiated nuclear fuels. These results demonstrate that LIBS technique is inherently well suited for the future challenge of in situ analysis of nuclear materials. These studies also show that LIBS spectral analysis using statistical methodology can provide quantitative results and suggest an approach in future to the far more challenging multielemental analysis of ~ 20 primary elements in high-burnup nuclear reactor fuel.

  14. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  15. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W; DeLucia, Frank C; Andre, Nicolas O

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  16. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China

    PubMed Central

    Wang, Lingqing; Liang, Tao

    2015-01-01

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China’s largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 104 mg·kg−1 with an average value of 4.67 × 103 mg·kg−1, which was significantly higher than the average value in China (181 mg·kg−1). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (LaN/YbN, LaN/SmN and GdN/YbN). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind. PMID:26198417

  17. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  18. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    SciTech Connect

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  19. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2015-07-22

    Rare earth mine tailing dumps are environmental hazards because tailing easily leaches and erodes by water and wind. To assess the influence of mine tailing on the geochemical behavior of rare earth elements (REEs) in soil, sixty-seven surface soil samples and three soil profile samples were collected from different locations near China's largest rare earth mine tailing. The total concentration of REEs in surface soils ranged from 156 to 5.65 × 10(4) mg·kg(-1) with an average value of 4.67 × 10(3) mg·kg(-1), which was significantly higher than the average value in China (181 mg·kg(-1)). We found obvious fractionation of both light and heavy REEs, which was supported by the North American Shale Composite (NASC) and the Post-Archean Average Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N) and Gd(N)/Yb(N)). A slightly positive Ce anomaly and a negative Eu anomaly were also found. For all 14 REEs in soils, enrichment was intensified by the mine tailing sources and influenced by the prevailing wind.

  20. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    NASA Astrophysics Data System (ADS)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  1. Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa

    NASA Astrophysics Data System (ADS)

    Morgan, George; London, David

    2002-12-01

    This study examines the effects of increasing supersaturation, attained by single-step liquidus undercooling (ΔT), on the partitioning of barium and cesium between potassic alkali feldspar (Afs) and hydrous granitic liquid at 200 MPa. The investigation is motivated by trace-element distribution patterns in granitic pegmatites which cannot be simulated by fractionation models using "equilibrium" partition coefficients, and thus its purpose is to assess if, how, and why partition coefficients for compatible and incompatible trace elements may vary when crystal growth commences far from the crystal-melt equilibrium boundary. Barium expands the liquidus stability field of potassic feldspar to higher temperatures, such that liquidi for the Ba-rich ( 0.5 wt% BaO) compositions used are 100 °C higher than for Ba-absent analogues. At low degrees of undercooling (ΔT 50 °C), values of DBaAfs/m. ( 10-20) fall within the range of previous investigations, as do values of DCsAfs/m. (<=0.10) from experiments at all temperatures. Progressively greater undercooling is manifested in the run products by increasingly skeletal to cuneiform crystal morphologies, increased compositional zonation of Afs, and the development of compositional boundary layers in glass. Whereas the partitioning behavior of Cs (incompatible) is not measurably affected, strong undercooling apparently causes the partitioning of Ba (highly compatible) to deviate from equilibrium behavior. Feldspars produced by strong undercooling (ΔT>=100 °C) are heterogeneous, such that DBaAfs/m. versus K/K+Na varies linearly between the average value at 850 °C and the equilibrium value appropriate to the temperature of growth. Hence, high supersaturation accompanying undercooling produces feldspar compositions by isothermal growth which record a vestige of the liquid line of descent (i.e., an ontogeny within zoned crystals which approximately tracks the feldspar liquidus from high temperature to the final low temperature

  2. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  3. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    NASA Astrophysics Data System (ADS)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  4. Biological availability and environmental behaviour of Rare Earth Elements in soils of Hesse, Central Germany

    NASA Astrophysics Data System (ADS)

    Loell, M.; Duering, R.-A.; Felix-Henningsen, P.

    2009-04-01

    Rare earth elements (REEs) comprise a group of 17 transition metals with very similar chemical and physical properties. They include the elements scandium (Sc), yttrium (Y) and lanthanum (La) and the 14 elements (cerium to lutetium) that follow La in the periodic table. Their average abundance in the earth's crust varies from 0,01 to 0,02% so they are as common as Cu and Pb. Beside their widespread use in industry, REEs are applied in Chinese agriculture. Their beneficial effects both on crop yield and on animal production are reported in various investigations. As a result - by using microelement fertilisers and manure - REEs enter the pedosphere while their fate and behaviour in the environment up to now remains unexamined. The first aim of our investigation was to evaluate the concentration of REEs in agricultural used soils in central Germany (Hesse) by ICP-MS. In addition to their total concentration (aqua regia digestion) their bioavailable contents - determined by EDTA (potentially available fraction) and ammonium nitrate extraction (mobile fraction) - were analysed. The occurrence of the three REE fractions in different soils will be discussed and influencing soil properties (e.g. pH-value, content of clay and organic carbon) will be revealed. Additionally the uptake of REEs by grassland plants was determined and resulting transfer factors will be presented.

  5. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    NASA Astrophysics Data System (ADS)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  6. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    NASA Technical Reports Server (NTRS)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  7. On the origin of falling-tone chorus elements in Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Krasnoselskikh, V.; Le Contel, O.; Cully, C. M.; Angelopoulos, V.; Zaliznyak, Y.; Rolland, G.

    2014-12-01

    Generation of extremely/very low frequency (ELF/VLF) chorus waves in Earth's inner magnetosphere has received increased attention recently because of their significance for radiation belt dynamics. Though past theoretical and numerical models have demonstrated how rising-tone chorus elements are produced, falling-tone chorus element generation has yet to be explained. Our new model proposes that weak-amplitude falling-tone chorus elements can be generated by magnetospheric reflection of rising-tone elements. Using ray tracing in a realistic plasma model of the inner magnetosphere, we demonstrate that rising-tone elements originating at the magnetic equator propagate to higher latitudes. Upon reflection there, they propagate to lower L-shells and turn into oblique falling tones of reduced power, frequency, and bandwidth relative to their progenitor rising tones. Our results are in good agreement with comprehensive statistical studies of such waves, notably using magnetic field measurements from THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft. Thus, we conclude that the proposed mechanism can be responsible for the generation of weak-amplitude falling-tone chorus emissions.

  8. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  9. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.

    PubMed

    Kifle, Dejene; Wibetoe, Grethe

    2013-09-13

    One of the major difficulties in the rare earth elements separation is purification of yttrium from heavy rare earth elements. Thus, an HPLC method using acetic acid as novel eluent was explored for selective separation of yttrium form the heavy rare earth elements. When acetic acid is used as a mobile phase yttrium eluted with the lighter lanthanides. This is contrary to its relative position amongst heavier lanthanides when eluents commonly used for separation of rare earth elements were employed. The shift in elution position of yttrium with acetic acid as eluent may reflect a relatively lower stability constant of the yttrium-AcOH complex (in the same order as for the lighter lanthanides) compared to the corresponding AcOH complexes with heavy lanthanides, enabling selective separation of yttrium from the latter. The method was successfully used for selective separation of yttrium in mixed rare earth sample containing about 80% of yttrium and about 20% of heavy rare earth oxides. Thus, the use of AcOH as eluent is an effective approach for separating and determining the trace amounts of heavy rare earth elements in large amounts of yttrium matrix. Separation was performed on C18 column by running appropriate elution programs. The effluent from the column was monitored with diode array detector at absorbance wavelength of 658nm after post column derivatization with Arsenazo III.

  10. Standardless EDXRF application for quantification of thorium (Th), uranium (U) and rare earth elements (REEs) in various Malaysian rare earth ores

    NASA Astrophysics Data System (ADS)

    Ruf, Mohd Izzat Fahmi Mohd; Bahri, Che Nor Aniza Che Zainul; AL-Areqi, Wadeeah M.; Majid, Amran Ab.

    2016-11-01

    Our local rare earth ores contained substantial amount of Thorium and Uranium which the level exceed permissible limit adopted by Malaysia and many importing nation. X-ray fluorescence technique has been applied for determination of thorium (Th), uranium (U) and rare earth elements (REEs) in Malaysian rare earth ores as it's recognized as viable tool. XRF has been widely used in detecting elemental composition of unknown materials both qualitative and quantitatively because of its wide range of element detection alongside the non-destructive analytical technique with great accuracy and precision. Four types of minerals sample which is monazite, xenotime, ilmenite and zircon were collected from `amang' factory located in famous city of mining, Ipoh and analyzed using EDXRF.

  11. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Schramm, Rainer

    2016-09-01

    X-ray fluorescence spectrometry (XRF) is a powerful tool for the analysis of solid material. That is the reason why the technique was applied for the determination of rare earth elements (REEs) since about 1970. At present, energy-dispersive XRF and wavelength-dispersive XRF are used for the analysis of pressed powder pellets or fused Li-borate beads containing REEs. The production of reliable results can only be achieved by careful optimization of the parameter, in particular the selection of spectral lines. The quantification is based on a calibration realized by using reference samples.

  12. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    NASA Astrophysics Data System (ADS)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  13. Rare-Earth Elements in Lighting and Optical Applications and Their Recycling

    NASA Astrophysics Data System (ADS)

    Song, Xin; Chang, Moon-Hwan; Pecht, Michael

    2013-10-01

    Rare-earth elements (REEs) are used in lighting and optical applications to enable color and light adjustment, miniaturization, and energy efficiency. Common applications of REEs include phosphors for light-emitting diodes, lasers, and electronic video displays. This article reviews how REEs are widely used in these applications. However, supply constraints, including rising prices, environmental concerns over mining and refining processes, and China's control over the supply of the vast majority of REEs, are of concern for manufacturers. In view of these supply constraints, this article discusses ways for manufacturers of lighting and optical devices to identify potential substitutes and recycling methods for REEs.

  14. Studies of rare earth element distribution and action in human erythrocyte and animal hepatocyte by PIXE

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Mi, Y.; Shen, H.; Yao, H. Y.; Cheng, Y.; Wang, X.; Zhang, J. X.

    2002-04-01

    PIXE analysis is applied to investigate a long-term disputed issue whether the rare earth element (REE) can enter the cell across the cell membrane or not. It has been illustrated that REE could travel across the biomembrane into the cells by cell studies in vitro as well as in studies of animals fed with REEs diet. The binding of REE by membrane changes its permeability and makes intracellular ion transportable. Entrance of REEs may influence the cellular function. In addition, the REE distribution and behavior in cell are discussed.

  15. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  16. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.

    2007-01-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.

  17. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China

    NASA Astrophysics Data System (ADS)

    Zheng, Liugen; Liu, Guijian; Chou, Chen-Lin; Qi, Cuicui; Zhang, Ying

    2007-10-01

    The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals.

  18. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    NASA Astrophysics Data System (ADS)

    Stijfhoorn, D. E.; Stray, H.; Hjelmseth, H.

    1993-03-01

    A high-performance liquid Chromatographie (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2O 3, Gd 2O 3 and Dy 2O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS are presented.

  19. Trace-element and Sr, Nd, Pb, and O isotopic composition of Pliocene and Quaternary alkali basalts of the Patagonian Plateau lavas of southernmost South America

    USGS Publications Warehouse

    Stern, C.R.; Frey, F.A.; Futa, K.; Zartman, R.E.; Peng, Z.; Kurtis, Kyser T.

    1990-01-01

    The Pliocene and Quaternary Patagonian alkali basalts of southernmost South America can be divided into two groups. The "cratonic" basalts erupted in areas of Cenozoic plateau volcanism and continental sedimentation and show considerable variation in 87Sr/86Sr (0.70316 to 0.70512), 143Nd/144Nd (e{open}Nd) and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios (18.26 to 19.38, 15.53 to 15.68, and 38.30 to 39.23, respectively). These isotopic values are within the range of oceanic island basalts, as are the Ba/La, Ba/Nb, La/Nb, K/Rb, and Cs/Rb ratios of the "cratonic" basalts. In contrast, the "transitional" basalts, erupted along the western edge of the outcrop belt of the Pliocene and Quaternary plateau lavas in areas that were the locus of earlier Cenozoic Andean orogenic arc colcanism, have a much more restricted range of isotopic composition which can be approximated by 87Sr/86Sr=0.7039??0.0004, e{open}Nd, 206Pb/204Pb=18.60??0.08, 207Pb/204Pb=15.60??0.01, and 208Pb/204Pb=38.50??0.10. These isotopic values are similar to those of Andean orogenic are basalts and, compared to the "cratonic" basalts, are displaced to higher 87Sr/86Sr at a given 143Nd/144Nd and to higher 207Pb/204Pb at a given 208Pb/204Pb. The "transitional" basalts also have Ba/La, Ba/Nb, La/Nb, and Cs/Rb ratios higher than the "cratonic" and oceanic island basalts, although not as high as Andean orogenic are basalts. In contrast to the radiogenic isotopes, ??18O values for both groups of the Patagonian alkali basalts are indistinguishable and are more restricted than the range reported for Andean orogenic are basalts. Whole rock ??18O values calculated from mineral separates for both groups range from 5.3 to 6.5, while measured whole rock ??18O values range from 5.1 to 7.8. The trace element and isotopic data suggest that decreasing degrees of partial melting in association with lessened significance of subducted slabderived components are fundamental factors in the west to east transition from arc

  20. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  1. Evolution of carbonated melt to alkali basalt in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Chen, Li-Hui; Jackson, Matthew G.; Hofmann, Albrecht W.

    2017-01-01

    CO2 is considered to play a key role in the melting of the deep upper mantle, and carbonated silicate melts have been widely predicted by partial melting experiments to exist at mantle depths of greater than 80 km. However, such melts have not been shown to exist in nature. Thus, the relationship between CO2 and the origin of silicate melts is highly speculative. Here we present geochemical analyses of rocks sampled from the South China Sea, at the Integrated Ocean Discovery Program Site U1431. We identify natural carbonated silicate melts, which are enriched in light rare earth elements and depleted in Nb and Ta, and show that they were continuously transformed to alkali basalts that are less enriched in light rare earth elements and enriched in Nb and Ta. This shows that carbonated silicate melts can survive in the shallow mantle and penetrate through the hot asthenosphere. Carbonated silicate melts were converted to alkali basaltic melts through reactions with the lithospheric mantle, during which precipitation of apatite accounts for reduction of light rare earth elements and genesis of positive Nb-Ta anomalies. We propose that an extremely thin lithosphere (less than 20 km in the South China Sea) facilitates extrusion of the carbonated silicate melts, whereas a thickened lithosphere tends to modify carbonated silicate melt to alkali basalt.

  2. Rare earth element components in atmospheric particulates in the Bayan Obo mine region.

    PubMed

    Wang, Lingqing; Liang, Tao; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM10) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m(3), and those for PM10 were 42.8 and 68.9 ng/m(3), in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM10 and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM10 were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La(N)/Yb(N), La(N)/Sm(N), Gd(N)/Yb(N)).

  3. Uptake and effect of rare earth elements on gene expression in Methylosinus trichosporium OB3b

    DOE PAGES

    Gu, Wenyu; Farhan Ul Haque, Muhammad; DiSpirito, Alan A.; ...

    2016-05-12

    It is well-known that M. trichosporium OB3b has two forms of methane monooxygenase responsible for the initial conversion of methane to methanol, a cytoplasmic (soluble) methane monooxygenase (sMMO) and a membrane-associated (particulate) methane monooxygenase (pMMO) and that copper strongly regulates expression of these alternative forms of MMO. More recently, it has been discovered that M. trichosporium OB3b has multiple types of the methanol dehydrogenase (MeDH), i.e. the Mxa-MeDH and Xox-MeDH, and the expression of these two forms is regulated by the availability of the rare earth element, cerium. Here we extend these studies and show that lanthanum, praseodymium, neodymium andmore » samarium also regulate expression of alternative forms of MeDH. The effect of these rare earth elements on MeDH expression, however, was only observed in the absence of copper. Further, a mutant of M. trichosporium OB3b where the Mxa-MeDH was knocked out was able to grow in the presence of lanthanum, praseodymium and neodymium, but was not able to grow in the presence of samarium. In conclusion, collectively these data suggest that multiple levels of gene regulation by metals exist in M. trichosporium OB3b but that copper overrides the effect of other metals by an as yet unknown mechanism.« less

  4. Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements

    SciTech Connect

    Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.

    1982-04-01

    Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Depending on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.

  5. Rare earth elements in soils from selected areas on the Island of Hawaii

    SciTech Connect

    Barnard, W.M.; Halbig, J.B.

    1985-07-01

    Fifty soil samples for the wet, windward (east) side and dry, leeward (west) side of the Island of Hawaii were analyzed for La, Ce, Sm, Eu, Yb, and Lu by neutron activation/gamma-ray spectroscopic analysis. Data on concentrations in each sample are listed and analyzed statistically for soil samples collected from the western slope of Kohala Mountain, the western coastal plain of Mauna Kea, and the Northeastern coastal plain of Maunal Loa. Rare earth element (REE) concentrations are two to six times greater in soils from the western, dry side of the island, and good statistical correlation is exhibited among the samples for pairs of individual REEs. In the organic-rich soils of the east side, correlations are poor but are markedly improved when sample weights are adjusted for weight due to organic matter and water in soil colloids. If the mean compositions of selected rock samples from the Hawaii Reference Suite are representative of the compositions of the parent materials, REEs in the soils are moderately enriched (up to two times, based on oven-dry weights). Rare earth element concentrations in the island's western soils are as much as two times greater than the mean REE values of common sedimentary rocks worldwide; however, they are well within the concentration ranges of soils of continental origin. The eastern soils tend to have less La and Ce, but similar amounts of the middle and heavy REEs.

  6. While China's dominance in rare earths dips, concerns remain about these and other elements

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    China's dominance in the production of rare earth elements (REEs) peaked with that nation producing 97% of them in 2010; this number already has dipped to 90% in 2012 as mines in other nations are coming online, according to REE expert Karl Gschneidner Jr., a professor at Iowa State University's Ames Laboratory. Chinese production could drop to 60% by 2014, with production increasing at mines in the United States and other countries, he said. However, this reduction in China's share of REE production does not signal an end to the production crisis in REEs and other critical minerals, Gschneidner and others noted during a 1 May panel discussion on critical materials shortages at the AGU Science Policy Conference in Washington, D. C. REEs are a group of 17 chemically similar metallic elements used in a variety of electronic, optical, magnetic, and catalytic applications, and despite their name, they are relatively plentiful in the Earth's crust. China's control of known REE reserves has dropped from 75% in 1975 to 30.9% in 2012, with other regions also having large reserves, including the Commonwealth of Independent States (some former Soviet Republic states), the United States, and Australia, according to Gschneidner. Critical minerals are mineral commodities that are particularly important for a nation's economy or national defense that could potentially face supply disruptions.

  7. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    NASA Astrophysics Data System (ADS)

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.

    2009-03-01

    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  8. Composition, characteristic and activity of rare earth element-bound polysaccharide from tea.

    PubMed

    Wang, D; Wang, C; Zhao, G; Wei, Z; Tao, Y; Liang, X

    2001-09-01

    The compositions and structural characteristics of rare earth elements-bound polysaccharides from tea (REE-TPS) were studied with the methods of Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Gas Chromatography (GC) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The results show that polysaccharide from tea (TPS) was a sort of glycoprotein and coordinated with Rare Earth Elements (REE) closely. The sugar fraction was composed of Rha, Ara, Xyl, Fuc, Glc, and Gal. There existed almost all natural amino acids with Glx, Asx, and Hyp as the major parts in the protein fraction. The REEs in REE-TPS were mainly composed of La, Ce, and Nd, especially, more than 75% of them was La. The coordination atom of the first coordination shell of La in REE-TPS was oxygen, the coordination number of which was 6, and the average distance between the atoms was 2.52 A. The second shell was formed from sulfur atoms, the coordination number and the average distance were 3 and 2.91 A, respectively. The bio-experiments show that REE-TPS could decrease the content of blood glucose in mice significantly.

  9. Rare earth elements--a new generation of growth promoters for pigs?

    PubMed

    He, M L; Rambeck, W A

    2000-01-01

    The present study which includes two feeding experiments was performed to investigate a possible performance enhancing effect of rare earth elements (REF) in piglets. This performance enhancing effect has been described in the Chinese literature for a long time, however, it was never tested under "western conditions". In the first feeding experiment 72 piglets at a mean BW of 7.3 kg were allotted to a control and to 4 REE groups at different levels of lanthanum chloride or an REE mixture containing mainly chlorides of lanthanum, cerium and praseodymium. The experimental period lasted 5 weeks. Positive effects of REE were found on body weight gain as well as on feed conversion ratio of the piglets. Compared to the control group, the daily weight gain was improved by 2 to 5% and feed conversion was better by up to 7%. These effects were, however, not significant. In the second feeding experiment, piglets (mean BW 17.3 kg) were fed for 8 weeks with a similar REE mixture. Significant positive effects of REE were found on both body weight gain and on feed conversion ratio by 19% and 10%, respectively. This is the first time that a performance enhancing effect of REE in pigs under western feeding conditions has been shown. Since the use of antibiotics as growth promoters in animal feed has been restricted in the European Union recently, rare earth elements might be of interest as new, safe and inexpensive alternative performance enhancers.

  10. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    PubMed Central

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset time of the geomagnetic field, the appearance of an oxygen atmosphere, and the secular variation of an Earth–Moon dynamical system. PMID:19001263

  11. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  12. Speciation of adsorbed yttrium and rare earth elements on oxide surfaces

    NASA Astrophysics Data System (ADS)

    Piasecki, Wojciech; Sverjensky, Dimitri A.

    2008-08-01

    The distribution of yttrium and the rare earth elements (YREE) between natural waters and oxide mineral surfaces depends on adsorption reactions, which in turn depend on the specific way in which YREE are coordinated to mineral surfaces. Recent X-ray studies have established that Y 3+ is adsorbed to the rutile (1 1 0) surface as a distinctive tetranuclear species. However, the hydrolysis state of the adsorbed cation is not known from experiment. Previous surface complexation models of YREE adsorption have suggested two to four cation hydrolysis states coexisting on oxide surfaces. In the present study, we investigate the applicability of the X-ray results to rare earth elements and to several oxides in addition to rutile using the extended triple-layer surface complexation model. The reaction producing a hydrolyzed tetranuclear surface species 4>SOH+M+2HO=(>SOH)2_M(OH)2++4H was found to account for a significant fraction of the adsorbed Y 3+, La 3+, Nd 3+, Gd 3+, and Yb 3+ on rutile, hematite, alumina and silica over wide ranges of pH and ionic strength. Where adsorption data were available as a function of surface coverage for hematite and silica, an additional reaction involving a mononuclear species could be used to account for the higher surface coverages. However, it is also possible that some of the higher surface coverage data refer to surface precipitation rather than adsorption. The results of the present study provide an internally consistent basis for describing YREE adsorption which could be used to investigate more complex systems in which YREE compete both in aqueous solution and on mineral surfaces with alkaline earths and ligands such as carbonate, sulfate, chloride and organic species, in order to build a predictive adsorption model applicable to natural waters.

  13. Distribution characteristics of rare earth elements in children's scalp hair from a rare earths mining area in southern China.

    PubMed

    Tong, Shi-Lu; Zhu, Wang-Zhao; Gao, Zhao-Hua; Meng, Yu-Xiu; Peng, Rui-Ling; Lu, Guo-Cheng

    2004-01-01

    In order to demonstrate the validity of using scalp hair rare earth elements (REEs) content as a biomarker of human REEs exposure, data were collected on REEs exposure levels from children aged 11-15 years old and living in an ion-adsorptive type light REEs (LREEs) mining and surrounding areas in southern China. Sixty scalp hair samples were analyzed by ICP-MS for 16 REEs (La Lu, Y and Sc). Sixteen REEs contents in the samples from the mining area (e.g., range: La: 0.14-6.93 microg/g; Nd: 0.09-5.27 microg/g; Gd: 12.2-645.6ng/g; Lu: 0.2-13.3 ng/g; Y: 0.03-1.27 microg/g; Sc: 0.05-0.30 microg/g) were significantly higher than those from the reference area (range: La: 0.04-0.40 microg/g; Nd: 0.04-0.32 microg/g; Gd: 8.3-64.6 ng/g; Lu: 0.4-3.3ng/g; Y: 0.03-0.29 microg/g; Sc: 0.11-0.36 microg/g) and even much higher than those published in the literature. The distribution pattern of REEs in scalp hair from the mining area was very similar to that of REEs in the mine and the atmosphere shrouding that area. In conclusion, the scalp hair REEs contents may indicate not only quantitatively but also qualitatively (distribution pattern) the absorption of REEs from environmental exposure into human body. The children living in this mining area should be regarded as a high-risk group with REEs (especially LREEs) exposure, and their health status should be examined from a REEs health risk assessment perspective.

  14. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  15. The possible role of hydrogen in the substitution of rare earth elements into zircon

    NASA Astrophysics Data System (ADS)

    Hinton, R.; MacDonald, R.; Macgarvie, D.; Tindle, A.; Harley, S.

    2003-04-01

    Ion microprobe measurements have been made of trace element concentrations in zircon and surrounding fresh glass of 5 recently erupted rhyolites. In particular analyses have included not only rare earth elements (REE), but many of the elements that have been suggested to be incorporated into zircon. Y and the REE elements were found to be the dominant trace elements in the zircon and these elements varied by over an order of magnitude between grains despite a relatively constant REE content in the surrounding glasses. Strong correlations were observed between Y and all other REE except Ce and Eu. As has been previously observed, the REE partitioning coefficients (zircon/glass) increased strongly from La to Lu. The Ce partitioning was significantly higher than the neighbouring REE (as this element dominantly substitutes as the 4+ ion). Whereas it has been previously demonstrated that xenotime substitution occurs in zircon it is clear that in some strongly zoned crystals the P content is insufficient to permit complete charge balance. In the zircons analysed here there also appears to be insufficient P to permit charge balance. The P_2O_5 did not exceed 0.15 wt.% yet the total Y and REE oxide concentrations ranged up to about 2 wt.%. Concentrations of other trace elements were invariably very low (Li, Na, K, Be, Mg, Ca, Sr and Ba) less than 7 ppm and Al less than 5 ppm wt. Sc, Ti and Fe were less than 40 ppm wt. and V, Cr and Mn less than 1 ppm wt. F concentrations (7 to 200 ppm wt.) correlated poorly with Y and the REE but were about an order of magnitude too low to permit any major charge coupling with the REE. Although no zircon water standard was available, initial estimates of the water content suggest that the zircons contained between 0.01 to 0.09 wt.% H_2O (background approximately 0.008 wt.% H_2O). Somewhat surprisingly the H contents displayed a very good correlation with the Y (and REE) content. Further, although low, these water concentrations appear to

  16. Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.; Petrie, R.K.; Irving, A.J.

    1981-01-01

    Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe

  17. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium.

    PubMed

    Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank

    2015-01-01

    Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates.

  18. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    PubMed

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  19. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  20. On Re-Entry Prediction of Near Earth Objects with Genetic Algorithm Using KS Elements

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Anilkumar, A. K.; Xavier James Raj, M.; Sabarinath, A.

    2009-03-01

    The accurate orbit prediction of the near-Earth objects is an important requirement for the re-entry and the life time estimation. The method of Kustaanheimo and Stiefel (KS) total energy element equations is one of the powerful methods for orbit prediction. Recently, due to the reentries of large number of risk objects, which posses threat to the human life and property, a great concern is developed in the space scientific community. Consequently, the prediction of risk objects re-entry time and location has got much importance for the proper planning of mitigation strategies and hazard assessment. This paper discusses an integrated procedure for orbit life time prediction combining the KS elements and genetic algorithm (GA). The orbit prediction is carried out by numerically integrating the KS element equations. In this methodology, the ballistic coefficient is estimated from a set of observed orbital parameters in terms of the Two Line Elements (TLE) by minimizing the variance of the predicted re-entry time from different TLE using GA. A software, KSGEN, systematically developed in-house using KS elements and genetic algorithm is utilized for predicting the re-entry time of the risk objects. This software has been effectively used for the prediction of the re-entry time in the past seven re-entry exercise campaigns conducted by the Inter Agency Space Debris Coordination Committee (IADC). The predicted re-entry time matched quite well with the actual re-entry time for all the seven IADC re-entry campaigns. A detailed analysis is carried out with two case studies.

  1. Cracking the Code of Soil Genesis. The Early Role of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Maier, R. M.; Huxman, T. E.; Chorover, J.

    2014-12-01

    Soil is terrestrial life support system. Its genesis involves tight interactions between biota and mineral surfaces that mobilize structural elements into biogeochemical cycles. Of all chemical elements rare earth elements (REE) are a group of 16 non-nutrient elements of unusual geochemical similarity and present in all components of the surface environment. While much is known about the role of major nutrients in soil development we lack vital understanding of how early biotic colonization affects more conservative elements such as REE. A highly controlled experiment was set up at University of Arizona's Biosphere-2 that tested the effect of 4 biological treatments, incorporating a combination of microbe, grass, mycorrhiza and uninoculated control on REE leaching and uptake in 4 bedrock substrates: basalt, rhyolite, granite and schist. Generally the response of REE to biota presence was synergistic. Variation in total bedrock chemistry could explain major trends in pore water REE. There was a fast transition from chemistry-dominated to a biota dominated environment in the first 3-4 months of inoculation/seeding which translated into increase in REE signal over time. Relative REE abundances in water were generally reflected in plant concentrations, particularly in root, implying that below ground biomass is the main sync of REE in the ecosystem. Mycorrhiza effect on REE uptake in plant organs was significant and increased with infection rates. Presence of different biota translated into subtle differences in REE release, reveling potential biosignatures of biolota-rock colonization. The results thus bring fundamental insight into early stages non-nutrient cycle and soil genesis.

  2. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland.

    PubMed

    Mleczek, Mirosław; Niedzielski, Przemysław; Kalač, Pavel; Siwulski, Marek; Rzymski, Piotr; Gąsecka, Monika

    2016-01-01

    Due to limited data-describing abilities of mushrooms to accumulate platinum group elements (PGEs) and rare-earth elements (REEs), the aim of this study was to determine, by inductively coupled plasma optical emission spectrometry followed by microwave-assisted sample digestion by nitric acid, the content of these elements in 20 mushroom species (10 above ground and 10 growing on wood), mostly edible, collected near a busy trunk road. The highest content of PGEs in above-ground mushroom species was observed in Lepista gilva and Suillus bovinus fruit bodies (0.38 ± 0.05 and 0.37 ± 0.03 mg kg(-1) DW, respectively), while in mushrooms growing on wood, the highest content was observed in Pleurotus ostreatus (0.35 ± 0.04 mg kg(-1) DW). The mean content of PGEs for both these groups was 0.23 ± 0.08 and 0.26 ± 0.07 mg kg(-1) DW, respectively. The highest content of REEs in Suillus luteus and Tricholoma equestra was 5.03 ± 0.50 and 2.18 ± 0.56 mg kg(-1) DW, respectively, but within mushrooms growing on wood in Ganoderma applanatum fruiting bodies it was 4.19 ± 0.78 mg kg(-1) DW. Mean contents of REEs were 1.39 ± 1.21 and 1.61 ± 0.97 mg kg(-1) DW in above-ground species and species growing on wood, respectively. Generally, the group of mushroom species growing on wood was capable of slightly higher accumulation of both REEs and PGEs. No limits have been established for both the groups until now.

  3. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  4. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  5. 'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Mostefaoui, S.; Meibom, A.; Selo, M.; McKay, D. S.; Robert, F.

    2006-01-01

    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia.

  6. Accumulation of rare earth elements in human bone within the lifespan.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir; Karandashev, Vasilii; Nosenko, Sergey

    2011-02-01

    For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.

  7. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  8. [Speciation and distribution characters of rare earth elements in the Baotou Section of the Yellow River].

    PubMed

    He, Jiang; Mi, Na; Kuang, Yun-chen; Fan, Qing-yun; Wang, Xia; Guan, Wei; Li, Gui-hai; Li, Chao-sheng; Wang, Xi-wei

    2004-03-01

    As a whole of water column, suspended matter and surface sediment in the mainstream and the branch taking up industry wastewater, speciation and distribution characters of rare earth elements (REEs) were investigated systemically in the Baotou section of the Yellow River. This study shows that rare earth elements in the mainstream of the Baotou section of the Yellow River mainly exist in suspended particles, and the dissolved contents are in extremely minute quantities. REEs mainly exist in dissolved particles in the branch taking up industry wastewater, and suspended sigma REE and dissolved sigma REE are obviously higher than those in the mainstream. The change of sigma REE of dissolved particles in water phase along the Baotou section of the Yellow River is very similar to that of sigma REE of suspended particles, and consistent along the main river, it is that sigma REE increase appreciably from the control profile to the keystone discharged section, come to a head in the D site and reduce in the E site. This distribution pattern indicates pile industry wastewater of Baotou to rare earth elements in the mainstream of the Yellow River, particularly LREE. The REE distribution in the mainstream of the Baotou section of the Yellow River is the same, with LREE enrichment and Eu depletion. But LREE origin of D site is different from the other sites by excursion of LREE distribution curve and other geochemical parameters, they are origin of industry wastewater piled, otherwise the other four sites are origin of loess altiplano. And HREE are origin of loess altiplano in all the sites. The speciation characteristics of REE in the sediments and suspended matter are quite similar with the amount in as follows: residual > bound to carbonates, bound to Fe-Mn oxides > bound to organic matter > exchangeable. REEs exchangeable in surface sediment and suspended matter in the branch taking up industry wastewater are higher than those in the mainstream, it confirms that REEs in

  9. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    SciTech Connect

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids

  10. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2017-04-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2 x Al2 y Si1- x-y O z (0 < x < 1, 0 < y < x and z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  11. Binary rare earth element-Ni/Co metallic glasses with distinct β-relaxation behaviors

    SciTech Connect

    Zhu, Z. G.; Wang, Z.; Wang, W. H.

    2015-10-21

    We report the formation of a series of rare earth element (RE)-Ni/Co binary metallic glasses (MGs) with unusual distinct β-relaxation peak compared with that of most of the reported MGs which usually exhibit as an excess wing or a shoulder. The β-relaxation behavior of RE-Ni/Co MGs is sensitive to the composition and the atomic radii of the RE and can be tuned through changing the fraction of RE-Ni (or Co) atomic pairs. The novel RE-Ni/Co MGs with distinct β-relaxation can serve as model system to investigate the nature of the β-relaxation as well as its relations with other physical and mechanical properties of MGs.

  12. Rare earths, other trace elements and iron in Luna 20 samples.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Jacobs, J. W.; Haskin, L.; Haskin, A.

    1973-01-01

    The results of the analysis by neutron activation of six samples from the Luna 20 mission and one sample of less than 1 mm fines from Apollo 16 are reported. The concentrations of the rare-earth elements (REE) in the samples of fines from Luna 20 and Apollo 16 are less than those found for corresponding materials from the mare areas but a negative Eu anomaly is still present. The concentrations of the REE in fines from Luna 20 are only about two-thirds as great as in the sample of Apollo 16 fines, but the concentration of Co, Sc and Cr are greater by factors ranging from 1.5 to 2.3.

  13. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    PubMed

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.

  14. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  15. Predictive model for ionic liquid extraction solvents for rare earth elements

    NASA Astrophysics Data System (ADS)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  16. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  17. Rare earth and trace element geochemistry of a fragment of Jurassic seafloor, Point Sal, California

    NASA Technical Reports Server (NTRS)

    Menzies, M.; Blanchard, D.; Brannon, J.; Korotev, R.

    1977-01-01

    Rocks from an ophiolite suite once on the seafloor were analyzed for rare earth elements (REE), Sc, Co, Na2O, Cr, Zn and FeO. Strontium isotope exchange noted in some of the lavas is attributed to basalt-seawater interaction; the Ce abundance in smectite- and zeolite-bearing lavas may also be due to prolonged exposure to seawater. The higher grades of metamorphic rock, however, show no variation from the usual flat or slightly light REE depleted profiles. Plutonic igneous rock, all light REE depleted, have total REE abundances varying by a factor of 100 between the dunites and diorites. In order of decreasing REE abundance are hornblende, clinopyroxene, plagioclase, orthopyroxene and olivine. Calculations of REE contents of liquids in equilibrium with early cumulative clinopyroxenes suggest that the parent to the stratiform sequence was more depleted in light REE than the parent to the lava pile.

  18. Lagrangian finite element analysis of the penetration of earth penetrating weapons

    SciTech Connect

    Rosinsky, R.W.

    1985-11-22

    Buried targets, such as hardened missile silos, that are resistant to the effects of air blast from above-ground or surface-burst explosions may be vulnerable to the effects of ground motion produced by nearby underground explosions. An earth penetrating weapon (EPW) is being developed to exploit this phenomena. To design the EPW system, loads on the weapon due to the penetration event must be determined. This paper presents the methodology for performing Lagrangian finite-element analysis of the penetration event in two and three dimensions. In order to describe the methodology, results from analyses done for a particular EPW impacting a particular target medium are presented. The results for impacts with nonzero angles of incidence and nonzero angles of attack show the importance of being able to calculate three dimensional penetration loads. 62 figs.

  19. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  20. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  1. Bioelectrical activity of the central nervous system among populations in a rare earth element area.

    PubMed

    Zhu, W; Xu, S; Shao, P; Zhang, H; Wu, D; Yang, W; Feng, J

    1997-04-01

    Auditory brainstem electric response (ABR) and somatosensory evoked potential (SEP) of 21 subjects (41 ears) among villagers in a rare earth element (REE) area in Gan County, Jiangxi, China, were studied. No difference in ABR between the subjects from the REE area and the control group was noted. However, the conduction detected by SEP from the median nerve to the thalamus (P15) was shortened (P < 0.05), especially to the first-grade primary somatosensory responsive region (S1) (P < 0.01) and the amplitude of S1 decreased (P < 0.05), indicating that REE was difficult to accumulate in the brainstem, but it was susceptible to cerebral cortex, thus causing sub-clinical damage. This condition was confirmed in the animal experiment. It was suggested that the toxicity through long-term intake of small doses of REE might not be negligible, and the hazard of REE environments should be investigated.

  2. Predictive model for ionic liquid extraction solvents for rare earth elements

    SciTech Connect

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  3. X-ray fluorescence analysis of rare earth elements in rocks using low dilution glass beads.

    PubMed

    Nakayama, Kenichi; Nakamura, Toshihiro

    2005-07-01

    Major and trace elements (Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Gd, Dy, Th and U) in igneous rocks were assayed with fused lithium borate glass beads using X-ray fluorescence spectrometry. Low dilution glass beads, which had a 1:1 sample-to-flux ratio, were prepared for determination of rare earth elements. Complete vitrification of 1:1 mixture required heating twice at 1200 degrees C with agitation. Extra pure reagents containing determinants were used for calibrating standards instead of the rock standard. The calibration curves of the 23 elements showed good linearity. Furthermore, the lower limits of detection corresponding to three times the standard deviation for blank measurements were 26 mass ppm for Na2O, 6.7 for MgO, 4.5 for Al2O3, 4.5 for SiO2, 18 for P2O5, 1.1 for K2O, 4.0 for CaO, 3.9 for TiO2, 1.6 for MnO, 0.8 for Fe2O3, 0.5 for Rb, 0.2 for Sr, 0.4 for Y, 0.5 for Zr, 3.3 for La, 6.5 for Ce, 2.7 for Pr, 2.1 for Nd, 1.7 for Sm, 0.7 for Gd, 2.7 for Dy, 0.5 for Th, and 0.6 for U. Using the present method, we determined the contents of these 23 elements in four rhyolitic and granitic rocks from Japan.

  4. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements

    NASA Astrophysics Data System (ADS)

    Trail, Dustin; Mojzsis, Stephen J.; Harrison, T. Mark; Schmitt, Axel K.; Watson, E. Bruce; Young, Edward D.

    2007-06-01

    We report zircon oxygen isotope ratios and reconnaissance Ti-in-zircon concentrations, guided by cathodoluminescence image studies, for detrital zircons up to 4.34 Ga from the Narryer Gneiss Complex of Western Australia. Zircon oxygen isotope results bolster the view that some Hadean (>3.85 Ga) zircon source melts were enriched in heavy oxygen, a sensitive proxy for melt contamination by sediments altered in liquid water. Zircon crystallization temperatures calculated from Ti concentration in pre-3.8 Ga zircons yield values around 680°C in all cases except for one lower value in a 4.0 Ga grain. Elevated zircon δ18O values reported here and elsewhere, combined with low minimum-melt crystallization temperatures, and analysis of zircon/melt partitioning of rare earth elements (REEs) provide mutually consistent lines of evidence that the Hadean Earth supported an evolved rock cycle which included formation of granitic water-saturated melts, extensive continental crust, hydrosphere-lithosphere interactions, and sediment recycling within the first 150 million years of planet formation.

  5. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    NASA Astrophysics Data System (ADS)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  6. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  7. Rare earth elements in human hair from a mining area of China.

    PubMed

    Wei, Binggan; Li, Yonghua; Li, Hairong; Yu, Jiangping; Ye, Bixiong; Liang, Tao

    2013-10-01

    Rare earth minerals have been mined for more than 50 years in Inner Mongolia of China. In the mining area rare earth elements (REE) may be significantly accumulated in humans. Therefore, the aim of this paper is to characterize the REE concentrations in hair of local residents. REE concentrations in hair of 118 subjects were determined. The results showed that the mean concentrations of the determined REE in the hair of both females and males were usually higher from mining area than from control area. The mean concentrations of all the fifteen REE were much higher in hair of males than in hair of females from mining area. This suggested that males might be more sensitive to REE than females. In addition, the mean contents of the REE in hair of miners, particularly light REE (La, Ce, Pr and Nd), were usually much higher than the values in hair of non-miners from both mining area and control area, indicating that the miners were exposed to higher concentrations of REE in occupational environment. Among age groups, the relationships between REE concentrations and age groups showed that more and more concentrations of light REE accumulated in body of both females and males with age until 60 years, while heavy REE concentrations decreased with age in males who were exposed to low concentrations of heavy REE.

  8. Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China.

    PubMed

    Wang, Bin; Yan, Lailai; Huo, Wenhua; Lu, Qun; Cheng, Zixi; Zhang, Jingxu; Li, Zhiwen

    2017-01-01

    Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.

  9. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    SciTech Connect

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  10. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGES

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  11. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences

    NASA Astrophysics Data System (ADS)

    Wilson, Cian R.; Spiegelman, Marc; van Keken, Peter E.

    2017-02-01

    We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma.github.io, which includes links to documentation and example input files.

  12. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  13. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  14. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria.

    PubMed

    Ayedun, H; Arowolo, T A; Gbadebo, A M; Idowu, O A

    2016-06-11

    Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365-488 (69.5 ± 117)] µg L(-1) than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14-232 (22.6 ± 41.1)] µg L(-1). Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3(2-) (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.

  15. Milk-alkali syndrome

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000332.htm Milk-alkali syndrome To use the sharing features on this page, please enable JavaScript. Milk-alkali syndrome is a condition in which there ...

  16. Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Weigel, T.; Toussaiant, F.; Stockhause, M.; Höck, H.; Kindermann, S.; Lautenschlager, M.; Ludwig, T.

    2012-12-01

    We propose a wide adoption of structural elements (typed links, collections, trees) in the Handle System to improve identification and access of scientific data, metadata and software as well as traceability of data provenance. Typed links target the issue of data provenance as a means to assess the quality of scientific data. Data provenance is seen here as a directed acyclic graph with nodes representing data and vertices representing derivative operations (Moreau 2010). Landing pages can allow a human user to explore the provenance graph back to the primary unprocessed data, thereby also giving credit to the original data producer. As in Earth System Modeling no single infrastructure with complete data lifecycle coverage exists, we propose to split the problem domain in two parts. Project-specific infrastructures such as the German project C3-Grid or the Earth System Grid Federation (ESGF) for CMIP5 data are aware of data and data operations (Toussaint et al. 2012) and can thus detect and accumulate single nodes and vertices in the provenance graph, assigning Handles to data, metadata and software. With a common schema for typed links, the provenance graph is established as downstream infrastructures refer incoming Handles. Data in this context is for example hierarchically structured Earth System model output data, which receives DataCite DOIs only for the most coarse-granular elements. Using Handle tree structures, the lower levels of the hierarchy can also receive Handles, allowing authors to more precisely identify the data they used (Lawrence et al. 2011). We can e.g. define a DOI for just the 2m-temperature variable of CMIP5 data across many CMIP5 experiments or a DOI for model and observational data coming from different sources. The structural elements should be implemented through Handle values at the Handle infrastructure level for two reasons. Handle values are more durable than downstream websites or databases, and thus the provenance chain does not

  17. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    NASA Astrophysics Data System (ADS)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  18. The importance of sulfur for the behavior of highly-siderophile elements during Earth's differentiation

    NASA Astrophysics Data System (ADS)

    Laurenz, Vera; Rubie, David C.; Frost, Daniel J.; Vogel, Antje K.

    2016-12-01

    The highly siderophile elements (HSEs) are widely used as geochemical tracers for Earth's accretion and core formation history. It is generally considered that core formation strongly depleted the Earth's mantle in HSEs, which were subsequently replenished by a chondritic late veneer. However, open questions remain regarding the origin of suprachondritic Ru/Ir and Pd/Ir ratios that are thought to be characteristic for the primitive upper mantle. In most core-formation models that address the behavior of the HSEs, light elements such as S entering the core have not been taken into account and high P-T experimental data for S-bearing compositions are scarce. Here we present a comprehensive experimental study to investigate the effect of increasing S concentration in the metal on HSE metal-silicate partitioning at 2473 K and 11 GPa. We show that the HSEs become less siderophile with increasing S concentrations in the metal, rendering core-forming metal less efficient in removing the HSEs from the mantle if S is present. Furthermore, we investigated the FeS sulfide-silicate partitioning of the HSEs as a function of pressure (7-21 GPa) and temperature (2373-2673 K). The sulfide-silicate partition coefficient for Pt increases strongly with P, whereas those for Pd, Ru and Ir all decrease. The combined effect is such that above ∼20 GPa Ru becomes less chalcophile than Pt, which is opposite to their behavior in the metal-silicate system where Ru is always more siderophile than Pt. The newly determined experimental results are used in a simple 2-stage core formation model that takes into account the effect of S on the behavior of the HSEs during core formation. Results of this model show that segregation of a sulfide liquid to the core from a mantle with substantial HSE concentrations plays a key role in reproducing Earth's mantle HSE abundances. As Ru and Pd are less chalcophile than Pt and Ir at high P-T, some Ru and Pd remain in the mantle after sulfide segregation

  19. Tracing irradiation-induced defect state of monazite by photoluminescence of rare Earth elements

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Seydoux-Guillaume, A. M.; Montel, J. M.; Champagnon, B.

    2003-04-01

    Natural monazite is known in contrast to zircon, to almost never be found in the metamict state (Ewing, 1975) despite the fact that it received intensive radiation doses during geologic history by U and Th incorporation. Radiation damages in natural monazite seems to be limited to isolated domains within the crystal (Meldrum et al., 1998). Such property controlled the fact that the monazite lattice is easily healed even at low temperature as it was shown by TEM, XRD and Raman spectrometry (Seydoux-Guillaume et al., 2002). In order to estimate the degree of disorder and the healing of defects we used trivalent neodymium as an internal luminescent probe (Gaft et al., 2001). As a matter of fact the radiative electronic transitions of rare earth elements are very sensible to the short-range crystallographic order around them. Three natural monazites thermally untreated and quenched at 450, 500, 700, 800 and 1000^oC were analyzed under 514 nm Argon laser excitation with a Renishaw microspectrometer. Nd3+ emission was recorded in the range of 750 nm to 1 μm. The ^4F3/2 rightarrow ^4I9/2 transition parameters (position and width) show that 1) the position of the Stark levels do not change during thermal treatment, and 2) that the emission line widths decrease continuously (from 25 to 37%) from room temperature to 1000^oC. These results indicates that before annealing, sub sites of Nd were present with slight different environments induced by internal irradiation induced displacement of ions around them (short range disorder). After thermal treatment a continuous reorganization of the lattice occurs up to 1000^oC with quite strong rearrangement of the environment around the rare-earth leading to a decrease of the Nd sub site number. Thus, the luminescent probe reveals that defect healing continue at much higher temperatures than what was previously reported indicating that luminescence is a very sensible tool to appreciate the degree of disorder in mineral phases. Gaft M

  20. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    NASA Astrophysics Data System (ADS)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as

  1. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    NASA Astrophysics Data System (ADS)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  2. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium.

    PubMed

    Horiike, Takumi; Yamashita, Mitsuo

    2015-05-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions.

  3. Rare earth elements and select actinoids in the Canadian House Dust Study.

    PubMed

    Rasmussen, P E; Levesque, C; Chénier, M; Gardner, H D

    2017-03-17

    Nationally representative baseline data are presented for rare earth elements (REE), thorium (Th) and uranium (U) in house dust sampled from 1025 urban homes, in units of concentrations (μg g(-1) ), loadings (μg m(-2) ), and loading rates (ng m(-2)  d(-1) ). Spearman rank correlations indicate that, in addition to outdoor sources, consumer products and building materials can influence indoor dust concentrations of REE, Th, and U. Correlations (P<.01) with numbers of occupants, dogs, and cats suggest soil track-in. Correlations (P<.01) with hardwood floors suggest release of REE additives used in pigments and coatings during daily wear and tear. Concentrations of light REE are elevated in smokers' homes compared to non-smokers' homes (P<.001), suggesting that a key source is "mischmetal," the REE alloy used in cigarette-lighter flints. Indoor sources include geological impurities in raw materials used in consumer products, such as U and Th impurities in bentonite clay used in cat litter, and REE impurities in phosphates used for a variety of applications including dog food and building materials. Median gastric bioaccessibility (pH 1.5) of most REE in dust ranges from about 20% to 29%. Household vacuum samples correlate with fresh dust samples from the same homes (P<.001 for all investigated elements).

  4. Analytical Approach Using KS Elements to Near-Earth Orbit Predictions Including Drag

    NASA Astrophysics Data System (ADS)

    Krishnan Sharma, Ram

    1991-04-01

    A new analytical theory for the motion of near-Earth satellite orbits with the air drag effect is developed in terms of the KS elements, utilizing an analytical oblate exponential atmospheric density model. Due to the symmetry of the KS element equations, only one of the eight equations is integrated analytically to obtain the state vector at the end of each revolution. This is a uniqueness of the present theory. The series expansions include up to quadratic terms in e (eccentricity) and c (a small parameter dependent on the flattening of the atmosphere). Numerical studies are done with six test cases, selected to cover a wide range of eccentricity and semi-major axis, and a comparison of the three orbital parameters: semi-major axis, eccentricity and argument of perigee perturbed by the air drag with oblate atmosphere is made up to 100 revolutions with the numerically integrated values. The comparison is quite satisfactory. After 100 revolutions, with a ballistic coefficient of 50, a maximum difference of 39 metres is found in the semi-major axis comparison for a very small eccentricity (0.001) case having an initial perigee height of 391.425 km. One important advantage of the present theory is that it is singularity free, a problem faced by the analytical theories developed from the Lagrange's planetary equations. Another advantage is that the state vector is known after each revolution.

  5. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium

    PubMed Central

    Horiike, Takumi

    2015-01-01

    With an aim to develop a highly efficient method for the recovery of rare earth elements (REEs) by using microorganisms, we attempted to isolate dysprosium (Dy)-accumulating microorganisms that grow under acidic conditions from environmental samples containing high concentrations of heavy metals. One acidophilic strain, T9, which was isolated from an abandoned mine, decreased the concentration of Dy in medium that contained 100 mg/liter Dy to 53 mg/liter Dy after 3 days of cultivation at pH 2.5. The Dy content in the cell pellet of the T9 strain was 910 μg/mg of dry cells. The T9 strain also accumulated other REEs. Based on the results of 28S-D1/D2 rRNA gene sequencing and morphological characterization, we designated this fungal strain Penidiella sp. T9. Bioaccumulation of Dy was observed on the cell surface of the T9 strain by elemental mapping using scanning electron microscopy-energy dispersive X-ray spectroscopy. Our results indicate that Penidiella sp. T9 has the potential to recover REEs such as Dy from mine drainage and industrial liquid waste under acidic conditions. PMID:25710372

  6. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis.

    PubMed

    Zaharescu, Dragos G; Burghelea, Carmen I; Dontsova, Katerina; Presler, Jennifer K; Maier, Raina M; Huxman, Travis; Domanik, Kenneth J; Hunt, Edward A; Amistadi, Mary K; Gaddis, Emily E; Palacios-Menendez, Maria A; Vaquera-Ibarra, Maria O; Chorover, Jon

    2017-02-23

    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

  7. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

    NASA Astrophysics Data System (ADS)

    Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon

    2017-02-01

    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

  8. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    PubMed

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.

  9. Using rare earth element tracers and neutron activation analysis to study rill erosion process.

    PubMed

    Li, Mian; Li, Zhan-bin; Ding, Weng-feng; Liu, Pu-ling; Yao, Wen-yi

    2006-03-01

    Spatially averaged soil erosion data provide little information on the process of rill erosion. The dynamically varied data on the temporal and spatial distributions in the rill erosion process are needed to better understand the erosion process and reveal its innate characteristics. The objectives of this study were to examine the feasibility and effectiveness of rare earth element (REE) tracers and the neutron activation analysis (NAA) method on the study of the rill erosion process and to reveal quantitatively the relationships and characteristics of temporal and spatial distributions of sediment yield in rill erosion. Four REEs were used to study the changeable process of rill erosion at 4 slope positions. Four water inflow rates were applied to a 0.3 x 5 m soil bed at 3 slopes of 10.5%, 15.8% and 21.2% in scouring experiments. All of the runoff was collected in the experiment. Each sample was air-dried and well mixed. Then 20 g of each sample was sieved through 100-mesh and about a 50 mg sample was weighed for analysis of the four elemental compositions by NAA. Results indicate that the REE tracers and NAA method can be used to not only quantitatively determine soil erosion amounts on different slope segments, but also to reveal the changeable process of rill erosion amount. All of the relative errors of the experimental results were less than 25%, which is considered satisfactory on the study of rill erosion process.

  10. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.

    PubMed

    Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom

    2017-02-07

    Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L(-1) and 281 mg of La L(-1) leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L(-1) achieved within 4 days (at 40 A m(-2)). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.

  11. Geochemistry of the rare earth elements in ferromanganese nodules from DOMES Site A, northern equatorial Pacific

    USGS Publications Warehouse

    Calvert, S.E.; Piper, D.Z.; Baedecker, P.A.

    1987-01-01

    The distribution of rare earth elements (REE) in ferromanganese nodules from DOMES Site A has been determined by instrumental neutron activation methods. The concentrations of the REE vary markedly. Low concentrations characterize samples from a depression (the valley), in which Quaternary sediments are thin or absent; high concentrations are found in samples from the surrounding abyssal hills (the highlands) where the Quaternary sediment section is relatively thick. Moreover, the valley nodules are strongly depleted in the light trivalent REE (LREE) and Ce compared with nodules from the highlands, some of the former showing negative Ce anomalies. The REE abundances in the nodules are strongly influenced by the REE abundances in coexisting bottom water. Some controls on the REE chemistry of bottom waters include: a) the more effective removal of the LREE relative to the HREE from seawater because of the greater degree of complexation of the latter elements with seawater ligands, b) the very efficient oxidative scavenging of Ce on particle surfaces in seawater, and c) the strong depletion of both Ce and the LREE in, or a larger benthic flux of the HREE into, the Antarctic Bottom Water (AABW) which flows through the valley. The distinctive REE chemistry of valley nodules is a function of their growth from geochemically evolved AABW. In contrast, the REE chemistry of highland nodules indicates growth from a local, less evolved seawater source. ?? 1987.

  12. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

    PubMed

    Borovička, Jan; Kubrová, Jaroslava; Rohovec, Jan; Randa, Zdeněk; Dunn, Colin E

    2011-10-01

    Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess.

  13. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

    PubMed Central

    Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon

    2017-01-01

    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake. PMID:28230202

  14. Using rare earth elements for the identification of the geographic origin of food

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the

  15. Experimental Na/K exchange between alkali feldspar and an NaCl-KCl salt melt: chemically induced fracturing and element partitioning

    NASA Astrophysics Data System (ADS)

    Neusser, G.; Abart, R.; Fischer, F. D.; Harlov, D.; Norberg, N.

    2012-08-01

    The exchange of Na+ and K+ between alkali feldspar and a NaCl-KCl salt melt has been investigated experimentally. Run conditions were at ambient pressure and 850 °C as well as 1,000 °C. Cation exchange occurred by interdiffusion of Na+ and K+ on the feldspar sub-lattice, while the Si-Al framework remained unaffected. Due to the compositional dependence of the lattice parameters compositional heterogeneities resulting from Na+/K+ interdiffusion induced coherency stress and associated fracturing. Depending on the sense of chemical shift, different crack patterns developed. For the geometrically most regular case that developed when potassic alkali feldspar was shifted toward more sodium-rich compositions, a prominent set of cracks corresponding to tension cracks opened perpendicular to the direction of maximum tensile stress and did not follow any of the feldspar cleavage planes. The critical stress needed to initiate fracturing in a general direction of the feldspar lattice was estimated at ≤0.35 GPa. Fracturing provided fast pathways for penetration of salt melt or vapor into grain interiors enhancing overall cation exchange. The Na/K partitioning between feldspar and the salt melt attained equilibrium values in the exchanged portions of the grains allowing for extraction of the alkali feldspar mixing properties.

  16. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    PubMed

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  17. Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids

    NASA Astrophysics Data System (ADS)

    Olin, P. H.; Wolff, J. A.

    2010-11-01

    Rare earth elements are commonly assumed to substitute only for Ca in clinopyroxene because of the similarity of ionic radii for REE3+ and Ca2+ in eightfold coordination. The assumption is valid for Mg-rich clinopyroxenes for which observed mineral/melt partition coefficients are readily predicted by the lattice strain model for substitution onto a single site (e.g., Wood and Blundy 1997). We show that natural Fe-rich pyroxenes in both silica-undersaturated and silica-oversaturated magmatic systems deviate from this behavior. Salites (Mg# 48-59) in phonolites from Tenerife, ferrohedenbergites (Mg# 14.2-16.2) from the rhyolitic Bandelier Tuff, and ferroaugites (Mg# 9.6-32) from the rhyolitic Rattlesnake Tuff have higher heavy REE contents than predicted by single-site substitution. The ionic radius of Fe2+ in sixfold coordination is substantially greater than that of Mg2+; hence, we propose that, in Fe-rich clinopyroxenes, heavy REE are significantly partitioned between eightfold Ca sites and sixfold Fe and Mg sites such that Yb and Lu exist dominantly in sixfold coordination. We also outline a REE-based method of identifying pyroxene/melt pairs in systems with multiple liquid and crystal populations, based upon the assumption that LREE and MREE reside exclusively in eightfold coordination in pyroxene. Contrary to expectations, interpolation of mineral/melt partition coefficient data for heavy REE does not predict the behavior of Y. We speculate that mass fractionation effects play a role in mineral/melt lithophile trace element partitioning that is detectable among pairs of isovalent elements with near-identical radii, such as Y and Ho, Zr and Hf, and Nb and Ta.

  18. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  19. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate.

  20. Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics.

    PubMed

    Zhang, Yigang; Yin, Qing-Zhu

    2012-11-27

    Carbon (C) is one of the candidate light elements proposed to account for the density deficit of the Earth's core. In addition, C significantly affects siderophile and chalcophile element partitioning between metal and silicate and thus the distribution of these elements in the Earth's core and mantle. Derivation of the accretion and core-mantle segregation history of the Earth requires, therefore, an accurate knowledge of the C abundance in the Earth's core. Previous estimates of the C content of the core differ by a factor of ∼20 due to differences in assumptions and methods, and because the metal-silicate partition coefficient of C was previously unknown. Here we use two-phase first-principles molecular dynamics to derive this partition coefficient of C between liquid iron and silicate melt. We calculate a value of 9 ± 3 at 3,200 K and 40 GPa. Using this partition coefficient and the most recent estimates of bulk Earth or mantle C contents, we infer that the Earth's core contains 0.1-0.7 wt% of C. Carbon thus plays a moderate role in the density deficit of the core and in the distribution of siderophile and chalcophile elements during core-mantle segregation processes. The partition coefficients of nitrogen (N), hydrogen, helium, phosphorus, magnesium, oxygen, and silicon are also inferred and found to be in close agreement with experiments and other geochemical constraints. Contents of these elements in the core derived from applying these partition coefficients match those derived by using the cosmochemical volatility curve and geochemical mass balance arguments. N is an exception, indicating its retention in a mantle phase instead of in the core.

  1. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  2. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids

    NASA Astrophysics Data System (ADS)

    Migdisov, Art A.; Williams-Jones, A. E.

    2014-12-01

    New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.

  3. [Effects of arbuscular mycorrhizal fungi on the growth and rare earth elements uptake of soybean grown in rare earth mine tailings].

    PubMed

    Guo, Wei; Zhao, Ren-xin; Zhao, Wen-jing; Fu, Rui-ying; Guo, Jiang-yuan; Zhang, Jun

    2013-05-01

    A greenhouse pot experiment was conducted to investigate the influence of arbuscular mycorrhizal (AM) fungi Glomus versiforme on the plant growth, nutrient uptake, C: N: P stoichiometric, uptake of heavy metals and rare earth elements by soybean (Glycine max) grown in rare earth mine tailings. The aim was to provide a basis for the revegetation of rare earth mine tailings. The results indicated that soybean had a high mycorrhizal colonization and symbiotic associations were successfully established with G. versiforme, with an average rate of approximately 67%. The colonization of G. versiforme significantly promoted the growth of soybean, increased P, K contents, and decreased C: N: P ratios, supporting the growth rate hypothesis. Inoculation with G. versiforme significantly decreased shoots and roots La, Ce, Pr and Nd concentrations of soybean compared to the control treatment. However, inoculation with G. versiforme had no significant effect on the heavy metal concentrations, except for significantly decreased shoot Fe and Cr concentrations and increased root Cd concentrations. The experiment demonstrates that AM fungi have a potential role for soybean to adapt the composite adversity of rare earth tailings and play a positive role in revegetation of rare earth mine tailings. Further studies on the role of AM fungi under natural conditions should be conducted.

  4. Efficient mobilization and fractionation of rare-earth elements by aqueous fluids upon slab dehydration

    NASA Astrophysics Data System (ADS)

    Tsay, A.; Zajacz, Z.; Sanchez-Valle, C.

    2014-07-01

    The characteristic REE fractionation pattern in arc magmas compared to MOR-basalts results from the selective mobilization of light rare-earth elements (LREE) by slab-derived mobile components. However, the nature and composition of the slab flux, and the actual mechanisms responsible for the transfer of rare-earth elements (REE) from the slab to the mantle wedge remain unclear. We present experimental data on the solubility of selected REE in ligand-bearing aqueous fluids and a hydrous haplogranitic melt at 2.6 GPa and 600-800 °C, spanning the conditions relevant to slab dehydration and melting. The solubilities of REE in aqueous fluids increase more than an order of magnitude with temperature increasing from 600 to 800 °C. Addition of ligands such as Cl-, F-, CO32-, SO42- in relatively small concentrations (0.3-1.5 m [mol/kg H2O]) has a pronounced effect further enhancing REE solubilities. Each ligand yields a characteristic REE pattern by preferential dissolution of either the light or the heavy REE. For example, the addition of NaCl to the aqueous fluids yields highly elevated LREE/HREE ratios (La/Yb=17.4±4.3), whereas the addition of fluoride and sulfate ligands significantly increases the solubility of all REE with moderate LREE/HREE fractionation (La/Yb∼4). The addition of Na2CO3 results in preferential increase of HREE solubilities, and yields La/Yb ratio of 1.6±0.5 by flattening the moderately fractionated REE pattern seen in pure aqueous fluids. The solubilities in hydrous haplogranite melt are moderate in comparison to those observed in aqueous fluids and do not lead to pronounced REE fractionation. Therefore, REE can be effectively mobilized and fractionated by aqueous fluids, compared to felsic hydrous melts. Furthermore, the aqueous fluid chemistry has a major role in determining REE mobilities and fractionation upon slab dehydration in addition to the significant control exerted by temperature. Our results show that chloride-bearing slab

  5. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    SciTech Connect

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  6. Rare earth elements and neodymium isotopes in world river sediments revisited

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; Germain, Y.; Jorry, S. J.; Ménot, G.; Monin, L.; Ponzevera, E.; Rouget, M.-L.; Tachikawa, K.; Barrat, J. A.

    2015-12-01

    Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd(clay-silt) < |1|. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts

  7. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    NASA Astrophysics Data System (ADS)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in

  8. Substantial enhancement in intrinsic coercivity on M-type strontium hexaferrite through the increase in magneto-crystalline anisotropy by co-doping of group-V and alkali elements

    SciTech Connect

    Ahn, Kyunghan Ryu, Byungki; Korolev, Dmitry; Jae Kang, Young

    2013-12-09

    The effect of d{sup 1} impurity doping in Sr-hexaferrite (SrM) on the magnetic anisotropy is investigated. First-principles calculations revealed that group-V elements (V, Nb) are stabilized with co-doping of alkali elements. Na{sup 1+}/K{sup 1+} doping at Sr{sup 2+}-site is found to be critical to form the d{sup 1} impurities at Fe-site. Experimentally, Na–V doped SrM shows the intrinsic coercivity of ∼5.4 kOe, which is ∼300% enhancement compared to undoped SrM and comparable value to La–Co co-doped SrM. Finally, the spin-orbit coupling from non-vanishing angular momentum of d{sup 1} impurity in SrM should be a main factor for such a substantial improvement of intrinsic coercivity.

  9. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGES

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  10. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  11. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  12. Using Rare Earth Element (REE) tracers to identify perferential micro-sites of post-fire aeolian erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant communities in desert environments are spatially anisotropic. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem in an effort to study preferential sediment source areas. We delineated three 0.5 m by 6 m plots of...

  13. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    USGS Publications Warehouse

    Rose, H.J.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  14. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    PubMed

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  15. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Tommasi, Franca; Oral, Rahime

    2015-05-01

    In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts.

  16. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.

    PubMed

    Hopfe, Stefanie; Flemming, Katrin; Lehmann, Falk; Möckel, Robert; Kutschke, Sabine; Pollmann, Katrin

    2017-02-17

    In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y2O3:Eu(2+) containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic

  17. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  18. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments

    NASA Astrophysics Data System (ADS)

    Elderfield, H.; Hawkesworth, C. J.; Greaves, M. J.; Calvert, S. E.

    1981-04-01

    Analyses have been made of REE contents of a well-characterized suite of deep-sea (> 4000 m.) principally todorokite-bearing ferromanganese nodules and associated sediments from the Pacific Ocean. REE in nodules and their sediments are closely related: nodules with the largest positive Ce anomalies are found on sediments with the smallest negative Ce anomalies; in contrast, nodules with the highest contents of other rare earths (3 + REE) are found on sediments with the lowest 3 + REE contents and vice versa. 143Nd /144Nd ratios in the nodules (˜0.51244) point to an original seawater source but an identical ratio for sediments in combination with the REE patterns suggests that diagenetic reactions may transfer elements into the nodules. Analysis of biogenic phases shows that the direct contribution of plankton and carbonate and siliceous skeletal materials to REE contents of nodules and sediments is negligible. Inter-element relationships and leaching tests suggest that REE contents are controlled by a P-rich phase with a REE pattern similar to that for biogenous apatite and an Fe-rich phase with a pattern the mirror image of that for sea water. It is proposed that 3 + REE concentrations are controlled by the surface chemistry of these phases during diagenetic reactions which vary with sediment accumulation rate. Processes which favour the enrichment of transition metals in equatorial Pacific nodules favour the depletion of 3 + REE in nodules and enrichment of 3 + REE in associated sediments. In contrast, Ce appears to be added both to nodules and sediments directly from seawater and is not involved in diagenetic reactions.

  19. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    USGS Publications Warehouse

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  20. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    PubMed

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  1. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    PubMed Central

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency. PMID:26819083

  2. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  3. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall.

    PubMed

    Zhu, Mingyong; Tan, Shuduan; Dang, Haishan; Zhang, Quanfa

    2011-12-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10m×2m×0.16m with a gradient of 20° (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources.

  4. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea.

    PubMed

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J

    2016-09-27

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82-94% using the OC mixing model, and 30-80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas.

  5. Ionic conductivity of binary fluorides of potassium and rare earth elements

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2016-01-01

    The ionic conductivity s of KYF4 and K2 RF5 single crystals ( R = Gd, Ho, Er) and KNdF4 and K2 RF5 ceramic samples ( R = Dy, Er) has been studied in the temperature range of 340-500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100-150 MPa) in the R 2O3-KF-H2O systems. The σ values of tetraf luorides are 3 × 10-5 S/cm (KYF4 single crystal) and 3 × 10-6 S/cm (KNdF4 ceramics) at 435°C. A K2ErF5 single crystal with σ = 1.2 × 10-4 S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K2HoF5 single crystals, σ∥ c /σ⊥ c = 2.5, where σ∥ c and σ⊥ c are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  6. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    NASA Astrophysics Data System (ADS)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  7. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    SciTech Connect

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  8. Oxidation Resistance of Fe80Cr20 Alloys Treated by Rare Earth Element Ion Implantation

    NASA Astrophysics Data System (ADS)

    Sebayang, Darwin; Khaerudini, Deni S.; Saryanto, H.; Hasan, Sulaiman; Othman, M. A.; Untoro, Puji

    2011-10-01

    The oxidation behaviour of newly developed process of Fe80Cr20 alloy was studied as a function of temperature in the range 1173-1273 K for up to 100 h in flowing air, which corresponds to the Solid Oxide Fuel Cell (SOFC) environment operating conditions. The effects of rare earth element implantation and depth profile on the oxidation behaviour of specimens were analyzed based on oxide morphology and microstructure. Characterisation of the oxide phase products after oxidation was made by X-ray diffraction (XRD). The surface morphology of oxide scales was examined using the scanning electronic microscope (SEM) with energy-dispersive X-ray analysis (EDX). The rate constant of thermal oxidation was determined using Wagner method. Experimental results show that the specimens implanted with lanthanum have remarkably enhanced the oxidation resistance. The oxidation test indicates that the newly developed process of Fe80Cr20 implantation with lanthanum ions exhibit considerably greater improvement in the oxidation resistance compared to the specimens implanted with titanium. The newly developed process of Fe80Cr20 milled for 60h show better oxidation resistance compared to specimens milled for 40h.

  9. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the Southern Explorer Ridge

    SciTech Connect

    Barrett, T.J. ); Jarvis, I. ); Jarvis, K.E. )

    1990-07-01

    Massive sulfide-sulfate deposits on the Southern Explorer Ridge were analyzed for 14 rare earth elements (REE) by a modified inductively coupled plasma-mass spectrometric technique that included a correction for high Ba content. Bulk samples of finely intermixed sulfides, sulfate, and amorphous silica contain {Sigma}REE concentrations of {le} 6 ppm. REE patterns range from (1) strongly enriched in light REE with positive Eu anomalies, to (2) relatively flat with positive Eu anomalies and slightly negative Ce anomalies, to (3) slightly enriched in light REE with moderately negative Ce anomalies. Pattern 1 is similar to that of 300-350 C solutions discharging at vents on the East Pacific Rise and the Mid-Atlantic Ridge, whereas pattern 3 resembles REE distributions in normal oceanic bottom waters. The sulfide-sulfate patterns are interpreted to result from variable mixtures of hydrothermal and normal seawater. Barite in gossans capping the mounds has an REE pattern almost identical to patterns of high-temperature vent solutions. Hydrothermal barite has lower REE contents and a different REE pattern relative to hydrogenous barite formed slowly on the sea floor.

  10. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGES

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  11. Ionic conductivity of binary fluorides of potassium and rare earth elements

    SciTech Connect

    Sorokin, N. I.

    2016-01-15

    The ionic conductivity s of KYF{sub 4} and K{sub 2}RF{sub 5} single crystals (R = Gd, Ho, Er) and KNdF{sub 4} and K{sub 2}RF{sub 5} ceramic samples (R = Dy, Er) has been studied in the temperature range of 340–500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100–150 MPa) in the R{sub 2}O{sub 3}–KF–H{sub 2}O systems. The σ values of tetraf luorides are 3 × 10{sup –5} S/cm (KYF{sub 4} single crystal) and 3 × 10{sup –6} S/cm (KNdF{sub 4} ceramics) at 435°C. A K{sub 2}ErF{sub 5} single crystal with σ = 1.2 × 10{sup –4} S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K{sub 2}HoF{sub 5} single crystals, σ{sub ∥c}/σ{sub ⊥c} = 2.5, where σ{sub ∥c} and σ{sub ⊥c} are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  12. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    PubMed Central

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-01-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique. PMID:28266566

  13. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)(2).

    PubMed

    Li, Chaoran; Zhuang, Zanyong; Huang, Feng; Wu, Zhicheng; Hong, Yangping; Lin, Zhang

    2013-10-09

    Treatment of wastewater containing low-concentration yet highly-expensive rare earth elements (REEs) is one of the vital issues in the REEs separation and refining industry. In this work, the interaction and related mechanism between self-supported flowerlike nano-Mg(OH)2 and low-concentration REEs wastewater were investigated. More than 99% REEs were successfully taken up by nano-Mg(OH)2. Further analysis revealed that the REEs could be collected on the surface of Mg(OH)2 as metal hydroxide nanoparticles (<5 nm). An ion-exchange model was proposed as a critical factor for both guaranteeing the reaction speed and maintaining the self-supported structure of the materials. In addition, a method was developed to further separate the immobilized REEs and the residual magnesium hydroxide by varying the solution pH. In a pilot-scale experiment, the REEs from practical wastewater were immobilized effectively at a high flow rate. We anticipate this work can provide a good example for the recycling of valuable REEs in practical industrial applications.

  14. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    DOE PAGES

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; ...

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In thesemore » samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.« less

  15. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale

    SciTech Connect

    Noack, Clinton W.; Jain, Jinesh C.; Stegmeier, John; Hakala, J. Alexandra; Karamalidis, Athanasios K.

    2015-06-26

    In this paper, we studied the geochemistry of the rare earth elements (REE) in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  16. Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Nami, B.; Razavi, H.; Mirdamadi, S.; Shabestari, S. G.; Miresmaeili, S. M.

    2010-08-01

    Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.

  17. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  18. Marine phosphorites as potential resources for heavy rare earth elements and yttrium

    USGS Publications Warehouse

    Hein, James; Koschinsky, Andrea; Mikesell, Mariah; Mizell, Kira; Glenn, Craig R.; Wood, Ray

    2016-01-01

    Marine phosphorites are known to concentrate rare earth elements and yttrium (REY) during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM) and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm) and high heavy REY (HREY) complements (mean 49%), while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm), and very high HREY complements (mean 60%). The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  19. State of rare earth elements in different environmental components in mining areas of China.

    PubMed

    Liang, Tao; Li, Kexin; Wang, Lingqing

    2014-03-01

    China has relatively abundant rare earth elements (REEs) reserves and will continue to be one of the major producers of REEs for the world market in the foreseeable future. However, due to the large scale of mining and refining activities, large amounts of REEs have been released to the surrounding environment and caused harmful effects on local residents. This paper summarizes the data about the contents and translocation of REEs in soils, waters, atmosphere, and plants in REE mining areas of China and discusses the characteristics of their forms, distribution, fractionation, and influencing factors. Obviously high concentrations of REEs with active and bioavailable forms are observed in all environmental media. The mobility and bioavailability of REEs are enhanced. The distribution patterns of REEs in soils and water bodies are all in line with their parent rocks. Significant fractionation phenomenon among individual members of REEs was found in soil-plant systems. However, limited knowledge was available for REEs in atmosphere. More studies focusing on the behavior of REEs in ambient air of REE mining areas in China are highly suggested. In addition, systematic study on the translocation and circulation of REEs in various media in REEs mining areas and their health risk assessment should be carried out. Standard analytical methods of REEs in environments need to be established, and more specific guideline values of REEs in foods should also be developed.

  20. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents.

    PubMed

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-09-10

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models' isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications.

  1. Examination of rare earth element concentration patterns in freshwater fish tissues.

    PubMed

    Mayfield, David B; Fairbrother, Anne

    2015-02-01

    Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system.

  2. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  3. Effect of Rare Earth Elements on Isothermal Transformation Kinetics in Si-Mn-Mo Bainite Steels

    NASA Astrophysics Data System (ADS)

    Liang, Yilong; Yi, Yanliang; Long, Shaolei; Tan, Qibing

    2014-12-01

    Isothermal heat treatments to Si-Mn-Mo steel specimens were performed, and time-temperature-transformation curves (C-curves) were plotted by DIL805A/D differential dilatometer. The effect of rare earth (RE) elements on bainite transformation kinetics was systematically studied by adopting the empirical electron theory of solids and molecules, Johnson-Mehl-Avrami equation calculation, dilatometry, and metallography. Experimental results show that the addition of RE in Si-Mn-Mo bainite steels leads to the C-curves moving to bottom right and prolongs incubation period of bainite transformation. Moreover, RE addition increases the values of phase structure factors ( n A, F {C/D}) and activation energy of bainite transformation, inhibits the formation of granular bainite, and refines microstructures of bainitic ferrite and substructures. During the bainite transformation process, bainite transformation is delayed due to the drag effect, which is induced by the segregation of RE at the ferrite interphase and the retardation of Fe-C-RE (segregation units) on carbon diffusion.

  4. Remediation of Rare Earth Element Pollutants by Sorption Process Using Organic Natural Sorbents

    PubMed Central

    Butnariu, Monica; Negrea, Petru; Lupa, Lavinia; Ciopec, Mihaela; Negrea, Adina; Pentea, Marius; Sarac, Ionut; Samfira, Ionel

    2015-01-01

    The effects of the sorption of environmental applications by various source materials of natural organic matter, i.e., bone powder, was examined. Sorption capacities and subsequent rare earth element retention characteristics of all metals tested were markedly increased by ionic task-specific. In this study, the abilities of three models’ isotherms widely were used for the equilibrium sorption data: Langmuir, Freundlich and Redlich-Peterson. For all studied metal ions the maximum adsorption capacity is close to those experimentally determined. The characteristic parameters for each isotherm and related coefficients of determination have been determined. The experimental data achieved excellent fits within the following isotherms in the order: Langmuir > Redlich-Peterson > Freundlich, based on their coefficient of determination values. The bone powder has developed higher adsorption performance in the removal process of Nd(III), Eu(III), La(III) from aqueous solutions than in the case of the removal process of Cs(I), Sr(II) and Tl(I) from aqueous solutions. The described relationships provide direct experimental evidence that the sorption-desorption properties of bone powder are closely related to their degree of the type of the metal. The results suggest a potential for obtaining efficient and cost-effective engineered natural organic sorbents for environmental applications. PMID:26378553

  5. Theoretical Study on Interactions between Oxygen Vacancy and Doped Rare-Earth Elements in Barium Titanate

    NASA Astrophysics Data System (ADS)

    Honda, Atsushi; Higai, Shin'ichi; Motoyoshi, Yasuhiro; Wada, Nobuyuki; Takagi, Hiroshi

    2011-09-01

    We performed first-principles theoretical calculations to examine the interactions between oxygen vacancy (VO) and rare-earth (RE) elements in barium titanate (BaTiO3), in order to clarify the mechanism of VO trapping by RE dopants, which affects the insulating reliability of BaTiO3-based multilayer ceramic capacitors (MLCC). It was found that VO is stabilized at the first and second nearest O sites of RE at Ba site (REBa), and at the second nearest O site of RE at Ti site (RETi). The structural relaxations on bond lengths of REBa-O and RETi-O in BaTiO3, which are brought about by the existence of VO at the above sites, decrease the total energy, and thus VO is stabilized. Furthermore, we revealed that the stability of VO increases with decreasing solution stability of RE dopants in BaTiO3. Accordingly, we concluded that RE dopants with higher solution energy in BaTiO3 efficiently trap VO, and thus the insulation reliability of MLCC is improved.

  6. Rare earth element fingerprints in Korean coastal bay sediments: Association with provenance discrimination

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung

    2016-09-01

    Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.

  7. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  8. The behavior of rare earth elements in naturally and anthropogenically acidified waters

    USGS Publications Warehouse

    Wood, Scott A.; Gammons, Christopher H.; Parker, Stephen R.

    2006-01-01

    In this paper, the behavior of rare earth elements (REE) in a watershed impacted by acid-mine drainage (Fisher Creek, Montana) is compared to that in a volcanically acidified watershed (Rio Agrio and Lake Caviahue, Argentina). The REE behave conservatively in acidic waters with pH values less than approximately 5.5. However, above pH 5.5, REE concentrations are controlled by adsorption onto or co-precipitation with a variety of Fe or Al oxyhydroxides. The heavy REE partition to a greater extent into the solid phase than the light REE as pH rises above 6. Concentrations of REE exhibit diel (24-h) cycling in waters that were initially acidic, but have become neutralized downstream. In Fisher Creek, at the most downstream sampling station investigated (pH 6.8), concentrations of dissolved REE were 190–840% higher in the early morning versus the late afternoon. This cycling can be related to temperature-dependent, cyclic adsorption–desorption of REE onto hydrous ferric or aluminum oxide or both. Similar but gentler diel cycling of the REE was found at Rio Agrio. The existence of such cycling has important ramifications for the study of REE in natural waters.

  9. Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control

    USGS Publications Warehouse

    Morgan, J.W.; Wandless, G.A.

    1980-01-01

    Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.

  10. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration.

    PubMed

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-28

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  11. TOPICAL REVIEW: Melt-processed light rare earth element - Ba - Cu - O

    NASA Astrophysics Data System (ADS)

    Murakami, M.; Sakai, N.; Higuchi, T.; Yoo, S. I.

    1996-12-01

    Unlike Y123 which forms only a stoichiometric compound, the light rare earth elements (LREs: La, Nd, Sm, Eu, Gd) form a solid solution 0953-2048/9/12/001/img1. The presence of such solid solution caused a depression in the superconducting transition temperatures 0953-2048/9/12/001/img2, particularly for La123, Nd123 and Sm123 when they are melt processed in air. Recently, we have found that the 0953-2048/9/12/001/img3 of these LRE123 superconductors can greatly be enhanced when they are melt processed in a reduced oxygen atmosphere. Furthermore, 0953-2048/9/12/001/img4 values of these superconductors were larger than that of a good quality Y123 superconductor in high magnetic fields at 77 K. In this article, on the basis of our study over the last several years, the melt processes for LRE - Ba - Cu - O are described, the microstructural and superconducting properties of the superconductors are reviewed and the flux pinning mechanism is also discussed.

  12. Composition and evolution of the eucrite parent body - Evidence from rare earth elements. [extraterrestrial basaltic melts

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Drake, M. J.

    1977-01-01

    Quantitative modeling of the evolution of rare earth element (REE) abundances in the eucrites, which are plagioclase-pigeonite basalt achondrites, indicates that the main group of eucrites (e.g., Juvinas) might have been produced by approximately 10% equilibrium partial melting of a single type of source region with initial REE abundances which were chondritic relative and absolute. Since the age of the eucrites is about equal to that of the solar system, extensive chemical differentiation of the eucrite parent body prior to the formation of eucrites seems unlikely. If homogeneous accretion is assumed, the bulk composition of the eucrite parent body can be estimated; two estimates are provided, representing different hypotheses as to the ratio of metal to olivine in the parent body. Since a large number of differentiated olivine meteorites, which would represent material from the interior of the parent body, have not been detected, the eucrite parent body is thought to be intact. It is suggested that the asteroid 4 Vesta is the eucrite parent body.

  13. Cerium redox cycles and rare earth elements in the Sargasso Sea

    SciTech Connect

    Sholkovitz, E.R.; Schneider, D.L. )

    1991-10-01

    Two profiles of the rare earth elements (REEs) are reported for the upper water column of the Sargasso Sea. The trivalent-only REEs have remarkably constant concentrations in the upper 500m of an April 1989 profile and in the upper 200m of a May 1989 profile. In contrast, Ce concentrations decrease smoothly with increasing depth. In April 1989 Ce decreases from 15.7 pmol/kg at 20 m to 5.1 pmol/kg at 750 m. Cerium, which has Redox transformations in seawater, behaves anomalously with respect to its REE(III) neighbors. While both dissolved Ce and Mn have elevated concentrations in the upper 200m, their vertical gradients are distinctly different. In contrast to Mn, which reaches a minimum dissolved concentration near the zone (150-250 m) of a particulate Mn maximum, Ce is being removed both near this zone and to depths of at least 750m. These new profiles indicate that Ce is involved in an upper ocean redox cycle. This interpretation is consistent with the MOFFETT (1990) incubation tracer experiments on the same May 1989 seawater. He showed that Ce(III) oxidation is biologically mediated, probably light inhibited, increases with depth, and 3-4 times slower than Mn(II) oxidation in the 100-200 m zone. CERoclines provide new information into the fine scale zonation of redox process operating in the upper columns of oligotrophic oceans.

  14. Using rare earth elements to constrain particulate organic carbon flux in the East China Sea

    PubMed Central

    Hung, Chin-Chang; Chen, Ya-Feng; Hsu, Shih-Chieh; Wang, Kui; Chen, Jian Feng; Burdige, David J.

    2016-01-01

    Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Recent research has shown that POC fluxes in the ECS may be overestimated due to active sediment resuspension. To better characterize the effect of sediment resuspension on particle fluxes in the ECS, rare earth elements (REEs) and organic carbon (OC) were used in separate two-member mixing models to evaluate trap-collected POC fluxes. The ratio of resuspended particles from sediments to total trap-collected particles in the ECS ranged from 82–94% using the OC mixing model, and 30–80% using the REEs mixing model, respectively. These results suggest that REEs may be better proxies for sediment resuspension than OC in high turbidity marginal seas because REEs do not appear to undergo degradation during particle sinking as compared to organic carbon. Our results suggest that REEs can be used as tracers to provide quantitative estimates of POC fluxes in marginal seas. PMID:27670426

  15. New fission fragment distributions and r-process origin of the rare-earth elements.

    PubMed

    Goriely, S; Sida, J-L; Lemaître, J-F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H-T

    2013-12-13

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A≳140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular, the fission fragment yields determine the creation of 110≲A≲170 nuclei. Here, we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A≃278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations, we show that this specific FFD leads to a production of the A≃165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r nuclei with A≳140.

  16. Fractionation in the solar nebula - Condensation of yttrium and the rare earth elements

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.

    1975-01-01

    The condensation of Y and the rare earth elements (REE) from the solar nebula may be controlled by thermodynamic equilibrium between gas and condensed solids. Highly fractionated REE patterns may result if condensates are removed from the gas before condensation is complete. It is found that the fractionation is not a smooth function of REE ionic radius but varies in an extremely irregular pattern. Both Yb and Eu are predicted to be extremely depleted in the early condensate without the requirement of condensation in the divalent state. The model is discussed with respect to a highly fractionated pattern observed by Tanaka and Masuda (1973), in a pink Ca-Al-rich inclusion from the Allende meteorite and can account for the abundances of each REE determined. According to the model this inclusion represents a condensate from a previously fractionated gas rather than from a gas of solar composition. Before the condensation of this inclusion, an earlier condensate was formed and was removed from equilibrium with the gas.

  17. Competition between humic acid and carbonates for rare earth elements complexation.

    PubMed

    Pourret, Olivier; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2007-01-01

    The competitive binding of rare earth elements (REE) to humic acid (HA) and carbonates was studied experimentally at various pH and alkalinity values by combining ultrafiltration and inductively coupled plasma mass spectrometry techniques. The results show that the REE species occur as binary humate or carbonate complexes but not as ternary REE-carbonate-humate as previously proposed. The results also reveal the strong pH and alkalinity dependence of the competition as well as the existence of a systematic fractionation across the REE series. Specifically, carbonate complexation is at a maximum at pH 10 and increase with increasing alkalinity and with the atomic number of the REE (LuCO(3)>LaCO(3)). Modeling of the data using Model VI and recently published stability constants for complexation of REE by humic acid well reproduced the experimental data, confirming the ability of Model VI to accurately determine REE speciation in natural waters. This modeling also confirms the reliability of recently published stability constants. This work shed more light not only on the competition between carbonates and HA for REE complexation but also on the reliability of WHAM 6 and Model VI for calculating the speciation of REE with organic matter in alkaline organic-rich water.

  18. Rare earth element distributions and fractionation in plankton from the northwestern Mediterranean Sea.

    PubMed

    Strady, Emilie; Kim, Intae; Radakovitch, Olivier; Kim, Guebuem

    2015-01-01

    Rare earth element (REE) concentrations were measured for the first time in plankton from the northwestern Mediterranean Sea. The REE concentrations in phytoplankton (60-200 μm) were 5-15 times higher than those in four size fractions of zooplankton: 200-500 μm, 500-1000 μm, 1000-2000 μm and >2000 μm. The concentrations within these zooplankton fractions exhibited the same ranges with some variation attributed to differences in zooplankton taxonomy. The REE concentrations in plankton were poorly related to the reported REE concentrations of seawater, but they correlated well with the calculated REE(3+), concentrations especially with regard to middle REE (MREEs) and heavy REEs (HREEs). Plankton and seawater revealed different PAAS-normalised REE distributions, with the greatest differences observed in the light REEs. Interestingly, a comparison of PAAS-normalized sediment particles from the study of Fowler et al. (1992) showed concentrations of the same order of magnitude and a similar REE distribution without MREE enrichment. Based on this comparison, we propose a conceptual model that emphasizes the importance of biological scavenging of REEs (especially LREEs) in surface waters.

  19. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale.

    PubMed

    Noack, Clinton W; Jain, Jinesh C; Stegmeier, John; Hakala, J Alexandra; Karamalidis, Athanasios K

    2015-01-01

    In this work, the geochemistry of the rare earth elements (REE) was studied in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  20. Kinetic study of the α-tocopherol-regeneration reaction of ubiquinol-10 in methanol and acetonitrile solutions: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    PubMed

    Mukai, Kazuo; Oi, Masanori; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-03-01

    A kinetic study of regeneration reaction of α-tocopherol (α-TocH) by ubiquinol-10 has been performed in the presence of four kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), NaI, and Mg(ClO(4))(2)) in methanol and acetonitrile solutions, using double-mixing stopped-flow spectrophotometry. The second-order rate constants (k(r)'s) for the reaction of α-tocopheroxyl (α-Toc•) radical with ubiquinol-10 increased and decreased notably with increasing concentrations of metal salts in methanol and acetonitrile, respectively. The k(r) values increased in the order of no metal salt < NaClO(4) ~ NaI < LiClO(4) < Mg(ClO(4))(2) at the same concentration of metal salts in methanol. On the other hand, in acetonitrile, the k(r) values decreased in the order of no metal salt > NaClO(4) ~ NaI > LiClO(4) > Mg(ClO(4))(2) at the same concentration of metal salts. The metal salts having a smaller ionic radius of cation and a larger charge of cation gave a larger k(r) value in methanol, and a smaller k(r) value in acetonitrile. The effect of anion was almost negligible in both the solvents. Notable effects of metal cations on the UV-vis absorption spectrum of α-Toc• radical were observed in aprotic acetonitrile solution, suggesting complex formation between α-Toc• and metal cations. On the other hand, effects of metal cations were negligible in protic methanol, suggesting that the complex formation between α-Toc• and metal cations is hindered by the hydrogen bond between α-Toc• and methanol molecules. The difference between the reaction mechanisms in methanol and acetonitrile solutions was discussed on the basis of the results obtained. High concentrations of alkali and alkaline earth metal salts coexist with α-TocH and ubiquinol-10 in plasma, blood, and many tissues, suggesting the contribution of the metal salts to the above regeneration reaction in biological systems.

  1. Chemical Weathering of Black Shales and Rare Earth Element Composition of Surface Waters and Groundwater

    NASA Astrophysics Data System (ADS)

    Hannigan, R. E.; Johannesson, K. H.

    2001-05-01

    Weathering processes dominate the dissolved and suspended loads of most of the world's major rivers. Among sedimentary rocks, black shales are particularly sensitive to chemical weathering. Therefore, shale systems are useful for investigating the partitioning of chemical elements during chemical weathering. Recent studies, such as those by Peucker-Ehrenbrink, Ravizza and others, link chemical weathering of black shales to changes in marine isotopic composition. Rare earth elements (REE) have a unique chemistry and are ideal for such tracer studies. We explored the effect of modern chemical weathering of black shales on the hydrochemistry of surface and groundwaters in the Mohawk Valley of New York State. This region provides an ideal site for the investigation of trace element remobilization during the chemical weathering of black shales. In this region, surface and groundwaters, in intimate contact with black shales and have high dissolved metal concentrations presumably due to water-rock interactions. The extent to which the dissolved REE composition of the surface and ground waters retains the rock signature is, in someway related to the length of time that the water remains in contact with the rock. We compared the REE compositions of surface and groundwaters in areas draining black shale to those of waters draining regions of dolostone-limestone to explore the extent of metal release due to chemical weathering. Shale normalized REE patterns for stream waters exhibit slight heavy REE enrichments and, at some locations, LREE depletion. REE patterns of the waters normalized to their respective sediments show some LREE depletion. However, waters associated with the Little Falls dolomite show fractionation predominantly enriched in the heavy REEs. Differences between the black shale sites, recorded as light REE depletion and/or middle REE enrichment, may be related to the discharge of the streams and the total dissolved solids. The dissolved REE chemistry of

  2. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    De Carlo, Eric Heinen; Green, William J.

    2002-04-01

    We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ˜55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ˜50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration

  3. Forms of rare earth elements' sorption by quartz and goethite in the presence of bacteria Rhodopseudomonas palustris

    NASA Astrophysics Data System (ADS)

    Perelomov, L. V.; Perelomova, I. V.; Yoshida, S.

    2009-12-01

    The adsorption of a mixture of 16 isotopes of 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) present in the initial solution in equal concentrations by quartz and goethite in the presence of bacteria Rhodopseudomonas palustris was studied under different acidity conditions. The solution pH was apparently the leading factor in the interaction of rare earth ions with the surface of mineral and biological sorbents. These interactions were controlled by electrostatic forces in acid (pH 4) and neutral (pH 7) solutions; the precipitation of elements from the solution was the predominant mechanism under alkaline conditions (pH 9). Microorganisms affected the adsorption of lanthanides by quartz in the entire pH range under study, especially at pH 7. In the presence of bacteria, the adsorption of the elements studied by goethite increased in an acid solution, remained unchanged under neutral conditions, and slightly decreased under alkaline conditions. Microorganisms increased the concentration of nonexchangeable forms of the elements adsorbed on the surface of quartz and goethite, which could be due to the formation of low-soluble complexes of rare earth elements with organic substances produced by bacteria.

  4. β-decay of neutron-rich Z∼60 nuclei and the origin of rare earth elements

    SciTech Connect

    Wu, J.; Nishimura, S.; Lorusso, G.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P. A.; Sakurai, H.; Xu, Z. Y.; Browne, F.; Daido, R.; Fang, Y. F.; Yagi, A.; Nishibata, H.; Odahara, A.; Yamamoto, T.; Ideguchi, E.; Aoi, N.; Tanaka, M.; Collaboration: EURICA Collaboration; and others

    2014-05-02

    A large fraction of the rare-earth elements observed in the solar system is produced in the astrophysical rapid neutron capture process (r-process). However, current stellar models cannot completely explain the relative abundance of these elements partially because of nuclear physics uncertainties. To address this problem, a β-decay spectroscopy experiment was performed at RI Beam Factory (RIBF) at RIKEN, aimed at studying a wide range of very neutron-rich nuclei with Z∼60 that are progenitors of the rare-earth elements with mass number A∼460. The experiment provides a test of nuclear models as well as experimental inputs for r-process calculations. This contribution presents the experimental setup and some preliminary results of the experiment.

  5. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    SciTech Connect

    Quarrie, L. E-mail: lindsay.o.quarrie@gmail.com

    2014-09-15

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

  6. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  7. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Bau, Michael; Dulski, Peter

    1995-03-01

    The mineral ‘fluorite’ is utilized as a probe to investigate the behaviour of the pseudolanthanide yttrium with respect to the lanthanides (rare-earth elements, REE) in fluorine-rich hydrothermal solutions. Hydrothermal vein fluorites are characterized by the close association of Y and REE, but in contrast to igneous and clastic rocks they show variable and non-chondritic Y/Ho ratios of up to 200. This suggests that Y and Ho, although similar in charge and size, may be fractionated in fluorine-rich medium-temperature aqueous fluids. In such solutions Y acts as a pseudolanthanide heavier than Lu. Y/Ho ratios of hydrothermal siderites are slightly below those of chondrites, suggesting that in (bi)carbonate-rich siderite-precipitating solutions Y may act as a Sm-like light pseudolanthanide. This indicates that Y-Ho fractionation is not a source-related phenomenon but depends on fluid composition. Based on these results it is strongly recommended that discussions of normalized REE patterns in general should be extended to normalized Rare-Earth-and-Yttrium (REY) patterns (Y inserted between Dy and Ho), because the slightly variable behaviour of the pseudolanthanide yttrium with respect to the REE may provide additional geochemical information. Available thermodynamic data suggest a negative correlation between Y/Ho and La/Ho during migration of a fluorite-precipitating hydrothermal solution. Cogenetic fluorites, therefore, should display either similar Y/Ho and similar La/Ho ratios, or a negative correlation between these ratios. This criterion may help to choose samples suitable for Sm-Nd isotopic studies prior to isotope analysis. However, in cogenetic hydrothermal vein fluorites the range of Y/Ho ratios is often almost negligible compared to the range of La/Ho ratios. This may be explained by modification of REE distributions by post-precipitation processes involving (partial) loss of a separate LREE-enriched phase. The presence of variable amounts of such an

  8. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    NASA Astrophysics Data System (ADS)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the

  9. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    USGS Publications Warehouse

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  10. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump.

  11. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.

    PubMed

    Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin

    2017-02-01

    Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H2SO4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO2eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage.

  12. Extreme early solar system chemical fractionation recorded by alkali-rich clasts contained in ordinary chondrite breccias

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsunori; Misawa, Keiji; Okano, Osamu; Shih, Chi-Yu; Nyquist, Laurence E.; Simon, Justin I.; Tappa, Michael J.; Yoneda, Shigekazu

    2017-01-01

    New K-Ca and Rb-Sr isotopic analyses have been performed on alkali-rich igneous rock fragments in the Yamato (Y)-74442 and Bhola LL-chondritic breccias to better understand the extent and timing of alkali enrichments in the early solar system. The Y-74442 fragments yield a K-Ca age of 4.41 ± 0.28 Ga for λ(40K) = 0.5543 Ga-1 with an initial 40Ca/44Ca ratio of 47.1618 ± 0.0032. Studying the same fragments with the Rb-Sr isotope system yields an age of 4.420 ± 0.031 Ga for λ(87Rb) = 0.01402 Ga-1 with an initial ratio of 87Sr/86Sr = 0.7203 ± 0.0044. An igneous rock fragment contained in Bhola shows a similar alkali fractionation pattern to those of Y-74442 fragments but does not plot on the K-Ca or Rb-Sr isochron of the Y-74442 fragments. Calcium isotopic compositions of whole-rock samples of angrite and chondrites are primordial, indistinguishable from mantle-derived terrestrial rocks, and here considered to represent the initial composition of bulk silicate Earth. The initial ε40Ca value determined for the source of the alkali clasts in Y-74442 that is ∼0.5 ε-units higher than the solar system value implies an early alkali enrichment. Multi-isotopic studies on these alkali-rich fragments reveal that the source material of Y-74442 fragments had elemental ratios of K/Ca = 0.43 ± 0.18, Rb/Sr = 3.45 ± 0.66 and K/Rb ∼ 170, that may have formed from mixtures of an alkali-rich component (possibly an alkali-enriched gaseous reservoir produced by fractionation of early nebular condensates) and chondritic components that were flash-heated during an impact event on the LL-chondrite parent body ∼4.42 Ga ago. Further enrichments of potassium and rubidium relative to calcium and strontium as well as a mutual alkali-fractionation (K/Rb ∼ 50 and heavier alkali-enrichment) would have likely occurred during subsequent cooling and differentiation of this melt. Alkali fragments in Bhola might have undergone similar solid-vapor fractionation processes to those of Y

  13. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    PubMed

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  14. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  15. Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Schoneveld, Louise; Spandler, Carl; Hussey, Kelvin

    2015-08-01

    The Nolans Bore rare earth element (REE) deposit consists of a network of fluorapatite-bearing veins and breccias hosted within Proterozoic granulites of the Reynolds Range, Central Australia. Mineralisation is divided into three zones (north, central, and south-east), with the north and south-east zones consisting of massive REE-bearing fluorapatite veins, with minor brecciation and carbonate infill. The central zone is distinctively different in mineralogy and structure; it features extensive brecciation, a high allanite content, and a large, epidote-rich enveloping alteration zone. The central zone is a reworking of the original solid apatite veins that formed during the Chewings Orogeny at ca. 1525 Ma. These original apatite veins are thought to derive from phosphate-rich magmatic-hydrothermal fluid exsolved from as-yet unrecognised alkaline magmatic bodies at depth. We define four ore breccia types (BX1-4) in the central zone on the basis of detailed petrological and geochemical analysis of drillcore and thin sections. BX1 ore comprises fluorapatite with minor crackle brecciation with carbonate infill and resembles ore of the north and south-east zones. Breccia types BX2, BX3, and BX4 represent progressive stages of ore brecciation and development of calc-silicate mineral (amphibole, epidote, allanite, calcite) infill. Comparison of bulk ore sample geochemistry between breccia types indicates that REEs were not mobilised more than a few centimetres during hydrothermal alteration and brecciation. Instead, most of the REEs were partitioned from the original REE fluorapatite into newly formed allanite, REE-poor fluorapatite and minor REE carbonate in the breccias. Negative europium (Eu) anomalies in the breccia minerals are accounted for by a large positive Eu anomaly in epidote from the alteration zones surrounding the ore breccias. This observation provides a direct link between ore recrystallisation and brecciation, and the formation of the alteration halo in

  16. Rare Earth Elements in National Defense: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2013-09-17

    majority producer of the world’s two strongest magnets, samarium cobalt (SmCo) and neodymium iron boron (NeFeB) permanent, rare earth magnets. In the...established in Section 843.”16 They are dysprosium, erbium, europium, gadolinium, neodymium , praseodymium, and yttrium. DOD’s assessment of the forecast...retrieving them are challenging. Rare earths are divided into two groups: light rare earths (lanthanum, cerium, praseodymium, neodymium , promethium, and

  17. Rare-earth elements in the Permian Phosphoria Formation: Paleo proxies of ocean geochemistry

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.; Rowe, H.D.

    2007-01-01

    The geochemistry of deposition of the Meade Peak Member of the Phosphoria Formation (MPM) in southeast Idaho, USA, a world-class sedimentary phosphate deposit of Permian age that extends over 300,000 km2, is ascertained from its rare earth element (REE) composition. Ratios of REE:Al2O3 suggest two sources-seawater and terrigenous debris. The seawater-derived marine fraction identifies bottom water in the Phosphoria Sea as O2-depleted, denitrifying (suboxic) most of the time, and seldom sulfate-reducing (anoxic). This interpretation is supported by earlier research that showed progressively greater ratios in the marine sediment fraction of Cr:Ni>V:Ni???Mo:Ni, relative to their ratios in seawater; for which marine Cr, V, and Mo can have a dominantly O2-depleted bottom-water source and Ni a photic-zone, largely algal, source. The water chemistry was maintained by a balance between bacterial oxidation of organic matter settling through the water column, determined largely by primary productivity in the photic zone, and the flux of oxidants into the bottom water via advection of seawater from the open ocean. Samples strongly enriched in carbonate fluorapatite, the dominant REE host mineral, have variable Er/Sm, Tm/Sm, and Yb/Sm ratios. Their distribution may represent greater advection of seawater between the Phosphoria Sea and open ocean during deposition of two ore zones than a center waste and greater upwelling of nutrient-enriched water into the photic zone. However, the mean rate of deposition of marine Ni, a trace nutrient of algae, and PO43-, a limiting nutrient, indicate that primary productivity was probably high throughout the depositional history. An alternative interpretation of the variable enrichments of Er, Tm, and Yb, relative to Sm, is that they may reflect temporally variable carbonate alkalinity of open-ocean seawater in Permian time. A more strongly negative Ce anomaly for all phosphatic units than the Ce anomaly of modern pelletal phosphate is

  18. Rare earth elements in pore waters from Cabo Friós western boundary upwelling system

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.

    2015-12-01

    Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.

  19. Rare Earth Element Measurements of Melilite and Fassaite in Allende Cai by Nanosims

    NASA Technical Reports Server (NTRS)

    Ito, M.; Messenger, Scott

    2009-01-01

    The rare earth elements (REEs) are concentrated in CAIs by approx. 20 times the chondritic average [e.g., 1]. The REEs in CAIs are important to understand processes of CAI formation including the role of volatilization, condensation, and fractional crystallization [1,2]. REE measurements are a well established application of ion microprobes [e.g., 3]. However the spatial resolution of REE measurements by ion microprobe (approx.20 m) is not adequate to resolve heterogeneous distributions of REEs among/within minerals. We have developed methods for measuring REE with the NanoSIMS 50L at smaller spatial scales. Here we present our initial measurements of REEs in melilite and fassaite in an Allende Type-A CAI with the JSC NanoSIMS 50L. We found that the key parameters for accurate REE abundance measurements differ between the NanoSIMS and conventional SIMS, in particular the oxide-to-element ratios, the relative sensitivity factors, the energy distributions, and requisite energy offset. Our REE abundance measurements of the 100 ppm REE diopside glass standards yielded good reproducibility and accuracy, 0.5-2.5 % and 5-25 %, respectively. We determined abundances and spatial distributions of REEs in core and rim within single crystals of fassaite, and adjacent melilite with 5-10 m spatial resolution. The REE abundances in fassaite core and rim are 20-100 times CI abundance but show a large negative Eu anomaly, exhibiting a well-defined Group III pattern. This is consistent with previous work [4]. On the other hand, adjacent melilite shows modified Group II pattern with no strong depletions of Eu and Yb, and no Tm positive anomaly. REE abundances (2-10 x CI) were lower than that of fassaite. These patterns suggest that fassaite crystallized first followed by a crystallization of melilite from the residual melt. In future work, we will carry out a correlated study of O and Mg isotopes and REEs of the CAI in order to better understand the nature and timescales of its

  20. Interaction of rare earth elements and components of the Horonobe deep groundwater.

    PubMed

    Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki

    2017-02-01

    To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far

  1. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and

  2. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater

    SciTech Connect

    Sholkovitz, E.R. ); Landing, W.M.; Lewis, B.L. )

    1994-03-01

    Sargasso Sea suspended particles were sequentially digested with three chemical treatments (acetic acid, mild HCl/HNO[sub 3], and HF/HNO[sub 3]/HCl in a bomb). The latter two treatments dissolve detrital minerals, while the acetic acid removes surface coatings (organic matter and Mn oxides). The rare earth element (REE) composition of the surface coatings, in marked contrast to the crust-like REE composition of the two detrital phases, is extensively fractionated with respect to both filtered seawater and the crust. Surface coatings are responsible for the removal and fractionation of REEs from seawater and, as such, play a key role in the marine geochemical cycles of trace elements. Relative to seawater, the surface coatings are systematically enriched tenfold across the trivalent REEs from Lu to La and develop large positive Ce-anomalies. The Ce-anomalies of the coatings switch from being negative (seawater-like) in the upper 100 m to being strongly positive at greater depths. The ingrowth of Ce and LREEs on particle surfaces reflects the in situ oxidation of dissolved Ce(III) to particulate Ce(IV), and the preferential removal of LREE(III)s over HREE(III)s. REEs(III) fractionation of this type is consistent with particle/solution models. Both processes appear to be related to the in situ formation of Mn oxide particles from the oxidation of dissolved Mn(II) in the upper 200 m of the water column. Preferential removal of LREEs in the upper waters is countered by their preferential release at depth due to remineralization of surface coatings on particles. A new method is explored for estimating the residence time of suspended particles by combining Ce concentration data of dissolved and surface-bound phases with the Ce(III) oxidation rate measurements of MOFFETT (1990). A Ce-based residence time of thirteen days is similar in magnitude to the value calculated from U-[sup 234]Th disequilibria in the Sargasso Sea.

  3. Overview of the crystal chemistry of the actinide chalcogenides: incorporation of the alkaline-earth elements.

    PubMed

    Mesbah, Adel; Prakash, Jai; Ibers, James A

    2016-10-18

    This review focuses on the results of exploratory syntheses of alkaline-earth-metal actinide chalcogenides Ak-An-Q (Ak = Ba, Sr; An = Th, U; Q = S, Se, and Te). About thirty new compounds are described. Although the basic building blocks of their structures are usually AnQ6 octahedra and AkQ8 bicapped trigonal prisms, these are combined in diverse ways to afford eleven new structure types. The structures reconfirm the prevailing presence of An(4+) in chalcogenides, although some of the compounds discovered are mixed An(4+)/An(5+) systems, and a few contain only An(5+). The tendency of the chalcogens to form Q-Q bonds is again evident from the presence of S-S single bonds and infinite Te-Te-Te linear chains. The latter possess interatomic distances of lengths greater than that of a Te-Te single bond but less than that of a Te-Te van der Waals interaction. Assignment of formal oxidation states in compounds containing these chains is arbitrary at best. Addition of metal atoms (M) affords quaternary structures, some of which show remarkable flexibility in the positions of the An and M atoms, and in such compounds the nature of the M elements influences directly the dimensionality of the resultant structure. The presence of adventitious oxygen, often from etching of the fused-silica tubes by oxyphilic An elements, results in new quintary compounds that show remarkable structural variations with change of M. The compounds discussed have shown transport and electronic structures that range from metallic-like to semiconducting. We find, with the exception of BaUSe3, when comparisons can be made that the values of the calculated band gaps are reasonably close but usually lower than the experimentally derived values. Thus the method used, in particular the HSE functional, has been generally successful on these 5f actinides. This is an important result because in the absence of suitable crystals, and hence experimental measurements, it still may be possible to offer credible

  4. Rare earth and trace elements of fossil vertebrate bioapatite as palaeoenvironmental and sedimentological proxies

    NASA Astrophysics Data System (ADS)

    Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa

    2015-04-01

    Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible

  5. LiF - a spectroscopic method for rare earth elements identification

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Beyer, Jan; Jacob, Sandra; Heitmann, Johannes

    2016-04-01

    Laser-induced fluorescence (LiF) has a great potential for the exploration and identification of rare earth elements (REE) in natural environments. This spectroscopic technique can provide an efficient way to secure resource availability, while the economic and ecological costs are reduced. No time-consuming sample preparation and analysis is needed prior to decisions along the raw material processing chain. Such non-destructive approaches allow for a fast access to analytical results and hence, are the basis for an immediate adjustment of processing steps. The method uses the material-specific luminescence emissions that are induced by laser-stimulation of a certain wavelength. The distinct emission lines of REE make them well suited for the development of a LiF-based exploration technique. However, typical REE emission peaks known from the free elements may shift or be masked in natural materials due to their position in the crystal lattice, varying compositions of minerals or other natural conditions such as water content. The natural variability therefore, demands for comprehensive investigations of REE and their spectral characteristics in minerals. To identify those spectral information that are robust and unequivocal, we analyse spectra of REE standards measured in different matrix minerals including phosphates and fluorides. We use variable laser wavelengths from UV (325 nm) to green (532 nm) and a detection range from 340 nm to 1080 nm. Results show spectral characteristics that sort REE in three groups due to: no distinct emission lines, absorption features, distinct luminescence emission lines. Measured in different matrix minerals, we determine shifts for some of the spectral features and some disappear or decline in intensity. Changing the wavelength of the laser allows for a more selective stimulation of REE emissions, especially wavelengths longer than UV can reduce the unspecific emission of all luminescent components of a sample and thus enhance

  6. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives.

  7. Effect of low doses of dietary rare earth elements on growth performance of broilers.

    PubMed

    He, M L; Wehr, U; Rambeck, W A

    2010-02-01

    The present study was designed to investigate effect of dietary rare earth elements (REE), including both organic and inorganic compounds, on growth performance of broilers. In experiment 1, a total of 180 male Ross broiler chicks were allocated to 72 pens with different assignment: four chicks per pen or individually. The following three treatment diets were applied: control, REE-chlorides at a dose of 40 mg/kg and REE-citrate at a dose of 70 mg/kg. Each treatment group had 24 pens containing both assignments (12 pens each). In experiment 2, a total of 72 male 3-day-old Ross broiler chicks were separated to four groups: control, REE-chlorides at a dose of 70 mg/kg and REE-citrate at doses of 70 mg/kg and 100 mg/kg. In experiment 1, dietary REE-citrate improved body weight gain during the overall period by 5.0% (p < 0.05) while the increase with REE-chloride was not significant. In experiment 2, growth effects (p < 0.05) were only found in the period from day 21 to slaughter with all REE forms, and feed conversion ratio was improved by 3.4% (p < 0.05) with REE-citrate. No significant effects of REE were found on chill weight, percentages of breast meat, thigh weight, drumstick weight and wing weight. Concentrations of La and Ce in the liver and muscles were very low, accounting for 0.11-0.76 and 0.02-0.30 mg/kg respectively. There was weak tendency for a dose-response relationship especially in the groups supplemented with REE-chlorides. The main blood serum biochemical parameters were not significantly affected by REE in the diets. The results suggest that dietary supplementation of low doses of REE-citrates might improve growth performance of broilers without affecting carcass composition and health of the broilers.

  8. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities.

    PubMed

    Gutiérrez-Gutiérrez, Silvia C; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart

    2015-08-01

    Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58±6mgkg(-1) for REEs comprising 44±8mgkg(-1) for light REEs, 11±2mgkg(-1) for heavy REEs and 3±1mgkg(-1) for Scandium (Sc) and 3±1.0mgkg(-1) of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are also recovered for reprocessing.

  9. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference.

    PubMed

    Keltjens, Jan T; Pol, Arjan; Reimann, Joachim; Op den Camp, Huub J M

    2014-01-01

    Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.

  10. The rare earth element potential of kaolin deposits in the Bohemian Massif (Czech Republic, Austria)

    NASA Astrophysics Data System (ADS)

    Höhn, S.; Frimmel, H. E.; Pašava, J.

    2014-12-01

    Four kaolin deposits in the Bohemian Massif were studied in order to assess the potential for the recovery of rare earth elements (REE) as by-products from the residue after extraction and refining of the raw kaolin. The behaviour of REE + Y during kaolinitization was found to be largely a function of pre-alteration mineralogy. In the examples studied, i.e. granite-derived deposits of Kriechbaum (Austria) and Božičany, and arkose-derived deposits of Kaznějov and Podbořany (all Czech Republic), the REE + Y are predominantly hosted by monazite which has remained unaffected by kaolinitization. The overall REE + Y content of the variably kaolinitized rocks is strongly dependent on their genesis. While ion adsorption plays only a minor role in the concentration of REE + Y in the studied kaolinitized rocks, the processing and refining of the raw kaolin leads to residues that are enriched in REE + Y by a factor of up to 40. The use of a magnetic separator and a hydrocyclone in the processing of the raw material can yield REE + Y contents of as much as 0.77 wt%. Although this value compares well with the REE + Y concentration in some potentially economic REE + Y projects elsewhere, the overall tonnage of the (REE + Y)-enriched residue is by far not sufficient to consider economic extraction of REE + Y as by-product. Our results are most probably applicable also to other kaolin deposits derived from the weathering of Hercynian basement granites elsewhere (e.g. in Saxonia and Bavaria, Germany). Overall, the potential for REE + Y production as by-product from kaolin mining has to be regarded as minimal.

  11. Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district

    NASA Astrophysics Data System (ADS)

    Rahimi, Elham; Maghsoudi, Abbas; Hezarkhani, Ardeshir

    2016-12-01

    The Kashmar-Kerman volcano-plutonic arc in central Iran is an important mining province and hosts several large deposits of magmatic iron ores. Some of these ores are characterized by considerable amounts of REE-bearing minerals like apatite, monazite, and xenotime. The Lakehsiyah iron-apatite deposits in the Bafq district (central Iran), are hosted by late Precambrian-Cambrian igneous and dolomite rocks. In order to investigate geochemical characteristics of the rare earth elements related to their genesis, statistical analysis was carried out. The Interpretation of these data led to the identification of four different zones as follows: iron ore, phosphate rich, metasomatic and host rock. Chemical analysis of the zones shows high LREE/HREE ratio with a considerable negative Eu anomaly being a characteristic of the Kiruna ore-type. The distribution of REE patterns resembles, but in different contents, indicating a genetic relationship, and a similar source of magnetite and apatite ores that are similar to most of the iron-apatite deposits in central Iran. Two generations of apatite (type-I and II) are recognized, including coarse-grained euhedral crystals (type-I) and fine grained crystals (type- II) present in the matrix. Apatite-Ι shows a heterogeneous pattern which consists of dark and light phases due to variable concentrations of REE and traces of Si, Na, and Cl. The REEs enrichment explains the presence of monazite and xenotime inclusions within dark apatite grains being a result of hydrothermal activity. The final stage of the hydrothermal system was accompanied by gold overprinting with minor iron ore during metasomatism, probably driven from a deep-seated intrusion, usually found along micro-fractures cutting the previously formed minerals.

  12. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea.

    PubMed

    Song, Hyeongseok; Shin, Woo-Jin; Ryu, Jong-Sik; Shin, Hyung Seon; Chung, Heesun; Lee, Kwang-Sik

    2017-04-01

    Rare earth elements (REE) consist of lanthanides (from La to Lu), together with yttrium and scandium, in which anthropogenic REE, such as gadolinium (Gd), lanthanum (La), and samarium (Sm), has emerged as micro-contaminants in natural waters in highly developed countries. Here, we collected water samples in the Han River (HR) and its tributaries flowing through Seoul Capital Area, the world's second largest metropolitan area in order to examine how and to what extent anthropogenic REE anomalies may occur. Water samples show higher light REE concentrations than heavy REE concentrations, while wastewater treatment plant (WWTP) samples display much higher heavy REE concentrations due to high Gd concentration. The PAAS-normalized REE patterns indicate that WWTP samples display the pronounced positive Gd anomalies, in which anthropogenic Gd from magnetic resonance imaging (MRI) diagnostic system occurs as a form of Gd complexation with either Cl(-) or SO4(2-). Due to the WWTP, both the HR and tributaries show also positive Gd anomalies and the anthropogenic Gd concentrations increase as a function of the distance from the Paldang dam. This result indicates a positive correlation between populaton, number of MRI instruments, and positive Gd anomaly. Similarly, positive La and Sm anomalies exist in the HR, indicating that the HR is also affected by their point sources. Based on the discharge rate and anthropogenic REE concentrations, their fluxes are estimated to be 952 ± 319 kg/yr, suggesting that this amount of fluxes could disturb REE distribution in the Yellow Sea, and pose harmful effects on aquatic ecosystems.

  13. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  14. On the non-uniform distribution of the angular elements of near-Earth objects

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu

    2014-02-01

    We examine the angular distributions of near-Earth objects (NEOs) which are often regarded as uniform. The apparent distribution of the longitude of ascending node, Ω, is strongly affected by well-known seasonal effects in the discovery rate of NEOs. The deviation from the expected π-periodicity in the apparent distribution of Ω indicates that its intrinsic distribution is slightly enhanced along a mean direction, Ω‾=111°; approximately 53% of NEOs have Ω values within ±90° of Ω‾. We also find that each subgroup of NEOs (Amors, Apollos and Atens) has different observational selection effects which cause different non-uniformities in the apparent distributions of their arguments of perihelion ω, and longitudes of perihelion ϖ. For their intrinsic distributions, our analysis reveals that the Apollo asteroids have non-uniform ω due to secular dynamics associated with inclination-eccentricity-ω coupling, and the Amors’ ϖ distribution is peaked towards the secularly forced eccentricity vector. The Apollos’ ω distribution is axial, favoring values near 0° and 180°; the two quadrants centered at 0° and 180° account for 55% of the Apollos’ ω values. The Amors’ ϖ distribution peaks near ϖ‾=4°; 61% of Amors have ϖ within ±90° of this peak. We show that these modest but statistically significant deviations from uniform random distributions of angular elements are owed to planetary perturbations, primarily Jupiter’s. It is remarkable that this strongly chaotic population of minor planets reveals the presence of Jupiter in its angular distributions.

  15. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands.

    PubMed

    Janssen, René P T; Verweij, Wilko

    2003-03-01

    Groundwater samples were taken from seven bore holes at depths ranging from 2 to 41m nearby drinking water pumping station Vierlingsbeek, The Netherlands and analysed for Y, La, Ce, Pr, Nd, Sm and Eu. Shale-normalized patterns were generally flat and showed that the observed rare earth elements (REE) were probably of natural origin. In the shallow groundwaters the REEs were light REE (LREE) enriched, probably caused by binding of LREEs to colloids. To improve understanding of the behaviour of the REE, two approaches were used: calculations of the speciation and a statistical approach. For the speciation calculations, complexation and precipitation reactions including inorganic and dissolved organic carbon (DOC) compounds, were taken into account. The REE speciation showed REE(3+), REE(SO(4))(+), REE(CO(3))(+) and REE(DOC) being the major species. Dissolution of pure REE precipitates and REE-enriched solid phases did not account for the observed REEs in groundwater. Regulation of REE concentrations by adsorption-desorption processes to Fe(III)(OH)(3) and Al(OH)(3) minerals, which were calculated to be present in nearly all groundwaters, is a probable explanation. The statistical approach (multiple linear regression) showed that pH is by far the most significant groundwater characteristic which contributes to the variation in REE concentrations. Also DOC, SO(4), Fe and Al contributed significantly, although to a much lesser extent, to the variation in REE concentrations. This is in line with the calculated REE-species in solution and REE-adsorption to iron and aluminium (hydr)oxides. Regression equations including only pH, were derived to predict REE concentrations in groundwater. External validation showed that these regression equations were reasonably successful to predict REE concentrations of groundwater of another drinking water pumping station in quite different region of The Netherlands.

  16. Rare Earth Element Partition Coefficients During High-Grade Metamorphism: Experiments, Realities, And Large Datasets

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Clark, C.; Kylander-Clark, A. R.; Hacker, B. R.

    2015-12-01

    For 15 years rare earth element (REE) partitioning between zircon and garnet has facilitated the coupling of U-Pb ages to metamorphism, particularly in the granulite facies. The combination of in situ analysis and rapid data acquisition, particularly through combined techniques such as laser ablation split stream (LASS), means that complex terranes can be interrogated with increasing detail. However this detail provided by large datasets must also be combined with an understanding of the processes involved, for example the relative mobility of the REE, Ti, U and Pb within zircon grains that have withstood intense P-T conditions to varying degrees. Care must also be taken in identifying open system conditions, for example the presence or passage of partial melts that result in non-equilibrium, or very localised equilibrium, between the phases of interest. Visualisation of REE partition coefficients (DREE) becomes more complex with large datasets particularly when dealing with variably recrystallised zircon grains or multiple generations of garnet. Simple methods of visualising the important partitioning parameters identify temperature trends in experimental datasets [1, 2]. These trends can be used as clear indicators of zircon growing or recrystallizing in the presence of stable garnet and may be used as thermometers for zircon growth and for the identification of thermal peaks. Investigation of zircon-garnet DREE values in both long-lived high grade terranes (e.g. S. India), and complex polymetamorphic terranes (e.g. Enderby Land, E. Antarctica) provides insight into how partitioning information can be carefully interrogated, by looking at systematic or erratic variations from experimental data, even when dealing with issues such as variably recrystallised zircon and melt migration. Rubatto and Hermann, (2007). Chemical Geology. Taylor et al., (2015). Journal Metamorphic Geology.

  17. The sedimentary flux of dissolved rare earth elements to the ocean

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; McManus, James; Reimers, Clare E.

    2015-04-01

    We determined pore fluid rare earth element (REE) concentrations in near-surface sediments retrieved from the continental margin off Oregon and California (USA). These sites represent shelf-to-slope settings, which lie above, within, and below the oxygen minimum zone of the Northeast Pacific. The sediments are characterized by varying degrees of net iron reduction, with pore fluids from the shelf sites being generally ferruginous, and the slope sediments having less-pronounced iron reduction zones that originate deeper in the sediment package. REE concentrations show maxima in shallow (upper 2-10 cm) subsurface pore fluids across all sites with concentrations that rise more than two orders of magnitude higher than seawater. These pore fluid enrichments highlight the importance of a sedimentary source of REEs to the ocean's water column. Here we use our measurements to estimate the diffusive flux of Nd out of ocean sediments resulting in a global flux between 18 and 110 × 106 mol Nd yr-1. While we do assume that our pore fluid profiles as well as the very limited data previously published are representative of a wide array of ocean environments, this calculated flux can account for the modeled missing Nd source flux (76 × 106 mol Nd yr-1) in global budgets (Arsouze et al., 2009). Pore fluid normalized REE patterns show distinct variation in the middle REE and heavy REE enrichments with sediment depth and amongst sites. These patterns show that the heavy REE enrichment of pore fluids at our deep slope site (3000 m water depth) is closest to the heavy REE enrichment of seawater. This observation supports the view that REE cycling within the upper ten centimeters of deep-sea marine sediments, as opposed to shallower continental shelf and slope sediments, plays a significant role in controlling the integrated global REE flux from the pore fluids and consequently the broad-scale REE pattern in seawater.

  18. Rare earth element concentrations in geological and synthetic samples using synchrotron X-ray fluorescence analysis

    USGS Publications Warehouse

    Chen, J.R.; Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Rivers, M.L.; Sutton, S.R.; Cygan, G.L.; Grossman, J.N.; Reed, M.J.

    1993-01-01

    The concentrations of rare earth elements (REEs) in specific mineral grains from the Bayan Obo ore deposit and synthetic high-silica glass samples have been measured by synchrotron X-ray fluorescence (SXRF) analysis using excitation of the REE K lines between 33 and 63 keV. Because SXRF, a nondestructive analytical technique, has much lower minimum detection limits (MDLs) for REEs, it is an important device that extends the in situ analytical capability of electron probe microanalysis (EPMA). The distribution of trace amounts of REEs in common rock-forming minerals, as well as in REE minerals and minerals having minor quantities of REEs, can be analyzed with SXRF. Synchrotron radiation from a bending magnet and a wiggler source at the National Synchrotron Light Source, Brookhaven National Laboratory, was used to excite the REEs. MDLs of 6 ppm (La) to 26 ppm (Lu) for 3600 s in 60-??m-thick standard samples were obtained with a 25-??m diameter wiggler beam. The MDLs for the light REEs were a factor of 10-20 lower than the MDLs obtained with a bending magnet beam. The SXRF REE concentrations in mineral grains greater than 25 ??m compared favorably with measurements using EPMA. Because EPMA offered REE MDLs as low as several hundred ppm, the comparison was limited to the abundant light REEs (La, Ce, Pr, Nd). For trace values of medium and heavy REEs, the SXRF concentrations were in good agreement with measurements using instrumental neutron activation analysis (INAA), a bulk analysis technique. ?? 1993.

  19. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  20. Alkali-aggregate reaction in concrete containing high-alkali cement and granite aggregate

    SciTech Connect

    Owsiak, Z

    2004-01-01

    The paper discusses results of the research into the influence of high-alkali Portland cement on granite aggregate. The deformation of the concrete structure occurred after 18 months. The research was carried out by means of a scanning electron microscope equipped with a high-energy dispersive X-ray analyzer that allowed observation of unpolished sections of concrete bars exhibiting the cracking pattern typical of the alkali-silica reaction. Both the microscopic observation and the X-ray elemental analysis confirm the presence of alkali-silica gel and secondary ettringite in the cracks.

  1. Fractionation of Volatile Elements by Heating of Solid Allende: Implications for the Source Material of Earth, Moon, and the Eucrite Parent Body

    NASA Astrophysics Data System (ADS)

    Jochum, K. P.; Palme, H.

    1993-07-01

    CI-chondrites have average solar-system abundances of moderately volatile (Na, K, Rb, Sn, etc.) and highly volatile (Cs, Pb, etc.) elements. In most other types of chondrites and in samples from differentiated planetary bodies, these elements are more or less depleted relative to CI chondrites. Volatile-element fractionation occurred either by evaporation or incomplete condensation [1]. Recent data on the isotopic composition of K indicate that depletion of volatiles did not occur by evaporation from a melt of CI-chondritic composition [2]. Evaporative loss from a solid, however, would not necessarily lead to isotopic fractionation of K in the residue [e.g., 3]. In order to study loss of volatile elements from solids, we performed a series of heating experiments under variable oxygen fugacities at temperatures of 1050 degrees C to 1300 degrees C. Residues were analyzed by INAA [4]. We report here additional analyses (K, Rb, Cs, Sn, Pb) of these residues by isotope dilution-SSMS. Results (including Na data from INAA) are shown in Fig. 1. Results at other oxygen fugacities are similar, i.e., there is no strong dependence on fO2, contrary to the results for Au, As, and Zn [4]. Elements are arranged in the order of decreasing condensation temperatures. Depletions increase with increasing temperature and, at least for the 1050 degrees C experiment, with decreasing condensation temperature. The CI- normalized Allende pattern has no strong depletions of Cs and Pb, unlike the experimental results, indicating that evaporation from a solid cannot produce patterns observed in volatile-element-depleted meteorites. Even heating at temperatures as low as 1050 degrees C, affecting alkali elements only slightly, leads to large losses of lead, which are an order of magnitude greater than required for producing CV chondrite patterns. Depletions of these elements apparently occurred in the solar nebula before accretion by incomplete condensation or removal of gas during condensation

  2. Mineral chemistry of Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia

    NASA Astrophysics Data System (ADS)

    Cook, Nigel J.; Ciobanu, Cristiana L.; O'Rielly, Daniel; Wilson, Robin; Das, Kevin; Wade, Benjamin

    2013-07-01

    ‘Green energy futures’ are driving unprecedented demand for Rare Earth Elements (REE), underpinning significant exploration activity worldwide. Understanding how economic REE concentrations form is critical for development of exploration models. REE mineralisation in the Browns Ranges, Gordon Downs Region, Western Australia, comprises xenotime-dominant mineralisation hosted within Archaean to Palaeoproterozoic metasedimentary units (Browns Range Metamorphics). Mineralogical, petrographic and mineral-chemical investigation, including trace element analysis by Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy, gives insights into the mineralogical distribution and partitioning of REE, and also provides evidence for the genetic evolution of the Browns Range REE mineralisation via a succession of hydrothermal processes. Two main REE-bearing minerals are identified: xenotime [(Y,REE)PO4], which is HREE selective; and subordinate florencite [(REEAl3(PO4)2(OH)6] which is LREE selective. Two morphological generations of xenotime are recognised; compositions are however consistent. Xenotime contains Dy (up to 6.5 wt.%), Er (up to 4.35 wt.%), Gd (up to 7.56 wt.%), Yb (up to 4.65 wt.%) and Y (up to 43.3 wt.%). Laser Ablation ICP-MS element mapping revealed a subtle compositional zoning in some xenotime grains. LREE appear concentrated in the grain cores or closest to the initial point of growth whereas HREE, particularly Tm, Yb and Lu, are highest at the outer margins of the grains. The HREE enrichment at the outer margins is mimicked by As, Sc, V, Sr, U, Th and radiogenic Pb. Florencite is commonly zoned and contains Ce (up to 11.54 wt.%), Nd (up to 10.05 wt.%) and La (up to 5.40 wt.%) and is also notably enriched in Sr (up to 11.63 wt.%) and Ca. Zircon (which is not a significant contributor of REEs overall due to its low abundance in the rocks) is also enriched in REE (up to 13 wt.% ΣREE) and is the principal host of Sc (up to 0.8 wt.%). Early, coarse

  3. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  4. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    PubMed

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  5. Experimental Investigation of Evaporation Behavior of Polonium and Rare-Earth Elements in Lead-Bismuth Eutectic Pool

    SciTech Connect

    Shuji Ohno; Shinya Miyahara; Yuji Kurata; Ryoei Katsura; Shigeru Yoshida

    2006-07-01

    Equilibrium evaporation behavior was experimentally investigated for polonium ({sup 210}Po) in liquid lead-bismuth eutectic (LBE) and for rare-earth elements gadolinium (Gd) and europium (Eu) in LBE to understand and clarify the transfer behavior of toxic impurities from LBE coolant to a gas phase. The experiments utilized the 'transpiration method' in which saturated vapor in an isothermal evaporation pot was transported by inert carrier gas and collected outside of the pot. While the previous paper ICONE12-49111 has already reported the evaporation behavior of LBE and of tellurium in LBE, this paper summarizes the outlines and the results of experiments for important impurity materials {sup 210}Po and rare-earth elements which are accumulated in liquid LBE as activation products and spallation products. In the experiments for rare-earth elements, non-radioactive isotope was used. The LBE pool is about 330-670 g in weight and has a surface area of 4 cm x 14 cm. {sup 210}Po experiments were carried out with a smaller test apparatus and radioactive {sup 210}Po produced through neutron irradiation of LBE in the Japan Materials Testing Reactor (JMTR). We obtained fundamental and instructive evaporation data such as vapor concentration, partial vapor pressure of {sup 210}Po in the gas phase, and gas-liquid equilibrium partition coefficients of the impurities in LBE under the temperature condition between 450 and 750 deg. C. The {sup 210}Po test revealed that Po had characteristics to be retained in LBE but was still more volatile than LBE solvent. A part of Eu tests implied high volatility of rare-earth elements comparable to that of Po. This tendency is possibly related to the local enrichment of the solute near the pool surface and needs to be investigated more. These results are useful and indispensable for the evaluation of radioactive materials transfer to the gas phase in LBE-cooled nuclear systems. (authors)

  6. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    NASA Astrophysics Data System (ADS)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  7. Systematics of Alkali and PB Abundances in Meteoritic and Lunar Samples

    NASA Astrophysics Data System (ADS)

    Kita, N. T.

    1996-03-01

    The alkali depletion is not a unique characteristic of the moon, but is common to eucrites, angrites, and the earth. Because the moon and the earth are depleted in more volatile Pb in a similar degree to both chondrites and achondrites, it is hard to assume that alkali depletion was caused by vaporization loss during the giant impact event. Alkali and volatile depletion might have originated from their source material which accreted to the planets.

  8. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Snidvongs, Anond

    2000-12-01

    A new filtration method using a 0.04 μm hollow fiber filter was applied to the river, estuarine, and coastal waters in the Chao Phraya estuary for geochemical investigation. The filtered waters were analyzed for all the lanthanides, Y and In by using inductively coupled plasma mass spectrometry (ICPMS). The dissolved concentrations of rare earth elements (REEs) are significantly lower than those reported previously for other rivers, presumably because of effective removal of river colloids by the ultra-filtration. The variation of dissolved REEs in the estuary is dependent on the season. The light REEs vary considerably in the low salinity ( S < 3) zone presumably due to adsorption-desorption interaction with suspended particles. In January when the river discharge is low, the REEs show maxima in the mid salinity ( S = 5-12) zone suggesting that dissolved REEs are supplied to the waters by either desorption from suspended loads or remineralization of underlying sediments. The rapid removal of the REEs is also taking place in the turbid-clear water transition zone ( S = 12-15), presumably due to biological uptake associated with blooming of Noctilca occurred at the time of January sampling. In the medium to high discharge season (July and November), the dissolved REE(III)s at S > 3 show almost conservative trends being consistent with some of the previous works. Europium is strongly enriched in the river and estuarine waters compared to the South China Sea waters. Thus, the REE source of the Chao Phraya River must be fractionated and modified in entering to the South China Sea. Dissolved In and Ce in the high salinity ( S = 20-25) zone of the estuary are lower than those of the offshore waters, and therefore, the dissolved flux of the Chao Phraya River cannot account for the higher concentrations of dissolved In and Ce in the surface waters of the South China Sea. The negative Ce anomaly is progressively developed with increasing salinity, being consistent with

  9. Rare earth element metasomatism in hydrothermal systems: The Willsboro-Lewis wollastonite ores, New York, USA

    USGS Publications Warehouse

    Whitney, P.R.; Olmsted, J.F.

    1998-01-01

    Wollastonite ores and garnet-pyroxene skarns in the Willsboro-Lewis district, New York, USA were formed in a complex hydrothermal system associated with the emplacement of a large anorthosite pluton. Contact-metamorphic marbles were replaced by wollastonite, garnet, and clinopyroxene during infiltration metasomatism involving large volumes of water of chiefly meteoric origin. Rare earth elements (REE) in these rocks show large departures from the protolith REE distribution, indicative of substantial REE mobility. Three types of chondrite-normalized REE distribution patterns are present. The most common, found in ores and skarns containing andradite-rich garnet, is convex-up in the light REE (LREE) with a maximum at Pr and a positive Eu anomaly. Europium anomalies and Pr/Yb ratios are correlated with X(Ad) in garnet. This pattern (type C) results from uptake of REE from hydrothermal fluids by growing crystals of calcsilicate minerals, principally andradite, with amounts of LREE controlled by the difference in ionic radius between Ca++ and REE3+ in garnet X sites. The Eu anomaly results either from prior interaction of the fluids with plagioclase-rich, Eu-positive anorthositic rocks in and near the ore zone, or by enrichment of divalent Eu on growth surfaces of garnet followed by entrapment, or both. Relative enrichment in heavy REE (type H) occurs in ores and skarn where calcsilicates, including grossularitic garnet, in contact-metamorphic marble have been concentrated by dissolution of calcite. In most cases a negative Eu anomaly is inherited from the marble protolith. Skarns containing titanite and apatite exhibit high total REE, relative light REE enrichment, and negative Eu anomalies (type L). These appear to be intrusive igneous rocks (ferrodiorites or anorthositic gabbros) that have been converted to skarn by Ca metasomatism. REE, sequestered in titanite, apatite, and garnet, preserve the approximate REE distribution pattern of the igneous protolith. Post

  10. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    NASA Astrophysics Data System (ADS)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) 'black smoker' vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as 'white smoker' (<212 °C) and diffuse (<28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from <1 to 3.4, [Cl-] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F-] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  11. Origin of fluorite mineralizations in the Nuba Mountains, Sudan and their rare earth element geochemistry

    NASA Astrophysics Data System (ADS)

    Ismail, Ibrahim; Baioumy, Hassan; Ouyang, Hegen; Mossa, Hesham; Aly, Hisham Fouad

    2015-12-01

    Among other mineralizations in the basement complex of the Nuba Mountains, fluorite occurs as lenses and veins in a number of localities. The rare earth elements (REE) geochemistry in these fluorites along with their petrography and fluid inclusion was investigated in this study to discuss the origin the fluorites and shed the light on the economic importance of the REE. Fluorites in the Nuba Mountains are classified into four categories based on their petrography. Category I (F1) is characterized by pink color and free of inclusions. Category II (F2) is zoned of alternating pink and colorless zones with euhedral outline or anhedral patchy pink and colorless fluorite enclosing category I fluorite and is usually sieved with submicroscopic silicate minerals. Category III (F3) is colorless, euhedral to anhedral fluorite and associated with quartz and/or orthoclase. Category IV (F4) is colorless, either massive or dispersed, corroded grains associated with calcite and pertain to the late introduced carbonatites in Dumbeir area. Gangue minerals in the studied fluorites include quartz, calcite, orthoclase and muscovite. The ΣREE ranges between 541 and 10,430 ppm with an average of 3234 ppm. Chondrite-normalized REE patterns for fluorite from different localities exhibit LREE enrichment relative to HREE as shown by (La/Yb)N ratios that vary from 16 to 194 and significant positive Eu anomalies that are pronounced with Eu/Eu* from 1.1 to 2.5. The Tb/La and Tb/Ca ratios of fluorites in the present study indicate that they plot mainly in the pegmatitic or high-hydrothermal field with the characteristics of primary crystallization and remobilization trend. The clear heterogeneity of fluorite, abundance of growth zones, irregular shapes of grains, presence of fluorite inclusions in other minerals as well as the relatively high concentration of REE in the studied fluorites are supportive for this interpretation. The relatively high Tb/La (0.002-0.013) and low Tb/Ca (0

  12. A new statistical analysis of rare earth element diffusion data in garnet

    NASA Astrophysics Data System (ADS)

    Chu, X.; Ague, J. J.

    2015-12-01

    The incorporation of rare earth elements (REE) in garnet, Sm and Lu in particular, links garnet chemical zoning to absolute age determinations. The application of REE-based geochronology depends critically on the diffusion behaviors of the parent and daughter isotopes. Previous experimental studies on REE diffusion in garnet, however, exhibit significant discrepancies that impact interpretations of garnet Sm/Nd and Lu/Hf ages.We present a new statistical framework to analyze diffusion data for REE using an Arrhenius relationship that accounts for oxygen fugacity, cation radius and garnet unit-cell dimensions [1]. Our approach is based on Bayesian statistics and is implemented by the Markov chain Monte Carlo method. A similar approach has been recently applied to model diffusion of divalent cations in garnet [2]. The analysis incorporates recent data [3] in addition to the data compilation in ref. [1]. We also include the inter-run bias that helps reconcile the discrepancies among data sets. This additional term estimates the reproducibility and other experimental variabilities not explicitly incorporated in the Arrhenius relationship [2] (e.g., compositional dependence [3] and water content).The fitted Arrhenius relationships are consistent with the models in ref. [3], as well as refs. [1]&[4] at high temperatures. Down-temperature extrapolation leads to >0.5 order of magnitude faster diffusion coefficients than in refs. [1]&[4] at <750 °C. The predicted diffusion coefficients are significantly slower than ref. [5]. The fast diffusion [5] was supported by a field test of the Pikwitonei Granulite—the garnet Sm/Nd age postdates the metamorphic peak (750 °C) by ~30 Myr [6], suggesting considerable resetting of the Sm/Nd system during cooling. However, the Pikwitonei Granulite is a recently recognized UHT terrane with peak temperature exceeding 900 °C [7]. The revised closure temperature (~730 °C) is consistent with our new diffusion model.[1] Carlson (2012) Am

  13. Alteration of rare earth element distribution as a result of microbial activity and empirical methane injection

    NASA Astrophysics Data System (ADS)

    Castillo, D. J.; Davies, N. W.; Thurber, A. R.; Haley, B. A.; Colwell, F. S.

    2014-12-01

    As a result of warming