Science.gov

Sample records for alkali-silica reaction asr

  1. Microwave material characterization of alkali-silica reaction (ASR) gel in cementitious materials

    NASA Astrophysics Data System (ADS)

    Hashemi, Ashkan

    Since alkali-silica reaction (ASR) was recognized as a durability challenge in cement-based materials over 70 years ago, numerous methods have been utilized to prevent, detect, and mitigate this issue. However, quantifying the amount of produced ASR byproducts (i.e., ASR gel) in-service is still of great interest in the infrastructure industry. The overarching objective of this dissertation is to bring a new understanding to the fundamentals of ASR formation from a microwave dielectric property characterization point-of-view, and more importantly, to investigate the potential for devising a microwave nondestructive testing approach for ASR gel detection and evaluation. To this end, a comprehensive dielectric mixing model was developed with the potential for predicting the effective dielectric constant of mortar samples with and without the presence of ASR gel. To provide pertinent inputs to the model, critical factors on the influence of ASR gel formation on dielectric and reflection properties of several mortar samples were investigated at R, S, and X-band. Effects of humidity, alkali content, and long-term curing conditions on ASR-prone mortars were also investigated. Additionally, dielectric properties of chemically different synthetic ASR gel were also determined. All of these, collectively, served as critical inputs to the mixing model. The resulting developed dielectric mixing model has the potential to be further utilized to quantify the amount of produced ASR gel in cement-based materials. This methodology, once becomes more mature, will bring new insight to the ASR reaction, allowing for advancements in design, detection and mitigation of ASR, and eventually has the potential to become a method-of-choice for in-situ infrastructure health-monitoring of existing structures.

  2. New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR)

    SciTech Connect

    Feng, X.; Thomas, M.D.A.; Bremner, T.W.; Folliard, K.J.; Fournier, B.

    2010-01-15

    In the current study, in order to elucidate the mechanisms for the favorable effects of lithium nitrate in controlling alkali silica reaction (ASR), vycor glass disk immersion specimens and glass disk-cement paste sandwich specimens were prepared and examined by XRD, SEM and Laser Ablation Induction Coupled Plasma Mass Spectrometry (LA-ICP-MS). Results showed that when glass disk was immersed in only NaOH solution, the glass was attacked by hydroxyl ions but no solid reaction product was found, thus the presence of calcium was essential for the formation of ASR gel. In the presence of lithium, the glass surface was covered by a thick layer of Li-Si crystal. With the addition of Ca(OH){sub 2}, the glass surface was completely covered by Li-Si crystal and a lithium-bearing low Ca-Na-(K)-Si gel. These two phases either form a dense matrix with Li-Si crystal serving as the framework, and the gel filling in the void space, or the Li-Si crystal serving as the foundation to completely cover the entire reactive SiO{sub 2} surface, and the gel sitting on top of these crystal particles. Hence, the suppressive effects of LiNO{sub 3} were attributed to the formation of a layer of Li-Si crystals intimately at the reactive SiO{sub 2} particle surface and the formation of Li-bearing low-Ca ASR gel products. The Li-bearing low-Ca ASR gels may have a dense and rigid structure, thus having low capacity to absorb moisture from the surrounding paste, and exhibiting a non-swelling property.

  3. Alkali-silica reaction products: Comparison between samples from concrete structures and laboratory test specimens

    SciTech Connect

    Sachlova, Sarka Prikryl, Richard; Pertold, Zdenek

    2010-12-15

    Alkali-silica gels (ASG) were investigated in concrete from bridge structures (constructed from the 1920s to 2000), as well as in experimental specimens; employing optical microscopy, petrographic image analysis, and scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS). The main differences were found in the chemical composition and morphology of the ASGs. ASGs which had formed in older concrete samples (50-80 years old) show a partly crystalline structure and higher Ca{sup 2+} content, indicating their aging and maturation. Younger concrete samples and experimental test specimens exhibit the presence of amorphous ASG. The chemistry of ASG from experimental specimens reflects the chemical composition of accelerating solutions. - Research Highlights: {yields} Quantitative analysis of alkali-silica gels {yields} Comparison of ASR in experimental conditions with ASR in bridge structures {yields} Investigation of factors affecting alkali-silica reaction {yields} Investigation of ASR of different types of aggregates.

  4. In situ alkali-silica reaction observed by x-ray microscopy

    SciTech Connect

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  5. Alkali-silica reaction resistant concrete using pumice blended cement

    NASA Astrophysics Data System (ADS)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  6. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  7. Detection of alkali-silica reaction swelling in concrete by staining

    DOEpatents

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  8. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    DOE PAGES

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The barsmore » contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.« less

  9. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    SciTech Connect

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The bars contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.

  10. Petrography study on altered flint aggregate by alkali-silica reaction

    SciTech Connect

    Bulteel, D. . E-mail: bulteel@ensm-douai.fr; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-11-15

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K{sup +} and Ca{sup 2+} penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction.

  11. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  12. Insights into alkali-silica reaction damage in mortar through acoustic nonlinearity

    NASA Astrophysics Data System (ADS)

    Rashidi, M.; Kim, J.-Y.; Jacobs, L. J.; Kurtis, K. E.

    2016-02-01

    The progression of damage as a result of alkali-silica reaction in mortar samples is monitored by using the Nonlinear Impact Resonance Acoustic Spectroscopy (NIRAS) method and expansion measurements, which were performed daily. Results of this study show a strong correlation between the cumulative average nonlinearity parameter and expansion for each sample type, and a strong linear relationship between fourteen-day expansion and the cumulative average nonlinearity of among sample types. In addition to the cumulative average nonlinearity parameter, the standard deviation of average nonlinearity parameter shows strong correlation with the fourteen-day expansion of sample types. Results provide insights to the relationship with the acoustic nonlinearity and damage caused by the ASR.

  13. Classification of alkali-silica reaction and corrosion distress using acoustic emission

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Marwa; ElBatanouny, Mohamed; Serrato, Michael; Dixon, Kenneth; Larosche, Carl; Ziehl, Paul

    2016-02-01

    The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.

  14. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    SciTech Connect

    Stastna, A.; Sachlova, S.; Pertold, Z.; Prikryl, R.; Leichmann, J.

    2012-03-15

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

  15. Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction

    SciTech Connect

    Turanli, L.; Bektas, F.; Monteiro, P.J.M

    2003-10-01

    The objective of this experimental study was to use ground clay brick (GCB) as a pozzolanic material to minimize the alkali-silica reaction expansion. Two different types of clay bricks were finely ground and their activity indices were determined. ASTM accelerated mortar bar tests were performed to investigate the effect of GCB when used to replace cement mass. The microstructure of the mortar was investigated using scanning electron microscopy (SEM). The results showed that the GCBs meet the strength activity requirements of ASTM. In addition, the GCBs were found to be effective in suppressing the alkali-silica reaction expansion. The expansion decreased as the amount of GCBs in the mortar increased.

  16. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.

    PubMed

    Topçu, Ilker Bekir; Boğa, Ahmet Raif; Bilir, Turhan

    2008-01-01

    Use of waste glass or glass cullet (GC) as concrete aggregate is becoming more widespread each day because of the increase in resource efficiency. Recycling of wastes is very important for sustainable development. When glass is used as aggregate in concrete or mortar, expansions and internal stresses occur due to an alkali-silica reaction (ASR). Furthermore, rapid loss in durability is generally observed due to extreme crack formation and an increase in permeability. It is necessary to use some kind of chemical or mineral admixture to reduce crack formation. In this study, mortar bars are produced by using three different colors of glass in four different quantities as fine aggregate by weight, and the effects of these glass aggregates on ASR are investigated, corresponding to ASTM C 1260. Additionally, in order to reduce the expansions of mortars, 10% and 20% fly ash (FA) as mineral admixture and 1% and 2% Li(2)CO(3) as chemical admixture are incorporated by weight in the cement and their effects on expansion are examined. It is observed that among white (WG), green (GG) and brown glass (BG) aggregates, WG aggregate causes the greatest expansion. In addition, expansion increases with an increase in amount of glass. According to the test results, it is seen that over 20% FA and 2% Li(2)CO(3) replacements are required to produce mortars which have expansion values below the 0.2% critical value when exposed to ASR. However, usages of these admixtures reduce expansions occurring because of ASR.

  17. Relation of expansion due to alkali silica reaction to the degree of reaction measured by SEM image analysis

    SciTech Connect

    Haha, M. Ben; Gallucci, E. Guidoum, A.; Scrivener, K.L.

    2007-08-15

    Scanning Electron Microscopy Image Analysis (SEM-IA) was used to quantify the degree of alkali silica reaction in affected microbars, mortar and concrete prisms. It was found that the degree of reaction gave a unique correlation with the macroscopic expansion for three different aggregates, stored at three temperatures and with two levels of alkali. The relationships found for the concretes and the mortars overlap when normalised by the aggregate content. This relationship seems to be linear up to a critical reaction degree which coincides with crack initiation within the reactive aggregates.

  18. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  19. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm). PMID:26790877

  20. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    SciTech Connect

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  1. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    SciTech Connect

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A.

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  2. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciTech Connect

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-04-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.

  3. Amorphisation mechanism of a flint aggregate during the alkali-silica reaction: X-ray diffraction and X-ray absorption XANES contributions

    SciTech Connect

    Verstraete, J.; Khouchaf, L.; Bulteel, D.; Garcia-Diaz, E.; Flank, A.M; Tuilier, M.H

    2004-04-01

    Flint samples at different stages of the Alkali-Silica Reaction were prepared and analyzed by X-ray diffraction (XRD) and silicon K-edge X-ray absorption near edge structure techniques (XANES). The results are compared to those of measurements performed on alpha quartz c-SiO{sub 2} and rough flint aggregate. The molar fraction of Q{sub 3} sites is determined as a function of the time of reaction. Up to 14 h of attack, the effect of the reaction seems of little importance. From 30 to 168 h, we showed an acceleration of the effect of the reaction on the crystal structure of the aggregate resulting in an amorphisation of the crystal. During this period, the amorphous fraction increases linearly with the number of Q{sub 3} sites. The results of the XANES confirm the amorphisation of the aggregate during the reaction and show the presence of silicon in a tetrahedral environment of oxygen whatever the time of attack.

  4. Geochemical Methods for the Identification of ASR Gel

    SciTech Connect

    Guthrie, G.D.; Carey, J.W.

    1998-07-01

    This paper presents a geochemical method for staining various products of the alkali-silica reaction. The method is based on both the composition of ASR gel and one of its properties (the ability to exchange cations with a fluid). The stained concrete can be observed in normal light and serves as both a rapid field screening method and a useful aid for detailed petrographic examinations.

  5. Alkali-silica reactivity of expanded glass granules in structure of lightweight concrete

    NASA Astrophysics Data System (ADS)

    Bumanis, G.; Bajare, D.; Locs, J.; Korjakins, A.

    2013-12-01

    Main component in the lightweight concrete, which provides its properties, is aggregate. A lot of investigations on alkali silica reaction (ASR) between cement and lightweight aggregates have been done with their results published in the academic literature. Whereas expanded glass granules, which is relatively new product in the market of building materials, has not been a frequent research object. Therefore lightweight granules made from waste glass and eight types of cement with different chemical and mineralogical composition were examined in this research. Expanded glass granules used in this research is commercially available material produced by Penostek. Lightweight concrete mixtures were prepared by using commercial chemical additives to improve workability of concrete. The aim of the study is to identify effect of cement composition to the ASR reaction which occurs between expanded glass granules and binder. Expanded glass granules mechanical and physical properties were determined. In addition, properties of fresh and hardened concrete were determined. The ASR test was processed according to RILEM AAR-2 testing recommendation. Tests with scanning electron microscope and microstructural investigations were performed for expanded glass granules and hardened concrete specimens before and after exposing them in alkali solution.

  6. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  7. Crystallized alkali-silica gel in concrete from the late 1890s

    SciTech Connect

    Peterson, Karl . E-mail: cee@mtu.edu; Gress, David . E-mail: dlgress@unh.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Sutter, Lawrence . E-mail: cee@mtu.edu

    2006-08-15

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levels in the cements used.

  8. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    SciTech Connect

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-11-30

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  9. ASR prevention — Effect of aluminum and lithium ions on the reaction products

    SciTech Connect

    Leemann, Andreas; Alahrache, Salaheddine; Winnefeld, Frank

    2015-10-15

    In spite of the recent progress in the understanding of the mechanisms enabling aluminum-containing SCM like metakaolin and added LiNO{sub 3} to limit the extent of ASR in mortar and concrete, some gaps still remain. They concern mainly the effect of aluminum-containing SCM on the formed ASR products and the influence of aggregate characteristics on the effectiveness of LiNO{sub 3}. In this study, a model system, concrete and mortar were investigated by pore solution analysis, TGA, XRD, NMR, SEM combined with EDX and ToF-SIMS to address these questions. The amount of aluminum present in the pore solution of concrete and mortar is only able to slow down SiO{sub 2} dissolution but not to alter morphology, structure and composition of the reaction products. LiNO{sub 3} can suppress ASR by forming dense products protecting reactive minerals from further reaction. But its effectiveness is decreasing with increasing specific surface area of the reactive minerals in aggregates. - Highlights: • Aluminum of SCM slows down SiO{sub 2} dissolution. • Aluminum of SCM does not alter morphology and structure of ASR product. • ASR suppressing effect of LiNO{sub 3} depends on specific surface area of the aggregates.

  10. Mitigation of ASR by the use of LiNO{sub 3}—Characterization of the reaction products

    SciTech Connect

    Leemann, Andreas; Lörtscher, Luzia; Bernard, Laetitia; Le Saout, Gwenn; Lothenbach, Barbara; Espinosa-Marzal, Rosa M.

    2014-05-01

    The influence of the LiNO{sub 3} on the ASR product was studied both in a model system and in mortars. In the model system, the addition of LiNO{sub 3} decreases the dissolution rate and the solubility of silica. Lithium changes the 2-dimensional cross-linked (Q{sub 3} dominated) network of the ASR product into a less structured, Q{sub 2} dominated product, likely by adopting the role of calcium. In the mortar samples the addition of LiNO{sub 3} decreases expansion and significantly influences the chemical composition and the morphology of the reaction product. Lithium decreases the calcium, sodium and potassium content and changes the relatively porous plate-like reaction product into a dense one without texture. The findings in the mortars indicate that the ASR-suppressing effect of lithium is caused by the lower potential of the reaction product to swell. Furthermore, it forms a protective barrier after an initial reaction slowing down ASR. - Highlights: • Detection of lithium in ASR product by ToF-SIMS • Relation between composition of pore solution and ASR product • Identification of ASR suppressing mechanisms of LiNO{sub 3}.

  11. ASR potential of quartz based on expansion values and microscopic characteristics of mortar bars

    NASA Astrophysics Data System (ADS)

    Stastna, Aneta; Sachlova, Sarka; Kuchynova, Marketa; Pertold, Zdenek; Prikryl, Richard

    2016-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. Different analytical techniques are used to quantify ASR potential of aggregates. The accelerated mortar bar test (ASTM C1260) in combination with the petrographic examination of aggregates by microscopic techniques belongs to the frequently employed methods. Such a methodical approach enables quantification of the ASR potential, based on the expansion values of accelerated mortar bars; and also to identify deleterious components in aggregates. In this study, the accelerated mortar bar test (ASTM C1260) was modified and combined with the scanning electron microscopy of polished sections prepared from mortar bars. The standard 14-day test period of mortar bars was prolonged to 1-year. ASR potential of aggregates was assessed based on expansion values (both 14-day and 1-year) of mortar bars and microscopic analysis of ASR products (alkali silica gels, microcracks, dissolution gaps) detected in the sections. Different varieties of quartz-rich rocks including chert, quartz meta-greywacke, three types of quartzite and pegmatite were used as aggregate. Only quartz from pegmatite was assessed to be non reactive (14-day expansion of 0.08%, 1-year expansion of 1.25%). Aggregate sections exhibited minor ASR products even after 1-year of mortar bar immersion in 1 M NaOH. Expansion values of the rest of samples exceeded the limit of 0.10% after 14-day test period indicating aggregates as reactive. The highest ASR potential was detected in mortar bars containing chert (14-day expansion of 0.55%, 1-year expansion of 2.70%) and quartz meta-greywacke (14-day expansion of 0.46%, 1-year expansion of 2.41%). The high ASR potential was explained by presence of cryptocrystalline matrix in significant volumes (24 - 65 vol%). Influence of the lengths of the immersion in the alkaline solution was observed mainly in the microstructure of the cement paste and on the extension of ASR products. The

  12. Evaluation of ASR potential of quartz-rich rocks by alkaline etching of polished rock sections

    NASA Astrophysics Data System (ADS)

    Šachlová, Šárka; Kuchařová, Aneta; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    Damaging effect of alkali-silica reaction (ASR) on concrete structures has been observed in various countries all over the World. Civil engineers and real state owners are demanding reliable methods in the assessment of ASR potential of aggregates before they are used in constructions. Time feasible methods are expected, as well as methods which enable prediction of long-term behaviour of aggregates in concrete. The most frequently employed accelerated mortar bar test (AMBT) quantifies ASR potential of aggregates according to the expansion values of mortar bars measured after fourteen days testing period. Current study aimed to develop a new methodical approach facilitating identification and quantification of ASR potential of aggregates. Polished rock sections of quartz and amorphous SiO2 (coming from orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint) were subjected to experimental leaching in 1M NaOH solution at 80°C. After 14 days of alkaline etching, the rock sections were analyzed employing scanning electron microscope combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron (BSE) images and measured using fully-automatic petrographic image analysis (PIA). Several features connected to alkaline etching were observed on the surface of polished rock sections: deep alkaline etching, partial leach-out of quartz and amorphous particles, alkaline etching connected to quartz grain boundaries, and alkaline etching without any connection to grain boundaries. All features mentioned above had significant influence on grey-scale spectrum of BSE images. A specific part of the grey-scale spectrum (i.e. grey-shade 0-70) was characteristic of areas affected by alkaline etching (ASR area). By measuring such areas we quantified the extent of alkaline etching in studied samples. Very good correlation was found between the ASR area and ASR potential of investigated rocks measured according to the

  13. Suitability of alkaline leaching and etching experiments in the quantification of ASR potential of quartz-rich rocks

    NASA Astrophysics Data System (ADS)

    Kuchařová, Aneta; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2015-04-01

    Three groups of methods are conventionally applied in the assessment of the susceptibility of aggregates used in concrete to be affected by alkali-silica reaction (ASR). The most frequently employed expansion tests (accelerated mortar bar test and concrete prism test, e.g. ASTM C1260, RILEM AAR2, RILEM AAR4.1) quantify ASR potential of aggregates according to the expansion values of mortar bars (resp. concrete prisms) measured after certain testing time period. Petrographic methods are based on the quantification of alkali-reactive phases by polarizing microscopy (e.g. RILEM AAR1). Chemical methods quantify ASR potential according to the amount of Si4+ dissolved into alkaline solution combined with the reduction of alkalinity of the solution (e.g. ASTM C289). The current study focused on the comparison of three approaches: the alkaline etching of polished rock sections and standard chemical method (following ASTM C289) with the measuring of expansion values of mortar bars (following ASTM C1260). Various types of quartz and amorphous SiO2 used for the experiments were separated from rock samples of orthoquartzite, quartz meta-greywacke, pegmatite, phyllite, chert, and flint. Polished rock sections (resp. crushed fraction 0.125/0.250) were used and subjected to leaching in 1M NaOH solution at 80°C for 14 days (resp. 24 hours). After alkaline etching in alkaline solution, the rock sections were analyzed by scanning electron microscopy combined with energy dispersive spectrometer. Representative areas were documented in back scattered electron images and quantified using fully-automatic petrographic image analysis. ASR potential of the polished rock sections was evaluated by the vol. % of area affected by alkaline etching. ASR potential of crushed aggregate was estimated by measurements of Si4+ dissolved into the solution versus the reduction of alkalinity of the solution (following ASTM C289). Classification according to the ASTM C289 indicated three of investigated

  14. Comparison of the morphology of alkali–silica gel formed in limestones in concrete affected by the so-called alkali–carbonate reaction (ACR) and alkali–silica reaction (ASR)

    SciTech Connect

    Grattan-Bellew, P.E.; Chan, Gordon

    2013-05-15

    The morphology of alkali–silica gel formed in dolomitic limestone affected by the so-called alkali–carbonate reaction (ACR) is compared to that formed in a siliceous limestone affected by alkali–silica reaction (ASR). The particle of dolomitic limestone was extracted from the experimental sidewalk in Kingston, Ontario, Canada that was badly cracked due to ACR. The siliceous limestone particle was extracted from a core taken from a highway structure in Quebec, affected by ASR. Both cores exhibited marked reaction rims around limestone particles. The aggregate particles were polished and given a light gold coating in preparation for examination in a scanning electron microscope. The gel in the ACR aggregate formed stringers between the calcite crystals in the matrix of the rock, whereas gel in ASR concrete formed a thick layer on top of the calcite crystals, that are of the same size as in the ACR aggregate.

  15. Contribution a la caracterisation des betons endommages par des methodes de l'acoustique non lineaire. Application a la reaction alcalis-silice

    NASA Astrophysics Data System (ADS)

    Kodjo, Apedovi

    The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a

  16. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-06-15

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer.

  17. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  18. Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan

    SciTech Connect

    Katayama, Tetsuya . E-mail: katayamat@kge.co.jp; Tagami, Masahiko; Sarai, Yoshinori; Izumi, Satoshi; Hira, Toshikatsu

    2004-11-15

    Concrete cores taken from highway bridges and culverts undergoing alkali-silica reaction (ASR) were investigated petrographically by means of core scanning, point counting, polarizing microscopy, scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), electron-probe microanalysis with energy-dispersive spectrometry, in conjunction with wet chemical analyses and expansion tests. Field damage was roughly proportional to the content of andesite in the gravel aggregates due to the presence of highly reactive cristobalite and tridymite. Electron-probe microanalyzer analysis of unhydrated cement phases in the concrete revealed that the cement used had contained at least 0.5% to 1.0% alkali (Na{sub 2}Oeq) and that both the aggregates and the deicing salts had supplied part of the water-soluble alkali to concrete toward the threshold of producing ASR (Na{sub 2}O{sub eq} 3.0 kg/m{sup 3}). An accelerated concrete core expansion test (1 M NaOH, 80 deg. C) of the damaged structures mostly gave core expansions of >0.10% at 21 days (or >0.05% at 14 days), nearly comparable to those of a slow expansion test with saturated NaCl solution (50 deg. C, 91 days) which produced Cl-containing ASR gel.

  19. The Symmetry of Adverse Local Tissue Reactions in Patients with Bilateral Simultaneous and Sequential ASR Hip Replacement.

    PubMed

    Madanat, Rami; Hussey, Daniel K; Donahue, Gabrielle S; Potter, Hollis G; Wallace, Robert; Bragdon, Charles R; Muratoglu, Orhun K; Malchau, Henrik

    2015-10-01

    The purpose of this study was to evaluate whether patients with bilateral metal-on-metal (MoM) hip replacements have symmetric adverse local tissue reactions (ALTRs) at follow-up. An MRI of both hips was performed at a mean time of six years after surgery in 43 patients. The prevalence and severity of ALTRs were found to be similar in simultaneous hips but differences were observed in sequential hips. The order and timing of sequential hip arthroplasties did not affect the severity of ALTRs. Thus, in addition to metal ion exposure from an earlier MoM implant other factors may also play a role in the progression of ALTRs. Bilateral implants should be given special consideration in risk stratification algorithms for management of patients with MoM hip arthroplasty. PMID:26055146

  20. How to identify carbonate rock reactions in concrete

    SciTech Connect

    Katayama, Tetsuya . E-mail: katayamat@kge.co.jp

    2004-11-15

    This paper summarizes the modern petrographic techniques used to diagnose carbonate rock reactions in concrete. Concrete microbar specimens of the prototype RILEM AAR-5 test, provided by the Austrian Cement Research Institute, and typical Canadian concrete that had undergone alkali-carbonate reaction (ACR) were examined. Scanning electron microscopy, element mapping and quantitative analysis using electron-probe microanalyzer with energy-dispersive spectrometry (EPMA/EDS: around x 2000, <0.1 nA) were made of polished thin sections after completing polarizing microscopy. Dedolomitization produced a myrmekitic texture, composed of spotted brucite (<3 {mu}m) and calcite within the reaction rim, along with a carbonate halo of calcite in the surrounding cement paste. However, no evidence was detected that dedolomitization had produced the expansion cracks in the cement paste, while the classical definition of alkali-carbonate reaction postulates their development. It was found that the alkali-silica reaction (ASR) due to cryptocrystalline quartz hidden in the matrix, always associated with dedolomitization in all the carbonate aggregates tested, was responsible for the expansion of both the laboratory and field concretes, even with the Canadian dolomitic limestone from Kingston, the reference material for alkali-carbonate reaction. It is suggested that the term alkali-carbonate reaction is misleading.

  1. Ground Operations and ASRS

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegail Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline

  2. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al.

  3. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al. PMID:26476017

  4. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  5. NASA Aviation Safety Reporting System (ASRS)

    NASA Technical Reports Server (NTRS)

    Connell, Linda

    2011-01-01

    The NASA Aviation Safety Reporting System (ASRS) collects, analyzes, and distributes de-identified safety information provided through confidentially submitted reports from frontline aviation personnel. Since its inception in 1976, the ASRS has collected over 900,000 reports and has never breached the identity of the people sharing their information about events or safety issues. From this volume of data, the ASRS has released over 5,500 aviation safety alerts concerning potential hazards and safety concerns. The ASRS processes these reports, evaluates the information, and provides de-identified report information through the online ASRS Database at http://asrs.arc.nasa.gov. The NASA ASRS is also a founding member of the International Confidential Aviation Safety Systems (ICASS) group which is a collection of other national aviation reporting systems throughout the world. The ASRS model has also been replicated for application to improving safety in railroad, medical, fire fighting, and other domains. This presentation \\vill discuss confidential, voluntary, and non-punitive reporting systems and their advantages in providing information for safety improvements.

  6. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  7. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. PMID:20940079

  8. Alkali - Aggregate reaction (AAR) A brief history of discovery of tis basic chemistry

    SciTech Connect

    Leps, T.M.

    1995-12-31

    Alkali Aggregate Reaction (AAR), also variously known as Alkali Silica Reaction (ASR) and even Alkali Carbonate Reaction (ACR), has troubled and challenged those of us since the 1930`s who would have liked to think of portland cement concrete and aggregates as a simple, reliable, inert, enduring construction material. Its complex and not easily understood chemistry successfully defied the understanding of the engineering fraternity for many decades. After all, civil engineers, architects, and construction engineers are not chemists or petrographers, and are only minimally laboratory-oriented or trained. Furthermore, the almost infinite variety of minerals which Nature has provided in the form of rocks and aggregates indeed constituted a nearly insurmountable challenge to the ready development of a credible understanding of the chemistry of expanding concrete. Accordingly, although a few talented pioneers such as E.A. Stephenson in 1916, J.C. Pearson & G.F. Loughlin in 1923, Professor R.J. Holden in 1935, and F. M. Lea & C.H. Desch in 1935, nibbled at the edges of understanding how gels were formed in the alkali-aggregate interaction process, it was not until 1940 when an engineer, Thomas E. Stanton, dared to publish a preliminary but understandable view of what causes portland cement concrete to expand. The writer`s interest in AAR began as far back as 1946 when the importance of the problem was repeatedly brought to his attention by Ralph W. Spencer, then Chief Civil Engineer of Southern California Edison Company, who was the writer`s supervisor in planning, designing and contracting the construction of many major projects, including dams. Previously as well as subsequently, the writer`s interest was enhanced by friendships and association with pioneers of AAR such as Professor Roy Carlson, Professor R.E. Davis, Lewis H. Tuthill, R.F. Blanks, and Roger Rhoades. The writer regrets never having met Thomas E. Stanton and his chief chemist, G.H.P.

  9. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress.

  10. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PMID:19123763

  11. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    PubMed

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.

  12. On the ASR and ASR thermal residues characterization of full scale treatment plant.

    PubMed

    Mancini, G; Viotti, P; Luciano, A; Fino, D

    2014-02-01

    In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste. Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC - European Waste Catalogue - code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material. PMID:24290536

  13. Structure and regulation of the Asr gene family in banana.

    PubMed

    Henry, Isabelle M; Carpentier, Sebastien C; Pampurova, Suzana; Van Hoylandt, Anais; Panis, Bart; Swennen, Rony; Remy, Serge

    2011-10-01

    Abscisic acid, stress, ripening proteins (ASR) are a family of plant-specific small hydrophilic proteins. Studies in various plant species have highlighted their role in increased resistance to abiotic stress, including drought, but their specific function remains unknown. As a first step toward their potential use in crop improvement, we investigated the structure and regulation of the Asr gene family in Musa species (bananas and plantains). We determined that the Musa Asr gene family contained at least four members, all of which exhibited the typical two exons, one intron structure of Asr genes and the "ABA/WDS" (abscisic acid/water deficit stress) domain characteristic of Asr genes. Phylogenetic analyses determined that the Musa Asr genes were closely related to each other, probably as the product of recent duplication events. For two of the four members, two versions corresponding to the two sub-genomes of Musa, acuminata and balbisiana were identified. Gene expression and protein analyses were performed and Asr expression could be detected in meristem cultures, root, pseudostem, leaf and cormus. In meristem cultures, mAsr1 and mAsr3 were induced by osmotic stress and wounding, while mAsr3 and mAsr4 were induced by exposure to ABA. mASR3 exhibited the most variation both in terms of amino acid sequence and expression pattern, making it the most promising candidate for further functional study and use in crop improvement. PMID:21630042

  14. Automotive shredder residue (ASR) management: An overview.

    PubMed

    Cossu, R; Lai, T

    2015-11-01

    On the basis of statistical data, approximately 6.5 million tons of ELVs were produced in Europe in 2011. ELVs are processed according to a treatment scheme comprising three main phases: depollution, dismantling and shredding. The ferrous fraction represents about 70-75% of the total shredded output, while nonferrous metals represent about 5%. The remaining 20-25% is referred to as automotive shredder residue (ASR). ASR is largely landfilled due to its heterogeneous and complex matrix. With a start date of January 1st 2015, the European Directive 2000/53/EC establishes the reuse and recovery of a minimum of 95% ELV total weight. To reach these targets various post-shredder technologies have been developed with the aim of improving recovery of materials and energy from ASR. In order to evaluate the environmental impacts of different management options of ELVs, the life cycle assessment (LCA) methodology has been applied taking into account the potential implication of sustainable design of vehicles and treatment of residues after shredding of ELVs. Findings obtained reveal that a combination of recycling and energy recovery is required to achieve European targets, with landfilling being viewed as the least preferred option. The aim of this work is to provide a general overview of the recent development of management of ELVs and treatment of ASR with a view to minimizing the amount of residues disposed of in landfill.

  15. Automotive shredder residue (ASR) management: An overview.

    PubMed

    Cossu, R; Lai, T

    2015-11-01

    On the basis of statistical data, approximately 6.5 million tons of ELVs were produced in Europe in 2011. ELVs are processed according to a treatment scheme comprising three main phases: depollution, dismantling and shredding. The ferrous fraction represents about 70-75% of the total shredded output, while nonferrous metals represent about 5%. The remaining 20-25% is referred to as automotive shredder residue (ASR). ASR is largely landfilled due to its heterogeneous and complex matrix. With a start date of January 1st 2015, the European Directive 2000/53/EC establishes the reuse and recovery of a minimum of 95% ELV total weight. To reach these targets various post-shredder technologies have been developed with the aim of improving recovery of materials and energy from ASR. In order to evaluate the environmental impacts of different management options of ELVs, the life cycle assessment (LCA) methodology has been applied taking into account the potential implication of sustainable design of vehicles and treatment of residues after shredding of ELVs. Findings obtained reveal that a combination of recycling and energy recovery is required to achieve European targets, with landfilling being viewed as the least preferred option. The aim of this work is to provide a general overview of the recent development of management of ELVs and treatment of ASR with a view to minimizing the amount of residues disposed of in landfill. PMID:26294011

  16. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential.

    PubMed

    Lokajíček, T; Kuchařová, A; Petružálek, M; Šachlová, Š; Svitek, T; Přikryl, R

    2016-09-01

    Semi-continuous ultrasonic sounding of experimental mortar bars used in the accelerated alkali silica reactivity laboratory test (ASTM C1260) is proposed as a supplementary measurement technique providing data that are highly sensitive to minor changes in the microstructure of hardening/deteriorating concrete mixture. A newly designed, patent pending, heating chamber was constructed allowing ultrasonic sounding of mortar bars, stored in accelerating solution without necessity to remove the test specimens from the bath during the measurement. Subsequent automatic data analysis of recorded ultrasonic signals proved their high correlation to the measured length changes (expansion) and their high sensitivity to microstructural changes. The changes of P-wave velocity, and of the energy, amplitude, and frequency of ultrasonic signal, were in the range of 10-80%, compared to 0.51% change of the length. Results presented in this study thus show that ultrasonic sounding seems to be more sensitive to microstructural changes due to ongoing deterioration of concrete microstructure by alkali-silica reaction than the dimensional changes.

  17. Semi-continuous ultrasonic sounding and changes of ultrasonic signal characteristics as a sensitive tool for the evaluation of ongoing microstructural changes of experimental mortar bars tested for their ASR potential.

    PubMed

    Lokajíček, T; Kuchařová, A; Petružálek, M; Šachlová, Š; Svitek, T; Přikryl, R

    2016-09-01

    Semi-continuous ultrasonic sounding of experimental mortar bars used in the accelerated alkali silica reactivity laboratory test (ASTM C1260) is proposed as a supplementary measurement technique providing data that are highly sensitive to minor changes in the microstructure of hardening/deteriorating concrete mixture. A newly designed, patent pending, heating chamber was constructed allowing ultrasonic sounding of mortar bars, stored in accelerating solution without necessity to remove the test specimens from the bath during the measurement. Subsequent automatic data analysis of recorded ultrasonic signals proved their high correlation to the measured length changes (expansion) and their high sensitivity to microstructural changes. The changes of P-wave velocity, and of the energy, amplitude, and frequency of ultrasonic signal, were in the range of 10-80%, compared to 0.51% change of the length. Results presented in this study thus show that ultrasonic sounding seems to be more sensitive to microstructural changes due to ongoing deterioration of concrete microstructure by alkali-silica reaction than the dimensional changes. PMID:27268163

  18. Model and Parameter Discretization Impacts on Estimated ASR Recovery Efficiency

    NASA Astrophysics Data System (ADS)

    Forghani, A.; Peralta, R. C.

    2015-12-01

    We contrast computed recovery efficiency of one Aquifer Storage and Recovery (ASR) well using several modeling situations. Test situations differ in employed finite difference grid discretization, hydraulic conductivity, and storativity. We employ a 7-layer regional groundwater model calibrated for Salt Lake Valley. Since the regional model grid is too coarse for ASR analysis, we prepare two local models with significantly smaller discretization capable of analyzing ASR recovery efficiency. Some addressed situations employ parameters interpolated from the coarse valley model. Other situations employ parameters derived from nearby well logs or pumping tests. The intent of the evaluations and subsequent sensitivity analysis is to show how significantly the employed discretization and aquifer parameters affect estimated recovery efficiency. Most of previous studies to evaluate ASR recovery efficiency only consider hypothetical uniform specified boundary heads and gradient assuming homogeneous aquifer parameters. The well is part of the Jordan Valley Water Conservancy District (JVWCD) ASR system, that lies within Salt Lake Valley.

  19. ASR1 transcription factor and its role in metabolism.

    PubMed

    Dominguez, Pia Guadalupe; Carrari, Fernando

    2015-01-01

    Asr1 (ABA, stress, ripening) is a plant gene widely distributed in many species which was discovered by differential induction levels in tomato plants subjected to drought stress conditions. ASR1 also regulates the expression of a hexose transporter in grape and is involved in sugar and amino acid accumulation in some species like maize and potato. The control that ASR1 exerts on hexose transport is interesting from a biotechnological perspective because both sugar partitioning and content in specific organs affect the yield and the quality of many agronomically important crops. ASR1 affect plant metabolism by its dual activity as a transcription factor and as a chaperone-like protein. In this paper, we review possible mechanisms by which ASR1 affects metabolism, the differences observed among tissues and species, and the possible physiological implications of its role in metabolism. PMID:25794140

  20. Multiscale characterization of a heterogeneous aquifer using an ASR operation.

    PubMed

    Pavelic, Paul; Dillon, Peter J; Simmons, Craig T

    2006-01-01

    Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.

  1. Mecanismes d'action des fines et des granulats de verre sur la reaction alcali-silice et la reaction pouzzolanique

    NASA Astrophysics Data System (ADS)

    Idir, Rachida

    Recycling composite glass with different colours in order to be manufactured into new glass products is at present not economically viable. Therefore, the search for new issues other than stockpile areas or dumping sites could be a serious opportunity. To a certain extent, one of the possible solutions is to use the recycled glass in manufacturing cements and in the preparation of concrete mixtures. However, it is essential to manage the two main behaviours that the glass can have when used in cement-based materials: (1) the use of glass as coarse aggregates reveals harmful behaviour related to alkali-silica reaction; (2) on the other hand, it can result in useful behaviour related to pozzolanic reaction if used as fine particles. Furthermore, the significant alkali content should not be overlooked as their mass corresponds to about 13% of the total mass of the glass and as they may activate the alkali-silica reaction. An experimental programme was conducted to provide answers to the various questions raised about the use of glass in cement-based materials. The first part of this work was primarily devoted to the evaluation of the reactive potential of glass in mortars (alkali and pozzolanic reactions). At this stage, nine classes of glass particles ranging from 3mum to 2.5 mm were considered. Then, fine glass particles were used in order to counteract the negative effect of some classes of coarse aggregates having revealed alkali-reactive behaviour. The second part of this work was performed to study the mechanisms that could explain the behaviours of fine and coarse particles in aqueous and concentrated environments. Different answers have been proposed to explain the observed behaviour in terms of grain sizes of glass. Keywords: Glass, Powder, Pozzolan, aggregates, alkali-reaction, alkali-aggregate reaction, alkali-silica reaction, Pouzzolanicity, alkalis, Mortars

  2. Experimental investigation of the mechanisms by which LiNO{sub 3} is effective against ASR

    SciTech Connect

    Tremblay, C.; Berube, M.A.; Fournier, B.; Thomas, M.D.; Folliard, K.J.

    2010-04-15

    Various series of experiments were carried out on cements pastes, concretes made with a variety of reactive aggregates, composite specimens made of cement paste and reactive aggregate particles, and a variety of reactive natural aggregates and mineral phases immersed in various Li-bearing solutions. The main objective was to determine which mechanisms(s) better explain(s) the effectiveness of LiNO{sub 3} against ASR and variations in this effectiveness as well with the type of reactive aggregate to counteract. The principal conclusions are the following: (1), the pH in the concrete pore solution does not significantly decrease in the presence of LiNO{sub 3}; (2), the concentration of silica in the pore solution is always low and not affected by the presence of LiNO{sub 3}, which does not support the mechanism relating to higher solubility of silica in the presence of lithium; (3), the only reaction product observed in the LiNO{sub 3}-bearing concretes looks like classical ASR gel and its abundance is proportional to concrete expansion, thus is likely expansive while likely containing lithium; this does not support the mechanisms relating to formation of a non or less expansive Si-Li crystalline product or amorphous gel; (4), early-formed reaction products coating the reactive silica grains or aggregate particles, which could act as a physical barrier against further chemical attack of silica, were not observed in the LiNO{sub 3}-bearing concretes, but only for a number of reactive materials after immersion in 1 N LiOH at 350 deg. C in the autoclave (also at 80 deg. C for obsidian); (5), higher chemical stability of silica due to another reason than pH reduction or early formation of a protective coating over the reactive phases, is the mechanism among those considered in this study that better explains the effectiveness of LiNO{sub 3} against ASR.

  3. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations. PMID:26143080

  4. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP).

    PubMed

    Singh, Jiwan; Lee, Byeong-Kyu

    2015-09-15

    To investigate the leaching and recovery of heavy metals from low-grade automobile shredder residue (ASR), the effects of nitric acid (HNO3) and hydrogen peroxide (H2O2) concentrations, liquid/solid (L/S) ratio, leaching temperature and ASR particle size fractions on the heavy metal leaching rate were determined. The heavy metals were recovered by fractional precipitation and advanced Fenton process (AFP) at different pHs. The toxicity characteristic leaching procedure (TCLP) test was also performed in the residue remaining after heavy metal leaching to evaluate the potential toxicity of ASR. The heavy metal leaching efficiency was increased with increasing HNO3 and H2O2 concentrations, L/S ratio and temperature. The heavy metal leaching efficiencies were maximized in the lowest ASR size fraction at 303 K and L/S ratio of 100 mL/g. The kinetic study showed that the metal leaching was best represented by a second-order reaction model, with a value of R(2) > 0.99 for all selected heavy metals. The determined activation energy (kJ/mol) was 21.61, 17.10, 12.15, 34.50, 13.07 and 11.45 for Zn, Fe, Ni, Pb, Cd and Cr, respectively. In the final residue, the concentrations of Cd, Cr and Pb were under their threshold limits in all ASR size fractions. Hydrometallurgical metal recovery was greatly increased by AFP up to 99.96% for Zn, 99.97% for Fe, 95.62% for Ni, 99.62% for Pb, 94.11% for Cd and 96.79% for Cr. AFP is highly recommended for the recovery of leached metals from solution even at low concentrations.

  5. Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.)

    PubMed Central

    2012-01-01

    Background The abscisic acid (ABA) pathway plays an important role in the plants’ reaction to drought stress and ABA-stress response (Asr) genes are important in controlling this process. In this sense, we accessed nucleotide diversity at two candidate genes for drought tolerance (Asr1 and Asr2), involved in an ABA signaling pathway, in the reference collection of cultivated common bean (Phaseolus vulgaris L.) and a core collection of wild common bean accessions. Results Our wild population samples covered a range of mesic (semi-arid) to very dry (desert) habitats, while our cultivated samples presented a wide spectrum of drought tolerance. Both genes showed very different patterns of nucleotide variation. Asr1 exhibited very low nucleotide diversity relative to the neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Asr2 exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection. These patterns were more notable in wild beans than in cultivated common beans indicting that natural selection has played a role over long time periods compared to farmer selection since domestication. Conclusions Together these results suggested the importance of Asr1 in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. Furthermore, one of our major successes was to find that wild common bean is a reservoir of genetic variation and selection signatures at Asr genes, which may be useful for breeding drought tolerance in cultivated common bean. PMID:22799462

  6. Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Kita, Takeomi; Inoue, Yoshiharu

    2006-09-01

    Yeast Asr1 is the first reported protein whose intracellular distribution changes specifically in response to alcohol (Betz et al. (2004) J Biol Chem 279:28174-28181). It was reported that Asr1 is required for tolerance to alcohol and plays an important role in the alcohol stress response. Therefore, Asr1 is of interest to brewers and winegrowers attempting to improve the techniques of alcoholic fermentation. We verified the importance of Asr1 in the alcohol stress response during alcoholic fermentation. Although we reconfirmed the alcohol-responsive changes in the intracellular localization of Asr1, we could not detect the effects of Asr1-deficiency on Japanese sake brewing or winemaking. In addition, we could not reconfirm the hypersensitivity of Asr1-deficient mutants to alcohol and sodium dodecyl sulfate. Instead, we conclude that Asr1 is not required and nor important for tolerance to alcohol stress.

  7. The ASRS-6 Has Two Latent Factors: Attention Deficit and Hyperactivity

    ERIC Educational Resources Information Center

    Hesse, Morten

    2013-01-01

    Objective: To test whether the Adult Self-Report Scale for ADHD, six-items version (ASRS-6), measures inattentiveness and hyperactivity independently. Method: The ASRS-6 was completed by 234 university students and 157 outpatients treated for drug dependence. In both samples, the ASRS-6 was subjected to two confirmatory factor analyses, one…

  8. SNR-adaptive stream weighting for audio-MES ASR.

    PubMed

    Lee, Ki-Seung

    2008-08-01

    Myoelectric signals (MESs) from the speaker's mouth region have been successfully shown to improve the noise robustness of automatic speech recognizers (ASRs), thus promising to extend their usability in implementing noise-robust ASR. In the recognition system presented herein, extracted audio and facial MES features were integrated by a decision fusion method, where the likelihood score of the audio-MES observation vector was given by a linear combination of class-conditional observation log-likelihoods of two classifiers, using appropriate weights. We developed a weighting process adaptive to SNRs. The main objective of the paper involves determining the optimal SNR classification boundaries and constructing a set of optimum stream weights for each SNR class. These two parameters were determined by a method based on a maximum mutual information criterion. Acoustic and facial MES data were collected from five subjects, using a 60-word vocabulary. Four types of acoustic noise including babble, car, aircraft, and white noise were acoustically added to clean speech signals with SNR ranging from -14 to 31 dB. The classification accuracy of the audio ASR was as low as 25.5%. Whereas, the classification accuracy of the MES ASR was 85.2%. The classification accuracy could be further improved by employing the proposed audio-MES weighting method, which was as high as 89.4% in the case of babble noise. A similar result was also found for the other types of noise.

  9. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack. PMID:20377692

  10. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.

  11. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  12. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis.

    PubMed

    Dai, Jin-Ran; Liu, Bing; Feng, Dong-Ru; Liu, Hai-yan; He, Yan-ming; Qi, Kang-biao; Wang, Hong-Bin; Wang, Jin-Fa

    2011-07-01

    Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect L: -lactate dehydrogenase (L: -LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress. PMID:21327389

  13. Pretreatment of automobile shredder residue (ASR) for fuel utilization.

    PubMed

    Hwang, I H; Yokono, S; Matsuto, T

    2008-03-01

    Automobile shredder residue (ASR) was pretreated to improve its quality for fuel utilization. Composition analysis revealed that ASR components could be classified into four groups: (1) urethane and textile-light fraction and combustibles containing low levels of ash and Cl; (2) plastics and rubber-light or heavy fraction and combustibles containing high levels of Cl; (3) metals and electrical wire-heavy fraction and incombustibles, and (4) particles smaller than 5.6mm with high ash contents. Based on these results, we successively performed sieving to remove particles smaller than 5.6mm, float and sink separations to reject the heavy fraction and plastics and rubber containing Cl, thermal treatment under an inert atmosphere to remove Cl derived from PVC, and char washing to remove soluble chlorides. This series of pretreatments enabled the removal of 78% of the ash and 91% of the Cl from ASR. Sieving using a 5.6-mm mesh removed a considerable amount of ash. Product quality was markedly improved after the float and sink method. Specifically, the sink process using a 1.1 g cm(-3) medium fluid rejected almost all rubber containing Cl and a large amount of PVC. The remaining Cl in char, after heating at 300 degrees C under an inert atmosphere and washing, was considered to be present as insoluble chlorides that volatilized at temperatures above 300 degrees C. Based on a tradeoff relationship between product quality and treatment cost, ASR may be utilized as a form of refuse plastic fuel or char. PMID:18166213

  14. Automotive shredder residue (ASR) characterization for a valuable management.

    PubMed

    Morselli, Luciano; Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano

    2010-11-01

    Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical-physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.

  15. Automotive shredder residue (ASR) characterization for a valuable management.

    PubMed

    Morselli, Luciano; Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano

    2010-11-01

    Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical-physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route. PMID:20566277

  16. Synthesis, crystal structure, and photocatalytic activity of the new three-layer aurivillius phases, Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La)

    SciTech Connect

    Wang Dong; Tang Kaibin; Liang Zhenhua; Zheng Huagui

    2010-02-15

    Two new three-layer Aurivillius phases Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) have been synthesized. The detailed structure determination of Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) performed by powder X-ray diffraction (XRD) and selected area electron microscopy (SAED) shows that they all crystallize in the space group I/4mmm. UV-visible diffuse reflection spectrum of the prepared Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) indicates that it had absorption in the ultraviolet (UV) region. The photocatalytic activity of the Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) powders was evaluated by degradation of rhodamine B (RB) molecules in water under UV light irradiation. The results showed that Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) has high photocatalytic activity at room temperature. Therefore, the preparation and properties studies of Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) with a three-layer Aurivillius structure suggest potential future applications in photocatalysis. - Graphical abstract: Two new three-layer Aurivillius phases Bi{sub 2}ASrTi{sub 2}TaO{sub 12} (A=Bi, La) have been synthesized by a conventional solid state reaction method. And this is the crystal structure of the three-layer Aurivillius phases, Bi{sub 2}ASrTi{sub 2}TaO{sub 12}.

  17. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  18. Archive of boomer seismic reflection data collected during USGS field activities 01ASR01, 01ASR02, 02ASR01, 02ASR02, Miami, Florida, November 2001-January 2002

    USGS Publications Warehouse

    Calderon, Karynna; Dadisman, Shawn V.; Kindinger, Jack G.; Wiese, Dana S.; Flocks, James G.

    2002-01-01

    This appendix consists of two-dimensional marine seismic reflection profile data collected in canals in the Lake Belt Area of Miami, Florida. These data were acquired in November and December of 2001 and January and February of 2002 using a 4.9-m (16-ft) jonboat. The data are available in a variety of formats, including binary, ASCII, HTML, shapefiles, and GIF images. Binary data are in Society of Exploration Geophysicists (SEG) SEG-Y format and may be downloaded for further processing or display. The SEG-Y data files are too large to fit on one CD-ROM, so they have been distributed onto two CD-ROMs as explained below. Reference maps and GIF images of the profiles may be viewed with your web browser. The GIS information provided is compatible with ESRI's GIS software. A reconnaissance test line (02ASR02-02b02) was collected northwest of the survey area during Field Activity 02ASR02 for possible use in a future project. It is archived here for organizational purposes only.

  19. Defining groundwater transport times near ASR facilities using geochemical tracers

    NASA Astrophysics Data System (ADS)

    Clark, J. F.

    2001-12-01

    Determining groundwater transport and travel times between recharge facilities and wells has become increasingly important in managing Aquifer Storage and Recovery (ASR) projects. This is especially true in the State of California where water reuse rules that consider groundwater travel time in the permitting process are being discussed. Fundamental geochemical approaches for investigating transport include tritium/helium-3 dating and the addition of sulfur hexafluoride tracer in controlled experiments. When combined, groundwater flow can be imaged with time scales on the order of days to decades. The Orange County Water District recharges to their groundwater basin approximately 250,000 acre-ft of surface water annually from a series of spreading ponds and a 9-km section of the Santa Ana River. Sulfur hexafluoride gas was injected into the Santa Ana River over a period of 2 weeks, tagging approximately 3,000 acre-ft of recharged water. Groundwater flow and transport from the river has been determined for more than three years. Results of the gas tracer experiment demonstrate that linear groundwater flow velocities range from less than 1 km/yr to more than 5 km/yr and that the groundwater flow system is stratified. These results will be used to verify and refine numerical models of transport near the ASR facilities in Orange County and have been used to establish flowlines so that in situ water quality changes can be quantified.

  20. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity.

    PubMed

    Li, Bo; Jiang, Shan; Yu, Xiao; Cheng, Cheng; Chen, Sixue; Cheng, Yanbing; Yuan, Joshua S; Jiang, Daohong; He, Ping; Shan, Libo

    2015-03-01

    Proper control of immune-related gene expression is crucial for the host to launch an effective defense response. Perception of microbe-associated molecular patterns (MAMPs) induces rapid and profound transcriptional reprogramming via unclear mechanisms. Here, we show that ASR3 (ARABIDOPSIS SH4-RELATED3) functions as a transcriptional repressor and plays a negative role in regulating pattern-triggered immunity (PTI) in Arabidopsis thaliana. ASR3 belongs to a plant-specific trihelix transcription factor family for which functional studies are lacking. MAMP treatments induce rapid phosphorylation of ASR3 at threonine 189 via MPK4, a mitogen-activated protein kinase that negatively regulates PTI responses downstream of multiple MAMP receptors. ASR3 possesses transcriptional repressor activity via its ERF-associated amphiphilic repression motifs and negatively regulates a large subset of flg22-induced genes. Phosphorylation of ASR3 by MPK4 enhances its DNA binding activity to suppress gene expression. Importantly, the asr3 mutant shows enhanced disease resistance to virulent bacterial pathogen infection, whereas transgenic plants overexpressing the wild-type or phospho-mimetic form of ASR3 exhibit compromised PTI responses. Our studies reveal a function of the trihelix transcription factors in plant innate immunity and provide evidence that ASR3 functions as a transcriptional repressor regulated by MAMP-activated MPK4 to fine-tune plant immune gene expression.

  1. Primary and Secondary Contamination Mechanisms for Consideration in ASR Modeling and Practical Management

    EPA Science Inventory

    Aquifer storage and recovery (ASR) is a useful water resource management option for water storage and reuse. Its increased use is recognized in adaptation to the ever increasing problem of water availability, both in timing and flow. Challenges in the ASR process may arise from...

  2. Primary and Secondary Contamination Mechanisms in ASR Modeling and Design of Practical Management

    EPA Science Inventory

    Aquifer storage and recovery (ASR) is a useful water resource management option for water storage and reuse. Its increased use is recognized in adaptation to the ever increasing problem of water availability, both in timing and flow. Challenges in the ASR process may arise from...

  3. Retrospective on the Accelerating Seismic Release (ASR) hypothesis: Controversy and new horizons

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud

    2011-06-01

    The hypothesis that large earthquakes may be preceded by a period of accelerating seismicity, or Accelerating Seismic Release (ASR), was proposed about twenty years ago. A compilation of almost one hundred peer-reviewed publications on this topic since the late 1980s to the present day shows that the rate of ASR studies increased gradually until 2004 but decreased afterwards. This negative trend is amplified by a recent increase in the number of negative results and criticisms of the ASR hypothesis. The author suggests that much of the recent negativity regarding this topic is due to the formulation of this hypothesis as a power-law fit to cumulative seismicity series. This approach is intrinsically linked to the consensus for criticality, evident from an overview of the ASR literature, to explain the emergence of power-laws in earthquake populations. The holistic view of the earth's crust as a complex system restricts seismicity pattern analyses to the study of main features such as power-laws, while a reductionist view would allow for more refined ones. Such a paradigm shift, or 'sea change', might be under way in the ASR literature where in 2007 a new approach was proposed to explain the ASR power-law from combined concepts of elastic rebound and geometry. Reductionism versus holism is a fundamental problem that not only applies to the study of ASR but also to the broader field of earthquake physics and earthquake predictability science.

  4. Separation of polyvinyl chloride (PVC) from automobile shredder residue (ASR) by froth flotation with ozonation.

    PubMed

    Reddy, Mallampati Srinivasa; Kurose, Keisuke; Okuda, Tetsuji; Nishijima, Wataru; Okada, Mitsumasa

    2007-08-25

    The purpose of this study is to develop froth flotation to separate polyvinyl chloride (PVC) from automobile shredder residue (ASR) plastic mixtures of variable composition. Some polymers in ASR polymer mixtures have similar density and hydrophobicity with PVC and thus selective flotation of PVC from ASR polymer mixtures cannot be achieved. The present study focused on the surface modification of PVC with ozonation, and then the modified PVC can be separated from other polymers by the following froth flotation. The results of this study indicate that the selective recovery of PVC from real ASR polyethylene tetra pethelate (PET), polymethyl methacrylate (PMMA), polybutyl methacralate (PBMA), ethyl acrylate (EA), polycarbonate (PC) and rubber mixtures can be accomplished in a three-step process involving a gravity separation, ozonation and froth flotation. The rubber was removed from other heavy ASR (PVC, PET, PMMA, PBMA, EA and PC) polymers by froth flotation without mixing. It was found that ozonation process produced the desired difference in contact angle required (from 89.5 to 73.0 degrees ) for separation of PVC from other heavy ASR polymers, whereas the contact angles of other polymers was slightly decreased. The most of the load ASR, i.e. about 72.4% is floated away and 27.6% was settled down. The highest component 96.7% of PVC was recovered in the settled fraction. As a result of this research effort, the surface modification of PVC with ozonation can be efficiently useful to separate the PVC from other similar density ASR mixed polymers. PMID:17360113

  5. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss

    SciTech Connect

    Maskin, Laura; Frankel, Nicolas; Gudesblat, Gustavo; Demergasso, Maria J.; Pietrasanta, Lia I.; Iusem, Norberto D. . E-mail: norbius@fbmc.fcen.uba.ar

    2007-01-26

    The Asr gene family is present in Spermatophyta. Its members are generally activated under water stress. We present evidence that tomato ASR1, one of the proteins of the family, accumulates in seed during late stages of embryogenesis, a physiological process characterized by water loss. In vitro, electrophoretic assays show a homo-dimeric structure for ASR1 and highlight strong non-covalent interactions between monomers prone to self-assemble. Direct visualization of single molecules by atomic force microscopy (AFM) confirms that ASR1 forms homodimers and that uncovers both monomers and dimers bind double stranded DNA.

  6. TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco.

    PubMed

    Hu, Wei; Huang, Chao; Deng, Xiaomin; Zhou, Shiyi; Chen, Lihong; Li, Yin; Wang, Cheng; Ma, Zhanbing; Yuan, Qianqian; Wang, Yan; Cai, Rui; Liang, Xiaoyu; Yang, Guangxiao; He, Guangyuan

    2013-08-01

    Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are reported to be involved in abiotic stresses. However, it is not known whether ASR genes confer drought stress tolerance by utilizing the antioxidant system. In this study, a wheat ASR gene, TaASR1, was cloned and characterized. TaASR1 transcripts increased after treatments with PEG6000, ABA and H(2)O(2). Overexpression of TaASR1 in tobacco resulted in increased drought/osmotic tolerance, which was demonstrated that transgenic lines had lesser malondialdehyde (MDA), ion leakage (IL) and reactive oxygen species (ROS), but higher relative water content (RWC) and superoxide dismutase (SOD) and catalase (CAT) activities than wild type (WT) under drought stress. Overexpression of TaASR1 in tobacco also enhanced the expression of ROS-related and stress-responsive genes under osmotic stress. In addition, transgenic lines exhibited improved tolerance to oxidative stress by retaining more effective antioxidant system. Finally, TaASR1 was localized in the cell nucleus and functioned as a transcriptional activator. Taken together, our results showed that TaASR1 functions as a positive factor under drought/osmotic stress, involved in the regulation of ROS homeostasis by activating antioxidant system and transcription of stress-associated genes. PMID:23356734

  7. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    PubMed

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.

  8. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    PubMed

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers. PMID:26313764

  9. Synthesis, structures and photocatalytic activities of microcrystalline ABi{sub 2}Nb{sub 2}O{sub 9} (A=Sr, Ba) powders

    SciTech Connect

    Wu, Weiming; Liang, Shijing; Wang, Xiaowei; Bi, Jinhong; Liu, Ping; Wu, Ling

    2011-01-15

    Microcrystalline ABi{sub 2}Nb{sub 2}O{sub 9} (A=Sr, Ba) photocatalysts were successfully synthesized by a citrate complex method. The as-prepared samples were characterized by the X-ray diffraction technique, BET surface area analysis, UV-vis diffuse reflectance spectrum, transmission electron microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectrometry. The results indicated that single-phase orthorhombic SrBi{sub 2}Nb{sub 2}O{sub 9} could be obtained after being calcined above 650 {sup o}C, while BaBi{sub 2}Nb{sub 2}O{sub 9} was tetragonal. Based on the diffuse reflectance spectra, the band gaps of the obtained samples were calculated to be around 3.34-3.54 eV. For the photocatalytic redox reaction of methyl orange under UV-light irradiation, SrBi{sub 2}Nb{sub 2}O{sub 9} exhibited higher photocatalytic activity than that of BaBi{sub 2}Nb{sub 2}O{sub 9}. The effects of the crystallinities, BET surface areas and crystal structures of the samples on the photocatalytic activities were discussed in detail. -- Graphical abstract: Aurivillius-type ABi{sub 2}Nb{sub 2}O{sub 9} (A=Sr, Ba) photocatalysts were successfully synthesized by a citrate complex method. SrBi{sub 2}Nb{sub 2}O{sub 9} and BaBi{sub 2}Nb{sub 2}O{sub 9} showed different photocatalytic performances in the redox reaction of methyl orange (MO) under UV-light ({lambda}=254 nm), due to the different crystal structures of ABi{sub 2}Nb{sub 2}O{sub 9} (A=Sr, Ba). Display Omitted

  10. Effectiveness of Feedback for Enhancing English Pronunciation in an ASR-Based CALL System

    ERIC Educational Resources Information Center

    Wang, Y.-H.; Young, S. S.-C.

    2015-01-01

    This paper presents a study on implementing the ASR-based CALL (computer-assisted language learning based upon automatic speech recognition) system embedded with both formative and summative feedback approaches and using implicit and explicit strategies to enhance adult and young learners' English pronunciation. Two groups of learners including 18…

  11. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion.

    PubMed

    Viganò, F; Consonni, S; Grosso, M; Rigamonti, L

    2010-01-01

    Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor. PMID:19853430

  12. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion.

    PubMed

    Viganò, F; Consonni, S; Grosso, M; Rigamonti, L

    2010-01-01

    Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.

  13. Searching the ASRS Database Using QUORUM Keyword Search, Phrase Search, Phrase Generation, and Phrase Discovery

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.; Connors, Mary M. (Technical Monitor)

    2001-01-01

    To support Search Requests and Quick Responses at the Aviation Safety Reporting System (ASRS), four new QUORUM methods have been developed: keyword search, phrase search, phrase generation, and phrase discovery. These methods build upon the core QUORUM methods of text analysis, modeling, and relevance-ranking. QUORUM keyword search retrieves ASRS incident narratives that contain one or more user-specified keywords in typical or selected contexts, and ranks the narratives on their relevance to the keywords in context. QUORUM phrase search retrieves narratives that contain one or more user-specified phrases, and ranks the narratives on their relevance to the phrases. QUORUM phrase generation produces a list of phrases from the ASRS database that contain a user-specified word or phrase. QUORUM phrase discovery finds phrases that are related to topics of interest. Phrase generation and phrase discovery are particularly useful for finding query phrases for input to QUORUM phrase search. The presentation of the new QUORUM methods includes: a brief review of the underlying core QUORUM methods; an overview of the new methods; numerous, concrete examples of ASRS database searches using the new methods; discussion of related methods; and, in the appendices, detailed descriptions of the new methods.

  14. Full scale treatment of ASR wastes in a modified rotary kiln.

    PubMed

    Mancini, G; Viotti, P; Luciano, A; Raboni, M; Fino, D

    2014-11-01

    A plant, designed for the thermo-valorisation of tyres, was specifically modified in order to treat Automobile Shredder Residue (ASR). Results from two full-scale combustion experiments, carried out on large ASR feeding lots (thousands of tons) indicate the proposed technology as a potential route to help the fulfilling of impending 95% reuse and recovery target set by the End of life Vehicle (ELV) Directive (January 2015). The paper describes the main operational troubleshot occurred during the first experiment (emissions at the stack out of regulatory limits and problems of clogging on the conveyer belt) and the consequent upgrading solutions (pre-treatment, introduction of waste double low-flow screw feeder and a cyclone prior to the main fan, modification of rotatory kiln inlet) adopted to allow, during the second long-term experiment, a continuous basis operation of the plant in full compliance with the discharge limit to the atmosphere. Characterization of both ASR and combustion residues allowed to quantify a 18% of combustion residues as not dangerous waste while only the 2% as hazardous one. A pre-treatment for the reduction of fines in the ASR was recommended in order to achieve the required energy recovery efficiency.

  15. QUANTITATIVE EVALUATION OF ASR DETERIORATION LEVEL BASED ON SURVEY RESULT OF EXISTING STRUCTURE

    NASA Astrophysics Data System (ADS)

    Kawashima, Yasushi; Kosa, Kenji; Matsumoto, Shigeru; Miura, Masatsugu

    The relationship between the crack density and compressive strength of the core cylinder, which drilled from actual structure damaged by ASR, was investigated. The results showed that even if the crack density increased about 1.0m/m2, the compressive strength decreased only 2N/mm2. Then, the new method for estimating future compressive strength using the accumulation crack density in the current is proposed. In addition, the declining tendency of compressive strength by the ASR expansion was early proportional to the expansion, and it was examined on the reason for becoming gentle curve afterwards. As a technique, the detailed observation of ASR crack which arose in the loading test for the plane was carried out, after cylindrical specimen for test was cut in longitudinal direction. As the result, It was proven that the proportion in which line of rupture overlaps with the ASR crack was low, and the load is resisted by interlocking between coarse aggregate and concrete in the crack plane.

  16. Full scale treatment of ASR wastes in a modified rotary kiln.

    PubMed

    Mancini, G; Viotti, P; Luciano, A; Raboni, M; Fino, D

    2014-11-01

    A plant, designed for the thermo-valorisation of tyres, was specifically modified in order to treat Automobile Shredder Residue (ASR). Results from two full-scale combustion experiments, carried out on large ASR feeding lots (thousands of tons) indicate the proposed technology as a potential route to help the fulfilling of impending 95% reuse and recovery target set by the End of life Vehicle (ELV) Directive (January 2015). The paper describes the main operational troubleshot occurred during the first experiment (emissions at the stack out of regulatory limits and problems of clogging on the conveyer belt) and the consequent upgrading solutions (pre-treatment, introduction of waste double low-flow screw feeder and a cyclone prior to the main fan, modification of rotatory kiln inlet) adopted to allow, during the second long-term experiment, a continuous basis operation of the plant in full compliance with the discharge limit to the atmosphere. Characterization of both ASR and combustion residues allowed to quantify a 18% of combustion residues as not dangerous waste while only the 2% as hazardous one. A pre-treatment for the reduction of fines in the ASR was recommended in order to achieve the required energy recovery efficiency. PMID:25103234

  17. Spoken Grammar Practice and Feedback in an ASR-Based CALL System

    ERIC Educational Resources Information Center

    de Vries, Bart Penning; Cucchiarini, Catia; Bodnar, Stephen; Strik, Helmer; van Hout, Roeland

    2015-01-01

    Speaking practice is important for learners of a second language. Computer assisted language learning (CALL) systems can provide attractive opportunities for speaking practice when combined with automatic speech recognition (ASR) technology. In this paper, we present a CALL system that offers spoken practice of word order, an important aspect of…

  18. Personnel and Training Requirements for the ASR-21 Rescue Control Center.

    ERIC Educational Resources Information Center

    DeLuca, Joseph F.; Noble, John F.

    This report covers personnel and training requirements for Rescue Control Center (RCC) twin hull submarine rescue ships (ASRs). Skills and knowledge similar to those of a sonar technician (ST-0408) and a data system technician (DS-1666) are needed to operate the special sonar set and computer based system, but no suitable Navy training facility…

  19. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  20. The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis.

    PubMed

    Zhang, Lili; Hu, Wei; Wang, Yuan; Feng, Renjun; Zhang, Yindong; Liu, Juhua; Jia, Caihong; Miao, Hongxia; Zhang, Jianbin; Xu, Biyu; Jin, Zhiqiang

    2015-03-01

    Abscisic acid (ABA)-, stress-, and ripening-induced (ASR) proteins are involved in abiotic stress responses. However, the exact molecular mechanism underlying their function remains unclear. In this study, we report that MaASR expression was induced by drought stress and MaASR overexpression in Arabidopsis strongly enhanced drought stress tolerance. Physiological analyses indicated that transgenic lines had higher plant survival rates, seed germination rates, and leaf proline content and lower water loss rates (WLR) and malondialdehyde (MDA) content. MaASR-overexpressing lines also showed smaller leaves and reduced sensitivity to ABA. Further, microarray and chromatin immunoprecipitation-based sequencing (ChIP-seq) analysis revealed that MaASR participates in regulating photosynthesis, respiration, carbohydrate and phytohormone metabolism, and signal transduction to confer plants with enhanced drought stress tolerance. Direct interactions of MaASR with promoters for the hexose transporter and Rho GTPase-activating protein (RhoGAP) genes were confirmed by electrophoresis mobility shift array (EMSA) analysis. Our results indicate that MaASR acts as a crucial regulator of photosynthesis, respiration, carbohydrate and phytohormone metabolism, and signal transduction to mediate drought stress tolerance. PMID:25414087

  1. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue.

    PubMed

    Baek, Jin Woong; Mallampati, Srinivasa Reddy; Park, Hung Suck

    2016-03-01

    The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals. PMID:26777552

  2. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  3. AsrR Is an Oxidative Stress Sensing Regulator Modulating Enterococcus faecium Opportunistic Traits, Antimicrobial Resistance, and Pathogenicity

    PubMed Central

    Lebreton, François; van Schaik, Willem; Sanguinetti, Maurizio; Posteraro, Brunella; Torelli, Riccardo; Le Bras, Florian; Verneuil, Nicolas; Zhang, Xinglin; Giard, Jean-Christophe; Dhalluin, Anne; Willems, Rob J. L.; Leclercq, Roland; Cattoir, Vincent

    2012-01-01

    Oxidative stress serves as an important host/environmental signal that triggers a wide range of responses in microorganisms. Here, we identified an oxidative stress sensor and response regulator in the important multidrug-resistant nosocomial pathogen Enterococcus faecium belonging to the MarR family and called AsrR (antibiotic and stress response regulator). The AsrR regulator used cysteine oxidation to sense the hydrogen peroxide which results in its dissociation to promoter DNA. Transcriptome analysis showed that the AsrR regulon was composed of 181 genes, including representing functionally diverse groups involved in pathogenesis, antibiotic and antimicrobial peptide resistance, oxidative stress, and adaptive responses. Consistent with the upregulated expression of the pbp5 gene, encoding a low-affinity penicillin-binding protein, the asrR null mutant was found to be more resistant to β-lactam antibiotics. Deletion of asrR markedly decreased the bactericidal activity of ampicillin and vancomycin, which are both commonly used to treat infections due to enterococci, and also led to over-expression of two major adhesins, acm and ecbA, which resulted in enhanced in vitro adhesion to human intestinal cells. Additional pathogenic traits were also reinforced in the asrR null mutant including greater capacity than the parental strain to form biofilm in vitro and greater persistance in Galleria mellonella colonization and mouse systemic infection models. Despite overexpression of oxidative stress-response genes, deletion of asrR was associated with a decreased oxidative stress resistance in vitro, which correlated with a reduced resistance to phagocytic killing by murine macrophages. Interestingly, both strains showed similar amounts of intracellular reactive oxygen species. Finally, we observed a mutator phenotype and enhanced DNA transfer frequencies in the asrR deleted strain. These data indicate that AsrR plays a major role in antimicrobial resistance and

  4. The Adult ADHD Self-Report Scale (ASRS): utility in college students with attention-deficit/hyperactivity disorder.

    PubMed

    Gray, Sarah; Woltering, Steven; Mawjee, Karizma; Tannock, Rosemary

    2014-01-01

    Background. The number of students with Attention Deficit/Hyperactivity Disorder (ADHD) enrolled in colleges and universities has increased markedly over the past few decades, giving rise to questions about how best to document symptoms and impairment in the post-secondary setting. The aim of the present study was to investigate the utility and psychometric properties of a widely-used rating scale for adults with ADHD, the Adult ADHD Self-Report Scale (ASRS-V1.1), in a sample of post-secondary students with ADHD. Methods. A total of 135 college students (mean age = 24, 42% males) with ADHD were recruited from Student Disability Services in post-secondary institutions. We compared informant responses on the ASRS administered via different modalities. First, students' self-report was ascertained using the ASRS Screener administered via telephone interview, in which they were asked to provide real-life examples of behavior for each of the six items. Next, students self-reported symptoms on the 18-item paper version of the ASRS Symptom Checklist administered about 1-2 weeks later, and a collateral report using an online version of the 18-item ASRS Symptom Checklist. Students also completed self-report measures of everyday cognitive failure (CFQ) and executive functioning (BDEFS). Results. Results revealed moderate to good congruency between the 18-item ASRS-Self and ASRS-Collateral reports (correlation = .47), and between student self-report on the 6-item telephone-based and paper versions of the ASRS, with the paper version administered two weeks later (correlation = .66). The full ASRS self-report was related to impairment, such as in executive functioning (correlation = .63) and everyday cognitive failure (correlation = .74). Executive functioning was the only significant predictor of ASRS total scores. Discussion. Current findings suggest that the ASRS provides an easy-to-use, reliable, and cost-effective approach for gathering information about current symptoms of

  5. Detection Of Concrete Deterioration By Staining

    DOEpatents

    Guthrie, Jr., George D.; Carey, J. William

    1999-09-21

    A method using concentrated aqueous solutions of sodium cobaltinitrite and a rhodamine dye is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR), and to identify degraded concrete which results in a porous or semi-permeable paste due to carbonation or leaching. These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  6. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams

    PubMed

    Kurtis; Monteiro; Brown; Meyer-Ilse

    1999-12-01

    In concrete structures, the reaction of certain siliceous aggregates with the highly alkaline concrete pore solution produces an alkali-silicate gel that can absorb water and expand. This reaction can lead to expansion, cracking, increased permeability, and decreased strength of the concrete. Massive concrete structures, such as dams, are particularly susceptible to the damage caused by the alkali-silica reaction because of the availability of water and because massive gravity dams usually do not contain steel reinforcement to restrain the expansion. Both the cement hydration products and alkali-silica reaction products are extremely sensitive to humidity. Consequently, characterization techniques that require high vacuum or drying, as many existing techniques do, are not particularly appropriate for the study of the alkali-silica reaction because artefacts are introduced. Environmental scanning electron micrographs and scanning electron micrographs with energy dispersive X-ray analysis results demonstrate the effect of drying on the morphology and chemical composition of the alkali-silicate reaction gel. Thus, the impetus for this research was the need to observe and characterize the alkali-silica reaction and its gel product on a microscopic level in a wet environment (i.e. without introducing artefacts due to drying). Only soft X-ray transmission microscopy provides the required high spatial resolution needed to observe the reaction process in situ. The alkali-silica reaction can be observed over time, in a wet condition, and at normal pressures, features unavailable with most other high resolution techniques. Soft X-rays also reveal information on the internal structure of the sample. The purpose of this paper is to present research, obtained using transmission soft X-ray microscopy, on the effect of concrete pore solution cations, namely sodium and calcium, on the product formed as a result of alkali attack. Alkali-silicate reaction (ASR) gel was obtained from

  7. Workload management and geographic disorientation in aviation incidents: A review of the ASRS data base

    NASA Technical Reports Server (NTRS)

    Williams, Henry P.; Tham, Mingpo; Wickens, Christopher D.

    1993-01-01

    NASA's Aviation Safety Reporting System (ASRS) incident reports are reviewed in two related areas: pilots' failures to appropriately manage tasks, and breakdowns in geographic orientation. Examination of 51 relevant reports on task management breakdowns revealed that altitude busts and inappropriate runway usee were the most frequently reported consequences. Task management breakdowns appeared to occur at all levels of expertise, and prominent causal factors were related to breakdowns in crew communications, over-involvement with the flight management system and, for small (general aviation) aircraft, preoccupation with weather. Analysis of the 83 cases of geographic disorientation suggested that these too occurred at all levels of pilot experience. With regard to causal factors, a majority was related to poor cockpit resource management, in which inattention led to a loss of geographic awareness. Other leading causes were related to poor weather and poor decision making. The potential of the ASRS database for contributing to research and design issues is addressed.

  8. Questioning the Specificity of ASRS-v1.1 to Accurately Detect ADHD in Substance Abusing Populations

    ERIC Educational Resources Information Center

    Chiasson, Jean-Pierre; Stavro, Katherine; Rizkallah, Elie; Lapierre, Luc; Dussault, Maxime; Legault, Louis; Potvin, Stephane

    2012-01-01

    Objective: To assess the specificity of the Adult ADHD Self-Report Scale (ASRS-v1.1) in detecting ADHD among individuals with substance use disorders (SUDs). Method: A chart review of 183 SUD patients was conducted. Patients were screened for ADHD with the ASRS-v1.1 and were later assessed by a psychiatrist specialized in ADHD. Results: Among SUD…

  9. Performance of Lightweight Concrete based on Granulated Foamglass

    NASA Astrophysics Data System (ADS)

    Popov, M.; Zakrevskaya, L.; Vaganov, V.; Hempel, S.; Mechtcherine, V.

    2015-11-01

    The paper presents an investigation of lightweight concretes properties, based on granulated foamglass (GFG-LWC) aggregates. The application of granulated foamglass (GFG) in concrete might significantly reduce the volume of waste glass and enhance the recycling industry in order to improve environmental performance. The conducted experiments showed high strength and thermal properties for GFG-LWC. However, the use of GFG in concrete is associated with the risk of harmful alkali-silica reactions (ASR). Thus, one of the main aims was to study ASR manifestation in GFG-LWC. It was found that the lightweight concrete based on porous aggregates, and ordinary concrete, have different a mechanism of ASR. In GFG-LWC, microstructural changes, partial destruction of granules, and accumulation of silica hydro-gel in pores were observed. According to the existing methods of analysis of ASR manifestation in concrete, sample expansion was measured, however, this method was found to be not appropriate to indicate ASR in concrete with porous aggregates. Microstructural analysis and testing of the concrete strength are needed to evaluate the damage degree due to ASR. Low-alkali cement and various pozzolanic additives as preventive measures against ASR were chosen. The final composition of the GFG-LWC provides very good characteristics with respect to compressive strength, thermal conductivity and durability. On the whole, the potential for GFG-LWC has been identified.

  10. Effects of Aggregate Microfines and Potassium Acetate Interactions on Concrete Performance

    NASA Astrophysics Data System (ADS)

    Silva, Jessica Marie Sanfilippo

    The principal objective of this research is to elucidate the role that microfines from coarse and fine aggregates play in the development of the Alkali Silica Reaction (ASR) related distress observed in airport pavements subject to anti-icing agents. As a secondary objective, it was proposed to identify other potential impacts of microfines and deicers on concrete durability. It was determined that combinations of microfines at less than 5% of the total aggregate weight and potassium acetate deicer (KAC Deicer) exposure caused significant deterioration of concrete that may be mistaken for ASR cracking and expansion. However, our analyses suggest it was not ASR, at least as traditionally diagnosed through the presence of ASR gel and reaction rims around aggregates. Expansions in modified ASTM C1293 produced expansions from 0.05% to 0.70% at one year depending on the type of microfine. Expansions of specimens containing microfines but not exposed to KAc Deicer produced negligible expansion. Expansions were larger with base aggregate known to be prone to ASR, but significant expansions (up to 0.50% at one year) also occurred in specimens with unreactive aggregates. Degradation combined with the reduction in entrained air content led to dramatic loss of freeze-thaw durability. These degradations were associated with specific mineralogical profiles of microfines in the presence of KAc Deicer and these profiles consistently were associated with corresponding levels of degradation. The KAc Deicer transformed in the concrete pore solutions to form potassium sulfate and calcium-bearing potassium sulfate compounds. During the transformation of the potassium acetate the level of hydroxide increases dramatically in the pore solution and can lead to reformation of silica species released by the microfines and the aggregates. While these reactions do not appear to be the classical alkali silica reaction, they may exhibit some similarity and create an environment where expansion

  11. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    PubMed

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress. PMID:22639284

  12. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    PubMed

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops. PMID:27209581

  13. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    PubMed

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops.

  14. Arctic Precipitation Analysis from the Arctic System Reanalysis (ASR): 2000-2012

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Stroeve, J. C.

    2015-12-01

    Recent Arctic Amplification (AA), (e.g. the warming trend in the Arctic that is larger than for the Northern Hemisphere or the global average), is strongly linked to declining sea ice extent (SIE) [Serreze and Barry, 2011]. Precipitation over the Arctic Ocean is projected to increase thorough the twenty-first century, in part linked to AA and SIE decline [Kattsov et al., 2007; Bintanja and Selten, 2014]. Since mass loss from the Greenland ice sheet (GrIS) is a key element in sea level rise through the end of this century, it is important to understand how precipitation may change in the future and impact the GrIS mass balance. As the first step, we need to better understand how current ice loss may be impacting precipitation over the ice sheet. Towards this end, monthly precipitation data from the Arctic System Reanalysis (ASR) is compared with gauge observations over Greenland. ASR is a high-resolution regional assimilation of model output developed as a resource for the detection and diagnosis of change in the coupled Arctic climate system [Bromwich et al., 2015]. In order to explore linkages between precipitation over Greenland and the surrounding SIE, ASR forecast precipitation data and SIE data from the NASA Team Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager data set [Cavalieri et al., 1999] are statistically analyzed from 2000 to 2012. As a case study, spatial distributions of precipitation and pressure at the surface and in the middle troposphere over the Arctic are analyzed during the great Arctic cyclone of August 2012 [Simmonds and Rudeva, 2012; Parkinson and Comiso, 2013; Zhang et al., 2013].

  15. A new operational paradigm for small-scale ASR in saline aquifers.

    PubMed

    van Ginkel, Marloes; Olsthoorn, Theo N; Bakker, Mark

    2014-01-01

    A new operational paradigm is presented for small-scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small-scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.

  16. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  17. Joint issues – conflicts of interest, the ASR hip and suggestions for managing surgical conflicts of interest

    PubMed Central

    2014-01-01

    Background Financial and nonfinancial conflicts of interest in medicine and surgery are troubling because they have the capacity to skew decision making in ways that might be detrimental to patient care and well-being. The recent case of the Articular Surface Replacement (ASR) hip provides a vivid illustration of the harmful effects of conflicts of interest in surgery. Discussion We identify financial and nonfinancial conflicts of interest experienced by surgeons, hospitals and regulators in the ASR case. These conflicts may have impacted surgical advice, decision-making and evidence gathering with respect to the ASR prosthesis, and contributed to the significant harms experienced by patients in whom the hip was implanted. Drawing on this case we explore shortcomings in the standard responses to conflicts of interest – disclosure and recusal. We argue disclosure is necessary but by no means sufficient to address conflicts of interest. Using the concept of recusal we develop remedies including second opinions and third party consent which may be effective in mitigating conflicts, but their implementation introduces new challenges. Summary Deployment of the ASR hip is a case of surgical innovation gone wrong. As we show, there were multiple conflicts of interest involved in the introduction of the ASR hip into practice and subsequent attempts to gloss over the mounting body of evidence about its lack of safety and effectiveness. Conflicts of interest in surgery are often not well managed. We suggest strategies in this paper which can minimise the conflicts of interest associated with surgical innovation. PMID:25128372

  18. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  19. New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes

    PubMed Central

    Margis-Pinheiro, Marcia

    2014-01-01

    Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al3+, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. Here, we perform genome-wide analyses to identify ASR5-dependent Al-responsive genes in rice. Based on ASR5_RNAi silencing in plants, a global transcriptome analysis identified a total of 961 genes that were responsive to Al treatment in wild-type rice roots. Of these genes, 909 did not respond to Al in the ASR5_RNAi plants, indicating a central role for ASR5 in Al-responsive gene expression. Under normal conditions, without Al treatment, the ASR5_RNAi plants expressed 1.756 genes differentially compared to the wild-type plants, and 446 of these genes responded to Al treatment in the wild-type plants. Chromatin immunoprecipitation followed by deep sequencing identified 104 putative target genes that were directly regulated by ASR5 binding to their promoters, including the STAR1 gene, which encodes an ABC transporter required for Al tolerance. Motif analysis of the binding peak sequences revealed the binding motif for ASR5, which was confirmed via in vitro DNA-binding assays using the STAR1 promoter. These results demonstrate that ASR5 acts as a key transcription factor that is essential for Al-responsive gene expression and Al tolerance in rice. PMID:24253199

  20. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment.

    PubMed

    Ruffino, Barbara; Fiore, Silvia; Zanetti, Maria Chiara

    2014-01-01

    With reference to the European regulation about the management of End-of-Life Vehicles (ELVs), Directive 2000/53/EC imposes the achievement of a recycling target of 85%, and 95% of total recovery by 2015. Over the last few years many efforts have been made to find solutions to properly manage the waste coming from ELVs with the aim of complying with the targets fixed by the Directive. This paper focuses on the economical evaluation of a treatment process, that includes physical (size and density), magnetic and electrical separations, performed on the light fraction of the automobile shredder residue (ASR) with the aim of reducing the amount of waste to dispose of in a landfill and enhancing the recovery of valuable fractions as stated by the EU Directive. The afore mentioned process is able to enhance the recovery of ferrous and non-ferrous metals of an amount equal to about 1% b.w. (by weight) of the ELV weight, and to separate a high energetic-content product suitable for thermal valorization for an amount close to (but not higher than) 10% b.w. of the ELV weight. The results of the economical assessment led to annual operating costs of the treatment ranging from 300,000 €/y to 350,000 €/y. Since the considered plant treats about 13,500 metrictons of ASR per year, this would correspond to an operating cost of approximately 20-25 €/t. Taking into account the amount and the selling price of the scrap iron and of the non magnetic metal recovered by the process, thus leading to a gain of about 30 €/t per ton of light ASR treated, the cost of the recovery process is balanced by the profit from the selling of the recovered metals. On the other hand, the proposed treatment is able to achieve the fulfillment of the targets stated by Directive 2000/53/EC concerning thermal valorization and reduce the amount of waste generated from ELV shredding to landfill.

  1. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  2. Joint ASRS and NASA Callback on FANS-1 Datalink Operational Incidents

    NASA Technical Reports Server (NTRS)

    Moses, John; Smith, Nancy; Morrison, Rowena; Palmer, Everett; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    The recent certification and implementation of the Future Air Navigation System (FANS- 1) was based on the benefits of reduced separation minima, ability to optimize flight plans enroute, and the prompt transmission and reception of messages between oceanic controllers and 747-400 aircraft transiting the Pacific. In addition, FANS was intended to supersede High Frequency (HF) radio which has been the staple, yet problematic, long distance communication link for years. However, in the three initial years of operation, FANS has revealed its own unique operational issues. Although some technical and engineering problems have been studied and addressed, little research has been conducted on human factors issues associated with the use of FANS on the flight deck. This lack of prior data on the operational use of FANS prompted a joint NASA/Aviation Safety Reporting System (ASRS) inquiry into FANS datalink. In addition, two foreign air carriers and their respective safety agencies were recruited to participate. This international FANS research effort consisting of three aviation safety agencies and three international commercial air-carriers has provided a unique opportunity for conducting human factors research in an operational environment. An ASRS 'callback' format was chosen for the study as a practical and viable method for capturing FANS events on the flight deck. Initially, 747-400 pilots were encouraged to submit reports to their respective safety agencies if they had experienced any positive or negative incidents with the use of FANS. Upon receipt of a report, it was evaluated and if deemed pertinent to the study, a telephone interview or 'callback' was conducted on the FANS incident to elicit further details, capture the key events, and gather contextual information. Once the operational data collection phase was completed, the reports and interviews were analyzed with two purposes in mind: primarily to identify and address problematic human factors issues with

  3. Use of DOE SGP Radars in Support of ASR Modeling Activities

    SciTech Connect

    Rutledge, Steven A.

    2015-12-13

    The objective of this work was to use the DOE Southern Great Plains (SGP) precipitation radars to investigate physical characteristics of clouds and precipitation, and use this knowledge in support of DOE ASR modeling efforts. The goal was to develop an integrated data set based on the SGP instrumentation to yield statistically robust fields to aid in the task of verifying simulated cloud dynamical and microphysical fields. For this effort we relied heavily on the ARM scanning precipitation radars, X-SAPR’s and C-SAPR, and also incorporating data from wind profilers, surface disdrometers and the nearby WSR-88D radar, KVNX. Initially we lent our expertise to quality controlling the data from the newly installed ARM radars, particularly the X-band polarimetric data, and additionally assessed automatic radial velocity unfolding algorithms developed by other ASR researchers. We focused our efforts on four cases from the MC3E field campaign in 2011 and developed a dataset including microphysical information derived from hydrometeor identification and kinematic analysis using multiple-Doppler retrieval techniques. This dataset became a PI product and was released to the community in 2014. This analysis was used to investigate the source of big drops (> 5 mm) observed with disdrometers at the surface. It was found that the big drops were coincident with the strongest updrafts, suggesting they resulted from the melting of large precipitation ice, likely hail. We teamed up with W-K Tao and T. Matsui to statistically compare radar-derived observational kinematics and microphysics to WRF model output for the 25 April 2011. Comparisons highlighted some areas where the model may need improvement, such as generating too much hail and big drops, as well as overly-strong updrafts and overly-weak of downdrafts.

  4. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals' valorisation.

    PubMed

    Vermeulen, I; Van Caneghem, J; Block, C; Baeyens, J; Vandecasteele, C

    2011-06-15

    ASR is in Europe classified as hazardous waste. Both the stringent landfill legislation and the objectives/legislation related to ELV treatment of various countries, will limit current landfilling practice and impose an increased efficiency of the recovery and recycling of ELVs. The present paper situates ASR within the ELV context. Primary recovery techniques recycle up to 75% of the ELV components; the remaining 25% is called ASR. Characteristics of ASR and possible upgrading by secondary recovery techniques are reviewed. The latter techniques can produce a fuel- or fillergrade ASR, however with limitations as discussed. A further reduction of ASR to be disposed of calls upon (co-)incineration or the use of thermo-chemical processes, such as pyrolysis or gasification. The application in waste-to-energy plants, in cement kilns or in metallurgical processes is possible, with attention to the possible environmental impact: research into these impacts is discussed in detail. Pyrolysis and gasification are emerging technologies: although the sole use of ASR is debatable, its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven. PMID:21440364

  5. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals' valorisation.

    PubMed

    Vermeulen, I; Van Caneghem, J; Block, C; Baeyens, J; Vandecasteele, C

    2011-06-15

    ASR is in Europe classified as hazardous waste. Both the stringent landfill legislation and the objectives/legislation related to ELV treatment of various countries, will limit current landfilling practice and impose an increased efficiency of the recovery and recycling of ELVs. The present paper situates ASR within the ELV context. Primary recovery techniques recycle up to 75% of the ELV components; the remaining 25% is called ASR. Characteristics of ASR and possible upgrading by secondary recovery techniques are reviewed. The latter techniques can produce a fuel- or fillergrade ASR, however with limitations as discussed. A further reduction of ASR to be disposed of calls upon (co-)incineration or the use of thermo-chemical processes, such as pyrolysis or gasification. The application in waste-to-energy plants, in cement kilns or in metallurgical processes is possible, with attention to the possible environmental impact: research into these impacts is discussed in detail. Pyrolysis and gasification are emerging technologies: although the sole use of ASR is debatable, its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.

  6. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-02-01

    Automobile shredder residue (ASR) fraction (size <0.25mm) can be considered as hazardous due to presence of high concentrations of heavy metals. Hydrogen peroxide combined with nitric acid has been used for the recovery of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) from the fine fraction of ASR. A sequential extraction procedure has also been used to determine the heavy metal speciation in the fine fraction of ASR before and after treatment. A risk analysis of the fine fraction of ASR before and after treatment was conducted to assess the bioavailability and eco-toxicity of heavy metals. These results showed that the recovery of heavy metals from ASR increased with an increase in the hydrogen peroxide concentration. A high concentration of heavy metals was found to be present in Cbio fractions (the sum of the exchangeable and carbonate fractions) in the fine fraction of ASR, indicating high toxicity risk. The Cbio rate of all selected heavy metals was found to range from 8.6% to 33.4% of the total metal content in the fine fraction of ASR. After treatment, Cbio was reduced to 0.3-3.3% of total metal upon a treatment with 2.0% hydrogen peroxide. On the basis of the risk assessment code (RAC), the environmental risk values for heavy metals in the fine fraction of ASR reflect high risk/medium risk. However, after treatment, the heavy metals would be categorized as low risk/no risk. The present study concludes that hydrogen peroxide combined with nitric acid is a promising treatment for the recovery and reduction of the eco-toxicity risk of heavy metals in ASR.

  7. The influence of DOM and microbial processes on arsenic release from karst during ASR operations in the Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A. R.

    2011-12-01

    The mobilization of subsurface As poses a serious threat to human health, particularly in a region such as Florida where population is heavily dependent on highly porous karstic aquifers for drinking water. Injection water used in aquifer storage and recovery (ASR) or aquifer recharge (AR) operations is commonly high in dissolved organic matter (DOM) and OM can also be present in the subsurface carbonate rock. Using batch incubation experiments, this study examined the role of core preservation methods, as well as the influence of labile and more refractory DOM on the mobilization of As from carbonate rock. Incubation experiments used sealed reaction vessels with preserved and homogenized core materials collected via coring the Suwannee Formation in southwest Florida and treatment additions consisting of 1) source water (SW) enriched in sterilized soil DOM, 2) SW enriched in soil DOM and microbes, and 3) SW enriched in sodium acetate. During an initial equilibration phase in native groundwater (NGW) with low dissolved oxygen (DO; Phase 1), we found the greatest As release of the whole incubation. In the beginning of Phase 2 (N2 headspace) in which NGW was replaced with treatment solutions, there was little As release except in the vessel with Na-acetate added, which also had the lowest ORP. At the start of Phase 3, when incubations were exposed to air, most vessels saw more ion (including As) release into solution. Vessel with Na-acetate had less As release in Phase 3 than in Phase 2. During all experimental phases, treatments of DOM or microbe additions had no apparent effect on the amount of As release. The core materials was found contain significant amount of indigenous DOM (about 8 g OC/kg core) which was released during the incubation so DOC concentrations displayed no clear pattern among different treatments. At least three abiotic As mobilization mechanisms may play a role in As released during different stages of the experiment. Desorption of As from iron

  8. Literacy effects on language and vision: emergent effects from an amodal shared resource (ASR) computational model.

    PubMed

    Smith, Alastair C; Monaghan, Padraic; Huettig, Falk

    2014-12-01

    Learning to read and write requires an individual to connect additional orthographic representations to pre-existing mappings between phonological and semantic representations of words. Past empirical results suggest that the process of learning to read and write (at least in alphabetic languages) elicits changes in the language processing system, by either increasing the cognitive efficiency of mapping between representations associated with a word, or by changing the granularity of phonological processing of spoken language, or through a combination of both. Behavioural effects of literacy have typically been assessed in offline explicit tasks that have addressed only phonological processing. However, a recent eye tracking study compared high and low literate participants on effects of phonology and semantics in processing measured implicitly using eye movements. High literates' eye movements were more affected by phonological overlap in online speech than low literates, with only subtle differences observed in semantics. We determined whether these effects were due to cognitive efficiency and/or granularity of speech processing in a multimodal model of speech processing - the amodal shared resource model (ASR, Smith, Monaghan, & Huettig, 2013a,b). We found that cognitive efficiency in the model had only a marginal effect on semantic processing and did not affect performance for phonological processing, whereas fine-grained versus coarse-grained phonological representations in the model simulated the high/low literacy effects on phonological processing, suggesting that literacy has a focused effect in changing the grain-size of phonological mappings. PMID:25171049

  9. Metal ion levels and lymphocyte counts: ASR hip resurfacing prosthesis vs. standard THA

    PubMed Central

    2013-01-01

    Background and purpose Wear particles from metal–on–metal arthroplasties are under suspicion for adverse effects both locally and systemically, and the DePuy ASR Hip Resurfacing System (RHA) has above–average failure rates. We compared lymphocyte counts in RHA and total hip arthroplasty (THA) and investigated whether cobalt and chromium ions affected the lymphocyte counts. Method In a randomized controlled trial, we followed 19 RHA patients and 19 THA patients. Lymphocyte subsets and chromium and cobalt ion concentrations were measured at baseline, at 8 weeks, at 6 months, and at 1 and 2 years. Results The T–lymphocyte counts for both implant types declined over the 2–year period. This decline was statistically significant for CD3+CD8+ in the THA group, with a regression coefficient of –0.04 × 109cells/year (95% CI: –0.08 to –0.01). Regression analysis indicated a depressive effect of cobalt ions in particular on T–cells with 2–year whole–blood cobalt regression coefficients for CD3+ of –0.10 (95% CI: –0.16 to –0.04) × 109 cells/parts per billion (ppb), for CD3+CD4+ of –0.06 (–0.09 to –0.03) × 109 cells/ppb, and for CD3+CD8+ of –0.02 (–0.03 to –0.00) × 109 cells/ppb. Interpretation Circulating T–lymphocyte levels may decline after surgery, regardless of implant type. Metal ions—particularly cobalt—may have a general depressive effect on T– and B–lymphocyte levels. Registered with ClinicalTrials.gov under # NCT01113762 PMID:23597114

  10. RILEM TC ISR Summer 2015 Activity Report

    SciTech Connect

    Le Pape, Yann

    2015-08-01

    With aging infrastructures, instances of Alkali Silica Reaction (ASR) and Delayed Ettringite Formation (DEF), broadly covered under the term Internal Swelling Reaction (ISR), are increasingly being detected. They have been observed in bridges, dams, and most recently in nuclear power plants. Concrete swelling may result in bridge partial failure, dams with structural cracks and misaligned turbine shafts, and locked slice gates. For nuclear reactors micro-cracks may cause increased gas permeability which will jeopardize the containment integrity and may decrease the residual structural resistance under accidental loading. This TC, which limits its activity to structures with known expansive concrete, seeks to address two complementary but fundamental questions: a) What is the kinetics of the reaction and b) How would it affect the integrity of the structure (serviceability and strength) and thus establish a science based prognostic to the structure owner.

  11. Rice ASR1 Protein with Reactive Oxygen Species Scavenging and Chaperone-like Activities Enhances Acquired Tolerance to Abiotic Stresses in Saccharomyces cerevisiae

    PubMed Central

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2012-01-01

    Abscisic acid stress ripening (ASR1) protein is a small hydrophilic, low molecular weight, and stress-specific plant protein. The gene coding region of ASR1 protein, which is induced under high salinity in rice (Oryza sativa Ilmi), was cloned into a yeast expression vector pVTU260 and transformed into yeast cells. Heterologous expression of ASR1 protein in transgenic yeast cells improved tolerance to abiotic stresses including hydrogen peroxide (H2O2), high salinity (NaCl), heat shock, menadione, copper sulfate, sulfuric acid, lactic acid, salicylic acid, and also high concentration of ethanol. In particular, the expression of metabolic enzymes (Fba1p, Pgk1p, Eno2p, Tpi1p, and Adh1p), antioxidant enzyme (Ahp1p), molecular chaperone (Ssb1p), and pyrimidine biosynthesis-related enzyme (Ura1p) was up-regulated in the transgenic yeast cells under oxidative stress when compared with wild-type cells. All of these enzymes contribute to an alleviated redox state to H2O2-induced oxidative stress. In the in vitro assay, the purified ASR1 protein was able to scavenge ROS by converting H2O2 to H2O. Taken together, these results suggest that the ASR1 protein could function as an effective ROS scavenger and its expression could enhance acquired tolerance of ROS-induced oxidative stress through induction of various cell rescue proteins in yeast cells. PMID:22382682

  12. Validity of the World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener in a representative sample of health plan members

    PubMed Central

    Kessler, Ronald C.; Adler, Lenard; Gruber, Michael J.; Sarawate, Chaitanya A.; Spencer, Thomas; Van Brunt, David L.

    2007-01-01

    The validity of the 6-question World Health Organization Adult ADHD Self-Report Scale (ASRS) Screener was assessed in a sample of subscribers to a large health plan in the US. A convenience sub-sample of 668 subscribers was administered the ASRS Screener twice to assess test-retest reliability and then a third time in conjunction with a clinical interviewer for DSM-IV adult ADHD. The data were weighted to adjust for discrepancies between the sample and the population on socio-demographics and past medical claims. Internal consistency reliability of the continuous ASRS Screener was in the range .63–.72 and test-retest reliability (Pearson correlations) in the range .58–.77. A four-category version The ASRS Screener had strong concordance with clinician diagnoses, with an area under the receiver operating characteristic curve (AUC) of .90. The brevity and ability to discriminate DSM-IV cases from non-cases make the 6-question ASRS Screener attractive for use both in community epidemiological surveys and in clinical outreach and case-finding initiatives. PMID:17623385

  13. Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2012-03-01

    Abscisic acid stress ripening (ASR1) protein is a small hydrophilic, low molecular weight, and stress-specific plant protein. The gene coding region of ASR1 protein, which is induced under high salinity in rice (Oryza sativa Ilmi), was cloned into a yeast expression vector pVTU260 and transformed into yeast cells. Heterologous expression of ASR1 protein in transgenic yeast cells improved tolerance to abiotic stresses including hydrogen peroxide (H(2)O(2)), high salinity (NaCl), heat shock, menadione, copper sulfate, sulfuric acid, lactic acid, salicylic acid, and also high concentration of ethanol. In particular, the expression of metabolic enzymes (Fba1p, Pgk1p, Eno2p, Tpi1p, and Adh1p), antioxidant enzyme (Ahp1p), molecular chaperone (Ssb1p), and pyrimidine biosynthesis-related enzyme (Ura1p) was up-regulated in the transgenic yeast cells under oxidative stress when compared with wild-type cells. All of these enzymes contribute to an alleviated redox state to H2O2-induced oxidative stress. In the in vitro assay, the purified ASR1 protein was able to scavenge ROS by converting H(2)O(2) to H(2)O. Taken together, these results suggest that the ASR1 protein could function as an effective ROS scavenger and its expression could enhance acquired tolerance of ROS-induced oxidative stress through induction of various cell rescue proteins in yeast cells. PMID:22382682

  14. Rating the Relevance of QUORUM-Selected ASRS Incident Narratives to a "Controlled Flight into Terrain" Accident

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.; Statler, Irving C.

    1998-01-01

    An exploratory study was conducted to identify commercial aviation incidents that are relevant to a "controlled flight into terrain" (CFIT) accident using a NASA-developed text processing method. The QUORUM method was used to rate 67820 incident narratives, virtually all of the narratives in the Aviation Safety Reporting System (ASRS) database, according to their relevance to two official reports on the crash of American Airlines Flight 965 near Cali, Colombia in December 1995. For comparison with QUORUM's ratings, three experienced ASRS analysts read the reports of the crash and independently rated the relevance of the 100 narratives that were most highly rated by QUORUM, as well as 100 narratives randomly selected from the database. Eighty-four of 100 QUORUM-selected narratives were rated as relevant to the Cali accident by one or more of the analysts. The relevant incidents involved a variety of factors, including, over-reliance on automation, confusion and changes during descent/approach, terrain avoidance, and operations in foreign airspace. In addition, the QUORUM collection of incidents was found to be significantly more relevant than the random collection.

  15. [ASRS v.1.1., a tool for attention-deficit/hyperactivity disorder screening in adults treated for addictive behaviors: psychometric properties and estimated prevalence].

    PubMed

    Pedrero Pérez, Eduardo J; Puerta García, Carmen

    2007-01-01

    ASRS v.1.1. is a self-applied brief instrument for the screening of individuals presenting symptoms of attention-deficit/hyperactivity disorder (ADHD), and proposed by the WHO. The purpose of the present work was to test the instrument and examine the results of its application to a sample of 280 individuals in treatment for substance-related disorders (cross-sectional descriptive study). We administered simultaneously in the initial phases of treatment the ASRS v.1.1. (short form) and the MCMI-II to the full sample and the Wender Utah Rating Scale (WURS), ADHD-Rating Scale-IV and ASRS v.1.1. (complete form) to various sub-samples. Diagnostic interviews were also carried out and the psychometric properties and factorial structure of ASRS v.1.1. were explored. Good convergent validity, sensitivity, specificity and diagnostic capability were obtained for the six-item version of ASRS v.1.1., even though 4 out of 6 items did not discriminate between Axis I and II disorders assessed through the MCMI-II and diagnostic interviews. According to DSM-IV-TR criteria the estimated prevalence of ADHD in the sample of addicts was 8.2%. ASRS v.1.1. is criticized as a specific instrument for ADHD detection, since most of its items appear to measure a non-specific dimension of compulsiveness/impulsiveness, common to Axis-I and Axis-II disorders. Other criticisms made in the discussion concern the lack of specificity of DSM criteria and the confusion they generate among the concepts of symptom, sign and trait (including the impact on study results), the general use of the A criterion but the omission of the B, C, D and E criteria of the DSM category, differences in samples (with regard to both severity and selection criteria), and the artifactual increases in prevalence found in many studies. PMID:18173102

  16. [ASRS v.1.1., a tool for attention-deficit/hyperactivity disorder screening in adults treated for addictive behaviors: psychometric properties and estimated prevalence].

    PubMed

    Pedrero Pérez, Eduardo J; Puerta García, Carmen

    2007-01-01

    ASRS v.1.1. is a self-applied brief instrument for the screening of individuals presenting symptoms of attention-deficit/hyperactivity disorder (ADHD), and proposed by the WHO. The purpose of the present work was to test the instrument and examine the results of its application to a sample of 280 individuals in treatment for substance-related disorders (cross-sectional descriptive study). We administered simultaneously in the initial phases of treatment the ASRS v.1.1. (short form) and the MCMI-II to the full sample and the Wender Utah Rating Scale (WURS), ADHD-Rating Scale-IV and ASRS v.1.1. (complete form) to various sub-samples. Diagnostic interviews were also carried out and the psychometric properties and factorial structure of ASRS v.1.1. were explored. Good convergent validity, sensitivity, specificity and diagnostic capability were obtained for the six-item version of ASRS v.1.1., even though 4 out of 6 items did not discriminate between Axis I and II disorders assessed through the MCMI-II and diagnostic interviews. According to DSM-IV-TR criteria the estimated prevalence of ADHD in the sample of addicts was 8.2%. ASRS v.1.1. is criticized as a specific instrument for ADHD detection, since most of its items appear to measure a non-specific dimension of compulsiveness/impulsiveness, common to Axis-I and Axis-II disorders. Other criticisms made in the discussion concern the lack of specificity of DSM criteria and the confusion they generate among the concepts of symptom, sign and trait (including the impact on study results), the general use of the A criterion but the omission of the B, C, D and E criteria of the DSM category, differences in samples (with regard to both severity and selection criteria), and the artifactual increases in prevalence found in many studies.

  17. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  18. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  19. A Study of the Design and Implementation of the ASR-Based iCASL System with Corrective Feedback to Facilitate English Learning

    ERIC Educational Resources Information Center

    Wang, Yi-Hsuan; Young, Shelley Shwu-Ching

    2014-01-01

    The purpose of the study is to explore and describe how to implement a pedagogical ASR-based intelligent computer-assisted speaking learning (iCASL) system to support adult learners with a private, flexible and individual learning environment to practice English pronunciation. The iCASL system integrates multiple levels of corrective feedback and…

  20. Characterizing the Nano and Micro Structure of Concrete toImprove its Durability

    SciTech Connect

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, Peter; MacDowell, Alastair; Schaible, Eirc; Wenk, H.R.; Macdowell, Alastair A.

    2009-01-13

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools are shown on this paper.

  1. Use of recycled glass for concrete masonry blocks. Final report

    SciTech Connect

    Meyer, C.; Baxter, S.

    1997-11-01

    A two-year research project was conducted to study the technical and economic feasibility of using mixed-color crushed waste glass for concrete masonry. From a technical standpoint, two problems had to be confronted. First, it was known that the silica in glass is highly reactive in the alkaline environment of portland cement concrete. Second, there was the possibility of strength loss, as crushed glass particles with smooth surfaces were substituted for regular aggregate. Both problems were solved in the course of this research. It was found that waste glass ground to mesh size No. 30 or smaller does not exhibit any expansion due to alkali-silica reaction (ASR). Another significant research finding was that very finely ground glass exhibits pozzolanic properties and therefore is suitable as a partial replacement for portland cement. The economic feasibility of concrete block masonry with glass both as aggregate and cement substitution was evaluated and found to be encouraging.

  2. Characterizing the nano and micro structure of concrete to improve its durability

    SciTech Connect

    Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.; Fischer, P.; MacDowell, A.A.; Schaible, E.; Wenk, H.R.

    2008-10-22

    New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools will be shown on this paper.

  3. Composition et volume molaire apparent des gels Ca_Si, une approche expérimentaleComposition and apparent molar volume of Ca_Si gels, an experimental approach

    NASA Astrophysics Data System (ADS)

    Perruchot, Alain; Massard, Pierre; Lombardi, Jérôme

    2003-11-01

    Synthetic CaSi gels of various compositions were prepared from sodium metasilicate and calcium chloride solutions. These synthetic CaSi gels are good analogues of fresh natural gels found within concrete affected by Alkalis-Silica Reaction (ASR). Results show that these synthetic gels in equilibrium with their formation solutions present an optimum of composition for a molar ratio CaO/SiO 2=(C/S) g≅0.48. Correspondingly, this characteristic value of (C/S) g denotes a rearrangement in the structure of gels accounted for the variation with (C/S) g of the apparent molar volume Vg. To cite this article: A. Perruchot et al., C. R. Geoscience 335 (2003).

  4. On-Going International Research Program on Irradiated Concrete Conducted by DOE, EPRI and Japan Research Institutions. Roadmap, Achievements and Path Forward

    SciTech Connect

    Le Pape, Yann; Rosseel, Thomas M.

    2015-10-01

    The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by this joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.

  5. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  6. A coupled mechanical and chemical damage model for concrete affected by alkali–silica reaction

    SciTech Connect

    Pignatelli, Rossella; Comi, Claudia; Monteiro, Paulo J.M.

    2013-11-15

    To model the complex degradation phenomena occurring in concrete affected by alkali–silica reaction (ASR), we formulate a poro-mechanical model with two isotropic internal variables: the chemical and the mechanical damage. The chemical damage, related to the evolution of the reaction, is caused by the pressure generated by the expanding ASR gel on the solid concrete skeleton. The mechanical damage describes the strength and stiffness degradation induced by the external loads. As suggested by experimental results, degradation due to ASR is considered to be localized around reactive sites. The effect of the degree of saturation and of the temperature on the reaction development is also modeled. The chemical damage evolution is calibrated using the value of the gel pressure estimated by applying the electrical diffuse double-layer theory to experimental values of the surface charge density in ASR gel specimens reported in the literature. The chemo-damage model is first validated by simulating expansion tests on reactive specimens and beams; the coupled chemo-mechanical damage model is then employed to simulate compression and flexure tests results also taken from the literature. -- Highlights: •Concrete degradation due to ASR in variable environmental conditions is modeled. •Two isotropic internal variables – chemical and mechanical damage – are introduced. •The value of the swelling pressure is estimated by the diffuse double layer theory. •A simplified scheme is proposed to relate macro- and microscopic properties. •The chemo-mechanical damage model is validated by simulating tests in literature.

  7. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    NASA Astrophysics Data System (ADS)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  8. Evaluating central Arctic summer conditions in the Arctic System Reanalysis (ASR) and ERA-Interim using Arctic-Summer Cloud-Ocean-Study (ASCOS) data

    NASA Astrophysics Data System (ADS)

    Wesslén, Cecilia; Tjernström, Michael; Bromwich, David; Wang, Sheng-Hung; Bai, Le-Sheng; de Boer, Gijs; Ekman, Annica

    2013-04-01

    The Arctic has experienced large climate changes over recent decades, the largest for any region on Earth. The warming has been more than twice as large as the global average, and substantial changes in, for example, sea-ice cover, thickness and permafrost have been observed. To understand the underlying reasons for this apparent climate sensitivity, reanalysis is an invaluable tool. The Arctic System Reanalysis (ASR) is a regional reanalysis using the polar version of the Weather and Research Forecast (WRF) atmospheric model that, by the virtue of being regional, can be affordably run at higher resolution. The ASR is forced at the lateral boundaries by the ECMWF ERA-Interim global reanalysis; ERA-Interim is the latest global reanalysis from ECMWF. The ASR reanalysis products need to be evaluated preferably using independent data; this is a problem in the Arctic where data are sparse and as much as possible of the available data is assimilated in the reanalysis. In this study we evaluate the performance of an experimental version of ASR, with a nominal resolution of ~30 km, for the central Arctic, using data from the Arctic Summer Cloud-Ocean Study (ASCOS) from August and early September 2008.. The ASCOS field experiment was deployed on the Swedish icebreaker Oden north of 87°N in the Atlantic sector of the Arctic; data was collected both during the transits to and from Longyearbyen on Svalbard and during a three-week ice drift with the Oden moored to a drifting multi-year ice floe, when intensive measurements were taken on the ice and onboard. These observations have the advantages of being independent of ASR, i.e., they were not assimilated into the reanalysis, and being detailed enough to evaluate the process descriptions in the ASR. In addition to the ASR, the ERA-Interim reanalysis was also included in the evaluation. In the version of ASR evaluated here, lateral boundaries were forced by ERA-Interim and therefore this makes it possible to evaluate the added

  9. Ternary CaCu{sub 4}P{sub 2}-type pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb)

    SciTech Connect

    Stoyko, Stanislav S.; Khatun, Mansura; Scott Mullen, C.; Mar, Arthur

    2012-08-15

    Four ternary pnictides AAg{sub 4}Pn{sub 2} (A=Sr, Eu; Pn=As, Sb) were prepared by reactions of the elements at 850 Degree-Sign C and their crystal structures were determined from single-crystal X-ray diffraction studies. These silver-containing pnictides AAg{sub 4}Pn{sub 2} adopt the trigonal CaCu{sub 4}P{sub 2}-type structure (Pearson symbol hR21, space group R3-bar m, Z=3; a=4.5555(6) A, c=24.041(3) A for SrAg{sub 4}As{sub 2}; a=4.5352(2) A, c=23.7221(11) A for EuAg{sub 4}As{sub 2}; a=4.7404(4) A, c=25.029(2) A for SrAg{sub 4}Sb{sub 2}; a=4.7239(3) A, c=24.689(2) A for EuAg{sub 4}Sb{sub 2}), which can be derived from the trigonal CaAl{sub 2}Si{sub 2}-type structure of the isoelectronic zinc-containing pnictides AZn{sub 2}Pn{sub 2} by insertion of additional Ag atoms into trigonal planar sites within [M{sub 2}Pn{sub 2}]{sup 2-} slabs built up of edge-sharing tetrahedra. Band structure calculations on SrAg{sub 4}As{sub 2} and SrAg{sub 4}Sb{sub 2} revealed that these charge-balanced Zintl phases actually exhibit no gap at the Fermi level and are predicted to be semimetals. - Graphical abstract: SrAg{sub 4}As{sub 2} and related pnictides adopt a CaCu{sub 4}P{sub 2}-type structure in which additional Ag atoms enter trigonal planar sites within slabs built from edge-sharing tetrahedra. Highlights: Black-Right-Pointing-Pointer AAg{sub 4}Pn{sub 2} are the first Ag-containing members of the CaCu{sub 4}P{sub 2}-type structure. Black-Right-Pointing-Pointer Ag atoms are stuffed in trigonal planar sites within CaAl{sub 2}Si{sub 2}-type slabs. Black-Right-Pointing-Pointer Ag-Ag bonding develops through attractive d{sup 10}-d{sup 10} interactions.

  10. Natural Arsenic in the Miocene Hawthorn Group, Florida: Wide Ranging Implications for ASR, Phosphate Mining, Private Well

    NASA Astrophysics Data System (ADS)

    Lazareva, O. V.; Pichler, T.

    2004-12-01

    organic material, clays, and iron oxides contain lower As concentrations contrasted to pyrite; (5) Pyrite occurs in framboidal and euhedral forms. Because phosphorous, arsenic and sulfur are chemically closely related, they often occur together in nature, thus posing a potential problem for the phosphate industry. There have been several occurrences of swine fatalities due to arsenic poisoning as a result of phosphate feed supplements. Information about the concentration, distribution and mineralogical association of naturally occurring As is important, because this is a first step to forecast its behavior during anthropogenic induced physico-chemical changes in the aquifer. Recently, aquifer storage and recovery (ASR) facilities in central Florida reported As concentrations in excess of 100 μ g/L in recovered water. The ASR storage zone is the Suwannee Limestone, which directly underlies the Hawthorn sediments. It is crucial to the future of ASR in this area to understand the source and distribution of arsenic in the overlying Hawthorn Group and the cycling of arsenic in the Florida platform.

  11. Annual Statistical Report of the Public Schools of Arkansas, Public Charter Schools, and Education Service Cooperatives, 2013-2014 Actual and 2014-2015 Budgeted, (ASR)

    ERIC Educational Resources Information Center

    Arkansas Department of Education, 2015

    2015-01-01

    In compliance with the provisions of A.C.A.§§6-20-2201 et seq., the Annual Statistical Report of the Public Schools of Arkansas, Public Charter Schools, and Education Service Cooperatives, 2013-2014 Actual and 2014-2015 Budgeted, (ASR) is presented here. The Rankings of Selected Items of the Public Schools of Arkansas, 2013-2014 Actual, (Rankings)…

  12. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    PubMed Central

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  13. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (arachis hypogaea)and acts as a transcription factor [corrected].

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  14. The {open_quotes}ASR{close_quotes} story where we are and how we got there: A history of Sandia National Laboratories maintenance employee safety committee

    SciTech Connect

    1997-08-01

    The Area Safety Representative (ASR) Team is an employee based safety committee that was originated in the latter part of 1994. It was introduced by the Operations and Engineering Center ES&H Coordinator who had heard about an employee based safety program implemented at the EG&G Corporation. This information was the first step in creating Sandia`s Maintenance `Area Safety Representative` (ASR) Program. An advertisement went out from the ES&H Coordinator to all the Maintenance Organizations asking for individuals who would be interested in performing as a volunteer safety representative for their section. The interest was moderate but effective. The committee consisted of one volunteer from each of the working sections within the Maintenance Organization, e.e., HVAC Mechanics, Electricians, Millwrights, Plumbers, Sheetmetal Workers, High-Voltage Technicians, a Union Representative, and representatives from the Operations Group that manage sub-contracted personnel. During the past year, organizational changes have brought about the addition of representatives to include the Planners and the Custodians. The original committee members were enrolled in a 30-hour OSHA Voluntary Compliance Outreach Course. This information provided the members with a broad overview of the Safety Guidelines set forth by OSHA for themselves and their coworkers. It is to be noted that this is an employee based safety team. There are no supervisors or managers on the committee but their attendance is always welcomed at the ASR meetings.

  15. The prediction of radome radio electrical behavior during high-velocity flight by means of the ASR calculation program system

    NASA Astrophysics Data System (ADS)

    Balageas, D. L.; Engrand, D.; Bordas, J.; Sarremejean, A.; Gimonet, E.

    The ASR (Aerothermique Structure Radioelectricite) System of programs for the calculation of radome mechanical, thermal and radio electrical characteristics developed by ONERA to aid in radome design is presented. The system, which is composed of three sequentially applied calculation programs, permits the calculation of inviscid aerodynamic flows around the radome, heat transfer coefficients through the boundary layer, internal heating through conduction, stresses and strains induced by aerodynamic forces and heating, and deviations of the radio axes and attenuation as a function of radome heating and deformation, either independently or in series, for a given radome trajectory. The calculation modules have been verified by comparison with experimental results obtained in thermal shock tests of a sintered vitreous silica radome in a Mach 6 flow and a study of the radio electrical behavior of the same radome in a solar furnace. The convenience and wide applicability of the system make it suitable for the comparison of candidate radome materials, the optimization of a radome thickness law and the interpretation of ground simulation tests or in-flight measurements.

  16. The US-DOE ARM/ASR Effort in Quantifying Uncertainty in Ground-Based Cloud Property Retrievals (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Protat, A.; Zhao, C.

    2013-12-01

    One primary goal of the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program is to obtain and retrieve cloud microphysical properties from detailed cloud observations using ground-based active and passive remote sensors. However, there is large uncertainty in the retrieved cloud property products. Studies have shown that the uncertainty could arise from instrument limitations, measurement errors, sampling errors, retrieval algorithm deficiencies in assumptions, as well as inconsistent input data and constraints used by different algorithms. To quantify the uncertainty in cloud retrievals, a scientific focus group, Quantification of Uncertainties In Cloud Retrievals (QUICR), was recently created by the DOE Atmospheric System Research (ASR) program. This talk will provide an overview of the recent research activities conducted within QUICR and discuss its current collaborations with the European cloud retrieval community and future plans. The goal of QUICR is to develop a methodology for characterizing and quantifying uncertainties in current and future ARM cloud retrievals. The Work at LLNL was performed under the auspices of the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. LLNL-ABS-641258.

  17. Front-end technologies for robust ASR in reverberant environments—spectral enhancement-based dereverberation and auditory modulation filterbank features

    NASA Astrophysics Data System (ADS)

    Xiong, Feifei; Meyer, Bernd T.; Moritz, Niko; Rehr, Robert; Anemüller, Jörn; Gerkmann, Timo; Doclo, Simon; Goetze, Stefan

    2015-12-01

    This paper presents extended techniques aiming at the improvement of automatic speech recognition (ASR) in single-channel scenarios in the context of the REVERB (REverberant Voice Enhancement and Recognition Benchmark) challenge. The focus is laid on the development and analysis of ASR front-end technologies covering speech enhancement and feature extraction. Speech enhancement is performed using a joint noise reduction and dereverberation system in the spectral domain based on estimates of the noise and late reverberation power spectral densities (PSDs). To obtain reliable estimates of the PSDs—even in acoustic conditions with positive direct-to-reverberation energy ratios (DRRs)—we adopt the statistical model of the room impulse response explicitly incorporating DRRs, as well in combination with a novel proposed joint estimator for the reverberation time T 60 and the DRR. The feature extraction approach is inspired by processing strategies of the auditory system, where an amplitude modulation filterbank is applied to extract the temporal modulation information. These techniques were shown to improve the REVERB baseline in our previous work. Here, we investigate if similar improvements are obtained when using a state-of-the-art ASR framework, and to what extent the results depend on the specific architecture of the back-end. Apart from conventional Gaussian mixture model (GMM)-hidden Markov model (HMM) back-ends, we consider subspace GMM (SGMM)-HMMs as well as deep neural networks in a hybrid system. The speech enhancement algorithm is found to be helpful in almost all conditions, with the exception of deep learning systems in matched training-test conditions. The auditory feature type improves the baseline for all system architectures. The relative word error rate reduction achieved by combining our front-end techniques with current back-ends is 52.7% on average with the REVERB evaluation test set compared to our original REVERB result.

  18. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  19. Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor

    PubMed Central

    2014-01-01

    Background Identifying the target genes of transcription factors is important for unraveling regulatory networks in all types of organisms. Our interest was precisely to uncover the spectrum of loci regulated by a widespread plant transcription factor involved in physiological adaptation to drought, a type of stress that plants have encountered since the colonization of land habitats 400 MYA. The regulator under study, named ASR1, is exclusive to the plant kingdom (albeit absent in Arabidopsis) and known to alleviate the stress caused by restricted water availability. As its target genes are still unknown despite the original cloning of Asr1 cDNA 20 years ago, we examined the tomato genome for specific loci interacting in vivo with this conspicuous protein. Results We performed ChIP followed by high throughput DNA sequencing (ChIP-seq) on leaves from stressed tomato plants, using a high-quality anti-ASR1 antibody. In this way, we unraveled a novel repertoire of target genes, some of which are clearly involved in the response to drought stress. Many of the ASR1-enriched genomic loci we found encode enzymes involved in cell wall synthesis and remodeling as well as channels implicated in water and solute flux, such as aquaporins. In addition, we were able to determine a robust consensus ASR1-binding DNA motif. Conclusions The finding of cell wall synthesis and aquaporin genes as targets of ASR1 is consistent with their suggested role in the physiological adaptation of plants to water loss. The results gain insight into the environmental stress-sensing pathways leading to plant tolerance of drought. PMID:24423251

  20. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  1. Optimizing the use of fly ash in concrete

    SciTech Connect

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  2. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production. PMID:21705136

  3. Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report efforts to take advantage of previous knowledge on well characterized proteins that extensively accumulate in dehydration, for example those belonging to the LEA (late embryogenesis abundant) superfamily. ASR proteins, a subgroup exclusive to the plant kingdom (albeit absent in Arabid...

  4. Adaptation of the ammoniacal silver reaction to cytochemical demonstration of myelin basic protein.

    PubMed

    Staykova, M; Jordanov, J; Goranov, I

    1978-01-01

    A modification of Black and Ansley's ammoniacal silver reaction (ASR) for histones is proposed for visualizing myelin basic protien (MBP) in the nervous system. The reaction is performed on histological sections of tissues fixed in neutralized formalin-alcohol and delipidized in the course of the routine paraffin embedding. The deparaffinized sections are again treated with formalin in order to make the "unmasked" by the delipidization basic groups of MBP reactive to ammoniacal silver. After treatment with this reagent MBP of the myelin sheaths of the nerve fibres is impregnated brownish-black. Deparaffinized sections subjected to an extraction of MBP with hydrochloric acid exhibit a negative reaction at the level of the myelin sheaths the same reaction being preserved at the level of the nuclear histones. The reaction is positive in paper spots of nervous tissue extracts obtained with the same acid. These assays indicate the specificity of the modified ASR. The method can be used for studies on the processes of myelination and demylination in normal histogenesis and in pathology of the nervous tissue.

  5. Evaluation of laboratory test method for determining the potential alkali contribution from aggregate and the ASR safety of the Three-Gorges dam concrete

    SciTech Connect

    Lu Duyou . E-mail: duyoulu@njut.edu.cn; Zhou, Xiaoling; Xu Zhongzi; Lan Xianghui; Tang Mingshu; Fournier, Benoit

    2006-06-15

    The releasable alkali from granite, which was used in the Three-Gorges concrete dam project in China, and from gneiss and feldspar was estimated by extraction in distilled water and super-saturated Ca(OH){sub 2} solution. Results show that: i) the finer the particles and the higher the temperature, the greater and faster the release of alkali; ii) compared with extraction by distilled water, super-saturated Ca(OH){sub 2} solution had a stronger activation on feldspar than on granite and gneiss; iii) for the three rocks tested, thermal activation had the largest effect on gneiss and a lower and similar effect on granite and feldspar. For very fine particles, temperature had a similar effect on the release of alkali by all three rocks. Because the aggregate used in the Three-Gorges dam concrete is non-reactive and a low calcium fly ash was used in the concrete, ASR would not be an issue for the dam, despite the release of alkali from the aggregate into the concrete.

  6. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  7. Clinical outcome and cost of treatment and care for neonates less than 1000 grams admitted to Vali-e ASR Hospital

    PubMed Central

    2014-01-01

    Background The aim of this study is to estimate the cost of care and treatment for extremely low birth weight (ELBW) neonates admitted to a teaching and referral hospital. This cost estimation project can help health policy makers and planners make decisions and develop plans for perinatal service staging programs and better management of NICUs (Neonatal Intensive Care Units). Methods This cohort study performed on 50 extremely low birth weight neonates (w ≤ 1000gr) born in Vali-e Asr Hospital, Tehran-Iran in the period of March 2012 to September 2013. This teaching and referral hospital had 15 NICU beds as well as an active neonatal growth and development follow-up clinic with a pediatric neurodevelopment specialist during the period of the study. Cases would undergo initial developmental visits and preventative measures immediately after being admitted to the ward. Also after discharge, they were followed up monthly for six months and then every two months, during first year of life. Results Overalls, 23 newborns -46% of ELBW and 40% of total neonatal mortality rate (that amounted 55) died during hospital stay. Beside hospitalization, the major part of expenses was related to medication and medical supplies. All neonates needing rehabilitation underwent this type of intervention for one year. The mean cost of rehabilitation in neonates with no insurance coverage was 6700 US Dollars per year, which is reduced by half (3350 US Dollars) when covered by insurance. Conclusion Medication, medical supplies and equipment cost was significantly high. This is especially due to the fact that the present types of insurances do not cover such expenses very well, forcing parents to pay themselves. Insurance systems are expected to take this issue into immediate account. PMID:25343130

  8. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance.

    PubMed

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  9. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance.

    PubMed

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient.

  10. I Hear You Eat and Speak: Automatic Recognition of Eating Condition and Food Type, Use-Cases, and Impact on ASR Performance

    PubMed Central

    Hantke, Simone; Weninger, Felix; Kurle, Richard; Ringeval, Fabien; Batliner, Anton; Mousa, Amr El-Desoky; Schuller, Björn

    2016-01-01

    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient. PMID:27176486

  11. Three-dimensional stress orientation in the basement basalt at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery (ASR) data , IODP NanTroSEIZE Site C0012

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Lin, W.; Oda, H.; Byrne, T. B.; Yamamoto, Y.; Underwood, M.; Saito, S.; Kubo, Y.; Iodp Expedition 322 Shipboard Scientific Party

    2010-12-01

    Three-dimensional stress orientation in the basement basalt at subduction input was first obtained by anelastic strain recovery (ASR) measurements. IODP Expedition 322 penetrated the sediment-basement boundary and recovered successive cores at Site C0012, the subduction input site in Nankai Subduction Zone. The collected basement samples are composed of alternating beds of pillow basalts and hyaroclastite and were retrieved by rotary core barrel (RCB) drilling system. We collected a whole-round core sample for measurements of ASR from pillow basalt by the same methods of sample preparation and anelastic strain data acquisition conducted in the previous Stage-1 expeditions of the same NanTroSEIZE drilling program (Byrne et al., 2009; GRL, Vol.36, L23310). Anelastic normal strains, measured every ten minutes in nine directions, including six independent directions, were used to calculate the anelastic strain tensors. The sample showed coherent strain recovery over a long period more than 1 month. The ASR measurement results in Kumano Forearc Basin obtained from C0002 (Byrne et al., 2009) showed the maximum stress orientation is nearly vertical and a normal stress regime. However, the ASR results in the basement basalt in the subduction input from C0012 show that the maximum principal stress axes was nearly horizontal and oriented NE-SW, almost parallel (or slightly oblique) to the trench axis. On the other hand, the minimum principal stress axis plunges steeply SE. The stress state of the basement basalts suggests strike-slip or thrust (reverse fault) regimes, which is very different from “state at rest” condition, theoretic stress condition on the ocean floor far from subduction zone. The basement basalt in the subduction input at Site C0012 has been experienced trench-parallel shortening. Although there is no logging data from Site C0012, the borehole breakouts in the sedimentary intervals at neighboring Site C0011 show a consistent maximum horizontal principal

  12. NEW NONLINEAR ACOUSTIC TECHNIQUES FOR NDE

    SciTech Connect

    J. A. TENCATE

    2000-09-01

    Acoustic nonlinearity in a medium may occur as a result of a variety of mechanisms. Some of the more common nonlinear effects may come from: (1) one or several cracks, volumetrically distributed due to age or fatigue or single disbonds or delamination; (2) imperfect grain-to-grain contacts, e.g., materials like concretes that are cemented together and have less than perfect bonds; (3) hard parts in a soft matrix, e.g., extreme duty materials like tungsten/copper alloys; or (4) atomic-scale nonlinearities. Nonlinear effects that arise from the first two mechanisms are considerably larger than the last two; thus, we have focused considerable attention on these. The most pervasive nonlinear measure of damage today is a second harmonic measurement. We show that for many cases of interest to NDE, a second harmonic measurement may not be the best choice. We examine the manifestations of nonlinearity in (nonlinear) materials with cracks and/or imperfect bonds and illustrate their applicability to NDE. For example, nonlinear resonance frequency shifts measured at increasing drive levels correlate strongly with the amount of ASR (alkali-silica reaction) damage of concrete cores. Memory effects (slow dynamics) also seem to correlate with the amount of damage.

  13. Microscopical and mechanical evaluation of the durability of SiO2 aggregates

    NASA Astrophysics Data System (ADS)

    El Bahraoui, Hassan; Khouchaf, Lahcen; Ben Fraj, Amor

    2016-05-01

    The durability of SiO2 compounds is closely related to its structural properties. In this work three natural siliceous aggregates (called G1, G2 and G3) are studied. Improvement of the durability of the starting material leads to a significant energy savings by extending the lifetime of structures. The chemical composition of the three natural aggregates shows that G1 and G2 have almost the same chemical composition (SiO2) and G3 is different and contains SiO2 quartz type and calcite as major components (SiO2, calcite and dolomite). X-ray diffraction (XRD) shows that natural aggregates G1 is more crystallized than G2 and G3. After alkali silica reaction (ASR) process, the reactivity of G3 aggregate seems to be higher than the G1 and G2 aggregates. The mechanical results show the slight difference between mortar containing G1 (M_G1) and that containing G2 (M_G2). Their compressive strength is 10% less than that of reference (M_SS). As it is more reactive, G3 seems improving the compressive strength of M_G3, compared to M_G1 and M_G2. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  14. Assessing the potential of ToF-SIMS as a complementary approach to investigate cement-based materials — Applications related to alkali–silica reaction

    SciTech Connect

    Bernard, Laetitia; Leemann, Andreas

    2015-02-15

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces and chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.

  15. Development of a multiplex real-time PCR assay for the detection of Bordetella pertussis and Bordetella parapertussis in a single tube reaction.

    PubMed

    Arbefeville, Sophie; Levi, Michael H; Ferrieri, Patricia

    2014-02-01

    Pertussis is an infectious respiratory disease caused by the fastidious bacterium Bordetella pertussis, which may infect unvaccinated, previously vaccinated children, and adults in whom immunity has waned. Infants are at a particular risk for severe disease and complications. Bordetella parapertussis may cause a similar illness, however the symptoms are less severe and of shorter duration. Pertussis is a highly contagious disease and early diagnosis is essential. Studies have shown that PCR is 2-4 times more likely than culture to detect Bordetella pertussis. We developed a multiplex, real-time PCR assay using analyte-specific reagent (ASR) primers and probes dispensed in a convenient lyophilized bead format that targeted the multi-copy insertion sequences IS481 and IS1001 of B. pertussis and B. parapertussis, respectively. These specific ASRs were used in conjunction with Cepheid Smartmix. Included in the ASRs is a competitive internal control to evaluate the performance of the PCR reaction. After DNA extraction, amplification and detection were done on the Smart Cycler System, which performs integrated amplification and detection automatically in a single step. Specificity of the assay was confirmed using multiple distinct bacterial strains. Sensitivity of the assay and extraction efficiency were evaluated on DNA isolated from pure bacterial cultures and on spiked respiratory specimens. We also spiked different swab types and transport media to evaluate for interfering substances. To assess accuracy, we studied different patient specimen types received from two outside laboratories that used similar or different methods to detect B. pertussis and B. parapertussis. The sensitivity and the specificity of the assay for B. pertussis were 90% and 96%, respectively, and for B. parapertussis 71% (only 7 positive specimens were available for testing) and 100%, respectively. Our assay was found to be a valid method for the simultaneous detection of B. pertussis and B

  16. Gallium substitutions as a means to stabilize alkaline-earth and rare-earth metal pnictides with the cubic Th{sub 3}P{sub 4} type: Synthesis and structure of A{sub 7}Ga{sub 2}Sb{sub 6} (A=Sr, Ba, Eu)

    SciTech Connect

    Xia Shengqing; Hullmann, Jonathan; Bobev, Svilen

    2008-08-15

    Three new compounds-Sr{sub 7.04(2)}Ga{sub 1.94(2)}Sb{sub 6}, Ba{sub 7.02(3)}Ga{sub 1.98(3)}Sb{sub 6} and Eu{sub 7.04(3)}Ga{sub 1.90(3)}Sb{sub 6}-have been synthesized from reactions of the corresponding elements using gallium as a metal flux. Their crystal structures (space group I4-bar 3d (No. 220), Z=2 with unit cell parameters: a=9.9147(9) A for the Sr-compound; a=10.3190(9) A for the Ba-compound; and a=9.7866(8) A for the Eu-compound) have been established by single-crystal X-ray diffraction. The structures are best described as Ga-stabilized derivatives of the hypothetical Sr{sub 4}Sb{sub 3}, Ba{sub 4}Sb{sub 3} and Eu{sub 4}Sb{sub 3} phases with the cubic Th{sub 3}P{sub 4} type. Such an inclusion of interstitial Ga atoms in this atomic arrangement results in the formation of isolated [Ga{sub 2}Sb{sub 6}]{sup 14-} fragments, isoelectronic and isostructural with the [Sn{sub 2}Te{sub 6}]{sup 6-} anions in the K{sub 3}SnTe{sub 3} type, and allows for the attainment of a charge-balanced electron count. In that sense, the Sr{sub 4}Sb{sub 3}, Ba{sub 4}Sb{sub 3} and Eu{sub 4}Sb{sub 3} binaries, which are expected to be electron-deficient and are currently unknown, can be 'turned' into Sr{sub 7}Ga{sub 2}Sb{sub 6}, Ba{sub 7}Ga{sub 2}Sb{sub 6} and Eu{sub 7}Ga{sub 2}Sb{sub 6}, whose structures are readily rationalized following the Zintl concept. - Graphical abstract: Three new antimonides have been structurally characterized by single-crystal X-ray diffraction. Their structures are best described as derivatives of the body-centered cubic, anti-Th{sub 3}P{sub 4} type. Unlike the one-electron-deficient A{sub 4}Sb{sub 3} phases (A=Sr, Ba, Eu), the new, A{sub 7}Ga{sub 2}Sb{sub 6} compounds are Zintl phases with closed-shell configurations for both the cations and anions.

  17. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  18. Characterization of basin concrete in support of structural integrity demonstration for extended storage

    SciTech Connect

    Duncan, A.

    2014-09-30

    Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition of the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete.

  19. Clinical Pearls: Leprosy Reactions.

    PubMed

    Wu, Jane; Boggild, Andrea K

    2016-09-01

    Leprosy reactions are acute inflammatory episodes that occur in the setting of Mycobacterium leprae infection. Precipitants of reactions can be pharmacologic and nonpharmacologic. Both type 1 and type 2 reactions typically occur before and during leprosy treatment but may also occur after treatment has been completed. Reactions cause morbidity due to nerve damage, and prompt corticosteroid therapy is warranted to minimize nerve damage due to reactions.

  20. Multicomponent reactions of cyclobutanones.

    PubMed

    Pirrung, Michael C; Wang, Jianmei

    2009-04-17

    Cyclobutanones are essentially unknown as reactants in isonitrile-based multicomponent reactions. Ugi reactions of cyclobutanone and Passerini reactions of tetramethylcyclobutane-1,3-dione have been performed in this work. These reactions are significantly enhanced by being conducted in water, a subject of recent interest whose basis is still in question but whose effects are beyond doubt. The Ugi reaction of cyclobutanone has been used in a brief synthesis of an aspartame analogue.

  1. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  2. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  3. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  4. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  5. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  6. Catalytic diastereoselective petasis reactions.

    PubMed

    Muncipinto, Giovanni; Moquist, Philip N; Schreiber, Stuart L; Schaus, Scott E

    2011-08-22

    Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines. PMID:21751322

  7. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  8. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  9. Anaphylactic reactions to cinoxacin.

    PubMed Central

    Stricker, B. H.; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S.

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatment. Cinoxacin is related to nalidixic acid, and one patient previously treated with that agent subsequently had an anaphylactoid reaction to cinoxacin and later developed a skin reaction to nalidixic acid. There were no deaths, and patients treated as an emergency with plasma expanders or with adrenaline and corticosteroids generally recovered promptly and uneventfully. In view of the potentially fatal consequences of anaphylactic reactions to cinoxacin and other quinolones doctors should take care when prescribing these drugs. PMID:3147004

  10. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜eαt with α proportional to ln, where is the average degree of the graph.

  11. Nuclear reaction studies

    SciTech Connect

    Alexander, J.M.; Lacey, R.A.

    1994-11-01

    Research focused on the statistical and dynamical properties of ``hot`` nuclei formed in symmetric heavy-ion reactions. Theses included ``flow`` measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study {sup 40}Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs.

  12. Immune reaction to propanidid.

    PubMed

    Christmas, D

    1984-05-01

    An adverse reaction to the intravenous anaesthetic agent propanidid is described in which the main features were hypotension, facial erythema, and abdominal pain. Changes in serum complement levels and differential white cell counts indicate that this was an immune reaction mediated by the classical complement pathway. The immune reaction apparently involved antibodies other than those of the IgE (reagin) class, and circumstantial evidence suggests that it was specific to propanidid rather than to the entire formulation or to Cremophor EL.

  13. A thermodynamic and kinetic model for paste–aggregate interactions and the alkali–silica reaction

    SciTech Connect

    Guthrie, George D. Carey, J. William

    2015-10-15

    A new conceptual model is developed for ASR formation based on geochemical principles tied to aqueous speciation, silica solubility, kinetically controlled mineral dissolution, and diffusion. ASR development is driven largely by pH and silica gradients that establish geochemical microenvironments between paste and aggregate, with gradients the strongest within the aggregate adjacent to the paste boundary (i.e., where ASR initially forms). Super-saturation of magadiite and okenite (crystalline ASR surrogates) occurs in the zone defined by gradients in pH, dissolved silica, Na{sup +}, and Ca{sup 2} {sup +}. This model provides a thermodynamic rather than kinetic explanation of why quartz generally behaves differently from amorphous silica: quartz solubility does not produce sufficiently high concentrations of H{sub 4}SiO{sub 4} to super-saturate magadiite, whereas amorphous silica does. The model also explains why pozzolans do not generate ASR: their fine-grained character precludes formation of chemical gradients. Finally, these gradients have interesting implications beyond the development of ASR, creating unique biogeochemical environments.

  14. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  15. Mineralogy, geochemistry and expansion testing of an alkali-reactive basalt from western Anatolia, Turkey

    SciTech Connect

    Copuroglu, Oguzhan; Andic-Cakir, Ozge; Broekmans, Maarten A.T.M.; Kuehnel, Radko

    2009-07-15

    In this paper, the alkali-silica reaction performance of a basalt rock from western Anatolia, Turkey is reported. It is observed that the rock causes severe gel formation in the concrete microbar test. It appears that the main source of expansion is the reactive glassy phase of the basalt matrix having approximately 70% of SiO{sub 2}. The study presents the microstructural characteristics of unreacted and reacted basalt aggregate by optical and electron microscopy and discusses the possible reaction mechanism. Microstructural analysis revealed that the dissolution of silica is overwhelming in the matrix of the basalt and it eventually generates four consequences: (1) Formation of alkali-silica reaction gel at the aggregate perimeter, (2) increased porosity and permeability of the basalt matrix, (3) reduction of mechanical properties of the aggregate and (4) additional gel formation within the aggregate. It is concluded that the basalt rock is highly prone to alkali-silica reaction. As an aggregate, this rock is not suitable for concrete production.

  16. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  17. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  18. Oscillating Chemical Reactions

    ERIC Educational Resources Information Center

    Hawkins, M. D.; And Others

    1975-01-01

    Describes several oscillating chemical reactions which can be used in undergraduate chemistry laboratories. In one such reaction, ferroin oscillates from red (reducing solution) to blue (oxidizing solution) for about an hour at a frequency which can readily be shown to depend on such factors as the temperature, type of solvent, and concentration…

  19. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  20. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  1. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  2. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  3. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  4. Fractal reaction kinetics.

    PubMed

    Kopelman, R

    1988-09-23

    Classical reaction kinetics has been found to be unsatisfactory when the reactants are spatially constrained on the microscopic level by either walls, phase boundaries, or force fields. Recently discovered theories of heterogeneous reaction kinetics have dramatic consequences, such as fractal orders for elementary reactions, self-ordering and self-unmixing of reactants, and rate coefficients with temporal "memories." The new theories were needed to explain the results of experiments and supercomputer simulations of reactions that were confined to low dimensions or fractal dimensions or both. Among the practical examples of "fractal-like kinetics" are chemical reactions in pores of membranes, excitation trapping in molecular aggregates, exciton fusion in composite materials, and charge recombination in colloids and clouds.

  5. Biochemical reaction engineering for redox reactions.

    PubMed

    Wandrey, Christian

    2004-01-01

    Redox reactions are still a challenge for biochemical engineers. A personal view for the development of this field is given. Cofactor regeneration was an obstacle for quite some time. The first technical breakthrough was achieved with the system formate/formate dehydrogenase for the regeneration of NADH2. In cases where the same enzyme could be used for chiral reduction as well as for cofactor regeneration, isopropanol as a hydrogen source proved to be beneficial. The coproduct (acetone) can be removed by pervaporation. Whole-cell reductions (often yeast reductions) can also be used. By proper biochemical reaction engineering, it is possible to apply these systems in a continuous way. By cloning a formate dehydrogenase and an oxidoreductase "designer bug" can be obtained where formate is used instead of glucose as the hydrogen source. Complex sequences of redox reactions can be established by pathway engineering with a focus on gene overexpression or with a focus on establishing non-natural pathways. The success of pathway engineering can be controlled by measuring cytosolic metabolite concentrations. The optimal exploitation of such systems calls for the integrated cooperation of classical and molecular biochemical engineering.

  6. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  7. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  8. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  9. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons. PMID:25245394

  10. Contact reactions to food.

    PubMed

    Killig, Claudia; Werfel, Thomas

    2008-05-01

    Cutaneous adverse reactions to foods, spices, and food additives can occur both in occupational and nonoccupational settings in those who grow, handle, prepare, or cook food. Because spices are also utilized in cosmetics and perfumes, other exposures are encountered that can result in adverse cutaneous reactions. This article describes the reaction patterns that can occur upon contact with foods, including irritant contact dermatitis and allergic contact dermatitis. The ingestion of culprit foods by sensitized individuals can provoke a generalized eczematous rash, referred to as systemic contact dermatitis. Other contact reactions to food include contact urticaria and protein contact dermatitis provoked by high-molecular-weight food proteins often encountered in patients with atopic dermatitis. Phototoxic and photoallergic contact dermatitis are also considered.

  11. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  12. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons.

  13. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  14. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  15. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle. PMID:16722770

  16. Translated chemical reaction networks.

    PubMed

    Johnston, Matthew D

    2014-05-01

    Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoichiometric network analysis, deficiency theory, and algebraic techniques (e.g., Gröbner bases). In this paper, we present a novel method for characterizing the steady states of mass action systems. Our method explicitly links a network's capacity to permit a particular class of steady states, called toric steady states, to topological properties of a generalized network called a translated chemical reaction network. These networks share their reaction vectors with their source network but are permitted to have different complex stoichiometries and different network topologies. We apply the results to examples drawn from the biochemical literature.

  17. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  18. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  19. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  20. Cosmetic tattoo pigment reaction.

    PubMed

    Greywal, Tanya; Cohen, Philip R

    2016-01-01

    BackgroundCutaneous reactions to tattoos are most commonly granulomatous or lichenoid.PurposeWe describe a woman who developed a lymphocytic reaction following a cosmetic tattoo procedure with black dye. The reaction occurred not only at the site of the tattoos (eyebrows and eyelash lines), but also in non-tattooed skin (bilateral malar cheeks).Methods and MaterialsWe reviewed PubMed for the following terms: cosmetic, dye, granuloma, granulomatous, lichenoid, lymphocytic, perivascular, pigment, pseudolymphoma, reaction, and tattoo. We also reviewed papers containing these terms and their references.ResultsHistopathologic examination of the left eyebrow and left cheek punch biopsies showed predominantly a perivascular lymphocytic reaction secondary to exogenous tattoo pigment.ConclusionsPerivascular lymphocytic reaction is an uncommonly described complication of tattooing. Our patient had an atypical presentation since she had no prior tattoos, became symptomatic only a few days after the procedure, reacted to black dye, and involved skin both within and outside the confines of the tattoos. Her symptoms and lesions resolved after treatment with systemic and topical corticosteroids and oral antihistamines. PMID:27617722

  1. Immediate reaction to clarithromycin.

    PubMed

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens.

  2. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  3. Adverse reactions to cosmetics.

    PubMed

    Dogra, A; Minocha, Y C; Kaur, S

    2003-01-01

    Adverse reaction to cosmetics constitute a small but significant number of cases of contact dermatitis with varied appearances. These can present as contact allergic dermatitis, photodermatitis, contact irritant dermatitis, contact urticaria, hypopigmentation, hyperpigmentation or depigmentation, hair and nail breakage. Fifty patients were included for the study to assess the role of commonly used cosmetics in causing adverse reactions. It was found that hair dyes, lipsticks and surprisingly shaving creams caused more reaction as compared to other cosmetics. Overall incidence of contact allergic dermatitis seen was 3.3% with patients own cosmetics. Patch testing was also done with the basic ingredients and showed positive results in few cases where casual link could be established. It is recommended that labeling of the cosmetics should be done to help the dermatologists and the patients to identify the causative allergen in cosmetic preparation.

  4. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  5. Delayed drug hypersensitivity reactions.

    PubMed

    Pichler, Werner J

    2003-10-21

    Immune reactions to small molecular compounds, such as drugs, can cause a variety of diseases involving the skin, liver, kidney, and lungs. In many drug hypersensitivity reactions, drug-specific CD4+ and CD8+ T cells recognize drugs through their alphabeta T-cell receptors in an MHC-dependent way. Drugs stimulate T cells if they act as haptens and bind covalently to peptides or if they have structural features that allow them to interact with certain T-cell receptors directly. Immunohistochemical and functional studies of drug-reactive T cells in patients with distinct forms of exanthema reveal that distinct T-cell functions lead to different clinical phenotypes. In maculopapular exanthema, perforin-positive and granzyme B-positive CD4+ T cells kill activated keratinocytes, while a large number of cytotoxic CD8+ T cells in the epidermis is associated with formation of vesicles and bullae. Drug-specific T cells also orchestrate inflammatory skin reactions through the release of various cytokines (for example, interleukin-5, interferon) and chemokines (such as interleukin-8). Activation of T cells with a particular function seems to lead to a specific clinical picture (for example, bullous or pustular exanthema). Taken together, these data allow delayed hypersensitivity reactions (type IV) to be further subclassified into T-cell reactions, which through the release of certain cytokines and chemokines preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd). Moreover, cytotoxic functions by either CD4+ or CD8+ T cells (type IVc) seem to participate in all type IV reactions.

  6. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  10. Quinoprotein-catalysed reactions.

    PubMed Central

    Anthony, C

    1996-01-01

    This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein. PMID:9003352

  11. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  12. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  13. Adverse reactions to cosmetics.

    PubMed

    Gendler, E

    1987-06-01

    Adverse reactions to cosmetics can be irritant or allergic and are most often caused by fragrances or preservatives. Preservatives include formaldehyde, formaldehyde releasers, and parabens. Other agents that cause allergy are paraphenylenediamine in hair dyes and toluene sulfonamide formaldehyde resin in nail polishes.

  14. A Principal's Reaction

    ERIC Educational Resources Information Center

    Zaretsky, Lindy

    2004-01-01

    This article presents a principal's reaction to Catherine Marshall and Michael Ward's article on research on social justice and training for leadership. The author applauds Marshall and Ward's efforts to address what is undoubtedly among the most fundamentally important issues facing principals today. Marshall and Ward illuminate the importance of…

  15. Family reaction to homicide.

    PubMed

    Burgess, A N

    1975-04-01

    This pilot study identifies a two-phased syndrome experienced by families of homicide victims. The crisis phase consists of an acute grief process, including immediate reactions to the homicide, the funeral details, and police investigations. The long-term reorganization phase includes the psychological issues of bereavement and the socio-legal issues of the criminal justice process. PMID:1146971

  16. Reactions to Others' Intimacy.

    ERIC Educational Resources Information Center

    Neufeldt, David E.; Olinger, Evanelle J.

    Research using behavioral measures has indicated that men react less positively to the touch of a same sex individual than women, that both men and women react more positively to the touch of an opposite sex individual than to the touch of a same sex individual, and that men and women do not differ in their reactions to opposite sex touch. This…

  17. Introducing the Wittig Reaction.

    ERIC Educational Resources Information Center

    Armstead, D. E. F.

    1979-01-01

    An experiment is described which provides a simple example of the application of the Wittig reaction to the synthesis of unsaturated compounds. The experiment was designed with British HNC chemistry students in mind, but it is also suitable as a project-type exercise for final year GCE A-level students. (Author/BB)

  18. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  19. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  20. Reaction and Response.

    ERIC Educational Resources Information Center

    Armento, Beverly J.; And Others

    1993-01-01

    Provides a reaction by three economic educators to an article by Raymond C. Miller calling for the elimination of economics. Contends that traditional economics does not necessarily lead to the degradation of the environment. Argues that economics should not promote any set of social values. (CFR)

  1. Reaction Formulation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  2. The aromatic ene reaction

    PubMed Central

    Niu, Dawen; Hoye, Thomas R.

    2014-01-01

    The ene reaction is a pericyclic process in which an alkene having an allylic hydrogen atom (the ene donor) reacts with a second unsaturated species (the enophile) to form a new product with a transposed π-bond. The aromatic ene reaction, in which the alkene component is embedded in an aromatic ring, has only been reported in a few (four) instances and has proceeded in low yield (≤6%). Here we show efficient aromatic ene reactions in which a thermally generated aryne engages a pendant m-alkylarene substituent to produce a dearomatized isotoluene, itself another versatile but rare reactive intermediate. Our experiments were guided by computational studies that revealed structural features conducive to the aromatic ene process. We proceeded to identify a cascade comprising three reactions: (i) hexadehydro-Diels-Alder (for aryne generation), (ii) intramolecular aromatic ene, and (iii) bimolecular Alder ene. The power of this cascade is evident from the structural complexity of the final products, the considerable scope, and the overall efficiency of these multi-stage, reagent- and byproduct-free, single-pot transformations. PMID:24345944

  3. Enantioselective Vinylogous Organocascade Reactions.

    PubMed

    Hepburn, Hamish B; Dell'Amico, Luca; Melchiorre, Paolo

    2016-08-01

    Cascade reactions are powerful tools for rapidly assembling complex molecular architectures from readily available starting materials in a single synthetic operation. Their marriage with asymmetric organocatalysis has led to the development of novel techniques, which are now recognized as reliable strategies for the one-pot enantioselective synthesis of stereochemically dense molecules. In recent years, even more complex synthetic challenges have been addressed by applying the principle of vinylogy to the realm of organocascade catalysis. The key to the success of vinylogous organocascade reactions is the unique ability of the chiral organocatalyst to transfer reactivity to a distal position without losing control on the stereo-determining events. This approach has greatly expanded the synthetic horizons of the field by providing the possibility of forging multiple stereocenters in remote positions from the catalyst's point of action with high selectivity, while simultaneously constructing multiple new bonds. This article critically describes the developments achieved in the field of enantioselective vinylogous organocascade reactions, charting the ideas, the conceptual advances, and the milestone reactions that have been essential for reaching highly practical levels of synthetic efficiency. PMID:27256039

  4. [Ligase chain reaction (LCR)].

    PubMed

    Yamanishi, K; Yasuno, H

    1993-06-01

    Ligase chain reaction (LCR) is a ligation-mediated amplification technique of a target DNA sequence using oligonucleotides and thermostable ligase. LCR is useful for the detection of known DNA sequences and point mutations in a limited amount of DNA. We introduce the principle, development, and protocol of this simple and convenient technique for DNA analysis.

  5. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing β{sup −}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (γ, n), (γ, p), or (γ, α) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  6. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    A review covers the industrial applications of the water-gas shift reaction in hydrogen manufacturing, removing CO from ammonia synthesis feeds, and detoxifying town gas; and the catalyst characteristics, reaction kinetics, and reaction mechanisms of the water-gas shift reactions catalyzed by iron-based, copper-based, or sulfided cobalt-molybdenum catalysts.

  7. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  8. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  9. Reactions to dietary tartrazine.

    PubMed

    David, T J

    1987-02-01

    Double blind challenges with tartrazine and benzoic acid were performed in hospital in 24 children whose parents gave a definite history of a purely behavioural immediate adverse reaction to one of these substances. The patients, whose ages ranged from 1.6 to 12.4 years, were on a diet that avoided these items, and in all there was a clear history that any lapse of the diet caused an obvious adverse behavioural reaction within two hours. In no patient was any change in behaviour noted either by the parents or the nursing staff after the administration of placebo or active substances. Twenty two patients returned to a normal diet without problems, but the parents of two children insisted on continuing the diet. While popular belief has it that additives may have harmful behavioural effects, objective verification is required to prevent overdiagnosis. PMID:3548601

  10. Dearomatization through Halofunctionalization Reactions.

    PubMed

    Liang, Xiao-Wei; Zheng, Chao; You, Shu-Li

    2016-08-16

    Recent advances in dearomatization through halofunctionalization reactions are summarized in this Minireview. Two general categories of strategies are currently employed in this field. On one hand, the reaction can be initiated with electrophilic halogenation at an alkyne or alkene moiety. The resulting halonium ion intermediate is then captured by a pendant aromatic ring at the ipso position, affording the dearomatization product. On the other hand, electrophilic halogenation can directly take place at a substituted arene, and the final dearomatization product is furnished by deprotonation or intramolecular nucleophilic trap. Highly enantioselective variants have been realized in the latter case by organocatalysis or transition metal catalysis. By applying these methods, various valuable halogenated polycyclic molecular architectures have been obtained from readily available starting materials. PMID:27377184

  11. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  12. Cascade reactions in nanoreactors.

    PubMed

    van Oers, M C M; Rutjes, F P J T; van Hest, J C M

    2014-08-01

    In an attempt to mimic the biosynthetic efficiencies of nature and in a search for greener, more sustainable alternatives to nowadays ways of producing chemicals, one-pot cascade reactions have attracted a lot of attention in the past decade. Since most catalysts are not compatible with each other, compartmentalization techniques have often been applied to prevent catalyst inactivation. A various array of nanoreactors have been developed to meet the demand of having a site-isolated catalyst system, while maintaining the catalyst activity. Both multienzyme nanoreactors as well as enzyme/metal catalyst or organocatalyst systems have shown great potential in one-pot cascade reactions and hold promise for future developments in this field.

  13. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  14. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  15. Reaction Extrema: Extent of Reaction in General Chemistry

    ERIC Educational Resources Information Center

    Vandezande, Jonathon E.; Vander Griend, Douglas A.; DeKock, Roger L.

    2013-01-01

    Nearly 100 years ago de Donder introduced the term "extent of reaction", ?. We build on that work by defining the concept of reagent extrema for an arbitrary chemical reaction, aA + bB [reversible reaction] yY + zZ. The central equation is ?^[subscript i] = -n[subscript i,0]/?[subscript i]. The symbol ?^[subscript i] represents the…

  16. Procedures for Decomposing a Redox Reaction into Half-Reaction

    ERIC Educational Resources Information Center

    Fishtik, Ilie; Berka, Ladislav H.

    2005-01-01

    A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…

  17. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  18. Reactions among indoor pollutants.

    PubMed

    Weschler, C J

    2001-09-13

    This paper reviews recent studies in the field of "indoor chemistry"--reactions among indoor pollutants. Advances have occurred in a number of areas. A mouse bioassay procedure has shown that ozone/terpene reactions produce products that are more irritating than their precursors, although the agents responsible for the deleterious effects remain to be determined. Indoor ozone/terpene reactions have been demonstrated to produce hydroxyl radicals, hydrogen peroxide, sub-micron particles, and ultrafine particles. New analytical techniques such as LC/MS and thermal desorption mass spectrometry have greatly improved our knowledge of the condensed-phase species associated with such particles. Indeed, the latter approach has identified a number of short-lived or thermally labile species, including organic hydroperoxides, peroxy-hemiacetals, and secondary ozonides, which would be missed by more conventional techniques. Investigators are making inroads into the poorly understood area of indoor heterogeneous chemistry. Systems studied include ozone/HVAC components, ozone/paint, and ozone/carpets. Another heterogeneous process that has been further examined is the indoor formation of nitrous acid through NO2/surface chemistry. Emissions from indoor sources that contribute to, or are altered by, indoor chemistry have also received attention. Researchers have expanded our awareness of reactive chemicals that can emanate from wood coatings and other products commonly used indoors. In a related vein, a number of recent investigations have shown that emissions from materials can be significantly altered by indoor chemistry. On the theoretical side, an outdoor atmospheric chemistry model has been modified for use as an indoor air model, the effects of ventilation rates on indoor chemistry have been simulated, and initial steps have been taken in applying computational fluid dynamics (CFD) methods to indoor chemistry.

  19. Insect bite reactions.

    PubMed

    Singh, Sanjay; Mann, Baldeep Kaur

    2013-01-01

    Insects are a class of living creatures within the arthropods. Insect bite reactions are commonly seen in clinical practice. The present review touches upon the medically important insects and their places in the classification, the sparse literature on the epidemiology of insect bites in India, and different variables influencing the susceptibility of an individual to insect bites. Clinical features of mosquito bites, hypersensitivity to mosquito bites Epstein-Barr virus NK (HMB-EBV-NK) disease, eruptive pseudoangiomatosis, Skeeter syndrome, papular pruritic eruption of HIV/AIDS, and clinical features produced by bed bugs, Mexican chicken bugs, assassin bugs, kissing bugs, fleas, black flies, Blandford flies, louse flies, tsetse flies, midges, and thrips are discussed. Brief account is presented of the immunogenic components of mosquito and bed bug saliva. Papular urticaria is discussed including its epidemiology, the 5 stages of skin reaction, the SCRATCH principle as an aid in diagnosis, and the recent evidence supporting participation of types I, III, and IV hypersensitivity reactions in its causation is summarized. Recent developments in the treatment of pediculosis capitis including spinosad 0.9% suspension, benzyl alcohol 5% lotion, dimethicone 4% lotion, isopropyl myristate 50% rinse, and other suffocants are discussed within the context of evidence derived from randomized controlled trials and key findings of a recent systematic review. We also touch upon a non-chemical treatment of head lice and the ineffectiveness of egg-loosening products. Knockdown resistance (kdr) as the genetic mechanism making the lice nerves insensitive to permethrin is discussed along with the surprising contrary clinical evidence from Europe about efficacy of permethrin in children with head lice carrying kdr-like gene. The review also presents a brief account of insects as vectors of diseases and ends with discussion of prevention of insect bites and some serious adverse effects

  20. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-01

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters. PMID:26808300

  1. Electronegativity and redox reactions.

    PubMed

    Miranda-Quintana, Ramón Alain; Martínez González, Marco; Ayers, Paul W

    2016-08-10

    Using the maximum hardness principle, we show that the oxidation potential of a molecule increases as its electronegativity increases and also increases as its electronegativity in its oxidized state increases. This insight can be used to construct a linear free energy relation for the oxidation potential, which we train on a set of 31 organic redox couples and test on a set of 10 different redox reactions. Better results are obtained when the electronegativity of the oxidized/reduced reagents are adjusted to account for the reagents' interaction with their chemical environment.

  2. Copper mediated carbometalation reactions.

    PubMed

    Müller, D S; Marek, I

    2016-08-01

    Since the first discovery of carbocupration of alkynes in the 1970s a tremendous amount of research has been carried out in this field. The exceptionally high selectivities obtained attribute to the great synthetic value of carbocupration reactions. This tutorial review will present the most important features of carbocupration of alkynes and highlight the most relevant reviews. Then a comprehensive review of copper mediated carbometalation of cyclopropenes will follow. The latter method has received much attention over the last decade as it allows the highly selective construction of poly-substituted cyclopropanes which can be transformed into acyclic derivatives bearing one or multiple tertiary or quaternary carbon stereocenters.

  3. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  4. Positive reaction to allergen (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  5. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

  6. Organic chemistry: Reactions triggered electrically

    NASA Astrophysics Data System (ADS)

    Xiang, Limin; Tao, N. J.

    2016-03-01

    Single-molecule experiments have revealed that chemical reactions can be controlled using electric fields -- and that the reaction rate is sensitive to both the direction and the strength of the applied field. See Letter p.88

  7. Reactions of intermetallic clusters

    NASA Astrophysics Data System (ADS)

    Farley, R. W.; Castleman, A. W., Jr.

    1990-02-01

    Reaction of bismuth-alkali clusters with closed-shell HX acids provides insight into the structures, formation, and stabilities of these intermetallic species. HC1 and HI are observed to quantitatively strip BixNay and BixKy, respectively, of their alkali component, leaving bare bismuth clusters as the only bismuth-containing species detected. Product bismuth clusters exhibit the same distribution observed when pure bismuth is evaporated in the source. Though evaporated simultaneously from the same crucible, this suggests alkali atoms condense onto existing bismuth clusters and have negligible effect on their formation and consequent distribution. The indistinguishibility of reacted and pure bismuth cluster distributions further argues against the simple replacement of alkali atoms with hydrogen in these reactions. This is considered further evidence that the alkali atoms are external to the stable bismuth Zintl anionic structures. Reactivities of BixNay clusters with HC1 are estimated to lie between 3×10-13 for Bi4Na, to greater than 4×10-11 for clusters possessing large numbers of alkali atoms. Bare bismuth clusters are observed in separate experiments to react significantly more slowly with rates of 1-9×10-14 and exhibit little variation of reactivity with size. The bismuth clusters may thus be considered a relatively inert substrate upon which the alkali overlayer reacts.

  8. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  9. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  10. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  11. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  12. Development of detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principle of a controlled condensed detonation. In this engine the gas products that are expelled from the engine to produce thrust are generated by the condensed detonation reaction. The engine is constructed of two basic sections consisting of a detonation wave generator section and a condensed detonation reaction section.

  13. Polymerase chain reaction

    SciTech Connect

    Arnhelm, N. ); Levenson, C.H. )

    1990-10-01

    This paper discusses the polymerase chain reaction (PCR) an in-vitro method of amplifying DNA sequences. Beginning with DNA of any origin- bacterial, viral, plant, or animal- PCR can increase the amount of a DNA sequence hundreds of millions to billions of times. The procedure can amplify a targeted sequence even when it makes up less than one part in a million of the total initial sample. PCR is an enzymatic process that is carried out in discrete cycles of amplification, each of which can double the amount of target DNA in the sample. Thus, n cycles can produce 2{sup n} times as much target as was present to begin with. This paper discusses how PCR has had an impact on molecular biology, human genetics, infectious and genetic disease diagnosis, forensic science, and evolutionary biology.

  14. ISMP Adverse Drug Reactions

    PubMed Central

    2013-01-01

    The purpose of this feature is to heighten awareness of specific adverse drug reactions (ADRs), discuss methods of prevention, and promote reporting of ADRs to the US Food and Drug Administration’s (FDA’s) MedWatch program (800-FDA-1088). If you have reported an interesting, preventable ADR to MedWatch, please consider sharing the account with our readers. Write to Dr. Mancano at ISMP, 200 Lakeside Drive, Suite 200, Horsham, PA 19044 (phone: 215-707-4936; e-mail: mmancano@temple.edu). Your report will be published anonymously unless otherwise requested. This feature is provided by the Institute for Safe Medication Practices (ISMP) in cooperation with the FDA’s MedWatch program and Temple University School of Pharmacy. ISMP is an FDA MedWatch partner. PMID:24421544

  15. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  16. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    NASA Astrophysics Data System (ADS)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  17. Crystal structures of the four new quaternary copper(I)-selenides A0.5CuZrSe3 and ACuYSe3(A=Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Maier, Stefan; Prakash, Jai; Berthebaud, David; Perez, Olivier; Bobev, Svilen; Gascoin, Franck

    2016-10-01

    The four new quaternary copper(I)-selenides, Sr0.5CuZrSe3 (a=3.8386(7), b=14.197(2), c=10.1577(17) Å), Ba0.5CuZrSe3 (a=3.8386(7), b=14.196(2), c=10.1577(17) Å), SrCuYSe3 (a=10.620(2), b=4.1000(8), c=13.540(3) Å) and BaCuYSe3 (a=4.1800(7), b=13.940(2), c=10.6200(17) Å) were synthesized by high-temperature solid state reactions and their crystal structures were determined using single-crystal X-ray diffraction. A0.5CuZrSe3 (A= Sr, Ba) and BaCuYSe3 crystallize in the KCuZrS3 structure type (Cmcm), while SrCuYSe3 is isostructural to Eu2CuS3 (Pnma). All compounds form layered structures in which the charge of the - ∞ 2[CuZrSe3 and 2 - ∞ 2[CuYSe3 ] layers as well as the site occupancy of the A cations depend on the transition metal. Combining the alkaline earth metals Sr and Ba with tetravalent Zr leads to the formation of cation vacancies between the - ∞ 2[CuZrSe3 ] layers and structure type as well as symmetry are determined by the ratio between the cation and transition metal ionic radii r(A2+)/r(M3+/4+).

  18. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  19. Rapid biocatalytic polytransesterification: Reaction kinetics in an exothermic reaction

    SciTech Connect

    Chaudhary, A.K.; Beckman, E.J.; Russell, A.J.

    1998-08-20

    Biocatalytic polytransesterification at high concentrations of monomers proceeds rapidly and is accompanied by an increase in the temperature of the reaction mixture due to liberation of heat of reaction during the initial phase. The authors have used principles of reaction calorimetry to monitor the kinetics of polymerization during this initial phase, thus relating the temperature to the extent of polymerization. Rate of polymerization increases with the concentration of monomers. This is also reflected by the increase in the temperature of the reaction mixture. Using time-temperature-conversion contours, a differential method of kinetic analysis was used to calculate the energy of activation ({approximately} 15.1 Kcal/mol).

  20. Linear and non-linear frequency domain techniques for processing impact echo signals to evaluate distributed damage in concrete

    NASA Astrophysics Data System (ADS)

    McMorris, Nicolas

    The condition evaluation of in-situ concrete with non-destructive testing is difficult at best. The concrete deterioration processes of alkali-silica reaction (ASR), delayed ettringite formation (DEF) and freeze-thaw cycles all produce distributed damage in the form of micro-cracking which results in loss of strength or stiffness. Presently, a suitable field applicable method for determining the degree of microcracking does not exist. The impact echo test is potentially the best candidate if improvements can be made in the signal processing techniques which are crucial for accurately interpreting the data retrieved from concrete with distributed damage. In this research, two batches of concrete specimens were prepared in accordance with standard procedures. A portion of each batch was subjected to either the Modified Duggan cycle or to Freeze Thaw cycles, both proven methods of inducing DEF and micro-cracking respectively. Curing techniques and materials were also chosen to accelerate distributed damage in the concrete specimens. In addition to the impact echo, a number of secondary tests were employed to monitor the progress of distributed damage in the concrete specimens. Previous research efforts utilizing the impact echo method have attempted to characterize damage in terms of P-wave attenuation or pulse velocity. This involves signal processing in the time domain. These are inherently linear dynamics methods whereas the development of micro-cracks in concrete, an inhomogeneous material, gives rise to non-linear dynamics. Non-linear approaches to signal processing in the frequency domain are proposed herein. One involves calculating the deviation of the peak of the response spectrum from the shape of an ideal Lorentzian function model. The other calculates the second order non-linear harmonic coefficient. The results showed that the potassium content, the curing methods and the Duggan and Freeze Thaw cycles had the desired effect of inducing distributed damage

  1. Performance of concrete incorporating colloidal nano-silica

    NASA Astrophysics Data System (ADS)

    Zeidan, Mohamed Sabry

    Nanotechnology, as one of the most modern fields of science, has great market potential and economic impact. The need for research in the field of nanotechnology is continuously on the rise. During the last few decades, nanotechnology was developing rapidly into many fields of applied sciences, engineering and industrial applications, especially through studies of physics, chemistry, medicine and fundamental material science. These new developments may be attributed to the fact that material properties and performance can be significantly improved and controlled through nano-scale processes and nano-structures. This research program aims at 1) further understanding the behavior of cementitious materials when amended on the nano-scale level and 2) exploring the effect of this enhancement on the microstructure of cement matrix. This study may be considered as an important step towards better understanding the use of nano-silica in concrete. The main goal of the study is to investigate the effect of using colloidal nano-silica on properties of concrete, including mechanical properties, durability, transport properties, and microstructure. The experimental program that was conducted included a laboratory investigation of concrete mixtures in which nano-silica was added to cement or to a combination of cement and Class F fly ash. Various ratios of nano-silica were used in concrete mixtures to examine the extent and types of improvements that could be imparted to concrete. The conducted experimental program assessed these improvements in terms of reactivity, mechanical properties, and durability of the mixtures under investigation. Advanced testing techniques---including mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)---were used to investigate the effect of nano-silica on the microstructure of the tested mixtures. In addition, the effect of nano-silica on the alkali-silica reaction (ASR) was examined using various techniques, including testing

  2. Lithium cell reactions

    NASA Astrophysics Data System (ADS)

    Clark, W.; Dampier, F.; Lombardi, A.; Cole, T.

    1983-12-01

    The objectives of this program were: (1) investigate reactions occurring in the Li/SOCl2 cell for a range of specified test conditions and (2) perform detailed analyses for impurities present in cell components, assess the impact of each impurity on cell performance and safety and recommend concentration limits for detrimental impurities. The products of the reduction of SOCl2 were investigated using linear sweep voltammetry (LSV) and constant current coulometry in dimethylformamide (DMF) supporting electrolyte. Voltammetric analysis after 50 to 100% of the SOCl2 had been reduced on platinum or glassy carbon cathodes showed no signs of significant quantities of unstable intermediates with lifetimes from 0.1 to 48 hours. Quantitative infrared spectroscopy demonstrated that substantial amounts of SO2 are absorbed on Shawinigan carbon from 1.8M LiAlCl4/SOCl2-SO solutions. Chemical analyses of the reagents and cell components used in Li/SOCl2 cell construction were carried out as well as cell discharge tests to determine the impact of key impurities on cell performance.

  3. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  4. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  5. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  6. Primary structural response in tryptophan residues of Anabaena sensory rhodopsin to photochromic reactions of the retinal chromophore

    NASA Astrophysics Data System (ADS)

    Inada, Seisuke; Mizuno, Misao; Kato, Yoshitaka; Kawanabe, Akira; Kandori, Hideki; Wei, Zhengrong; Takeuchi, Satoshi; Tahara, Tahei; Mizutani, Yasuhisa

    2013-06-01

    Anabaena sensory rhodopsin (ASR) is a microbial rhodopsin found in eubacteria and functions as a photosensor. The photoreaction of ASR is photochromic between all-trans, 15-anti (ASRAT), and 13-cis, 15-syn (ASR13C) isomers. To understand primary protein dynamics in the photoreaction starting in ASRAT and ASR13C, picosecond time-resolved ultraviolet resonance Raman spectra were obtained. In the intermediate state appearing in the picosecond temporal region, spectral changes of Trp bands were observed. For both ASRAT and ASR13C, the intensities of the Trp bands were bleached within the instrumental response time and recovered with a time constant of 30 ps. This suggests that the rates of structural changes in the Trp residue in the vicinity of the chromophore do not depend on the direction of the isomerization of retinal. A comparison between spectra of the wild-type and Trp mutants indicates that the structures of Trp76 and Trp46 change upon the primary photoreaction of retinal.

  7. Characterising Complex Enzyme Reaction Data

    PubMed Central

    Rahman, Syed Asad; Thornton, Janet M.

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution. PMID:26840640

  8. Immediate hypersensitivity reaction with mango.

    PubMed

    Shah, Ashok; Gera, Kamal

    2014-01-01

    Hypersensitivity to the fruit mango is extremely rare and can exhibit either as immediate or delayed reactions. Since 1939, only 22 patients (10 with immediate type I reactions and 12 with delayed) have been documented with allergy to mango. History of atopy and geographical region may influence the type of reaction. Immediate reactions occurred most often in patients with history of atopy, while delayed reactions developed in non-atopic individuals. Clustering of delayed hypersensitivity reports from Australia and immediate reactions from Europe has been documented. We report a 50-year-old man with immediate type I hypersensitivity to mango, who developed cough, wheezing dyspnoea, generalised itching and abdominal discomfort after ingestion of mango. Life threatening event can also happen making it imperative to diagnose on time, so as to prevent significant morbidity and potential mortality. PMID:25133813

  9. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  10. Characterising Complex Enzyme Reaction Data.

    PubMed

    Dönertaş, Handan Melike; Martínez Cuesta, Sergio; Rahman, Syed Asad; Thornton, Janet M

    2016-01-01

    The relationship between enzyme-catalysed reactions and the Enzyme Commission (EC) number, the widely accepted classification scheme used to characterise enzyme activity, is complex and with the rapid increase in our knowledge of the reactions catalysed by enzymes needs revisiting. We present a manual and computational analysis to investigate this complexity and found that almost one-third of all known EC numbers are linked to more than one reaction in the secondary reaction databases (e.g., KEGG). Although this complexity is often resolved by defining generic, alternative and partial reactions, we have also found individual EC numbers with more than one reaction catalysing different types of bond changes. This analysis adds a new dimension to our understanding of enzyme function and might be useful for the accurate annotation of the function of enzymes and to study the changes in enzyme function during evolution.

  11. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  12. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  13. Pharmacogenomics of adverse drug reactions

    PubMed Central

    2013-01-01

    Considerable progress has been made in identifying genetic risk factors for idiosyncratic adverse drug reactions in the past 30 years. These reactions can affect various tissues and organs, including liver, skin, muscle and heart, in a drug-dependent manner. Using both candidate gene and genome-wide association studies, various genes that make contributions of varying extents to each of these forms of reactions have been identified. Many of the associations identified for reactions affecting the liver and skin involve human leukocyte antigen (HLA) genes and for reactions relating to the drugs abacavir and carbamazepine, HLA genotyping is now in routine use prior to drug prescription. Other HLA associations are not sufficiently specific for translation but are still of interest in relation to underlying mechanisms for the reactions. Progress on non-HLA genes affecting adverse drug reactions has been less, but some important associations, such as those of SLCO1B1 and statin myopathy, KCNE1 and drug-induced QT prolongation and NAT2 and isoniazid-induced liver injury, are considered. Future prospects for identification of additional genetic risk factors for the various adverse drug reactions are discussed. PMID:23360680

  14. Momentum distributions in breakup reactions

    SciTech Connect

    Esbensen, H.

    1996-02-01

    Measurements of the breakup reactions: {sup 11}Be {yields} {sup 10}Be+n and{sup 8} {yields} {sup 7}Be+p are analyzed in a single-particle description. The signature of various structure properties associated with the valence nucleon axe discussed, as well as the significance of the different reaction mechanisms, namely Coulomb dissociation, stripping and nuclear induced diffraction.

  15. Entropy Effects in Chelation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1984-01-01

    The entropy change for a reaction in aqueous solution can be evaluated as a combination of entropy factors. Valuable insight or understanding can be obtained from a detailed examination of these factors. Several entropy effects of inorganic chemical reactions are discussed as examples. (Author/JN)

  16. The Variance Reaction Time Model

    ERIC Educational Resources Information Center

    Sikstrom, Sverker

    2004-01-01

    The variance reaction time model (VRTM) is proposed to account for various recognition data on reaction time, the mirror effect, receiver-operating-characteristic (ROC) curves, etc. The model is based on simple and plausible assumptions within a neural network: VRTM is a two layer neural network where one layer represents items and one layer…

  17. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  18. Allergic reactions to insect secretions.

    PubMed

    Pecquet, Catherine

    2013-01-01

    Some products derived from insects can induce allergic reactions. The main characteristics of some products from honeybees, cochineal and silkworms are summarised here. We review allergic reactions from honey-derived products (propolis, wax, royal jelly), from cochineal products (shellac and carmine) and from silk : clinical features, allergological investigations and allergens if they are known.

  19. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  20. Chemistry of heavy ion reactions

    SciTech Connect

    Hoffman, D.C.

    1988-10-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  1. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  2. Statistical Factors in Complexation Reactions.

    ERIC Educational Resources Information Center

    Chung, Chung-Sun

    1985-01-01

    Four cases which illustrate statistical factors in complexation reactions (where two of the reactants are monodentate ligands) are presented. Included are tables showing statistical factors for the reactions of: (1) square-planar complexes; (2) tetrahedral complexes; and (3) octahedral complexes. (JN)

  3. Fundamental reaction pathways during coprocessing

    SciTech Connect

    Stock, L.M.; Gatsis, J.G.

    1992-12-01

    The objective of this research was to investigate the fundamental reaction pathways in coal petroleum residuum coprocessing. Once the reaction pathways are defined, further efforts can be directed at improving those aspects of the chemistry of coprocessing that are responsible for the desired results such as high oil yields, low dihydrogen consumption, and mild reaction conditions. We decided to carry out this investigation by looking at four basic aspects of coprocessing: (1) the effect of fossil fuel materials on promoting reactions essential to coprocessing such as hydrogen atom transfer, carbon-carbon bond scission, and hydrodemethylation; (2) the effect of varied mild conditions on the coprocessing reactions; (3) determination of dihydrogen uptake and utilization under severe conditions as a function of the coal or petroleum residuum employed; and (4) the effect of varied dihydrogen pressure, temperature, and residence time on the uptake and utilization of dihydrogen and on the distribution of the coprocessed products. Accomplishments are described.

  4. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive.

  5. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive. PMID:15688222

  6. Enzymatic reactions in confined environments

    NASA Astrophysics Data System (ADS)

    Küchler, Andreas; Yoshimoto, Makoto; Luginbühl, Sandra; Mavelli, Fabio; Walde, Peter

    2016-05-01

    Within each biological cell, surface- and volume-confined enzymes control a highly complex network of chemical reactions. These reactions are efficient, timely, and spatially defined. Efforts to transfer such appealing features to in vitro systems have led to several successful examples of chemical reactions catalysed by isolated and immobilized enzymes. In most cases, these enzymes are either bound or adsorbed to an insoluble support, physically trapped in a macromolecular network, or encapsulated within compartments. Advanced applications of enzymatic cascade reactions with immobilized enzymes include enzymatic fuel cells and enzymatic nanoreactors, both for in vitro and possible in vivo applications. In this Review, we discuss some of the general principles of enzymatic reactions confined on surfaces, at interfaces, and inside small volumes. We also highlight the similarities and differences between the in vivo and in vitro cases and attempt to critically evaluate some of the necessary future steps to improve our fundamental understanding of these systems.

  7. Effective reaction rates for diffusion-limited reaction cycles.

    PubMed

    Nałęcz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miękisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  8. Effective reaction rates for diffusion-limited reaction cycles

    NASA Astrophysics Data System (ADS)

    Nałecz-Jawecki, Paweł; Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%.

  9. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  10. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  11. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  12. Drug hypersensitivity reactions involving skin.

    PubMed

    Hausmann, Oliver; Schnyder, Benno; Pichler, Werner J

    2010-01-01

    Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit

  13. [Food hypersensibility: inhalation reactions are different from ingestion reactions].

    PubMed

    Baranes, T; Bidat, E

    2008-06-01

    Eight children, aged from 3 to 9 years, presented to inhaled peanut an immediate allergic reaction. All were sensitized to peanut but none had already ingested it overtly. A strict avoidance diet was prescribed concerning this food allergen. An oral provocation challenge was realized to determine the eliciting dose (ED) to ingestion. The ED was high enough to allow all the children a less restrictive diet. Inhaled allergic reaction to peanut does not always justify a strict avoidance diet.

  14. [Food hypersensibility: inhalation reactions are different from ingestion reactions].

    PubMed

    Baranes, T; Bidat, E

    2008-06-01

    Eight children, aged from 3 to 9 years, presented to inhaled peanut an immediate allergic reaction. All were sensitized to peanut but none had already ingested it overtly. A strict avoidance diet was prescribed concerning this food allergen. An oral provocation challenge was realized to determine the eliciting dose (ED) to ingestion. The ED was high enough to allow all the children a less restrictive diet. Inhaled allergic reaction to peanut does not always justify a strict avoidance diet. PMID:18456474

  15. Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions

    SciTech Connect

    Regan, P. H.; Jones, G. A.; Podolyak, Zs.; Abdullah, M.; Gelletly, W.; Langdown, S. D.; Wollel, G.; De Angelis, G.; Gadea, A.; Kroell, Th.; Marginean, N.; Martinez, T.; Napoli, D. R.; Rusu, C.; Tonev, D.; Zhang, Y. H.; Ur, C. A.; Axiotis, M.; Bazzacco, D.; Farnea, E.

    2006-08-14

    This contribution reports on the results of an experiment to study the near-yrast states in selenium- and osmium-like nuclei, following their population in thick-target, multinucleon transfer reactions between an 82Se beam and a 192Os target. The experimental results for the level scheme for 84Se are presented together with investigations into the use of multi-dimensional gamma-ray energy gating to investigate angular momentum population in such heavy-ion binary reactions.

  16. Secondary decomposition reactions in nitramines

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    Thermal decomposition of nitramines is known to proceed via multiple, competing reaction branches, some of which are triggered by secondary reactions between initial decomposition products and unreacted nitramine molecules. Better mechanistic understanding of these secondary reactions is needed to enable extrapolations of measured rates to higher temperatures and pressures relevant to shock ignition. I will present density functional theory (DFT) based simulations of nitramines that aim to re-evaluate known elementary mechanisms and seek alternative pathways in the gas and condensed phases. This work was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

  17. Hypersensitivity reactions to biologic agents.

    PubMed

    Vultaggio, Alessandra; Castells, Mariana C

    2014-08-01

    Biologic agents (BAs) are important therapeutic tools; their use has rapidly expanded and they are used in oncology, immunology, and inflammatory diseases. Their use may be limited, however, by adverse drug reactions. This article reviews the current literature on clinical presentation and pathogenic mechanisms of both acute and delayed reactions. In addition, procedures for management of BA-induced reactions, including preventive and diagnostic work-up, are provided. Lastly, this article summarizes the current knowledge of desensitization to several widely used monoclonal antibodies.

  18. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  19. Sympathetic reaction tests and analyses

    NASA Technical Reports Server (NTRS)

    Ricardson, D. E.; Bowman, A. L.

    1980-01-01

    The critical separation distances for explosive reactions of a solid rocket propellant were measured. Explosive reactions included low order explosion, low order detonation, and high order detonation. The effects of sample size, shape, damage and temperature on sympathetic reaction were determined experimentally. The sympathetic detonation of small cubes of solid rocket propellant was modelled numerically, using the Eulerian reactive hydrodynamic code 2DE with Forest Fire burn rates. The model was applied to cubes of 2.54 - 7.62 cm (1 - 3 in.), with agreement between calculated and experimental results.

  20. Nuclear reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Shyam, Radhey

    2016-05-01

    In the domain of Nuclear reactions at intermediate energies, the QCD coupling constant αs is large enough (~ 0.3 - 0.5) to render the perturbative calculational techniques inapplicable. In this regime the quarks are confined into colorless hadrons and it is expected that effective field theories of hadron interactions via exchange of hadrons, provide useful tools to describe such reactions. In this contribution we discuss the application of one such theory, the effective Lagrangian model, in describing the hadronic reactions at intermediate energies whose measurements are the focus of a vast international experimental program.

  1. Magnetically suspended reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    Stocking, G.

    1984-01-01

    The magnetically suspended reaction wheel assembly (MSRWA) is the product of a development effort funded by the Air Force Materials Laboratory (AFML) at Wright Patterson AFB. The specific objective of the project was to establish the manufacturing processes for samarium cobalt magnets and demonstrate their use in a space application. The development was successful on both counts. The application portion of the program, which involves the magnetically suspended reaction wheel assembly, is emphasized. The requirements for the reaction wheel were based on the bias wheel requirements of the DSP satellite. The tasks included the design, fabrication, and test of the unit to the DSP program qualification requirements.

  2. Grignard Reactions in "Wet" Ether

    NASA Astrophysics Data System (ADS)

    Smith, David H.

    1999-10-01

    A small laboratory ultrasonic bath can be used to initiate the Grignard reaction of alkyl or aryl bromides in regular laboratory-quality, undried, diethyl ether and in simple undried test tubes. The reaction typically starts within 30 to 45 seconds and is self-sustaining. Yields and products are the same as obtained with carefully dried ether and equipment. We normally run this reaction at the 1.5-gram scale, but the procedure can be scaled up to at least 10 g of the bromide.

  3. Coarctate cyclization reactions: a primer.

    PubMed

    Young, Brian S; Herges, Rainer; Haley, Michael M

    2012-10-01

    The cleavage of five-membered heterocycles possessing an exocyclic carbene or nitrene to form conjugated ene-ene-yne systems has been documented for over 40 years; however, the reverse reaction, using a conjugated "ene-ene-yne" precursor to form a heterocycle is a relatively new approach. Over the past decade, the Haley and Herges groups have studied computationally and experimentally the cyclization of the "hetero-ene-ene-yne" motif via an unusual class of concerted reactions known as coarctate reactions. This feature article details our synthetic and mechanistic work involving triazene-arene-alkynes and structurally-related systems to generate heterocycles using coarctate chemistry.

  4. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    PubMed

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc.

  5. Color Changes Mark Polymer Reactions.

    ERIC Educational Resources Information Center

    Krieger, James H.

    1980-01-01

    Describes how polydiacetylenes can be used as educational aids. These polymers have conjugated backbones, which cause changes in color when the polydiacetylenes undergo various chemical and physical processes. Diagrams summarize all chemical reactions and their associated color changes. (CS)

  6. Method for conducting exothermic reactions

    DOEpatents

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  7. Method for conducting exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  8. Severe hypersensitivity reaction to minocycline.

    PubMed

    de Paz, S; Pérez, A; Gómez, M; Trampal, A; Domínguez Lázaro, A

    1999-01-01

    Minocycline is a tetracycline derivative mainly used in the treatment of acne vulgaris in young persons. Adverse events have been reported with minocycline, although it can be considered a safe drug. We report a case of severe hypersensitivity reaction to minocycline in a young patient. Laboratory examinations, chest X-ray, skin test and skin biopsy were performed. Oral challenge test with minocycline was not carried out as it can be hazardous. A case of severe reaction to minocycline is described in this article. The clinical and laboratory findings may be helpful in diagnosing similar reactions for which the immunological mechanisms are unknown. Moreover, this type of reaction must be recognized early due to the potential fatal outcome.

  9. Reaction to Global Change Budget

    NASA Astrophysics Data System (ADS)

    Jones, R.

    A recent hearing of the Subcommittee on Veterans Administration/Department of Housing and Urban Development and Independent Agencies of the Senate Committee on Appropriations provided an early glimpse of congressional reaction to the administration's global change research budget.

  10. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  11. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  12. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  13. Medications and Drug Allergic Reactions

    MedlinePlus

    ... Drug Guide Conditions Dictionary Just for Kids Library School Tools Videos Virtual Allergist Education & Training Careers in ... reaction to a medication. These include: genetics, body chemistry, frequent drug exposure or the presence of an ...

  14. Radiative capture reactions in astrophysics

    SciTech Connect

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  15. [Belated recurrence of anaphylactic reaction].

    PubMed

    Schelske, Christa

    2012-01-30

    Anaphylaxis is a serious allergic reaction, and the incidence is increasing. A biphasic anaphylactic reaction with recurrent symptoms after a long period without any symptoms is described. Guidelines recommend adrenalin as first line treatment, but some patients are only treated with glucocorticoids and antihistamines. The importance of correct treatment with adrenalin, instructions in correct self administration with adrenalin after admission, and examination for allergies is underlined.

  16. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  17. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  18. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate.

  19. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  20. Fluid-bed reaction process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-05-29

    This patent describes a process for the conversion of hydrocarbons. It comprises: fluidizing a finely divided dehydrogenation catalyst in a dehydrogenation reaction zone; withdrawing spent dehydrogenation catalyst from the dehydrogenation reaction zone; contacting an aliphatic feedstream with the spent dehydrogenation catalyst in a preheat zone to preheat the aliphatic feedstream and to convert at least a portion of the coke precursors in the aliphatic feedstream to coke; and depositing the coke on the spent dehydrogenation catalyst in the preheat zone.

  1. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  2. Expert system for predicting reaction conditions: the Michael reaction case.

    PubMed

    Marcou, G; Aires de Sousa, J; Latino, D A R S; de Luca, A; Horvath, D; Rietsch, V; Varnek, A

    2015-02-23

    A generic chemical transformation may often be achieved under various synthetic conditions. However, for any specific reagents, only one or a few among the reported synthetic protocols may be successful. For example, Michael β-addition reactions may proceed under different choices of solvent (e.g., hydrophobic, aprotic polar, protic) and catalyst (e.g., Brønsted acid, Lewis acid, Lewis base, etc.). Chemoinformatics methods could be efficiently used to establish a relationship between the reagent structures and the required reaction conditions, which would allow synthetic chemists to waste less time and resources in trying out various protocols in search for the appropriate one. In order to address this problem, a number of 2-classes classification models have been built on a set of 198 Michael reactions retrieved from literature. Trained models discriminate between processes that are compatible and respectively processes not feasible under a specific reaction condition option (feasible or not with a Lewis acid catalyst, feasible or not in hydrophobic solvent, etc.). Eight distinct models were built to decide the compatibility of a Michael addition process with each considered reaction condition option, while a ninth model was aimed to predict whether the assumed Michael addition is feasible at all. Different machine-learning methods (Support Vector Machine, Naive Bayes, and Random Forest) in combination with different types of descriptors (ISIDA fragments issued from Condensed Graphs of Reactions, MOLMAP, Electronic Effect Descriptors, and Chemistry Development Kit computed descriptors) have been used. Models have good predictive performance in 3-fold cross-validation done three times: balanced accuracy varies from 0.7 to 1. Developed models are available for the users at http://infochim.u-strasbg.fr/webserv/VSEngine.html . Eventually, these were challenged to predict feasibility conditions for ∼50 novel Michael reactions from the eNovalys database (originally

  3. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  4. Organic synthesis by quench reactions.

    PubMed

    Park, W K; Hochstim, A R

    1975-01-01

    The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.

  5. Kinetics of actinide complexation reactions

    SciTech Connect

    Nash, K.L.; Sullivan, J.C.

    1997-09-01

    Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

  6. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  7. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  8. Reaction rates for a generalized reaction-diffusion master equation

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  9. Reaction rates for mesoscopic reaction-diffusion kinetics

    NASA Astrophysics Data System (ADS)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  10. Reaction rates for mesoscopic reaction-diffusion kinetics.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  11. Concordant chemical reaction networks and the Species-Reaction Graph.

    PubMed

    Shinar, Guy; Feinberg, Martin

    2013-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network's Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams.

  12. Reaction rates for a generalized reaction-diffusion master equation.

    PubMed

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach, in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is of the order of the reaction radius of a reacting pair of molecules.

  13. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.

    PubMed

    Amano, Tatsuo; Ochi, Noriaki; Sato, Hirofumi; Sakaki, Shigeyoshi

    2007-07-01

    The oxidation process by molybdenum-containing enzyme, xanthine oxidase, is theoretically studied with a model complex representing the reaction center and a typical benchmark substrate, formamide. Comparisons were systematically made among reaction mechanisms proposed previously. In the concerted and stepwise mechanisms that were theoretically discussed previously, the oxidation reaction takes place with a moderate activation barrier. However, the product is less stable than the reactant complex, which indicates that these mechanisms are unlikely. Moreover, the product of the concerted mechanism is not consistent with the isotope experimental result. In addition to those mechanisms, another mechanism initiated by the deprotonation of the active site was newly investigated here. In the transition state of this reaction, the carbon atom of formamide interacts with the oxo ligand of the Mo center and the hydrogen atom is moving from the carbon atom to the thioxo ligand. This reaction takes place with a moderate activation barrier and considerably large exothermicity. Furthermore, the product by this mechanism is consistent with the isotope experimental result. Also, our computations clearly show that the deprotonation of the active site occurs with considerable exothermicity in the presence of glutamic acid and substrate. The intermediate of the stepwise mechanism could not be optimized in the case of the deprotonated active site. From all these results, it should be concluded that the one-step mechanism with the deprotonated active site is the most plausible.

  14. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  15. Study of char gasification reactions

    SciTech Connect

    Ballal, G.D.

    1986-01-01

    A Texas lignite, an anthracite and two bituminous coals, Pittsburgh number8 and Illinois number6, were pyrolyzed in a nitrogen atmosphere to prepare chars. Optical microscopy, mercury porosimetry and gas adsorption techniques using nitrogen, CO/sub 2/ and CO, were employed for pore structure characterization. The lignite char exhibited the fastest rates of gaseous diffusion, followed in order of decreasing diffusivities by the Illinois number6, Pittsburgh number8 and anthracite chars. The changes in reactivities and pore structures of chars were measured experimentally during their reaction with oxygen (400-550C) and CO/sub 2/ (800-1000C). For a particular char-gas system, the normalized rate-conversion pattern was invariant with respect to temperature and gaseous concentration. In the case of lignite and Pittsburgh number8 chars, the rate-conversion pattern was similar during reaction with oxygen and CO/sub 2/. Adsorption experiments on partially reacted chars indicated that the micropores in the lignite char were accessible to both reactants. The micropores in the Illinois number6 char were, however, not accessible during its reaction with oxygen. The evolution of pore structure during reaction was modeled by using a probabilistic approach which accounts for overlapping pores with different shapes and sizes. The kinetics of gasification of the lignite and the Pittsburgh number8 chars was studied using a Langmuir-Hinshelwood type kinetic expression to correlate the experimental data. CO was found to inhibit the reaction substantially. The effect of a potassium carbonate catalyst on the reaction of these two chars was also investigated. Substantial increases in reaction rates were observed, and the enhancement was approximately proportional to the catalyst loading.

  16. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  17. Nonlocality in deuteron stripping reactions.

    PubMed

    Timofeyuk, N K; Johnson, R C

    2013-03-15

    We propose a new method for the analysis of deuteron stripping reactions, A(d,p)B, in which the nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by ∼40  MeV from the "E(d)/2" value frequently used in the analysis of experimental data, where E(d) is the incident deuteron energy. The "E(d)/2" rule lies at the heart of all three-body analyses of (d, p) reactions performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and proton in the incident deuteron in those components of the n+p+A wave function that dominate the (d, p) reaction amplitude. The large shift reduces the effective d-A potentials and leads to a change in predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear structure. PMID:25166525

  18. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  19. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion. PMID:26193994

  20. Radiation reaction in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-02-01

    Since the development of the radiating electron theory by P. A. M. Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model, called the "radiation reaction". Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a stabilized model of the radiation reaction in quantum vacuum [K. Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014)]. It led us to an updated Fletcher-Millikan charge-to-mass ratio including radiation. In this paper, I will discuss the generalization of our previous model and the new equation of motion with the radiation reaction in quantum vacuum via photon-photon scatterings and also introduce the new tensor d{E}^{μ ν α β }/dm, as the anisotropy of the charge-to-mass ratio.

  1. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  2. [Vital reactions in Pacchioni granulations].

    PubMed

    Földes, V; Mojzes, L; Antal, A

    1987-01-01

    By means of histological methods the authors examined the blood and fluid circulatory disturbances associated with cranial and cerebral injuries. The presence of vital reactions was studied by means of the combined histological study of the dura mater, pacchionian granulations and the central nervous system. Samples for histological study were taken from 115 cadavers who had suffered cranial injuries, from 15 individuals who died from destructive cerebral apoplexy caused by a disease and from 30 individuals who died of natural causes. The authors applied a special fixation and sampling technique and, using various histological reactions, the following vital reactions were observed: the appearance of blood-cell elements in the granulation, a moderate fibrin degradation product and hemoglobin phagocytosis, and occasionally lipid phagocytosis. The authors worked out a method that was shown to be highly effective in the more precise determination of the induction time of cerebral apoplexy caused by a disease and that of traumatic injury of the brain.

  3. Photonuclear reactions on titanium isotopes

    SciTech Connect

    Belyshev, S. S.; Dzhilavyan, L. Z.; Ishkhanov, B. S.; Kapitonov, I. M.; Kuznetsov, A. A. Orlin, V. N.; Stopani, K. A.

    2015-03-15

    The photodisintegration of titanium isotopes in the giant-dipole-resonance energy region is studied by the photon-activation method. Bremsstrahlung photons whose spectrum has the endpoint energy of 55 MeV is used. The yields and integrated cross sections are determined for photoproton reactions on the titanium isotopes {sup 47,48,49,50}Ti. The respective experimental results are compared with their counterparts calculated on the basis of the TALYS code and a combined photonucleon-reaction model. The TALYS code disregards the isospin structure of the giant dipole resonance and is therefore unable to describe the yield of photoproton reactions on the heavy titanium isotopes {sup 49,50}Ti.

  4. Light-induced click reactions.

    PubMed

    Tasdelen, Mehmet Atilla; Yagci, Yusuf

    2013-06-01

    Spatial and temporal control over chemical and biological processes, both in terms of "tuning" products and providing site-specific control, is one of the most exciting and rapidly developing areas of modern science. For synthetic chemists, the challenge is to discover and develop selective and efficient reactions capable of generating useful molecules in a variety of matrices. In recent studies, light has been recognized as a valuable method for determining where, when, and to what extent a process is started or stopped. Accordingly, this Minireview will present the fundamental aspects of light-induced click reactions, highlight the applications of these reactions to diverse fields of study, and discuss the potential for this methodology to be applied to the study of biomolecular systems.

  5. Reaction models in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Descouvemont, Pierre

    2016-05-01

    We present different reaction models commonly used in nuclear astrophysics, in particular for the nucleosynthesis of light elements. Pioneering works were performed within the potential model, where the internal structure of the colliding nuclei is completely ignored. Significant advances in microscopic cluster models provided the first microscopic description of the 3He(α,&gamma)7 Be reaction more than thirty years ago. In this approach, the calculations are based on an effective nucleon-nucleon interaction, but the cluster approximation should be made to simplify the calculations. Nowadays, modern microscopic calculations are able to go beyond the cluster approximation, and aim at finding exact solutions of the Schrödinger equation with realistic nucleon-nucleon interactions. We discuss recent examples on the d+d reactions at low energies.

  6. Spatial model of autocatalytic reactions

    NASA Astrophysics Data System (ADS)

    de Anna, Pietro; di Patti, Francesca; Fanelli, Duccio; McKane, Alan J.; Dauxois, Thierry

    2010-05-01

    Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles—membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for prebiotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations even when the number of constituents is quite large. These oscillations are spatiotemporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.

  7. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  8. Light in elementary biological reactions

    NASA Astrophysics Data System (ADS)

    Sundström, Villy

    2000-09-01

    Light plays an important role in biology. In this review we discuss several processes and systems where light triggers a biological response, i.e. photosynthesis, vision, photoreceptors. For these functions Nature has chosen simple elementary chemical reactions, which occur in highly specialized and organized structures. The high efficiency and specificity of these reactions make them interesting for applications in light energy conversion and opto-electronics. In order to emphasize the synergism in studies of natural and synthetic systems we will discuss a few of each kind, with similar functions. In all cases light triggers a rapid sequence of events, which makes ultrafast spectroscopy an ideal tool to disentangle reaction mechanisms and dynamics.

  9. Local reactions from subcutaneous allergen immunotherapy.

    PubMed

    Coop, Christopher A

    2013-12-01

    Local reactions from subcutaneous allergen immunotherapy are very common during the course of immunotherapy. These local reactions are not bothersome to patients. Local reactions from immunotherapy also do not predict future local or systemic reactions. This review discusses the studies that show that local reactions are not predictive of future reactions and that dose adjustments for local reactions from allergen immunotherapy are unnecessary. The article also focuses on factors that lead to patient noncompliance with immunotherapy and evaluates methods to prevent local reactions from subcutaneous allergen immunotherapy. PMID:24283844

  10. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  11. Local reactions from subcutaneous allergen immunotherapy.

    PubMed

    Coop, Christopher A

    2013-12-01

    Local reactions from subcutaneous allergen immunotherapy are very common during the course of immunotherapy. These local reactions are not bothersome to patients. Local reactions from immunotherapy also do not predict future local or systemic reactions. This review discusses the studies that show that local reactions are not predictive of future reactions and that dose adjustments for local reactions from allergen immunotherapy are unnecessary. The article also focuses on factors that lead to patient noncompliance with immunotherapy and evaluates methods to prevent local reactions from subcutaneous allergen immunotherapy.

  12. Coupled Reactions "versus" Connected Reactions: Coupling Concepts with Terms

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos

    2007-01-01

    A hallmark of living matter is its ability to extract and transform energy from the environment. Not surprisingly, biology students are required to take thermodynamics. The necessity of coupling exergonic reactions to endergonic processes is easily grasped by most undergraduate students. However, when addressing the thermodynamic concept of…

  13. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed. PMID:22468596

  14. Microscopic effective reaction theory for direct nuclear reactions

    NASA Astrophysics Data System (ADS)

    Ogata, Kazuyuki; Minomo, Kosho; Toyokawa, Masakazu; Kohno, Michio; Matsumoto, Takuma; Yahiro, Masanobu; Kikuchi, Yuma; Fukui, Tokuro; Yoshida, Kazuki; Mizuyama, Kazuhito

    2016-06-01

    Some recent activities with the microscopic effective reaction theory (MERT) on elastic, inelastic, breakup, transfer, and knockout processes are reviewed briefly. As a possible alternative to MERT, a description of elastic and inelastic scattering with the continuum particle-vibration coupling (cPVC) method is also discussed.

  15. Guidelines for measuring reaction time.

    PubMed

    Crabtree, D A; Antrim, L R

    1988-04-01

    Although reaction time is one of the most common measures of neurological function, protocols often do not take into consideration many of the extraneous factors that may invalidate such assessments. This paper discusses several issues related to matters of instrumentation, subject control, design of assessment, and interpretation. Twenty recommendations are provided as a guideline for those who assess reaction time of clients or patients. While these suggestions are not proposed as definitive or complete, the points should serve as a guide to young researchers as well as a checklist for more seasoned experimenters.

  16. Vision 2020. Reaction Engineering Roadmap

    SciTech Connect

    Klipstein, David H.; Robinson, Sharon

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  17. A photoinduced, benzyne click reaction.

    PubMed

    Gann, Adam W; Amoroso, Jon W; Einck, Vincent J; Rice, Walter P; Chambers, James J; Schnarr, Nathan A

    2014-04-01

    The [3 + 2] cycloaddition of azides and alkynes has proven invaluable across numerous scientific disciplines for imaging, cross-linking, and site-specific labeling among many other applications. We have developed a photoinitiated, benzyne-based [3 + 2] cycloaddition that is tolerant of a variety of functional groups as well as polar, protic solvents. The reaction is complete on the minute time scale using a single equivalent of partner azide, and the benzyne photoprecursor is stable for months under ambient light at room tempurature. Herein we report the optimization and scope of the photoinitiated reaction as well as characterization of the cycloaddition products.

  18. Reaction theory: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Moro, A. M.; Gómez-Camacho, J.

    2016-05-01

    The current status of the reaction theory of nuclear collisions involving weakly-bound exotic nuclei is presented. The problem is addressed within the Continuum Discretized Coupled Channel (CDCC) framework, recalling its foundations and applications, as well as its connection with the Faddeev formalism. Recent developments and improvements of the method, such as core and target excitations and the extension to three-body projectiles, are presented. The use of the CDCC wave function in the calculation of inclusive breakup reactions is also introduced.

  19. Industry's Reactions to the Indochinese.

    ERIC Educational Resources Information Center

    Latkiewicz, John

    Eighty Utah companies currently hiring Indochinese refugees and 73 identified simply as "general employers" took part in a study of employers' reactions to Indochinese refugees as job applicants and as employees. The study used questionnaires and oral interviews directed at personnel managers and supervisors and some language proficiency tests of…

  20. Polarization in Meson Production Reactions

    SciTech Connect

    Knutson, L.D.

    2000-12-31

    A comprehensive formalism for describing polarization observables in meson production reactions is presented. Particular attention is given to the complications that arise when the final state contains three particles. A general formula for the partial wave expansion of the polarization observables is presented, and a number of applications of the formalism are discussed.

  1. Dehydrogenative Diels-Alder reaction.

    PubMed

    Ozawa, Takuya; Kurahashi, Takuya; Matsubara, Seijiro

    2011-10-01

    The dehydrogenative cycloaddition of dieneynes, which possess a diene in the form of a styrene moiety and a dienophile in the form of an alkyne moiety, produces naphthalene derivatives when heated. It was found that a key requirement of this process is the presence of a silyl group attached to the alkyne moiety, which forces a dehydrogenation reaction to occur. PMID:21905638

  2. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or β-tetrahydrofuranylfuran from hexoses with non-cyclic β-keto ester or β-diketones. Other valuable compounds such as β-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic β-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic β-diketones, β-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  3. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  4. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  5. The Pitfalls of Precipitation Reactions.

    ERIC Educational Resources Information Center

    Slade, Peter W.; Rayner-Canham, Geoffrey W.

    1990-01-01

    Described are some of the difficulties presented in these reactions by competing equilibria that are usually ignored. Situations involving acid-base equilibria, solubility product calculations, the use of ammonia as a complexing agent, and semiquantitative comparisons of solubility product values are discussed. (CW)

  6. The Maillard reaction in vivo.

    PubMed

    Dyer, D G; Blackledge, J A; Katz, B M; Hull, C J; Adkisson, H D; Thorpe, S R; Lyons, T J; Baynes, J W

    1991-02-01

    The Maillard or browning reaction between reducing sugars and protein contributes to the chemical deterioration and loss of nutritional value of proteins during food processing and storage. This article presents and discusses evidence that the Maillard reaction is also involved in the chemical aging of long-lived proteins in human tissues. While the concentration of the Amadori adduct of glucose to lens protein and skin collagen is relatively constant with age, products of sequential glycation and oxidation of protein, termed glycoxidation products, accumulate in these long-lived proteins with advancing age and at an accelerated rate in diabetes. Among these products are the chemically modified amino acids, N epsilon-(carboxymethyl)lysine (CML), N epsilon-(carboxymethyl)hydroxylysine (CMhL), and the fluorescent crosslink, pentosidine. While these glycoxidation products are present at only trace levels in tissue proteins, there is strong evidence for the presence of other browning products which remain to be characterized. Mechanisms for detoxifying reactive intermediates in the Maillard reaction and catabolism of extensively browned proteins are also discussed, along with recent approaches for therapeutic modulation of advanced stages of the Maillard reaction. PMID:1858426

  7. Runaway Reaction: Solving for X.

    ERIC Educational Resources Information Center

    Bartz, Solveig A.

    2003-01-01

    This article examines the runaway reaction as it was displayed by Barry, a 14-year-old eighth-grade boy with learning disabilities. It identifies some of the common characteristics of this response and proposes school intervention methods. Functional behavioral assessments and strength-based assessments are encouraged, along with using strategy…

  8. Humanism and science: a reaction.

    PubMed

    Wampold, Bruce E

    2012-12-01

    Authors in this section have noted that humanism is intrinsic to psychotherapy, although disagreements remain. One of the disagreements is about the role of science in humanism. In this reaction, I contend that humanism, as discussed in these articles, is a legitimate theory to be subjected to scientific scrutiny.

  9. Pd-catalyzed steroid reactions.

    PubMed

    Czajkowska-Szczykowska, Dorota; Morzycki, Jacek W; Wojtkielewicz, Agnieszka

    2015-05-01

    We review the most important achievements of the last decade in the field of steroid synthesis in the presence of palladium catalysts. Various palladium-catalyzed cross-coupling reactions, including Heck, Suzuki, Stille, Sonogashira, Negishi and others, are exemplified with steroid transformations.

  10. Ruthenium nanocatalysis on redox reactions.

    PubMed

    Veerakumar, Pitchaimani; Ramdass, Arumugam; Rajagopal, Seenivasan

    2013-07-01

    Nanoparticles have generated intense interest over the past 20 years due to their high potential applications in different areas such as catalysis, sensors, nanoscale electronics, fuel and solar cells and optoelectronics. As the large fractions of metal atoms are exposed to the surface, the use of metal nanoparticles as nanocatalysts allows mild reaction conditions and high catalytic efficiency in a large number of chemical transformations. They have emerged as sustainable heterogeneous catalysts and catalyst supports alternative to conventional materials. This review focuses on the synthesis, characterization and catalytic role of ruthenium nanoparticles (RuNPs) on the redox reactions of heteroatom containing organic compounds with the green reagent H2O2, a field that has attracted immense interest among the chemical, materials and industrial communities. We intend to present a broad overview of Ru nanocatalysts for redox reactions with an emphasis on their performance, stability and reusability. The growth in the chemistry of organic sulfoxides and N-oxides during last decade was due to their importance as synthetic intermediates for the production of a wide range of chemically and biologically active molecules. Thus design of efficient methods for the synthesis of sulfoxides and N-oxides becomes important. This review concentrates on the catalysis of RuNPs on the H2O2 oxidation of organic sulfides to sulfoxides and amines to N-oxides. The deoxygenation reactions of sulfoxides to sulfides and reduction of nitro compounds to amines are fundamental reactions in both chemistry and biology. Here, we also highlight the catalysis of metal nanoparticles on the deoxygenation of sulfoxides and sulfones and reduction of nitro compounds with particular emphasis on the mechanistic aspects.

  11. Reactions of arsine with hemoglobin

    SciTech Connect

    Hatlelid, K.M.; Brailsford, C.; Carter, D.E.

    1996-02-09

    The mechanism of arsine (AsH{sub 3}) induced hemolysis was studied in vitro using isolated red blood cells (RBCs) from the rat or dog. AsH{sub 3}-induced hemolysis of dog red blood cells was completely blocked by carbon monoxide (CO) preincubation and was reduced by pure oxygen (O{sub 2}) compared to incubations in air. Since CO and O{sub 2} bind to heme and also reduced hemolysis, these results suggested a reaction between AsH{sub 3} and hemoglobin in the hemeligand binding pocket or with the heme iron. Further, sodium nitrite induction of methemoglobin (metHb) to 85% and 34% of total Hb in otherwise intact RBCs resulted in 56% and 16% decreases in hemolysis, respectively, after incubation for 4 h. This provided additional evidence for the involvement of hemoglobin in the AsH{sub 3}-induced hemolysis mechanism. Reactions between AsH{sub 3} and hemoglobin were studied in solutions of purified dog hemoglobin. Spectrophotometric studies of the reaction of AsH{sub 3} with various purified hemoglobin species revealed that AsH{sub 3} reacted with HbO{sub 2} to produce metHb and, eventually, degraded Hb characterized by gross precipitation of the protein. AsH{sub 3} did not alter the spectrum of deoxyHb and did not cause degradation of metHb in oxygen, but bound to and reduced metHb in the absence of oxygen. These data indicate that a reaction of AsH{sub 3} with oxygenated hemoglobin, HbO{sub 2}, may lead to hemolysis, but there are reactions between AsH{sub 3} and metHb that may not be directly involved in the hemolytic process. 17 refs., 6 figs.

  12. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  13. Quantum reaction boundary to mediate reactions in laser fields.

    PubMed

    Kawai, Shinnosuke; Komatsuzaki, Tamiki

    2011-01-14

    Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-dependent external field (laser pulse). We utilize the recently developed theories of nonlinear dynamics in the saddle region, and extend them to incorporate both time-dependence of the external field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with any functional form of time dependence are explicitly taken into account. As the theory is based on the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space picture, while no "classical approximation" is involved. We introduce a quantum reactivity operator to extract the reactive part of the system. In a model system with an optimally controlled laser field for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the reactivity operator, is modulated with time by the effect of the laser field, to "catch" the system excited in the reactant region, and then to "release" it into the product region. This method provides new insights in understanding the origin of optimal control of chemical reactions by laser fields.

  14. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872

  15. Finding reaction paths using the potential energy as reaction coordinate

    NASA Astrophysics Data System (ADS)

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-01

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.

  16. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  17. Peanut-induced anaphylactic reactions.

    PubMed

    Burks, W; Bannon, G A; Sicherer, S; Sampson, H A

    1999-07-01

    Food allergies, particularly to peanuts, are a common cause of anaphylaxis. Approximately 125 people die each year in the USA secondary to food-induced anaphylaxis. Clinical anaphylaxis is a syndrome of diverse etiology and dramatic presentation of symptoms associated with the classic features of type I, IgE-mediated hypersensitivity [1]. Typically the term anaphylaxis connotes an immunologically-mediated event that occurs after exposure to certain foreign substances. This reaction results from the generation and release of a variety of potent biologically active mediators and their concerted effects on various target organs. Anaphylaxis is recognized by cutaneous, respiratory, cardiovascular, and gastrointestinal signs and symptoms occurring singly or in combination. This article focuses on allergic reactions to peanuts that manifest as signs and symptoms involving multiple target organs or the cardiovascular system alone.

  18. Water-gas shift reaction

    SciTech Connect

    Newsome, D.S.

    1980-01-01

    Recent kinetic and mechanistic studies of the water-gas shift reaction, H/sub 2/O(g) + CO(g) reversible CO/sub 2/ + H/sub 2/(g), catalyzed by iron and copper catalysts are reviewed. Composition, structure, active sites, preparation methods, additives, and poisons are discussed relative to each catalyst. New water-gas shift reaction catalyst systems studied are Mo-magnesia, Ni - Mo, Co - Mo, sulfided Co - Mo - Cs, sulfided Co - Mo, sulfided Ni - Mo, Co - Mo - Ni with added alkaki, and Co - Mo with added alkali, Cesium carbonate - cesium acetate - potassium carbonate or potassium acetate - Co - Mo is claimed to be an especially active catalyst. These new catalyst systems are sulfur tolerant and hold promise as catalysts for hydrogenation of high-sulfur coals. (BLM)

  19. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  20. Nova reaction rates and experiments

    NASA Astrophysics Data System (ADS)

    Bishop, S.; Herlitzius, C.; Fiehl, J.

    2011-04-01

    Oxygen-neon novae form a subset of classical novae events known to freshly synthesize nuclei up to mass number A≲40. Because several gamma-ray emitters lie in this mass range, these novae are also interesting candidates for gamma-ray astronomy. The properties of excited states within those nuclei in this mass region play a critical role in determining the resonant (p,γ) reaction rates, themselves, largely unknown for the unstable nuclei. We describe herein a new Doppler shift lifetime facility at the Maier-Leibnitz tandem laboratory, Technische Universität München, with which we will map out important resonant (p,γ) nova reaction rates.

  1. [Reactions to fragrances and textiles].

    PubMed

    Hausen, B M

    1987-12-01

    Allergic reactions to fragrances are caused by perfumes and perfume-containing items of our environment. The most important allergen is cinnamic aldehyde. By means of the mixed perfume test recommended by the International Contact Dermatitis Research Group (ICDRG), however, we are not able to detect more than half of the patients suffering from perfume allergy. Thus we suggest to make use of two new test series comprising most of the relevant fragrance components. Allergic reactions to textiles are mostly due to textile dyes. Special regard must be given to the disperse dyes of the azo group in nylon stockings and tights. The three most important allergens are disperse yellow 3, disperse orange 3, and disperse red 1. According to our experiments, the sensitizing potency of these dyes is comparatively low. In contrast, two recently introduced azo dyes (disperse blue 106 and 124), which are mainly used in blouses and trousers, proved to be strong sensitizers.

  2. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  3. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  4. MEANS FOR TERMINATING NUCLEAR REACTIONS

    DOEpatents

    Cooper, C.M.

    1959-02-17

    An apparatus is presented for use in a reactor of the heterogeneous, fluid cooled type for the purpose of quickly terminating the reaction, the coolant being circulated through coolant tubes extending through the reactor core. Several of the tubes in the critical region are connected through valves to a tank containing a poisoning fluid having a high neutron capture crosssection and to a reservoir. When it is desired to quickly terminate the reaction, the valves are operated to permit the flow of the poisoning fluid through these particular tubes and into the reservoir while normal coolant is being circulated through the remaining tubes. The apparatus is designed to prevent contamination of the primary coolant by the poisoning fluid.

  5. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  6. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  7. Hypersensitivity reactions to vaccine components.

    PubMed

    Heidary, Noushin; Cohen, David E

    2005-09-01

    Vaccines are responsible for the control of many infectious diseases that were once common in the United States, including polio, measles, diphtheria, pertussis (whooping cough), rubella (German measles), mumps, tetanus, and Haemophilus influenzae type b. National efforts to generate collaboration between federal, state, and local governments and public and private health care providers have resulted in record high levels of vaccination coverage in the United States. The high rate of US vaccinations is paralleled by growing concerns about the safety of their delivery. The variety of substances used in vaccines sometimes causes the development of cutaneous reactions in susceptible adults and children. This article will review adverse cutaneous events consistent with hypersensitivity reactions to the following ingredients in vaccines: aluminum, thimerosal, 2-phenoxyethanol, formaldehyde, and neomycin.

  8. Milestoning without a Reaction Coordinate

    PubMed Central

    Májek, Peter; Elber, Ron

    2010-01-01

    Milestoning is a method for calculating kinetics and thermodynamics of long time processes typically not accessible for straightforward Molecular Dynamics (MD) simulation. In the Milestoning approach, the system of interest is partitioned into cells by dividing hypersurfaces (Milestones) and transitions are computed between nearby hypersurfaces. Kinetics and thermodynamics are derived from the statistics of these transitions. The original Milestoning work concentrated on systems in which a one-dimensional reaction coordinate or an order parameter could be identified. In many biomolecular processes the reaction proceeds via multiple channels or following more than a single order parameter. A description based on a one-dimensional reaction coordinate may be insufficient. In the present paper we introduce a variation that overcomes this limitation. Following the ideas of Vanden-Eijnden and Venturoli on Voronoi cells that avoid the use of an order parameter (J. Chem. Phys. 2009, 130, 194101), we describe another way to “Milestone” systems without a reaction coordinate. We examine the assumptions of the Milestoning calculations of mean first passage times (MFPT) and describe strategies to weaken these assumptions. The method described in this paper, Directional Milestoning, arranges hypersurfaces in higher dimensions that “tag” trajectories such that efficient calculations can be done and at the same time the assumptions required for exact calculations of MFPTs are satisfied approximately. In the original Milestoning papers trajectories are initiated from an equilibrium set of conformations. Here a more accurate distribution, that mimics the first hitting point distribution, is used. We demonstrate the usage of Directional Milestoning in conformational transitions of alanine dipeptide (in vacuum and in aqueous solution) and compare the correctness, efficiency, and statistical stability of the method with exact MD and with a related method. PMID:20596240

  9. Modeling the enzyme kinetic reaction.

    PubMed

    Atangana, Abdon

    2015-09-01

    The Enzymatic control reactions model was presented within the scope of fractional calculus. In order to accommodate the usual initial conditions, the fractional derivative used is in Caputo sense. The methodologies of the three analytical methods were used to derive approximate solution of the fractional nonlinear system of differential equations. Two methods use integral operator and the other one uses just an integral. Numerical results obtained exhibit biological behavior of real world problem.

  10. Cascade reactions in multicompartmentalized polymersomes.

    PubMed

    Peters, Ruud J R W; Marguet, Maïté; Marais, Sébastien; Fraaije, Marco W; van Hest, Jan C M; Lecommandoux, Sébastien

    2014-01-01

    Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments. PMID:24254810

  11. Radiation recall reaction causing cardiotoxicity.

    PubMed

    Masri, Sofia Carolina; Misselt, Andrew James; Dudek, Arkadiusz; Konety, Suma H

    2014-01-01

    Radiation recall phenomenon is a tissue reaction that develops within a previously irradiated area, precipitated by the subsequent administration of certain chemotherapeutic agents. It commonly affects the skin, but can also involve internal organs with functional consequences. To our best knowledge, this phenomenon has never been reported as a complication on the heart and should be consider as a potential cause of cardiotoxicity. PMID:24755097

  12. Multicomponent reactions in nucleoside chemistry

    PubMed Central

    Buchowicz, Włodzimierz

    2014-01-01

    Summary This review covers sixty original publications dealing with the application of multicomponent reactions (MCRs) in the synthesis of novel nucleoside analogs. The reported approaches were employed for modifications of the parent nucleoside core or for de novo construction of a nucleoside scaffold from non-nucleoside substrates. The cited references are grouped according to the usually recognized types of the MCRs. Biochemical properties of the novel nucleoside analogs are also presented (if provided by the authors). PMID:25161730

  13. Hydrogen Tunneling in Enzyme Reactions

    NASA Astrophysics Data System (ADS)

    Cha, Yuan; Murray, Christopher J.; Klinman, Judith P.

    1989-03-01

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  14. Hydrogen tunneling in enzyme reactions.

    PubMed

    Cha, Y; Murray, C J; Klinman, J P

    1989-03-10

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  15. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  16. Variable expansion ratio reaction engine

    SciTech Connect

    Wagner, W.R.

    1987-11-24

    A variable expansion ratio reaction rocket engine for producing a mainstream of hot combustion gases is described comprising: a reaction chamber including a thrust nozzle portion formed by converging and diverging wall portions in which the diverging portion terminates in a gas discharge and through which the combustion gases pass; a nozzle throat section at the juncture of the convergent-divergent wall portions; rows of circumferentially and axially spaced injection ports formed within the wall portions and communicating therethrough and into the reaction chamber; fluid conduit means in communication with the injection ports; at least one high pressure pump in communication with the fluid conduit means; a fluid containing storage tank including a conduit in communication with the high pressure pump; and means for selectively controlling a flow of fluid out of the tank, through the pump and to the fluid conduit means and the injection ports for controlling a cross-sectional area of the mainstream combustion gases passing through the thrust nozzle.

  17. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  18. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  19. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  20. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  1. The molecular dynamics of atmospheric reaction

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  2. [Reactions to insect stings and bites].

    PubMed

    Ljubojević, Suzana; Lipozencić, Jasna

    2011-01-01

    Reaction to insect sting and bite may be local, such as erythema, edema and pruritus, or systemic, such as anaphylactic reaction. Diagnosis can be made by patient history, clinical picture, skin testing, total and specific IgE level, and provocation test. Local reactions are treated with cold compresses, topical corticosteroids and oral antihistamines. Oral and intramuscular antihistamines and corticosteroids are used for the treatment of mild systemic reactions, and in severe reaction epinephrine injections are added. Hyposensitization is indicated in patients with severe systemic reaction, positive skin tests and high level of specific IgE antibodies.

  3. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  4. Pulp reaction to vital bleaching.

    PubMed

    Fugaro, Jessica O; Nordahl, Inger; Fugaro, Orlando J; Matis, Bruce A; Mjör, Ivar A

    2004-01-01

    This study evaluated the histological changes in dental pulp after nightguard vital bleaching with 10% carbamide peroxide gel. Fifteen patients between 12 and 26 years of age with caries-free first premolars scheduled for orthodontic extraction were treated with 10% Opalescence (Ultradent Products, Inc). Tooth #5 had four days of bleaching, tooth #12 was treated for two weeks, tooth #21 was bleached for two weeks followed by two weeks without treatment and tooth #28, serving as the control, was without treatment. All teeth were extracted at the same time. Immediately after extraction, 4 mm of the most apical portion of the root was sectioned off and each specimen was placed in a vial containing 10% neutral buffered formalin. The samples were prepared for histological evaluation at the Scandinavian Institute of Dental Materials (NIOM) and microscopically examined independently at both NIOM and Indiana University School of Dentistry (IUSD). Pulp reactions were semi-quantitatively graded as none, slight, moderate and severe. Slight pulpal changes were detected in 16 of the 45 bleached teeth. Neither moderate nor severe reactions were observed. The findings indicate that the slight histological changes sometimes observed after bleaching tend to resolve within two weeks post-treatment. Statistical differences existed only between the untreated control and the four-day (p=0.0109) and two-week (p=0.0045) treatment groups. The findings from this study demonstrated that nightguard vital bleaching procedures using 10% carbamide peroxide might cause initial mild, localized pulp reactions. However, the minor histological changes observed did not affect the overall health of the pulp tissue and were reversible within two weeks post-treatment. Therefore, two weeks of treatment with 10% carbamide peroxide used for nightguard vital bleaching is considered safe for dental pulp. PMID:15279473

  5. Control Electronics For Reaction Wheel

    NASA Technical Reports Server (NTRS)

    Chamberlin, Keith

    1995-01-01

    Bidirectional operation achieved with single-polarity main power supply. Control circuitry generates pulse-width-modulated 800-Hz waveforms to drive two-phase ac motor and reaction wheel. Operates partly in response to digital magnitude-and-direction torque command generated by external control subsystem and partly in response to tachometric feedback in form of two once-per-revolution sinusoids with amplitudes proportional to speed. Operation in either of two modes called "normal" and "safehold." In normal mode, drive pulses timed so that, on average over one or few cycles, motor applies commanded torque. In safehold mode, pulses timed to keep motor running at set speed in one direction.

  6. Charge separation in photoredox reactions

    SciTech Connect

    Kevan, L.

    1990-07-31

    The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of electron spin echo modulation (ESEM). ESEM is particularly well adapted to the study of disordered systems as exemplified by micelles and vesicles. In addition to conventional studies by optical absorption and electron spin resonance, ESEM allows detection and analysis of extremely weak electron-nuclear dipolar interaction which gives structural information often not available by other experimental techniques. 32 refs., 2 figs.

  7. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  8. Forgiveness, retaliation and paranoid reactions.

    PubMed

    Hunter, R C

    1978-04-01

    It has been suggested that clinical states from grudgingness and habitual bitterness through to delusions of persecution are best resolved by forgiving. The process of forgiving requires that previously unacknowledged impulses, particularly aggressive ones, are accepted in oneself and others. If the therapist is aware of this, he can, in the transference, reinforce the patient's good introjects by providing a non-judgemental, acceptant model for the patient and thereby facilitate the adoption of the forgiving attitude. Sometimes habitual forgiving can occur as a reaction formation, and should be dealt with as such.

  9. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    NASA Astrophysics Data System (ADS)

    al-Swaidani, Aref M.; Baddoura, Mohammad K.; Aliyan, Samira D.; Choeb, Walid

    2015-11-01

    The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction). Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289) and accelerated mortar bar test (ASTM C1260) have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida'a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  10. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  11. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  12. Suppression of reactions to certain cosmetics.

    PubMed

    Fisher, A A

    1977-08-01

    Reactions to hair dyes and bleaches may be "suppressed" with corticosteroids and antihistamines. Reactions to nail polish may be prevented by a "drying" or "polymerizing" technique. Sensitization to certain perfume ingredients may be inhibited by a "quenching" phenomenon.

  13. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  14. Effective radii of deuteron-induced reactions

    SciTech Connect

    Hashimoto, Shintaro; Chiba, Satoshi; Yahiro, Masanobu; Ogata, Kazuyuki; Minomo, Kosho

    2011-05-15

    The continuum-discretized coupled-channels method (CDCC) for exclusive reactions and the eikonal reaction theory (ERT) as an extension of CDCC to inclusive reactions are applied to deuteron-induced reactions. The CDCC result reproduces experimental data on the reaction cross section for d+{sup 58}Ni scattering at 200 MeV/nucleon, and ERT provides data on the neutron-stripping cross section for inclusive {sup 7}Li(d,n) reaction at 40 MeV. For deuteron-induced reactions at 200 MeV/nucleon, target-dependence of the reaction, elastic-breakup, nucleon-stripping, nucleon-removal, and complete- and incomplete-fusion cross sections is clearly explained by simple formulas. Accuracy of the Glauber model is also investigated.

  15. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  16. Nuclear reactions from lattice QCD

    DOE PAGES

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  17. Chemical reactions in perfume ageing.

    PubMed

    Blakeway, J M; Frey, M L; Lacroix, S; Salerno, M S

    1987-10-01

    Summary The interactions between a typical range of perfume materials, alcohol, water, air, elevated temperatures and daylight have been studied. The changes of composition, acidity, peroxide content and the formation of new molecules were followed. The stabilizing effects of UV absorbers, antioxidants and sequestering agents were examined; - the formation of acid reaction products was accelerated by air, temperature, daylight and the presence of natural products; - peroxide formation was accelerated by heat and light and the presence of air; as the acidity increased, the peroxides decomposed; - the acetalization of other aldehydes was accelerated by temperature and daylight and the presence of natural products up to 40% of certain aldehydes may be converted into acetals after 3 months at 37 degrees C; - many stereoisomerizations occur, e.g., transisoeugenol is converted up to 10% into the cis isomer after 3 months at 37 degrees C and 58% in daylight; - evaluation of antioxidants UV absorbers and sequestering agents showed a significant protection against deterioration only by EDTA dipotassium salt; - ethanol was converted into acetaldehyde and its diethylacetal by peroxides present and formed on ageing up to 0.08%. Natural products accelerated this formation; - the reaction between benzoyl peroxide and ethanol was shown to yield up to 63% of acetaldehyde+diethyl acetal whilst di-t-butyl peroxide gave only 23% under the same conditions. These results go some way to explaining odour changes in perfume ageing.

  18. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  19. Modeling the complex bromate-iodine reaction.

    PubMed

    Machado, Priscilla B; Faria, Roberto B

    2009-05-01

    In this article, it is shown that the FLEK model (ref 5 ) is able to model the experimental results of the bromate-iodine clock reaction. Five different complex chemical systems, the bromate-iodide clock and oscillating reactions, the bromite-iodide clock and oscillating reactions, and now the bromate-iodine clock reaction are adequately accounted for by the FLEK model. PMID:19361181

  20. The chlorate-iodine clock reaction.

    PubMed

    Oliveira, André P; Faria, Roberto B

    2005-12-28

    A clock reaction produced by mixing chlorate and iodine solutions in perchloric acid media is reported. This is the first example of a clock reaction using chlorate as a reagent. Increasing chlorate and acid concentration reduces the induction period. Changing the initial iodine concentration does not affect the length of the induction period. The discovery of this clock reaction opens the possibility that a new family of oscillation reactions can be built using chlorate as reagent. PMID:16366551

  1. Indirect techniques for astrophysical reaction rates determinations

    NASA Astrophysics Data System (ADS)

    Hammache, F.; Oulebsir, N.; Benamara, S.; De Séréville, N.; Coc, A.; Laird, A.; Stefan, I.; Roussel, P.

    2016-05-01

    Direct measurements of nuclear reactions of astrophysical interest can be challenging. Alternative experimental techniques such as transfer reactions and inelastic scattering reactions offer the possibility to study these reactions by using stable beams. In this context, I will present recent results that were obtained in Orsay using indirect techniques. The examples will concern various astrophysical sites, from the Big-Bang nucleo synthesis to the production of radioisotopes in massive stars.

  2. Severe reactions to Cuprophan capillary dialyzers.

    PubMed

    Popli, S; Ing, T S; Daugirdas, J T; Kheirbek, A O; Viol, G W; Vilbar, R M; Gandhi, V C

    1982-08-01

    Five severe reactions occurred in four maintenance hemodialysis patients 1 to 5 minutes after initiating dialysis with Cuprophan capillary dialyzers. All reactions were life-threatening and one resulted in death. Inadequate rinsing of the dialyzers was probably the cause of the reactions. The severe reactions were managed by immediate discontinuation of dialysis and the institution of supportive treatment. Antianaphylactic measures were also attempted, but their therapeutic effectiveness remains to be determined. PMID:7181733

  3. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  4. Surface catalyzed mercury transformation reactions

    NASA Astrophysics Data System (ADS)

    Varanasi, Patanjali

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with five different oxidation catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 mug

  5. New reaction tester accurate within 56 microseconds

    NASA Technical Reports Server (NTRS)

    Brown, H.

    1972-01-01

    Testing device measures simple and disjunctive reaction time of human subject to light stimuli. Tester consists of reaction key, logic card, panel mounted neon indicators, and interconnecting wiring. Device is used for determining reaction times of patients undergoing postoperative neurological therapy.

  6. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  7. Reaction-Map of Organic Chemistry

    ERIC Educational Resources Information Center

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  8. The Rate Laws for Reversible Reactions.

    ERIC Educational Resources Information Center

    King, Edward L.

    1986-01-01

    Provides background information for teachers on the rate laws for reversible reactions. Indicates that although prediction of the form of the rate law for a reverse reaction given the rate law for the forward reaction is not certain, the number of possibilities is limited because of relationships described. (JN)

  9. Modified triglyceride oil through reactions with phenyltriazolinedione

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a modified triglyceride oil was achieved through the reactions with 4-phenyl-1,2-4-triazoline-3,5-dione (PTAD). 1H NMR was used for structure determination and to monitor the reactions. Several reaction products were produced, and their relative yields depended on the stoichiometry ...

  10. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  11. A Generalized Selection Rule for Pericyclic Reactions.

    ERIC Educational Resources Information Center

    He, Fu-Cheng; Pfeiffer, Gary V.

    1984-01-01

    Describes a convenient procedure, the Odd-Even Rule, for predicting the allowedness of forbiddenness of ground-state, pericyclic reactions. The rule is applied to a number of specific reactions. In contrast to the Woodward-Hoffman approach, the application to each reaction is always the same. (JN)

  12. Emotional and Behavioral Reaction to Intrusive Thoughts

    ERIC Educational Resources Information Center

    Berry, Lisa-Marie; May, Jon; Andrade, Jackie; Kavanagh, David

    2010-01-01

    A self-report measure of the emotional and behavioral reactions to intrusive thoughts was developed. The article presents data that confirm the stability, reliability, and validity of the new seven-item measure. Emotional and behavioral reactions to intrusions emerged as separate factors on the Emotional and Behavioral Reactions to Intrusions…

  13. Parental Reactions to Cleft Palate Children.

    ERIC Educational Resources Information Center

    Vanpoelvoorde, Leah

    This literature review examines parental reactions following the birth of a cleft lip/palate child, focusing primarily on the mother's reactions. The research studies cited have explored such influences on maternal reactions as her feelings of lack of control over external forces and her feelings of guilt that the deformity was her fault. Delays…

  14. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  15. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  16. Infant Defensive Reactions to Visual Occlusion.

    ERIC Educational Resources Information Center

    Adamson, Lauren; Tronick, Edward

    This paper describes the initial organization of the infant's reaction to having his vision occluded by an opaque cloth; traces the development of this reaction over the first six months; and probes the role the occlusion of vision plays in provoking the reaction. Fifty videotaped sessions of infants during two conditions - eyes covered with an…

  17. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  18. Reactions to Termination of Individual Treatment.

    ERIC Educational Resources Information Center

    Fortune, Anne E.; And Others

    1992-01-01

    Queried 69 social workers about termination reactions in most recently terminated individual cases. Clients' strongest reactions were positive affect, evaluation of success, evaluation of therapeutic experience, and positive flight. Least strong client reactions were nihilistic flight, regression, denial, recapitulation, and expression of need for…

  19. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  20. Reaction dynamics near the barrier

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2011-10-01

    The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office

  1. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  2. Electromagnetic effects on explosive reaction and plasma

    SciTech Connect

    Tasker, Douglas G; Whitley, Von H; Mace, Jonathan L; Pemberton, Steven J; Sandoval, Thomas D; Lee, Richard J

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  3. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  4. [Paranoid syndrome, paranoid reaction, paranoia].

    PubMed

    Pavlovský, P

    2006-01-01

    The term paranoid is derived from the Greek word paranoia meaning nadnese. It does not only mean self-reference, but there are various personality features as they are hostility, a tendency towards aggressiveness, irritability, a lack of sense of humour, feelings of overestimation of one-self and a tendency towards accusations. These features may appear also within normal psychology and they becomeclinically important after thein increase of intensity and conspicuousness (los sof hearing, long-term abuse of alcohol and psychostimulants) and organic disorders of the brain may contribute to the development of paranoidity. A mechanism of projection is considered as a decivise factor from the point of view of dynamic psychiatry. Clinically unimportant sign sof paranoidity can be observed due to unusual situations. If a paranoid reaction becomes more serious, formation of a paranoid delusion should be taken to account. In our koncept the term paranoid and paranoidity should be used only as a psychopathological term.

  5. Transport and Reactions of Pollutants

    NASA Astrophysics Data System (ADS)

    Gekas, Vassilis; Paraskaki, Ioanna

    The aim of this chapter is to provide the food scientist and engineer with tools for understanding the principles of transport and reaction of pollutants and their fate after being released or deposited into the environment. Furthermore, on the grounds of this understanding of basic principles, the food scientist and engineer will possess the ability to model these processes. Mathematical modeling nowadays is facilitated through the use of appropriate computer software programs. There are, generally speaking, a large number of programs available for such modeling and especially for the prediction of the fate of pollutants. When working with these programs it is advisable to understand the principles behind the program rather than treating it as a black box

  6. Radiation reaction of multipole moments

    SciTech Connect

    Kazinski, P. O.

    2007-08-15

    A Poincare-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  7. Local reaction kinetics by imaging

    NASA Astrophysics Data System (ADS)

    Suchorski, Yuri; Rupprechter, Günther

    2016-01-01

    In the present contribution we present an overview of our recent studies using the "kinetics by imaging" approach for CO oxidation on heterogeneous model systems. The method is based on the correlation of the PEEM image intensity with catalytic activity: scaled down to the μm-sized surface regions, such correlation allows simultaneous local kinetic measurements on differently oriented individual domains of a polycrystalline metal-foil, including the construction of local kinetic phase diagrams. This allows spatially- and component-resolved kinetic studies and, e.g., a direct comparison of inherent catalytic properties of Pt(hkl)- and Pd(hkl)-domains or supported μm-sized Pd-powder agglomerates, studies of the local catalytic ignition and the role of defects and grain boundaries in the local reaction kinetics.

  8. Tracking dissipation in capture reactions

    SciTech Connect

    Materna, T.; Bouchat, V.; Kinnard, V.; Hanappe, F.; Dorvaux, O.; Stuttge, L.; Schmitt, C.; Siwek-Wilczynska, K.; Aritomo, Y.; Bogatchev, A.; Prokhorova, E.; Ohta, M.

    2004-04-12

    Nuclear dissipation in capture reactions is investigated using backtracing. Combining the analysis procedure with dynamical models, the difficult and long-standing problem of competition and mixing of quasi-fission and fusion-fission is solved for the first time. At low excitation energy a new protocol able to handle low statistics data gives access to the precession neutron multiplicity in two different systems 48Ca + 208Pb, Pu. The results are in agreement with a domination of fusion-fission in the case of 256No and an equal mixing of quasi-fission and fusion-fission in the case of Z = 114. The nature of the relevant dissipation is determined as one-body dissipation.

  9. The OH + HBr reaction revisited

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Wells, J. R.

    1985-01-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results.

  10. Can Reaction Mechanisms Be Proven?

    NASA Astrophysics Data System (ADS)

    Buskirk, Allen; Baradaran, Hediyeh

    2009-05-01

    "Can Reaction Mechanisms Be Proven?" generated spirited responses from its reviewers. The reviews were approximately evenly divided, and all were of very high quality. The authors agreed with the editor’s proposal that the reviewers convert their reviews into rebuttals or affirmations of the authors’ position for publication along with the article, which has been revised based on the reviews. Most agreed to such a process and their comments appear here. We hope that publication of this paper and well-reasoned rebuttals such as those provided here will initiate a wide-ranging discussion. JCE will provide an online forum for further discussion of the issue. Our hope is that both faculty and students will contribute their opinions and ideas to this discussion. See Reviewer Comments: Brown Lewis Yoon Wade

  11. Cold molecules, collisions and reactions

    NASA Astrophysics Data System (ADS)

    Hecker Denschlag, Johannes

    2016-05-01

    I will report on recent experiments of my group where we have been studying the formation of ultracold diatomic molecules and their subsequent inelastic/reactive collisions. For example, in one of these experiments we investigate collisions of triplet Rb2 molecules in the rovibrational ground state. We observe fast molecular loss and compare the measured loss rates to predictions based on universality. In another set of experiments we investigate the formation of (BaRb)+ molecules after three-body recombination of a single Ba+ ion with two Rb atoms in an ultracold gas of Rb atoms. Our investigations indicate that the formed (BaRb)+ molecules are weakly bound and that several secondary processes take place ranging from photodissociation of the (BaRb)+ molecule to reactive collisions with Rb atoms. I will explain how we can experimentally distinguish these processes and what the typical reaction rates are. Support from the German Research foundation DFG and the European Community is acknowledged.

  12. Allergic reactions to rubber condoms.

    PubMed

    Rademaker, M; Forsyth, A

    1989-06-01

    With the increased use of condoms, contact dermatitis to rubber is being seen more often. To develop a rubber condom suitable for use by rubber sensitive people, a "hypoallergenic" condom, which is washed in ammonia to reduce the residues of rubber accelerators, has been manufactured. Fifty patients allergic to various rubber accelerators were patch tested with an ordinary condom and the new washed condom. Fifty patients undergoing routine patch test investigation who were not allergic to rubber were also tested as controls. Twenty two of the rubber sensitive patients had a positive reaction to the new rubber condom compared with four of the control patients. Washing rubber condoms in ammonia does not appear to reduce the residues of rubber accelerators sufficiently for their use by rubber sensitive people. A non-allergenic condom is required.

  13. Radiation reaction of multipole moments

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2007-08-01

    A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  14. A reversible nanoconfined chemical reaction.

    PubMed

    Nielsen, Thomas K; Bösenberg, Ulrike; Gosalawit, Rapee; Dornheim, Martin; Cerenius, Yngve; Besenbacher, Flemming; Jensen, Torben R

    2010-07-27

    Hydrogen is recognized as a potential, extremely interesting energy carrier system, which can facilitate efficient utilization of unevenly distributed renewable energy. A major challenge in a future "hydrogen economy" is the development of a safe, compact, robust, and efficient means of hydrogen storage, in particular, for mobile applications. Here we report on a new concept for hydrogen storage using nanoconfined reversible chemical reactions. LiBH4 and MgH2 nanoparticles are embedded in a nanoporous carbon aerogel scaffold with pore size Dmax approximately 21 nm and react during release of hydrogen and form MgB2. The hydrogen desorption kinetics is significantly improved compared to bulk conditions, and the nanoconfined system has a high degree of reversibility and stability and possibly also improved thermodynamic properties. This new scheme of nanoconfined chemistry may have a wide range of interesting applications in the future, for example, within the merging area of chemical storage of renewable energy.

  15. The Ozone-Iodine-Chlorate Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Monteiro, Emily V.; Pereira, Juliano R. T.; Faria, Roberto B.

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  16. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  17. A Networks Approach to Modeling Enzymatic Reactions.

    PubMed

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  18. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  19. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  20. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  1. Diastereodivergent organocatalytic asymmetric vinylogous Michael reactions.

    PubMed

    Li, Xin; Lu, Min; Dong, Yun; Wu, Wenbin; Qian, Qingqing; Ye, Jinxing; Dixon, Darren J

    2014-07-24

    One of the major challenges of modern asymmetric catalysis is the ability to selectively control the formation of all diastereoisomers of reaction products possessing multiple stereocenters. Pioneers of such diastereodivergent catalytic asymmetric processes have focused on reactions where the newly formed stereogenic centres are proximal to the active carbonyl group. To date, however, diastereodivergent reactions at remote positions remain an unmet challenge. Herein, we describe a catalyst-controlled diastereodivergence in the formation of remote stereocenters in the direct vinylogous Michael reactions of β, γ-unsaturated butenolides to α, β-unsaturated ketones. The reactions are enabled by two complementary, non-enantiomeric multifunctional catalysts, which mutually activate and organise both reactants, affording either the syn- or anti-adduct with high diastereo- and enantioselectivity. These two catalytic systems are also applicable in the Mukaiyama-Michael reactions and tandem Michael-Michael reactions.

  2. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions.

  3. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  4. Hypersensitivity reactions to iodinated contrast media.

    PubMed

    Guéant-Rodriguez, Rosa-Maria; Romano, Antonino; Barbaud, Annick; Brockow, Knut; Guéant, Jean-Louis

    2006-01-01

    Adverse reactions after iodinate contrast media (ICM) administration have been observed, which can be classified as immediate (i.e., occurring within one hour after administration) and delayed or non-immediate (i.e., occurring more than one hour after administration). Even though the incidence of ICM adverse reactions has been significantly reduced by the introduction of non-ionic compounds, immediate reactions still occur in about 3% of administrations. Different pathogenic mechanisms have been suggested for ICM reactions, including immunologic ones. Basophils and mast cells participate in immediate reactions through the release of mediators like histamine and tryptase, whereas a T-cell-mediated pathogenic mechanism is involved in most non-immediate reactions, particularly maculopapular rashes. Skin tests and specific IgE assays are carried out to diagnose immediate hypersensitivity reactions, while both delayed-reading intradermal tests and patch tests are usually performed to evaluate non-immediate reactions. However, in vitro specific IgE assays are not commercially available. As far as in vitro tests are concerned, a response involving ICM-related T-cell activity may be assessed by the lymphocyte transformation test. Allergologic evaluation appears to be indicated in hypersensitivity reactions to ICM, although the sensitivity, specificity, and predictive values of allergologic tests have not yet been established. This paper summarizes the current state of the art and addresses the research that is still needed on the pathogenic mechanisms, diagnosis, and prevention of ICM-induced hypersensitivity reactions.

  5. Anaphylactic reaction to lupine flour.

    PubMed

    Brennecke, Sabine; Becker, Wolf-Meinhard; Lepp, Ute; Jappe, Uta

    2007-09-01

    Roasted lupine seeds have been used as snack food in Mediterranean countries for years. Since the 1990s, lupine flour has been used as a substitute for or additive to other flours in countries of the European Union; usually the amount is so low that no declaration is required. Since 1994, a number of cases of immediate-type allergy to lupine flour-containing products have been published. A 52-year-old woman developed facial and mucosal edema, followed by dizziness and shortness of breath a few minutes after ingestion of a nut croissant containing lupine flour; she required emergency care. Allergy diagnostic tests revealed a total IgE of 116 kU/l, a highly elevated concentration of IgE specific for lupine seed (42.9 kU/l) and birch pollen IgE of 2.57 kU/l. Skin prick test with native lupine flour was strongly positive. Allergy against lupine seeds may develop de novo or via cross-reactivity to legumes, particularly peanuts, the latter being detectable in up to 88% of cases, founded on a strong sequence similarity between lupine and peanut allergens. In our patient, no cross-reactivity could be detected via immunoblotting, indicating a rare monovalent sensitization to lupine flour. Treatment consists of avoidance of lupine flour-containing products. Patients with proven peanut allergy should also avoid lupine flour because of the major risk of cross-reaction.

  6. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  7. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  8. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  9. Reaction products of chlorine dioxide.

    PubMed Central

    Stevens, A A

    1982-01-01

    Inspection of the available literature reveals that a detailed investigation of the aqueous organic chemistry of chlorine dioxide and systematic identification of products formed during water disinfection has not been considered. This must be done before an informed assessment can be made of the relative safety of using chlorine dioxide as a disinfectant alternative to chlorine. Although trihalomethanes are generally not formed by the action of chlorine dioxide, the products of chlorine dioxide treatment of organic materials are oxidized species, some of which also contain chlorine. The relative amounts of species types may depend on the amount of chlorine dioxide residual maintained and the concentration and nature of the organic material present in the source water. The trend toward lower concentrations of chlorinated by-products with increasing ClO2 concentration, which was observed with phenols, has not been observed with natural humic materials as measured by the organic halogen parameter. Organic halogen concentrations have been shown to increase with increasing chlorine dioxide dose, but are much lower than those observed when chlorine is applied. Aldehydes have been detected as apparent by-products of chlorine dioxide oxidation reactions in a surface water that is a drinking water source. Some other nonchlorinated products of chlorine dioxide treatment may be quinones and epoxides. The extent of formation of these moieties within the macromolecular humic structure is also still unknown. PMID:7151750

  10. Demisable Reaction-Wheel Assembly

    NASA Technical Reports Server (NTRS)

    Roder, Russell; Ahronovich, Eliezer; Davis, Milton C., III

    2008-01-01

    A document discusses the concept of a demisable motor-drive-and-flywheel assembly [reaction-wheel assembly (RWA)] used in controlling the attitude of a spacecraft. Demisable as used here does not have its traditional legal meaning; instead, it signifies susceptible to melting, vaporizing, and/or otherwise disintegrating during re-entry of the spacecraft into the atmosphere of the Earth so as not to pose a hazard to anyone or anything on the ground. Prior RWAs include parts made of metals (e.g., iron, steel, and titanium) that melt at high temperatures and include structures of generally closed character that shield some parts (e.g., magnets) against re-entry heating. In a demisable RWA, the flywheel would be made of aluminum, which melts at a lower temperature. The flywheel web would not be a solid disk but would have a more open, nearly-spoke-like structure so that it would disintegrate more rapidly; hence, the flywheel rim would separate more rapidly so that parts shielded by the rim would be exposed sooner to re-entry heating. In addition, clearances between the flywheel and other components would be made greater, imparting a more open character and thus increasing the exposure of those components.

  11. Reaction Coordinates and Mechanistic Hypothesis Tests.

    PubMed

    Peters, Baron

    2016-05-27

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

  12. Antibody-mediated cofactor-driven reactions

    DOEpatents

    Schultz, Peter G.

    1993-01-01

    Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.

  13. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  14. Reaction Coordinates and Mechanistic Hypothesis Tests

    NASA Astrophysics Data System (ADS)

    Peters, Baron

    2016-05-01

    Reaction coordinates are integral to several classic rate theories that can (a) predict kinetic trends across conditions and homologous reactions, (b) extract activation parameters with a clear physical interpretation from experimental rates, and (c) enable efficient calculations of free energy barriers and rates. New trajectory-based rare events methods can provide rates directly from dynamical trajectories without a reaction coordinate. Trajectory-based frameworks can also generate ideal (but abstract) reaction coordinates such as committors and eigenfunctions of the master equation. However, rates and mechanistic insights obtained from trajectory-based methods and abstract coordinates are not readily generalized across simulation conditions or reaction families. We discuss methods for identifying physically meaningful reaction coordinates, including committor analysis, variational transition state theory, Kramers-Langer-Berezhkovskii-Szabo theory, and statistical inference methods that can use path sampling data to screen, mix, and optimize thousands of trial coordinates. Special focus is given to likelihood maximization and inertial likelihood maximization approaches.

  15. Anatomy of an Elementary Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Alexander, Andrew J.; Zare, Richard N.

    1998-09-01

    The alchemists of old sought the knowledge to transform one material to another-for example, base metals into gold-as a path to the elixir of life. As chemists have concerned themselves with the transformation from compound to compound, so they have become involved in trying to uncover the structures of molecules and the pathways that reactions follow. Classically, the study of reaction mechanisms in chemistry encompasses reaction kinetics, the study of velocities or rates of reactions, and reaction dynamics, the study of the nanoscopic motion and rearrangement of atoms during a reactive event. An essential aim of this article is to bring the reader to a favorable vantage point with a brief introduction to reactive dynamics, and from there to describe some examples of recent strategies that have been employed to promote a fundamental understanding of the anatomy of elementary chemical reactions. In the final section we ponder future directions for this rapidly evolving field of research.

  16. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  17. Cross-coupling reaction with lithium methyltriolborate.

    PubMed

    Yamamoto, Yasunori; Ikizakura, Kazuya; Ito, Hajime; Miyaura, Norio

    2012-12-28

    We newly developed lithium methyltriolborate as an air-stable white solid that is convenient to handle. The good performance of this triolborate for metal-catalyzed bond-forming reactions was demonstrated in palladium-catalyzed cross-coupling reactions with haloarenes. Cross-coupling reaction of [MeB(OCH₂)₃CCH₃]Li with aryl halides occurred in the presence of Pd(OAc)₂/RuPhos complex in refluxing MeOH/H₂O and the absence of bases.

  18. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  19. Hypersensitivity reactions to carboplatin in children.

    PubMed

    Lazzareschi, Ilaria; Ruggiero, Antonio; Riccardi, Riccardo; Attinà, Giorgio; Colosimo, Cesare; Lasorella, Anna

    2002-05-01

    Hypersensitivity reactions to carboplatin are rare but sometimes life-threatening events may occur requiring discontinuation of treatment. In our study, we describe clinical features and diagnostic procedures of carboplatin-associated reactions in children affected by low-grade astrocytoma and treated with multiple courses of carboplatin. In 6 out of 29 children, we reported allergic events. We also report a desensitization protocol for carboplatin administration, which allowed the patients to receive effective treatment without adverse reactions.

  20. AMSD Reaction Structure Cryo Deformation Test Plan

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Hraba, John; Thornton, Gary; Baker, Mark; Haight, Harlan; Hadaway, James; Blackwell, Lisa; Stahl, Phil (Technical Monitor)

    2002-01-01

    The method developed for measuring both in-plane & out-of-plane cryo deformations of AMSD reaction structures at the XRCF will be presented. For in-plane measurements, a theodolite is used to track the positions of several (up to ten) targets on the reaction structure. For out-of-plane measurements, the Leica ADM is used to measure the change in distance to several (up to ten) corner cubes attached to the reaction structure.