Science.gov

Sample records for alkaline aluminate solutions

  1. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  2. Synthesis and crystal structure solution of potassium dawsonite: An intermediate compound in the alkaline hydrolysis of calcium aluminate cements

    SciTech Connect

    Fernandez-Carrasco, L.; Puertas, F.; Blanco-Varela, M.T.; Vazquez, T.; Rius, J

    2005-04-01

    Potassium dawsonite is formed as an intermediate compound during the alkaline hydrolysis (AH) in calcium aluminate cements (CACs). A synthesis method of potassium dawsonite has been developed. The crystal structure of potassium dawsonite KAl(CO{sub 3})(OH){sub 2} has been solved by direct methods from X-ray powder diffraction data and refined with the Rietveld method. It crystallises in the orthorhombic Cmcm space group with unit cells parameters a=6.3021(3) A, b=11.9626(5) A, c=5.6456(3) A and Z=4. The structure consists of carboaluminate chains, formed by the basic unit [Al{sub 2}(OH){sub 4}(CO{sub 3}){sub 2}]{sup 2-} arranged along the c axis. The carbonate groups are placed in an alternate manner at both sides of the carboaluminate chains. The carboaluminate chains are also held together by the K{sup +} cations that are located in the middle of three such chains. Finally, the chemical reactions explaining the AH process in CACs are postulated.

  3. Aluminate solution decomposition new technology development

    SciTech Connect

    Abramov, V.Ya.; Stelmakova, G.D.

    1996-10-01

    Scientific Technical Centre Reactor together with SC Aluminy carried out the number of investigations in the field of aluminum solution decomposition new technology development. It was based on large prime ratio on one hand, and liquid-solid countercurrent flow movement on the other hand. Practically the suggested technology was considered to be the result of unstationary, mass-transfer theory, which had been checked up at 100 m3 plot scale plant. Hydrate washing was accomplished at the first stage under the condition of countercurrent flow and less than 1 m3 water discharge. The experiments of 3.2--3.3 caustic module aluminate solution decomposition were carried out at the second stage. While full reactor 20 hour regime operation the caustic module increased till 4.1. Usually it accounts 3.7 under the analogous conditions and time.

  4. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    SciTech Connect

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  5. The Density of Aqueous Sodium Hydroxide-Sodium Aluminate Solutions: Data Review and Model Development

    SciTech Connect

    Reynolds, J. G.; Bernards, J. K.

    2006-07-01

    The density of Hanford tank waste supernatants affects the design and performance of waste treatment processes. The density of aluminate ion [Al(OH){sub 4}{sup -}] bearing sodium hydroxide solutions is important for describing the caustic leaching processes in the Hanford Waste Treatment Plant Flowsheet. The dissolved aluminate has a particularly large impact on the density of supernatants, but this ion is absent from most density estimation algorithms because of its rarity in most industrial processes. Fortunately, there is a large amount of published data on the density of aqueous sodium-hydroxide-sodium aluminate solutions, which can be used to develop density models. This study reviewed the available data and determined the partial molar volume of sodium hydroxide and sodium aluminate for mixtures of these salts in water by regression. This study determined that much of the published data suffered from a strong correlation between the sodium hydroxide and sodium aluminate concentrations in solution. Nonetheless, there was sufficient un-correlated data to identify and quantify the affect of both hydroxide and aluminate concentration on solution density. The density was found to increase linearly with both hydroxide and aluminate concentrations over a wide composition range. The effect of temperature on the density of aqueous sodium hydroxide-sodium aluminate solutions was found to be statistically significant but small in magnitude. (authors)

  6. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  7. Actinide solubility and spectroscopic speciation in alkaline Hanford waste solutions

    SciTech Connect

    Rao, L.; Felmy, A.R.; Rai, D.

    1996-10-01

    Information on the solubility and the speciation of actinide elements, especially plutonium and neptunium, in alkaline solutions is of importance in the development of separation techniques for the Hanford tank HLW supernatant. In the present study, experimental data on the solubilities of plutonium in simulated Hanford tank solutions were analyzed with Pitzer`s specific ion-interaction approach, which is applicable in dilute to highly concentrated electrolyte solutions. In order to investigate the formation of actinide species in alkaline solutions with ligands (e.g., hydroxide, aluminate and carbonate), spectroscopic measurements of neptunium (V), as a chemical analog of plutonium (V), were conducted. Based on the solubility data and available information on both solid and aqueous species, a thermodynamic model was proposed. The applicability and limitations of this model are discussed.

  8. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    PubMed

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  9. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  10. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  11. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  12. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    SciTech Connect

    Sobolewski, R.; Gierlowski, P.; Kula, W.; Zarembinski, S.; Lewandowski, S.J.; Berkowski, M.; Pajaczkowska, A. ); Gorshunov, B.P.; Lyudmirsky, D.B.; Sirotinsky, O.I. )

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  13. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  14. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  15. P- T phase relations of silicic, alkaline, aluminous liquids: new results and applications to mantle melting and metasomatism

    NASA Astrophysics Data System (ADS)

    Draper, David S.; Green, Trevor H.

    1999-07-01

    We report new experimental results obtained under nominally anhydrous conditions at 1.0-1.5 GPa on a synthetic melt whose composition is typical of extreme-composition xenolith glasses. These results demonstrate that part of this extreme compositional range is in equilibrium with a lherzolitic assemblage (olivine, orthopyroxene, and clinopyroxene on the liquidus), extending our earlier findings [D.S. Draper, T.H. Green P- T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C-O-H fluid-saturated conditions, J. Petrol. 38 (1997) 1187-1224] showing saturation with harzburgite minerals (olivine and orthopyroxene on the liquidus). The new results strengthen the view that such liquids can readily coexist with upper mantle rocks. Our results also bear on the current debate regarding the nature of low-degree mantle melts between proponents of the diamond-aggregate technique [who argue for comparatively silica- and alkali-rich low-degree melts; e.g., M.B. Baker, M.M. Hirschmann, M.S. Ghiorso, E.M. Stolper, Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations, Nature 375 (1995) 308-311; M.B. Baker, M.M. Hirschmann, L.E. Wasylenki, E.M. Stolper, M.S. Ghiorso, Quest for low-degree mantle melts, Nature 381 (1996) 286] and those favoring the sandwich technique [who question the value of the diamond-aggregate work and argue that near-solidus melts must be nepheline- and olivine-normative; T.J. Falloon, D.H. Green, H.St.C. O'Neill, C.G. Ballhaus, Quest for low-degree mantle melts, Nature 381 (1996) 285; T.J. Falloon, D.H. Green, H.St.C. O'Neill, W.O. Hibberson, Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa, Earth Planet. Sci. Lett. 152 (1997) 149-162]. Our results support aspects of both views. The sandwich-technique view is supported, for example, because all our liquids coexisting with mantle

  16. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  17. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Esro, M.; Mazzocco, R.; Vourlias, G.; Kolosov, O.; Krier, A.; Milne, W. I.; Adamopoulos, G.

    2015-05-01

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (LaxAl1-xOy) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the LaxAl1-xOy films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlOy dielectrics exhibit a wide band gap (˜6.18 eV), high dielectric constant (k ˜ 16), low roughness (˜1.9 nm), and very low leakage currents (<3 nA/cm2). TFTs employing solution processed LaAlOy gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (˜10 V), high on/off current modulation ratio of >106, subthreshold swing of ˜650 mV dec-1, and electron mobility of ˜12 cm2 V-1 s-1.

  18. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  19. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  20. Redox reactions of actinides in carbonate and alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shilov, Vladimir P.; Yusov, Aleksander B.

    2002-06-01

    Data on redox reactions involving uranium, neptunium, plutonium and americium ions in carbonate and alkaline solutions are generalised. The results of kinetic studies of these reactions are analysed and their mechanisms are discussed. The bibliography includes 169 references.

  1. Grain-boundary migration in nonstoichiometric solid solutions of magnesium aluminate spinel

    SciTech Connect

    Chiang, Y.M.; Kingery, W.D.

    1989-02-01

    The grain-boundary mobility in magnesium aluminate spinel of magnesia-rich and alumina-rich compositions has been measured from normal grain growth in dense, hot-pressed samples. Over the temperature range 1200/sup 0/ to 1800/sup 0/C, the mobility in magnesia-rich compositions is found to be greater than that in alumina-rich compositions by a factor of 10/sup 2/ to 10/sup 3/.

  2. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  3. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  4. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1996-10-01

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  5. Mobilization of Manufactured Gas Plant Tar with Alkaline Flushing Solutions

    PubMed Central

    Hauswirth, Scott C.; Birak, Pamela Schultz; Rylander, Seth C.; Miller, Cass T.

    2011-01-01

    This experimental study investigates the use of alkaline and alkaline-polymer solutions for the mobilization of former manufactured gas plant (FMGP) tars. Tar-aqueous interfacial tensions (IFTs) and contact angles were measured, and column flushing experiments were conducted. NaOH solutions (0.01–1 wt.%) were found to significantly reduce tar-aqueous IFT. Contact angles indicated a shift to strongly water-wet, then to tar-wet conditions as NaOH concentration increased. Column experiments were conducted with flushing solutions containing 0.2, 0.35, and 0.5% NaOH, both with and without xanthan gum (XG). Between 10 and 44% of the residual tar was removed by solutions containing only NaOH, while solutions containing both NaOH and XG removed 81–93% of the tar with final tar saturations as low as 0.018. The mechanism responsible for the tar removal is likely a combination of reduced IFT, a favorable viscosity ratio, and tar bank formation. Such an approach may have practical applications and would be significantly less expensive than surfactant-based methods. PMID:22091957

  6. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  7. Corrosion of silicon nitride in high temperature alkaline solutions

    NASA Astrophysics Data System (ADS)

    Qiu, Liyan; Guzonas, Dave A.; Qian, Jing

    2016-08-01

    The corrosion of silicon nitride (Si3N4) in alkaline solutions was studied at temperatures from 60 to 300 °C. Si3N4 experienced significant corrosion above 100 °C. The release rates of silicon and nitrogen follow zero order reaction kinetics and increase with increasing temperature. The molar ratio of dissolved silicon and nitrogen species in the high temperature solutions is the same as that in the solid phase (congruent dissolution). The activation energy for silicon and nitrogen release rates is 75 kJ/mol which agrees well with that of silica dissolution. At 300 °C, the release of aluminum is observed and follows first order reaction kinetics while other minor constituents including Ti and Y are highly enriched on the corrosion films due to the low solubility of their oxides.

  8. Contamination and purification of alkaline gas treating solutions

    SciTech Connect

    McCullough, J.G.; Nielsen, R.B.

    1996-08-01

    Alkanolamine and potassium carbonate solutions in gas treating units removing carbon dioxide, hydrogen sulfide, or both are contaminated by impurities in the feed gases and makeup water and by the products of the degradation and oxidation of amines occurring in the units themselves. Feed gas impurities include oxygen, carbonyl sulfide, carbon monoxide, hydrogen cyanide, ammonia, brine, solid particles, heavy hydrocarbons, sulfur dioxide, hydrochloric acid, organic acids, and pipeline corrosion inhibitors. Impure makeup water contains sulfate, chloride, alkali metal, and alkaline earth ions (hardness). Reactions causing contamination in the units include oxidation of hydrogen sulfide to sulfate and thiosulfate, oxidation of amines to formic acid and other products, and degradation of amines by carbon dioxide. The resulting heat-stable salts and polymers reduce the gas absorbing capacity of alkanolamine solutions and increase their corrosiveness. Similar problems occur in potassium carbonate solutions, except that degradation products of amine activators are too dilute to be harmful. Contaminants are removed by inlet gas separation, charcoal and mechanical filtration, neutralization of heat-stable salts, reclaiming at both atmospheric and reduced pressure, upstream washing of the feed gas, electrodialysis, use of antioxidants, ion exchange, and blowdown and dumping of the solution.

  9. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions.

  10. The electrochemistry of SIMFUEL in dilute alkaline hydrogen peroxide solutions

    NASA Astrophysics Data System (ADS)

    Goldik, Jon

    The work described in this thesis is a study of the electrochemistry of SIMFUEL (SIMulated nuclear FUEL) in dilute, alkaline hydrogen peroxide solutions. In the first set of experiments, the reaction of H2O 2 on SIMFUEL electrodes was studied electrochemically and under open circuit conditions in 0.1 mol L-1 NaCl solutions at pH 9.8. The composition of the oxidized UO2 surface was determined by X-ray photoelectron spectroscopy. Hydrogen peroxide reduction was found to be catalyzed by the formation of a mixed UIV/UV (UO 2+x) surface layer, but to be blocked by the accumulation of UVI species (UO3· yH2O or adsorbed (UO2)2+) on the electrode surface. The formation of this UVI layer blocks both H2O2 reduction and oxidation, thereby inhibiting the potentially rapid H2O2 decomposition reaction to H2O and O2. Decomposition is found to proceed at a rate controlled by the desorption of the adsorbed (UO2)2+ or reduction of adsorbed O2 species. Reduction of (O2) ads is coupled to the slow oxidative dissolution of UO2 and formation of a corrosion product deposit of UO3· yH2O. In the second series of experiments, the electrochemical reduction of hydrogen peroxide on SIMFUEL was studied using the steady-state polarization technique. Kinetic parameters for the reaction, such as Tafel slopes and reaction orders, were determined. The results were interpreted in terms of a chemical-electrochemical mechanism involving UIV/UV donor-acceptor reduction sites. The large values of the Tafel slopes and the fractional reaction orders with respect to H2O2 can be understood in terms of the potential-dependent surface coverage of active sites, similar to that observed in the reduction of hydrogen peroxide on oxidized copper surfaces. The effects of pH over the range 10-13 were also investigated. The H2O 2 reduction currents were nearly independent of pH in the range 10-11, but were slowed at more alkaline values. The change in pH dependence appears to be related to the acid-base properties

  11. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  12. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    SciTech Connect

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  13. Development of alkaline solution separations for potential partitioning of used nuclear fuels

    SciTech Connect

    Jarvinen, Gordon D; Runde, Wolfgang H; Goff, George S

    2009-01-01

    The processing of used nuclear fuel in alkaline solution provides potentially useful new selectivity for separating the actinides from each other and f rom the fission products. Over the ast decade, several research teams around the world have considered dissolution of used fuel in alkaline solution and further partitioning in this medium as an alternative to acid dissolution. The chemistry of the actinides and fission products in alkaline soilltion requires extensive investigation to more carefully evaluate its potential for developing useful separation methods for used nuclear fueI.

  14. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  15. Solution combustion synthesis of strontium aluminate, SrAl2O4, powders: single-fuel versus fuel-mixture approach.

    PubMed

    Ianoş, Robert; Istratie, Roxana; Păcurariu, Cornelia; Lazău, Radu

    2016-01-14

    The solution combustion synthesis of strontium aluminate, SrAl2O4, via the classic single-fuel approach and the modern fuel-mixture approach was investigated in relation to the synthesis conditions, powder properties and thermodynamic aspects. The single-fuel approach (urea or glycine) did not yield SrAl2O4 directly from the combustion reaction. The absence of SrAl2O4 was explained by the low amount of energy released during the combustion process, in spite of the highly negative values of the standard enthalpy of reaction and standard Gibbs free energy. In the case of single-fuel recipes, the maximum combustion temperatures measured by thermal imaging (482 °C - urea, 941 °C - glycine) were much lower than the calculated adiabatic temperatures (1864 °C - urea, 2147 °C - glycine). The fuel-mixture approach (urea and glycine) clearly represented a better option, since (α,β)-SrAl2O4 resulted directly from the combustion reaction. The maximum combustion temperature measured in the case of a urea and glycine fuel mixture was the highest one (1559 °C), which was relatively close to the calculated adiabatic temperature (1930 °C). The addition of a small amount of flux, such as H3BO3, enabled the formation of pure α-SrAl2O4 directly from the combustion reaction.

  16. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  17. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  18. Calcium aluminate in alumina

    NASA Astrophysics Data System (ADS)

    Altay, Arzu

    The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to

  19. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    EPA Science Inventory

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  20. Characterization and Oxidation of Chromium(III) by Sodium Hypochlorite in Alkaline Solutions

    SciTech Connect

    Jiang, Huijian; Rao, Linfeng; Zhang, Zhicheng; Rai, Dhanpat

    2006-07-01

    Chromium exists in nuclear waste sludges and is a problematic element in the vitrification process of high-level nuclear wastes. It is therefore necessary to treat the waste sludges to remove chromium prior to vitrification, by caustic leaching or oxidation of Cr(III) to Cr(VI). The objective of this study is to investigate the effect of oligomerization of Cr(III) on its oxidation by hypochlorite in alkaline solutions. Monomeric, dimeric and trimeric Cr(III) species in solution were separated by ion exchange. The kinetics of the oxidation of the separated species by hypochlorite in alkaline solutions was studied by UV/Vis absorption spectroscopy, and compared with the oxidation by hydrogen peroxide previously studied. Results indicate that hypochlorite can oxidize Cr(III) to Cr(VI) in alkaline solutions, but the rate of oxidation by hypochlorite is slower than that by hydrogen peroxide at the same alkalinity and concentrations of oxidants. The rate of oxidation of Cr(III) by both oxidants decreases as the concentration of sodium hydroxide is increased, but the oxidation by hypochlorite seems less affected by the degree of oligomerization of Cr(III) than that by peroxide. Compared with the oxidation by hydrogen peroxide where the major reaction pathway has an inverse order with respect to CNaOH, the oxidation by hypochlorite has a significant reaction pathway independent of [OH?].

  1. De-SO sub x catalyst; An XRD study of magnesium aluminate spinel and its solid solutions

    SciTech Connect

    Yoo, J.S.; Bhattacharyya, A.A.; Radlowski, C.A. . Research and Development Dept.)

    1991-07-01

    This paper reports on a systematic X-ray diffraction study that was undertaken to characterize the stoichiometric spinel (MgAl{sub 2}O{sub 4}), alumina excess spinel (MgAl{sub 2}O{sub 4} {center dot} xAl{sub 2}O{sub 3}) and magnesia excess spinel (MgAl{sub 2}O{sub 4} {center dot} MgO). A Vegard's plot, lattice parameter vs the composition of these solid solutions, reveals that, in alumina excess spinel, a continuous solid solution (x = 0 {minus} {infinity}) exists, while, in magnesia excess material, the solid solution is limited to y = 0-1. When y = 1, a solid solution assumes the composition of MgAl{sub 2}O{sub 4} {center dot} MgO. If y {gt} 1, both periclase and stoichiometric spinel (MgAl{sub 2}O{sub 4}) phases coexist. The SO{sub x} removal activity of various hydrothermally stable cerium oxide containing solid solution spinels was evaluated. In the magnesia excess solid solutions, SO{sub x} removal activity increased as MgO increased and reached maximum at y = 1, which is the CeO{sub 2}/MgAl{sub 2}O{sub 4} {center dot} MgO system. This catalyst is the most widely used SO{sub x} reduction catalyst today.

  2. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.

    PubMed

    Kulkarni, Sayali; Ballal, Anand; Apte, Shree Kumar

    2013-11-15

    Bioremediation of uranium (U) from alkaline waste solutions remains inadequately explored. We engineered the phoK gene (encoding a novel alkaline phosphatase, PhoK) from Sphingomonas sp. for overexpression in the radioresistant bacterium Deinococcus radiodurans. The recombinant strain thus obtained (Deino-PhoK) exhibited remarkably high alkaline phosphatase activity as evidenced by zymographic and enzyme activity assays. Deino-PhoK cells could efficiently precipitate uranium over a wide range of input U concentrations. At low uranyl concentrations (1 mM), the strain precipitated >90% of uranium within 2h while a high loading capacity of around 10.7 g U/g of dry weight of cells was achieved at 10 mM U concentration. Uranium bioprecipitation by Deino-PhoK cells was not affected in the presence of Cs and Sr, commonly present in intermediate and low level liquid radioactive waste, or after exposure to very high doses of ionizing radiation. Transmission electron micrographs revealed the extracellular nature of bioprecipitated U, while X-ray diffraction and fluorescence analysis identified the precipitated uranyl phosphate species as chernikovite. When immobilized into calcium alginate beads, Deino-PhoK cells efficiently removed uranium, which remained trapped in beads, thus accomplishing physical separation of precipitated uranyl phosphate from solutions. The data demonstrate superior ability of Deino-PhoK, over earlier reported strains, in removal of uranium from alkaline solutions and its potential use in bioremediation of nuclear and other waste.

  3. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  4. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  5. Inhibition of Brass Corrosion by 2-Mercapto-1-methylimidazole in Weakly Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Radovanovic, Milan B.; Antonijevic, Milan M.

    2016-03-01

    The electrochemical behavior of brass and anticorrosion effect of 2-mercapto-1-methylimidazole (2-MMI) in weakly alkaline solution with and without presence of chloride ions was investigated using electrochemical techniques in addition to SEM-EDS analysis. Results show that inhibition efficiency depended on inhibitor concentration and immersion time of brass electrode in inhibitor solution. Inhibition mechanism of 2-mercapto-1-methylimidazole includes adsorption of inhibitor on active sites on electrode surface which was confirmed by SEM-EDS analysis of the brass. Adsorption of the 2-MMI in sodium tetraborate solution obeys Flory-Huggins adsorption isotherm, while in the presence of chloride, ions adsorption of inhibitor obeys Langmuir adsorption isotherm.

  6. Simulation of hydrogen sulphide absorption in alkaline solution using a packed column.

    PubMed

    Azizi, Mohamed; Biard, Pierre-François; Couvert, Annabelle; Ben Amor, Mohamed

    2014-01-01

    In this work, a simulation tool was developed for hydrogen sulphide (H₂S) removal in an alkaline solution in packed columns working at countercurrent. Modelling takes into account the mass-transfer enhancement due to the reversible reactions between H₂S and the alkaline species (CO(²⁻)(3), HCO⁻(3), and HO⁻) in the liquid film. Many parameters can be controlled by the user such as the gas and liquid inlet H₂S concentrations, the gas and liquid flow rates, the scrubbing liquid pH, the desired H₂S removal efficiency, the temperature, the alkalinity, etc. Since the influence of the hydrodynamic and mass-transfer performances in a packed column is well known, the numerical resolutions performed were dedicated to the study of the influence of the chemical conditions (through the pH and the alkalinity), the temperature and the liquid-to-gas mass flow rate ratio (L/G). A packed column of 3 m equipped with a given random packing material working at countercurrent and steady state has been modelled. The results show that the H₂S removal efficiency increases with the L/G, the pH, the alkalinity and more surprisingly with the temperature. Alkalinity has a very significant effect on the removal efficiency through the mass-transfer enhancement and buffering effect, which limits pH decreasing due to H₂S absorption. This numerical resolution provides a tool for designers and researchers involved in H₂S treatment to understand deeper the process and optimize their processes.

  7. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1989-04-01

    Anodically electrodeposited iridium oxide films from alkaline solutions were investigated for application to electrochromic devices. Micro-crystalline (diameter: 15Å) films obtained by the electrolysis of aqueous alkaline solutions containing iridium chloride, oxalic acid and potassium carbonate showed good electrochromic reaction reversibility. The coloration efficiency of the films was about one third that of typical evaporated tungsten oxide films, and the response rate measured by the amount of injected charge was about double. The cycle lives of the cells, composed of electrodeposited films, 1M H3PO4-NaOH (pH{=}3˜ 5), and an activated carbon cloth, were more than 8× 106 with a 0.6 V, 1 Hz continuous square wave.

  8. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  9. Redox reactions of neptunium and plutonium in alkaline aqueous solutions upon gamma radiolysis

    NASA Astrophysics Data System (ADS)

    Pikaev, A. K.; Gogolev, A. V.; Shilov, V. P.

    1999-10-01

    The paper is a brief review of data obtained by the authors from the study on redox reactions of neptunium and plutonium ions upon γ-radiolysis of their aerated alkaline aqueous solutions. It includes the information on radiolytic reduction of Np(V), Np(VI), and Pu(VI) ions under various experimental conditions. It was found that the values of Np(VI) and Pu(VI) reduction yields do not depend on alkali concentration. The values considerably increase in the presence of some organic compounds (EDTA and formate were investigated). The formation of the Np(V) peroxo complex was observed in the γ-radiolysis of alkaline aqueous solutions of Np(VI) and Np(V) in the presence of nitrate. The mechanism of radiolytic redox reactions of the ions is discussed in some detail.

  10. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  11. Inhibitive effects of palm kernel oil on carbon steel corrosion by alkaline solution

    NASA Astrophysics Data System (ADS)

    Zulkafli, M. Y.; Othman, N. K.; Lazim, A. M.; Jalar, A.

    2013-11-01

    The behavior of carbon steel SAE 1045 in 1 M NaOH solution containing different concentrations of palm kernel oil (PKO) has been studied by weight loss and polarization measurement. Results showed that the corrosion of carbon steel in NaOH solution was considerably reduced in presence of such inhibitors. The inhibition efficiency increases when concentration of inhibitor increase. Maximum inhibition efficiency (≈ 96.67%) is obtained at PKO concentration 8 v/v %. This result revealed that palm kernel oil can act as a corrosion inhibitor in an alkaline medium. Corrosion rates of carbon steel decrease as the concentration of inhibitor is increased.

  12. Recovering lead from cathode ray tube funnel glass by mechano-chemical extraction in alkaline solution.

    PubMed

    Zhang, Chenglong; Wang, Jingwei; Bai, Jianfeng; Guan, Jie; Wu, Wenjie; Guo, Cuixiang

    2013-07-01

    This study evaluates the efficiency of lead (Pb) extraction from cathode ray tube (CRT) funnel glass in strongly alkaline solution using mechanical activation in a ball mill as the chemical breakage and defects formed in the inner structures will contribute to the easy dissolution of the activated Pb glass. The combination of mechanical activation and a chemical leaching process in a single operation (mechano-chemical leaching) is more effective than the mechanical activation and subsequent chemical leaching. More than 97% of Pb in the CRT funnel glass can be extracted with a stirring ball mill leaching process in 5 M sodium hydroxide at 70°C. The diameter of the stainless steel balls as the activation medium is 5 mm; the mass ratio of ball to raw materials is 25:1. Pb powder with a purity of 97% can be obtained by electrowinning from the leaching solution. The Pb-depleted solution can be recycled into the leaching step. After Pb is removed, the solid leaching residues can be used for preparation of foam glass. Thus, a novel hydrometallurgical process for recovering Pb from CRT funnel glass in alkaline solution is proposed. PMID:23592759

  13. Adsorption of tungsten onto zeolite fly ash produced by hydrothermally treating fly ash in alkaline solution.

    PubMed

    Ogata, Fumihiko; Iwata, Yuka; Kawasaki, Naohito

    2014-01-01

    Fly ash (FA) was hydrothermally treated in an alkaline solution to produce zeolite fly ash (Z-FA). The properties of the FA and Z-FA were investigated. The amounts of tungsten (W) adsorbed onto the FA and Z-FA surfaces were evaluated. Z-FA was produced by hydrothermally treating FA in an alkaline solution. The specific surface area and pore volume of the Z-FA were greater than those of the FA. More W was adsorbed onto the Z-FA surface than onto the FA surface. The adsorption isotherms for W were fitted using both the Freundlich and Langmuir equations. The equilibrium concentrations of W adsorbed onto the FA and Z-FA surfaces were subsequently reached within 20 h. The pseudo-second-order model more accurately described the data than did the pseudo-first-order model. Sodium hydroxide solutions (1-50 mmol/L) were used to easily recover W from Z-FA, indicating that Z-FA was useful for recovering W from aqueous solutions.

  14. Recovering lead from cathode ray tube funnel glass by mechano-chemical extraction in alkaline solution.

    PubMed

    Zhang, Chenglong; Wang, Jingwei; Bai, Jianfeng; Guan, Jie; Wu, Wenjie; Guo, Cuixiang

    2013-07-01

    This study evaluates the efficiency of lead (Pb) extraction from cathode ray tube (CRT) funnel glass in strongly alkaline solution using mechanical activation in a ball mill as the chemical breakage and defects formed in the inner structures will contribute to the easy dissolution of the activated Pb glass. The combination of mechanical activation and a chemical leaching process in a single operation (mechano-chemical leaching) is more effective than the mechanical activation and subsequent chemical leaching. More than 97% of Pb in the CRT funnel glass can be extracted with a stirring ball mill leaching process in 5 M sodium hydroxide at 70°C. The diameter of the stainless steel balls as the activation medium is 5 mm; the mass ratio of ball to raw materials is 25:1. Pb powder with a purity of 97% can be obtained by electrowinning from the leaching solution. The Pb-depleted solution can be recycled into the leaching step. After Pb is removed, the solid leaching residues can be used for preparation of foam glass. Thus, a novel hydrometallurgical process for recovering Pb from CRT funnel glass in alkaline solution is proposed.

  15. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  16. Cyclohexanone solvent extraction of /sup 99/TcO/sub 4/ from alkaline nuclear waste solutions

    SciTech Connect

    Schulz, W.W.

    1980-01-01

    Although the /sup 99/Tc cyclohexanone solvent extraction process is still in the bench-scale development stage, the process appears well suited for engineering-scale removal of /sup 99/Tc from alkaline Hanford waste solutions. The most pressing process development need is to resolve the phase disengaging problems encountered during water stripping operations. Stripping tests in pulse columns and/or centrifugal contactors are particularly needed to determine the magnitude of the phase disengaging problem in engineering-scale equipment and to find suitable remedies. 5 figures, 7 tables.

  17. Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions.

    PubMed

    Nilgiriwala, Kayzad S; Alahari, Anuradha; Rao, Amara Sambasiva; Apte, Shree Kumar

    2008-09-01

    Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 +/- 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions.

  18. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, Jim E.; Truex, Mike J.; Qafoku, Nikolla P.; Wellman, Dawn M.; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2 +, Mg2 +) and phosphate and a slow (100 s of hours) increase in silica, Al3 +, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  19. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  20. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. PMID:23851265

  1. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  2. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  3. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores

    PubMed Central

    Muñoz-Santiburcio, Daniel; Marx, Dominik

    2016-01-01

    The hydroxide anion OH−(aq) in homogeneous bulk water, that is, the solvated proton hole, is known to feature peculiar properties compared with excess protons solvated therein. In this work, it is disclosed that nanoconfinement of such alkaline aqueous solutions strongly affects the key structural and dynamical properties of OH−(aq) compared with the bulk limit. The combined effect of the preferred hypercoordinated solvation pattern of OH−(aq), its preferred perpendicular orientation relative to the confining surfaces, the pronounced layering of nanoconfined water and the topology of the hydrogen bond network required for proton hole transfer lead to major changes of the charge transport mechanism, in such a way that the proton hole migration mechanism depends exquisitely on the width of the confined space that hosts the water film. Moreover, the anionic Zundel complex, which is of transient nature in homogeneous bulk solutions, can be dynamically trapped as a shallow intermediate species by suitable nanoconfinement conditions. PMID:27550616

  4. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores

    NASA Astrophysics Data System (ADS)

    Muñoz-Santiburcio, Daniel; Marx, Dominik

    2016-08-01

    The hydroxide anion OH-(aq) in homogeneous bulk water, that is, the solvated proton hole, is known to feature peculiar properties compared with excess protons solvated therein. In this work, it is disclosed that nanoconfinement of such alkaline aqueous solutions strongly affects the key structural and dynamical properties of OH-(aq) compared with the bulk limit. The combined effect of the preferred hypercoordinated solvation pattern of OH-(aq), its preferred perpendicular orientation relative to the confining surfaces, the pronounced layering of nanoconfined water and the topology of the hydrogen bond network required for proton hole transfer lead to major changes of the charge transport mechanism, in such a way that the proton hole migration mechanism depends exquisitely on the width of the confined space that hosts the water film. Moreover, the anionic Zundel complex, which is of transient nature in homogeneous bulk solutions, can be dynamically trapped as a shallow intermediate species by suitable nanoconfinement conditions.

  5. Reaction of montmorillonite in alkaline solution at 60 C, 90 C, 120 C and 180 C

    SciTech Connect

    Amaya, Takayuki; Shimojo, Mikio; Fujihara, Hiroshi; Yokoyama, Katsuhiko

    1999-07-01

    The reaction of montmorillonite was investigated. Three kinds of bentonites with different montmorillonite composition were mixed with 0.3M NaOH solution and 0.3M Ca(OH){sub 2} slurry. They were immersed at 60 C, 90 C, 120 C, and 180 C for one month, three months and six months. The concentrations of the soluble ions were measured and the bentonites were analyzed quantitatively after the immersion. 50% of the montmorillonite was reacted within two weeks at greater than 90 C. Montmorillonite reacts less when mixed with Si-minerals. It extensively reacted in 0.3M Ca(OH){sub 2} slurry. These results suggest that the reaction mechanism of the montmorillonite in alkaline solution was dominantly Si dissolution, and would decrease by controlling the concentration of Si ion. The cement/bentonite system under Si saturated conditions is discussed.

  6. Recycling of Ni(II)-citrate complexes using precipitation in alkaline solutions.

    PubMed

    Gyliene, O; Aikaite, J; Nivinskiene, O

    2004-06-18

    When the excess of Ni(II) ions as compared to citrate concentration is used both Ni(II) ions and citrate can be precipitated in alkaline solutions. The ratio between Ni(II) and citrate in the precipitate and completeness of citrate precipitation depends on the ratio between the Ni(II) and citrate concentrations in the initial solution and its pH. The data of chemical analysis, potentiometric titration, FT-IR as well as visible spectrophotometric investigations suggest that Ni(II) in the insoluble compound is bound with three -COO- groups and -OH group of the citrate. The insoluble compound also contains SO4(2-) and hydroxides. The treatment of this precipitate with H2SO4 enables to recover a soluble Ni(II)-citrate complex, which can be reused in practice, and to remove the excess of Ni(II) in the form of insoluble Ni(OH)2. PMID:15177751

  7. Methylene blue adsorption from aqueous solution by activated carbon: effect of acidic and alkaline solution treatments.

    PubMed

    Ijagbemi, Christianah O; Chun, Ji I; Han, Da H; Cho, Hye Y; O, Se J; Kim, Dong S

    2010-01-01

    The removal of Methylene Blue (MB) from aqueous solution using activated carbon (AC) has been investigated. Adsorption experiments were conducted and the maximum adsorption capacity was determined. The effect of experimental parameters such as pH, dye concentration and temperature were studied on the adsorption process. Equilibrium data were mathematically modeled using the Langmuir and Freundlich adsorption models to describe the equilibrium isotherms at different dye concentrations and temperature. Parameters of best-fit model were calculated and discussed. To understand the mechanism of adsorption, kinetic models were employed to follow the adsorption processes; the pseudo-first-order best described the adsorption of MB onto AC. It was found that pH plays a major role in the adsorption process; adsorption capacity was influenced by the physical and surface chemical properties of carbon and the pH of the solution. 99.0% MB removal was achieved at equilibrium.

  8. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  9. XANES Demonstrates the Release of Calcium Phosphates from Alkaline Vertisols to Moderately Acidified Solution.

    PubMed

    Andersson, Karl O; Tighe, Matthew K; Guppy, Christopher N; Milham, Paul J; McLaren, Timothy I; Schefe, Cassandra R; Lombi, Enzo

    2016-04-19

    Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. Combining several techniques in a novel way, we studied these phenomena by progressively depleting P from suspensions of two soils (low P) using an anion-exchange membrane (AEM) and from a third soil (high P) with AEM together with a cation-exchange membrane. Depletions commenced on untreated soil, then continued as pH was manipulated and maintained at three constant pH levels: the initial pH (pHi) and pH 6.5 and 5.5. Bulk P K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the main forms of inorganic P in each soil were apatite, a second more soluble CaP mineral, and smectite-sorbed P. With moderate depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to sorbed species. The more soluble CaP minerals were depleted at pH 6.5, and all CaP minerals were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble with decreases of pH in the range achievable by rhizosphere acidification. PMID:26974327

  10. Complexation of Al(III) with gluconate in alkaline to hyperalkaline solutions: formation, stability and structure.

    PubMed

    Pallagi, Attila; Tasi, Ágost Gyula; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-10-01

    Contrary to suggestions in the literature, it has been proven that Al(III) forms a 1 : 1 complex with gluconate (hereafter Gluc(-)) in strongly alkaline (pH > 12) aqueous solutions. The complex formation was proven via(27)Al and (1)H NMR, freezing-point depression, polarimetric measurements as well as potentiometric and conductometric titrations. This complexation is a pH independent process, i.e., a condensation reaction takes place. The stability constant of the complex formed was derived from (1)H NMR and polarimetric measurements, and was found to be log K = 2.4 ± 0.4. In the complex formed, Al(III) has a tetrahedral geometry, and the Al(OH)4(-) is most probably statistically distributed between the alcoholate groups of the Gluc(-). PMID:23897548

  11. Speciation and the structure of lead(II) in hyper-alkaline aqueous solution.

    PubMed

    Bajnóczi, Eva G; Pálinkó, István; Körtvélyesi, Tamás; Bálint, Szabolcs; Bakó, Imre; Sipos, Pál; Persson, Ingmar

    2014-12-14

    The identity of the predominating lead(ii) species in hyper-alkaline aqueous solution has been determined by Raman spectroscopy, and ab initio quantum chemical calculations and its structure has been determined by EXAFS. The observed and calculated Raman spectra for the [Pb(OH)3](-) complex are in agreement while they are different for two-coordinated complexes and complexes containing Pb[double bond, length as m-dash]O double bonds. Predicted bond lengths are also consistent with the presence of [Pb(OH)3](-) and exclude the formation of Pb[double bond, length as m-dash]O double bond(s). These observations together with experimentally established analogies between lead(ii) and tin(ii) in hyper-alkaline aqueous solutions suggest that the last stepwise hydroxido complex of lead(ii) is [Pb(OH)3](-). The Pb-O bond distance in the [Pb(OH)3](-) complex as determined is remarkably short, 2.216 Å, and has low symmetry as no multiple back-scattering is observed. The [Pb(OH)3](-) complex has most likely trigonal pyramidal geometry as all reported three-coordinated lead(ii) complexes in the solid state. From single crystal X-ray data, the bond lengths for O-coordinated lead(ii) complexes with low coordination numbers are spread over an unusually wide interval, 2.216-2.464 Å for N = 3. The Pb-O bond distance is at the short side and within the range of three coordinated complexes, as also observed for the trihydroxidostannate(ii) complex indicating that the hydroxide ion forms short bonds with d(10)s(2) metal ions with occupied anti-bonding orbitals.

  12. A novel method to suppress the dispersal of Japanese cedar pollen by inducing morphologic changes with weak alkaline solutions.

    PubMed

    Ishii, K; Hamamoto, H; Sekimizu, K

    2007-10-01

    Inhalation of airborne pollen causes irritative symptoms in humans, known as pollinosis. The changing global climate and increased pollution contribute to enhance the release of pollen, thereby increasing the number of people suffering from allergies. We examined the effect of spraying weak alkaline solutions onto cedar trees, the main allergenic culprit in Japan, on pollen release. Weak alkaline solutions were sprayed onto Japanese cedar blossoms to disrupt the external walls of the pollen, and to induce swelling of the cytosolic components containing the nucleus. This morphologic change of the pollen grains depended on the pH of the suspending solution, with a threshold pH of near 7.5. As the breakdown of the external walls and swelling of the cytosolic components are inhibited by high osmolarity, the influx of water triggered the morphologic changes. Weak alkaline solutions sprayed onto cedar blossoms decreased the amount of pollen released from the anthers in a pH dependent manner. The addition of detergent to the sodium bicarbonate solution facilitated this effect on cedar pollen release. We suggest that spraying cedar and cypress forests with a weak alkaline solution might prevent the scattering of pollen that causes allergies in humans.

  13. Extraction of cesium from an alkaline leaching solution of spent catalysts using an ion-exchange column

    SciTech Connect

    Dumont, N.; Favre-Reguillon, A.; Dunjic, B.; Lemaire, M.

    1996-04-01

    The selective extraction of cesium from an alkaline leaching solution of spent catalysts using phenolic resins was studied. The resins were synthesized by alkaline polycondensation of formaldehyde by phenol, resorcinol, catechol, and phloroglucinol. Their ionoselectivities for five alkali metals were evaluated with a solid-liquid extraction, and their ion-exchange capacities were compared. The resin with the best selectivity for cesium was tested with a real solution at different pH values. An on-column extraction is proposed to obtain cesium with high purity.

  14. Americium/Lanthanide Separations in Alkaline Solutions for Advanced Nuclear Fuel Cycles

    SciTech Connect

    Goff, George S.; Long, Kristy Marie; Reilly, Sean D.; Jarvinen, Gordon D.; Runde, Wolfgang H.

    2012-06-11

    Project goals: Can used nuclear fuel be partitioned by dissolution in alkaline aqueous solution to give a solution of uranium, neptunium, plutonium, americium and curium and a filterable solid containing nearly all of the lanthanide fission products and certain other fission products? What is the chemistry of Am/Cm/Ln in oxidative carbonate solutions? Can higher oxidation states of Am be stabilized and exploited? Conclusions: Am(VI) is kinetically stable in 0.5-2.0 M carbonate solutions for hours. Aliquat 336 in toluene has been successfully shown to extract U(VI) and Pu(VI) from carbonate solutions. (Stepanov et al 2011). Higher carbonate concentration gives lower D, SF{sub U/Eu} for = 4 in 1 M K{sub 2}CO{sub 3}. Experiments with Am(VI) were unsuccessful due to reduction by the organics. Multiple sources of reducing organics...more optimization. Reduction experiments of Am(VI) in dodecane/octanol/Aliquat 336 show that after 5 minutes of contact, only 30-40% of the Am(VI) has been reduced. Long enough to perform an extraction. Shorter contact times, lower T, and lower Aliquat 336 concentration still did not result in any significant extraction of Am. Anion exchange experiments using a strong base anion exchanger show uptake of U(VI) with minimal uptake of Nd(III). Experiments with Am(VI) indicate Am sorption with a Kd of 9 (10 minute contact) but sorption mechanism is not yet understood. SF{sub U/Nd} for = 7 and SF{sub U/Eu} for = 19 after 24 hours in 1 M K{sub 2}CO{sub 3}.

  15. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions

    NASA Astrophysics Data System (ADS)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf; Sellin, Patrik

    The estimated quantity of cement for construction and sealing purposes is around 9E5 kg in the planned Swedish KBS3 repository for nuclear waste. The highly alkaline cement pore fluid (pH > 12) may affect other components in the repository, and especially the bentonite buffer is of concern. In this study, we simulated possible interactions between cement and bentonite by contacting highly compacted bentonite with high molar hydroxide solutions in a series of laboratory experiments. Wyoming bentonite (MX-80) and purified homo-ionic Na- and Ca-montmorillonite were used for tests with 0.1, 0.3 and 1.0 M NaOH, and saturated Ca(OH) 2 solutions. Pressure cells with permeable filters were loaded with compacted discs of bentonite at the proposed buffer density (2000 kg/m 3 at full water saturation). A hydroxide solution was circulated on one side of the cell and an isotonic chloride solution on the other during a minimum of 45 days. Swelling pressure and solution pH were monitored during the tests and the change in the solution composition and bentonite mineralogy were determined after completed tests. No effect on swelling pressure was observed in tests with 0.1 M NaOH (pH 12.9) or saturated Ca(OH) 2 solutions (pH 12.4) and the mineralogical/chemical changes of the clay were minimal. The bentonite swelling pressure was significantly reduced in the tests with 0.3 (pH 13.3) and 1.0 M (pH 13.8) NaOH solutions. The reduction seems to be due to an instant osmotic effect, and to a continuous dissolution of silica minerals, resulting in mass loss and, consequently, a decrease in density. At these high pH, the release of silica was dominating and the CEC of the clay increased by 20-25%. The structural formula of the smectite and X-ray diffraction tests for non-expandability (Greene-Kelly test) provided strong evidence that the dissolution of montmorillonite proceeds incongruently through an initial step of beidellitization. The calculated rate of silica release from

  16. Sulfur species leached from pyrite during oxidative desulfurization of coal in alkaline solutions

    SciTech Connect

    Stephenson, M.D.; Wheelock, T.D.; Markuszewski, R.

    1983-01-01

    The results indicate that thiosulfate, sulfite, and sulfate are the principal soluble sulfur species produced when coal-derived pyrite leached with a hot alkaline solution containing dissolved oxygen. The distribution of soluble sulfur species in the leachate was found to depend on leaching temperature, oxygen partial pressure, leachant composition, and time of contact. At lower temperatures and oxygen partial pressures and with a short time of contact between the leaching solution and pyrite, the leachate sulfur species were dominated by thiosulfate. However, the leachate also contained significant amounts of sulfite and sulfate. When the temperature, oxygen partial pressure, or time of contact were increased, the proportions of thiosulfate and sulfite decreased and the proportion of sulfate increased. It was observed also that reacted pyrite particles catalyzed the oxidation of thiosulfate to sulfite and sulfate. Consequently when pyrite was oxidized in a stirred reactor for 1 h at elevated temperature and oxygen partial pressure, most of the dissolved sulfur appeared as sulfate and very little as thiosulfate or sulfite. 10 references, 4 figures, 1 table.

  17. Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier

    SciTech Connect

    Fernandez, Raul; Cuevas, Jaime; Maeder, Urs K.

    2010-08-15

    The interaction between concrete/cement and swelling clay (bentonite) has been modeled in the context of engineered barrier systems for deep geological disposal of high-level radioactive waste. The geochemical transformations observed in laboratory diffusion experiments at 60 and 90 {sup o}C between bentonite and different high-pH solutions (K-Na-OH and Ca(OH){sub 2}-saturated) were reconciled with the reactive transport code CrunchFlow. For K-Na-OH solutions (pH = 13.5 at 25 {sup o}C) partial dissolution of montmorillonite and precipitation of Mg-silicates (talc-like), hydrotalcite and brucite at the interface are predicted at 60 {sup o}C, while at 90 {sup o}C the alteration is wider. Alkaline cations diffused beyond the mineralogical alteration zone by means of exchange with Mg{sup 2+} in the interlayer region of montmorillonite. Very slow reactivity and minor alteration of the clay are predicted in the Ca(OH){sub 2}-bentonite system. The model is a reasonable description of the experiments but also demonstrates the difficulties in modeling processes operating at a small scale under a diffusive regime.

  18. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  19. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  20. Recovery of MnO2 from a spent alkaline battery leach solution via ozone treatment

    NASA Astrophysics Data System (ADS)

    Cruz-Díaz, Martín R.; Arauz-Torres, Yennifer; Caballero, Francisco; Lapidus, Gretchen T.; González, Ignacio

    2015-01-01

    This work investigates the reaction rate of Mn(II) to generate solid manganese dioxide (MnO2) as a function of the gaseous ozone mass flow rate (27.5-77 g h-1). The experimental studies were carried out in a semi-continuous reactor, using a synthetic solution (300 mL of 1 M H2SO4 with 6000 ppm of Mn(II) added as MnSO4) that simulated the composition of an acid leaching solution from spent alkaline battery material (SBM). It was observed that at 1.3-1.45 V/SHE and pH < 1.0 a selective formation of MnO2 powder was obtained; at values greater than 1.45 V/SHE, permanganate ion (MnO41-) was formed. On the other hand, a linear relation was perceived between the volumetric mass transfer coefficient (kLa) and the ozone mass flow rate (19.3-77 g h-1 in 600 mL of the 1 M H2SO4 solution). The rate constant (k) was determined in the presence and absence of nonporous plastic spheres (D = 3 mm). In both cases the rate of Mn(II) conversion increased proportionally with the ozone mass flow rate, although the conversions obtained with non-porous plastic spheres (x = 82%) were always higher than those without non-porous plastic spheres (x = 72%). A pseudo-homogenous mass transfer model adequately approximated the experimental data.

  1. The inhibition of the spongy electrocrystallization of zinc from doped flowing alkaline zincate solutions

    NASA Astrophysics Data System (ADS)

    Wen, Yue-hua; Cheng, Jie; Zhang, Li; Yan, Xu; Yang, Yu-sheng

    The effects of the presence of additives like lead and tungstate ions in flowing alkaline zincate solutions on suppressing spongy zinc electrogrowth are examined. The results show that the two additives with optimal concentrations in flowing electrolytes can suppress spongy zinc initiation and propagation. And, the two additives can bring about more uniform and compact deposits and, thereby, reduce spongy zinc growth. The influence of lead and tungstate ions on the zinc deposition/dissolution is evaluated by cyclic voltammetry. It also shows that the addition of the two additives is largely a blocking action, and the co-deposition of lead and zinc ions may occur. The performance of the zinc-air flow battery with zinc regeneration electrolysis is determined. It shows that by the addition of 0.6 M Na 2WO 4 or 10 -4 M to 10 -3 M lead, compact or mixed compact-spongy zinc deposits are created and the favorable charge/discharge performance of the battery is achieved with an energy efficiency of approximately 60%.

  2. Phase Stability of Chromium(III) Oxide Hydroxide in Alkaline Sodium Phosphate Solutions

    SciTech Connect

    S.E. Ziemniak; E.P. Opalka

    2003-07-08

    Grimaldiite ({alpha}-CrOOH) is shown to transform to a sodium-chromium(III)-hydroxyphosphate compound (SCHP) in alkaline sodium phosphate solutions at elevated temperatures via CrOOH(s) + 4Na{sup +} + 2HPO{sub 4}{sup 2-} = Na{sub 4}Cr(OH)(PO{sub 4}){sub 2}(s) + H{sub 2}O. X-ray diffraction analyses indicate that SCHP possesses an orthorhombic lattice having the same space group symmetry (Ibam, No.72) as sodium ferric hydroxyphosphate. A structurally-consistent designation for SCHP is Na{sub 3}Cr(PO{sub 4}){sub 2} {center_dot} NaOH; the molar volume of SCHP is estimated to be 1552 cm{sup 3}. The thermodynamic equilibrium for the above reaction was defined in the system Na{sub 2}O-P{sub 2}O{sub 5}-Cr{sub 2}O{sub 3}-H{sub 2}O for Na/P molar ratios between 2.0 and 2.4. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard molar entropy (S{sup o}), heat capacity (C{sub p}{sup o}) and free energy of formation ({Delta}G{sub f}{sup o}) for SCHP were calculated to be 690 J/(mol-K), 622 J/(mol-K) and -3509.97 kJ/mol, respectively.

  3. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.

  4. Speciation and structure of tin(II) in hyper-alkaline aqueous solution.

    PubMed

    Bajnóczi, Eva G; Czeglédi, Eszter; Kuzmann, Ernő; Homonnay, Zoltán; Bálint, Szabolcs; Dombi, György; Forgo, Péter; Berkesi, Ottó; Pálinkó, István; Peintler, Gábor; Sipos, Pál; Persson, Ingmar

    2014-12-28

    The identity of the predominating tin(ii)-hydroxide complex formed in hyper-alkaline aqueous solutions (0.2 ≤CNaOH≤ 12 mol dm(-3)) is determined by potentiometric titrations, Raman, Mössbauer and XANES spectroscopy, supplemented by quantum chemical calculations. Thermodynamic studies using a H2/Pt electrode up to free hydroxide concentrations of 1 mol dm(-3) showed the presence of a single monomeric complex with a tin(II) : hydroxide ratio of 1 : 3. This observation together with Raman and Mössbauer spectroscopic measurements supplemented by quantum mechanical calculations proved that the predominating complex is [Sn(OH)3](-), and that the presence of the other possible complex, [SnO(OH)](-), could not be proven with either experiments or simulations. The structure of the trihydroxidostannate(II) complex, [Sn(OH)3](-), was determined by EXAFS and was found to be independent of the applied hydroxide and tin(II) concentrations. The mean Sn-O bond distance is short, 2.078 Å, and in very good agreement with the only structure reported in the solid state. It is also shown that at pH values above 13 the speciation of the predominant trihydroxidostannate(II) complex is not affected by the presence of high concentrations of chloride ions.

  5. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    PubMed

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei

    2008-05-01

    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  6. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2016-06-30

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e– or 4e– transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H2O)-mediated mechanism including 4e– transfers is identified, where the reduction stepsmore » via *H2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH–(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O2 binding is strong enough to enable the ORR via the 4e– transfer mechanism.« less

  7. IMPACT OF INCREASED ALUMINATE CONCENTRATIONS ON PROPERTIES OF SALTSTONE MIXES

    SciTech Connect

    Harbour, J; Tommy Edwards, T; Erich Hansen, E; Vickie Williams, V

    2007-10-12

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. The protocols developed in this variability study are ideally suited as a tool to assess the impact of proposed changes to the processing flow sheet for Liquid Waste Operations (LWO). One such proposal that is currently under consideration is to introduce a leaching step in the treatment of the High Level Waste (HLW) sludge to remove aluminum prior to vitrification at the Defense Waste Processing Facility (DWPF). This leachate would significantly increase the soluble aluminate concentrations as well as the free hydroxide ion concentration in the salt feed that will be processed at the Saltstone Processing Facility (SPF). Consequently, an initial study of the impact of increased aluminate concentration on the Saltstone grout properties was performed. The projected compositions and ranges of the aluminate rich salt stream (which includes the blending strategy) are not yet available and consequently, in this initial report, two separate salt stream compositions were investigated. The first stream starts with the previously projected baseline composition of the salt solution that will be fed to SPF from the Salt Waste Processing Facility (SWPF). The second stream is the solution that results from washing of the current Tank 51 sludge and subsequent transfer of the salt solution to Tank 11. The SWPF simulant has higher nitrate and lower free hydroxide than the Tank 11 simulant. In both of these cases, the aluminate was varied up to a maximum of 0.40 to 0.45M aluminate in order to evaluate the impact of increasing aluminate ion concentration on the grout properties. In general, the fresh grout properties of mixes made with SWPF and Tank 11 simulants were relatively insensitive to an increase in aluminate concentration in the salt solutions. However, the overall

  8. Aquarium tests on aluminized ANFO

    SciTech Connect

    Goldstein, S.; Johnson, J.N.

    1981-01-01

    Aquarium test data are presented on commercially available ANFO and 7.5 wt % aluminized ANFO in 10-cm-i.d. clay pipe. The data obtained on the aluminized product show only sight measurable improvement in performance over the nonaluminized product, possibly because of inadequate control on initial sample density. Therefore, additional experiments were conducted on aluminized ANFO mixtures of our own composition to control initial sample density, aluminum concentration, and aluminum particle size. Direct measurement of shock pressures in the water were made with lithium niobate pressure transducers approx. 28 cm from the charge. These tests show that the addition of aluminum (average particle size < 100 ..mu..m) increases the peak pressure by more than 50% for the addition of 11 wt % aluminum to a standard (94/6) ANFO mixture. Tests conducted on 19 wt % aluminum showed a slightly smaller increase in peak pressure, indicating some optimal aluminum concentration for maximum shattering efficiency in blasting applications.

  9. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P.

    1993-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na{sup +} + H{sub 2}PO{sub 4}{sup {minus}} {r_reversible} NaZnPO{sub 4}(s) + H{sub 2}O or 2 ZnO(s) + H{sub 3}PO{sub 4}(aq) {r_reversible} Zn{sub 2}(OH)PO{sub 4}(s) + H{sub 2}O. X-ray diffraction analyses indicate that NaZnPO{sub 4} possesses an orthorhombic unit cell having lattice parameters a = 8.710 {+-} 0.013, b = 15.175 {+-} 0.010, and c = 8.027 {+-} 0.004 {angstrom}. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O for Na/P molar ratios between 2.1 and 3. Based on observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S{degrees}) and free energy of formation ({Delta}G{sub f}{degrees}) for NaZnPO{sub 4} were calculated to be 169.0 J/mol-K and {minus}1510.6 kJ/mol, respectively; similar values for Zn{sub 2}(OH)PO{sub 4} (tarbuttite) were 235.9 J/mol-K and {minus}1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions.

  10. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P. )

    1994-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na[sup +] + H[sub 2]PO[sub 4]- [l reversible] NaZnPO[sub 4](s) + H[sub 2]O or 2ZnO(s) + H[sub 3]PO[sub 4](aq) [l reversible] Zn[sub 2](OH)PO[sub 4](s) + H[sub 2]O. X-ray diffraction analyses indicate that NaZnPO[sub 4] possesses an orthorhombic unit cell having lattice parameters a = 8.710 [+-] 0.013, b = 15.175 [+-] 0.010, c = 8.027 [+-] 0.004 [angstrom]. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na[sub 2]O-P[sub 2]O[sub 5]-H[sub 2]O for Na/P molar ratios between 2.1 and 3. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S[degrees]) and free energy of formation ([delta]G[sub f][degrees]) for NaZnPO[sub 4] were calculated to be 169.0 J/(mol K) and -1510.6 kJ/mol, respectively; similar values for Zn[sub 2](OH)PO[sub 4] (tarbuttite) were 235.9 J/(mol K) and -1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions. 26 refs., 5 figs., 7 tabs.

  11. CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions

    SciTech Connect

    Arenz, M.; Stamenkovic, V.; Wandelt, K.; Ross, P.N.; Markovic, N.M.

    2002-01-01

    The electrochemistry of CO on a bare Pt(111) electrode as well as a Pt(111) electrode modified with pseudomorphic thin palladium films has been studied in alkaline solution by means of Fourier transform infrared (FTIR) spectroscopy. First Pd films were prepared and well characterized in UHV and subsequently transferred into the electrochemical cell for the registration of the voltammetric profiles. The charge corresponding to the formation of underpotentially deposited hydrogen (H{sub upd}) on these Pt(111)-xPd surfaces was established in sulfuric acid solution as a function of x (0 {le} x {le} 1 Pd monolayer (ML)). All subsequent measurements were then performed on electrochemically deposited palladium films using the above H{sub upd}-charge vs. Pd coverage relationship to evaluate the amount of electrochemically deposited palladium. FTIR spectra for CO adsorbed on one monolayer and a submonolayer coverage are compared to those of the unmodified Pt(111) surface, all surfaces having identical 2D lattice structures. Infrared absorption bands of CO bound on either Pt(111) or Pt(111)-1ML Pd are clearly distinguished. Spectra of CO adsorbed on Pd submonolayers show characteristic features of both CO bound to Pt and to Pd, indicating that on Pt(111)-xPd surfaces there is no coupling between Pt-CO{sub ad} and Pd-CO{sub ad} molecules. The kinetics of CO oxidation on these surfaces is determined either by rotating disk electrode (RDE) measurements or by FTIR spectroscopy, monitoring the CO{sub 3}{sup 2-} production. The oxidation of CO{sub ad} on Pt(111) and on Pd modified platinum surfaces starts at the same potential, ca. at 0.2 V. The oxidation rate is, however, considerably lower on the Pt(111)-xPd surfaces than on the Pt(111) surface. The kinetics of CO oxidation appears to be determined by the nature of adsorbed hydroxyl anions (OH{sub ad}), which are more strongly (less active) adsorbed on the highly oxophilic Pd atoms.

  12. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    SciTech Connect

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  13. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  14. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  15. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    SciTech Connect

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L.

    1996-06-06

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.

  16. Kinetics of oxidation of odorous sulfur compounds in aqueous alkaline solution with H2O2.

    PubMed

    Feliers, C; Patria, L; Morvan, J; Laplanche, A

    2001-10-01

    Sulfur species oxidation is a crucial issue wastewater treatment. The production of sulfur compounds like H2S,CH3SH, C2H5SH, disulfides and dimethyle sulfide generates odorous nuisances for the neighborhood. The oxidation of these species by H2O2 in alkaline solution has been investigated. The results showed that thiols CH3SH and C2H5SH react with H202 only in their dissociated form RS- with rate constants respectively k = 8.81 +/- 0.48 M-1s-1 and 8.37 +/- 0.63 M-1.s-1. Mercaptans oxidation produces 100 % of dimethyldisulfide or diethyldisulfide. The oxidation of disulfides shows a difference of reactivity between H2O2 and HO2- towards sulfur species. Increasing the pH accelerates significantly the reactions in the case of CH3SSCH3. The oxidation rate can be described as: r = k[RSSR][H2O2][RSSR][H2O2] + k[RSSR][HO2-] [RSSR][HO2-] with k[RSSR][H2O2] = 1.2 x 10(-4) +/- 0.2 x 10(-4) M-1s-1 and k[RSSR][HO2-] = 3.4 x 10(-4) +/- 0.6 x 10(-4) M-1.s-1 for CH3SSCH3. Dimethyl sulfide presents a reactivity different from disulfides. The oxidation rate can also be described as: r = k[CH3SCH3][H2O21][CH3SCH3][H2O2] + k[CH3SCH3][HO-] [CH3SCH3][HO2-], however, oxidation rate decreases with pH increase. k[CH3SCH3][H2O2] = 12.8 x 10(-3) +/- 0.96 x 10(-3) M-1.s-1 and k[CH3SCH3][HO2-] = 4 x 10(-3) +/- 0.3 x 10(-3) M-1.s-1.

  17. Effects of applied potential on the stress corrosion cracking behavior of 7003 aluminum alloy in acid and alkaline chloride solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-yan; Song, Ren-guo; Sun, Bin; Lu, Hai; Wang, Chao

    2016-07-01

    Potentiodynamic polarization tests and slow strain rate test (SSRT) in combination with fracture morphology observations were conducted to investigate the stress corrosion cracking (SCC) behavior of 7003 aluminum alloy (AA7003) in acid and alkaline chloride solutions under various applied potentials ( E a). The results show that AA7003 is to a certain extent susceptible to SCC via anodic dissolution (AD) at open-circuit potential (OCP) and is highly susceptible to hydrogen embrittlement (HE) at high negative E a in the solutions with pH levels of 4 and 11. The susceptibility increases with negative shift in the potential when E a is less than -1000 mV vs. SCE. However, the susceptibility distinctly decreases because of the inhibition of AD when E a is equal to -1000 mV vs. SCE. In addition, the SCC susceptibility of AA7003 in the acid chloride solution is higher than that in the alkaline solution at each potential. Moreover, the effect of hydrogen on SCC increases with increasing hydrogen ion concentration.

  18. DNA adsorption onto calcium aluminate and silicate glass surfaces.

    PubMed

    Carlson, Krista; Flick, Lisa; Hall, Matthew

    2014-05-01

    A common technique for small-scale isolation of genomic DNA is via adsorption of the DNA molecules onto a silica scaffold. In this work, the isolation capacities of calcium aluminate based glasses were compared against a commercially available silica scaffold. Silica scaffolds exhibit a negative surface at the physiological pH values used during DNA isolation (pH 5-9), while the calcium aluminate glass microspheres exhibit a positive surface charge. Isolation data demonstrates that the positively charged surface enhanced DNA adsorption over the negatively charged surface. DNA was eluted from the calcium aluminate surface by shifting the pH of the solution to above its IEP at pH 8. Iron additions to the calcium aluminate glass improved the chemical durability without compromising the surface charge. Morphology of the glass substrate was also found to affect DNA isolation; 43-106 μm diameter soda lime silicate microspheres adsorbed a greater quantity of genomic DNA than silica fibers with an average diameter of ∼2 μm.

  19. Effects of treating wheat straw with pH-regulated solutions of alkaline hydrogen peroxide on nutrient digestion by sheep.

    PubMed

    Kerley, M S; Fahey, G C; Berger, L L; Merchen, N R; Gould, J M

    1987-10-01

    An experiment using a 4 X 4 Latin square design was to determine effects of treating wheat straw with pH-regulated (pH = 11.5) solutions of hydrogen peroxide on site and extent of nutrient digestion in multiple-fistulated sheep. Regulating reaction pH at 11.5 prevented solubilization of some cell wall hemicelluloses, resulting in improved retention of DM. Diets fed to sheep contained 33 or 70% wheat straw either untreated or treated with alkaline hydrogen peroxide. Sheep fed diets of treated wheat straw digested more DM, NDF, ADF, and cellulose anterior to the duodenum and in the total tract than when fed diets of untreated wheat straw. Apparent CP digestion before the duodenum was highest when sheep were fed the treated 33% wheat straw diet and untreated 70% wheat straw diet. Treatments did not affect apparent nutrient digestibilities in the large intestine. Ruminal pH was lower when sheep were fed the alkaline hydrogen peroxide-treated or diets containing 33% wheat straw. Ruminal ammonia concentrations were highest when sheep were fed the untreated 70% wheat straw diet. Molar proportions of ruminal acetic and propionic acids were unaffected by diet. Alkaline hydrogen peroxide treatment substantially increased susceptibility of structural carbohydrates of wheat straw to microbial degradation in the gastrointestinal tract of sheep.

  20. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    SciTech Connect

    Delegard, Calvin H.

    2013-05-01

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.

  1. Method of processing aluminous ores

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    A method of producing aluminum chloride from aluminous materials containing compounds of iron, titanium and silicon comprising reacting the aluminous materials with carbon and a chlorine-containing gas at a temperature of about 900.degree. K. to form a gaseous mixture containing chlorides of aluminum, iron, titanium and silicon and oxides of carbon; cooling the gaseous mixture to a temperature of about 400.degree. K. or lower to condense the aluminum chlorides and iron chlorides while titanium chloride and silicon chloride remain in the gas phase to effect a separation thereof; heating the mixture of iron chlorides and aluminum chlorides to a temperature of about 800.degree. K. to form gaseous aluminum chlorides and iron chlorides; passing the heated gases into intimate contact with aluminum sulfide to precipitate solid iron sulfide and to form additional gaseous aluminum chlorides; and separating the gaseous aluminum chloride from the solid iron sulfide.

  2. Evidence for the Formation of Benzacridine Derivatives in Alkaline-Treated Sunflower Meal and Model Solutions.

    PubMed

    Bongartz, Verena; Brandt, Lisa; Gehrmann, Mai Linh; Zimmermann, Benno F; Schulze-Kaysers, Nadine; Schieber, Andreas

    2016-01-14

    Sunflower extraction meal (SEM) is an economically interesting protein source. During alkaline extraction of proteins, the presence of chlorogenic acid (CQA) in the meal gives rise to the formation of o-quinones. Reactions with nucleophiles present in proteins can lead to green discoloration. Although such reactions have been known for a long time, there is a lack of information on the chemical nature of the reaction products. SEM and model systems consisting of amino acids and CQA were subjected to alkaline treatment and, for comparison, to oxidation of CQA by polyphenoloxidase (PPO). Several green trihydroxy benzacridine (TBA) derivatives were tentatively identified in all samples by UHPLC-DAD-MS/MS. Surprisingly, in alkaline-treated samples of particular amino acids as well as in SEM, the same six TBA isomers were detected. In contrast, the enzymatically oxidized samples resulted in only three TBA derivatives. Contrary to previous findings, neither peptide nor amino acid residues were attached to the resultant benzacridine core. The results indicate that the formation of TBA derivatives is caused by the reaction between CQA quinones and free NH2 groups. Further research is necessary to elucidate the structure of the addition products for a comprehensive evaluation of food and feed safety aspects.

  3. Enhancement of the absorption of CO{sub 2} in alkaline buffer solutions: Joint action of two enhancers

    SciTech Connect

    Vazquez, G.; Chenlo, F.; Pereira, G.; Vazquez, P.

    1999-05-01

    The authors measured the absorption of CO{sub 2} in alkaline 0.5 M/0.5 M sodium carbonate/bicarbonate buffers containing either saccharose and sodium arsenite or saccharose and formaldehyde. Absorption enhancement increased upon increasing the concentration of either of the catalysts, but the joint action of the two was always less than the sum of their individual effects, the difference being a function of the acidities and concentrations of the catalysts and the pH of the carbonate/bicarbonate buffer solution

  4. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  5. Recent progress in electrochemical oxidation of saccharides at gold and copper electrodes in alkaline solutions.

    PubMed

    Torto, Nelson

    2009-09-01

    This article reviews the progress made in the past 10 years, on electrochemical oxidation of saccharides in alkaline media for gold and copper electrodes. The mechanism and processes associated with the electrochemical oxidation of saccharides at native and surface coated electrodes continues to be of great interest. Despite the effort and various mechanisms proposed, still the need for an electrochemically active material that understands the complexity associated with saccharides continues to increase as their detection poses a challenge for bioanalytical chemistry and liquid chromatography.

  6. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution.

    PubMed

    Bo, Xiangjie; Guo, Liping

    2013-02-21

    Ordered mesoporous boron-doped carbons (BOMCs) were prepared by co-impregnation and carbonization of sucrose and 4-hydroxyphenylboronic acid into SBA-15 silica template. Nitrogen sorption, small angle X-ray diffraction (XRD), and transmission electron microscopy (TEM) reveals that BOMCs possess highly ordered mesoporous structure, uniform pore size distribution, and high surface area. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that B atoms can be successfully doped into the framework of OMCs. Due to the desirable characteristics of BOMCs, BOMCs are highly active, cheap, and selective metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. Although B content is a key factor in determining ORR activity, the ORR activity of BOMCs is also dependent on the surface area. The high surface area of BOMCs facilitates the exposure of the active sites for ORR. BOMCs may be further exploited as potentially efficient and inexpensive metal-free ORR catalysts with good long-term stability in alkaline solution. PMID:23318553

  7. Cysteine as a green corrosion inhibitor for Cu37Zn brass in neutral and weakly alkaline sulphate solutions.

    PubMed

    Radovanović, Milan B; Petrović, Marija B; Simonović, Ana T; Milić, Snežana M; Antonijević, Milan M

    2013-07-01

    The aim of this study was to investigate electrochemical properties of brass in neutral and weakly alkaline solutions in the presence of cysteine as a nontoxic and ecological corrosion inhibitor. Potentiodynamic measurements, open circuit potential measurements, as well as chronoamperometric measurements were the methods used during investigation of the inhibitory effect of cysteine on the corrosion behaviour of brass. Potentiodynamic measurements showed that cysteine behaves as a mixed-type inhibitor in the investigated media. Based on polarization curves for brass in a weakly alkaline solution of sodium sulphate at varying cysteine concentrations, an interaction occurs between Cu(+) ions and the inhibitor, resulting in the formation of a protective complex on the electrode surface. The results of chronoamperometric measurements confirm the results obtained by potentiodynamic measurements. Optical microphotography of the brass surface also confirms the formation of a protective film in the presence of a 1 × 10(-4) mol/dm(3) cysteine. Adsorption of cysteine on the brass surface proceeds according to the Langmuir adsorption isotherm.

  8. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  9. Chitosan-collagen biomembrane embedded with calcium-aluminate enhances dentinogenic potential of pulp cells.

    PubMed

    Soares, Diana Gabriela; Rosseto, Hebert Luís; Basso, Fernanda Gonçalves; Scheffel, Débora Salles; Hebling, Josimeri; Costa, Carlos Alberto de Souza

    2016-01-01

    The development of biomaterials capable of driving dental pulp stem cell differentiation into odontoblast-like cells able to secrete reparative dentin is the goal of current conservative dentistry. In the present investigation, a biomembrane (BM) composed of a chitosan/collagen matrix embedded with calcium-aluminate microparticles was tested. The BM was produced by mixing collagen gel with a chitosan solution (2:1), and then adding bioactive calcium-aluminate cement as the mineral phase. An inert material (polystyrene) was used as the negative control. Human dental pulp cells were seeded onto the surface of certain materials, and the cytocompatibility was evaluated by cell proliferation and cell morphology, assessed after 1, 7, 14 and 28 days in culture. The odontoblastic differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, total protein production, gene expression of DMP-1/DSPP and mineralized nodule deposition. The pulp cells were able to attach onto the BM surface and spread, displaying a faster proliferative rate at initial periods than that of the control cells. The BM also acted on the cells to induce more intense ALP activity, protein production at 14 days, and higher gene expression of DSPP and DMP-1 at 28 days, leading to the deposition of about five times more mineralized matrix than the cells in the control group. Therefore, the experimental biomembrane induced the differentiation of pulp cells into odontoblast-like cells featuring a highly secretory phenotype. This innovative bioactive material can drive other protocols for dental pulp exposure treatment by inducing the regeneration of dentin tissue mediated by resident cells. PMID:27119587

  10. Aluminized alloy boosts turbine blade life

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J.

    1974-01-01

    Description of an aluminized alloy coating technique that involves first the application of a ductile, oxidation-resistant overlay, such as NiCrAl, which is then partially aluminized. The duplex protective system has performance advantages over conventional aluminide coatings in that it provides higher-temperature hot corrosion resistance over a longer service life.

  11. Effect of chloride concentration on the pitting and repassivation potentials of reinforcing steel in alkaline solutions

    SciTech Connect

    Li, L.

    1999-11-01

    Reinforcing steel bars ({approximately}12mm diameter and 150mm long) were used in cyclic polarization tests in saturated Ca(OH){sub 2} solution and simulated concrete pore solution (SPS) with various levels of sodium chloride addition. Below a limiting chloride level ({approximately}O.004M [Cl{sup {minus}}] in Ca(OH){sub 2} solution and {approximately}0.4M [Cl{sup {minus}}] in SPS solution), steel was not found to undergo pitting corrosion even if it was polarized to the oxygen evolution potential ({approximately}O.6V/SCE). At higher NaCl addition, pitting corrosion could often be initiated but the pitting potential was non-deterministic to a great extent. In Ca(OH){sub 2} solution the average pitting potential was found to be strongly dependent on chloride concentration when [Cl{sup {minus}}]{ge}0.008M. In SPS solution, the average pitting potential was almost independent of the chloride concentration when [Cl{sup {minus}}]{ge}0.8M. The repassivation potential was found to be a strong function of the severity of corrosion attack that has occurred on the steel surface before repassivation, rather than a function of the chloride content of the bulk solution. The pitting tendency in chloride-containing SPS and Ca(OH){sub 2} solutions was interpreted on a statistical basis. The threshold thus determined good agreement with other values reported in the literature.

  12. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium for a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate or hydroxide thereby stripping uranium from the organic extractant into the stripping solution. The resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  13. Process for recovering uranium using an alkyl pyrophosphoric acid and alkaline stripping solution

    SciTech Connect

    Worthington, R.E.; Magdics, A.

    1987-03-24

    A process is described for stripping uranium from a pregnant organic extractant comprising an alkyl pyrophosphoric acid dissolved in a substantially water-immiscible organic diluent. The organic extractant contains tetravalent uranium and an alcohol or phenol modifier in a quantity sufficient to retain substantially all the unhydrolyzed alkyl pyrophosphoric acid in solution in the diluent during stripping. The process comprises adding an oxidizing agent to the organic extractant to and thereby oxidizing the tetravalent uranium to the +6 state in the organic extractant, and contacting the organic extractant containing the uranium in the +6 state with a stripping solution comprising an aqueous solution of an alkali metal or ammonium carbonate, nonsaturated in uranium. The uranium is stripped from, the organic extractant into the stripping solution, and the resulting barren organic extractant containing substantially all of the unhydrolyzed alkyl pyrophosphoric acid dissolved in the diluent is separated from the stripping solution containing the stripped uranium, the barren extractant being suitable for recycle.

  14. Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions

    NASA Astrophysics Data System (ADS)

    Morcali, Mehmet Hakan

    2015-07-01

    This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.

  15. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  16. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE PAGES

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over themore » equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  17. RECENT STUDIES OF URANIUM AND PLUTONIUM CHEMISTRY IN ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    King, W; Bill Wilmarth, B; David Hobbs, D; Tommy Edwards, T

    2006-06-13

    Solubility studies of uranium and plutonium in a caustic, radioactive Savannah River Site tank waste solution revealed the existence of uranium supersaturation in the as-received sample. Comparison of the results to predictions generated from previously published models for solubility in these waste types revealed that the U model poorly predicts solubility while Pu model predictions are quite consistent with experimental observations. Separate studies using simulated Savannah River Site evaporator feed solution revealed that the known formation of sodium aluminosilicate solids in waste evaporators can promote rapid precipitation of uranium from supersaturated solutions.

  18. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts. PMID:25997179

  19. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    PubMed

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  20. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    SciTech Connect

    Wang, Y.Y.; Cai, K.F.; Yao, X.

    2009-12-15

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is {approx}25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value ({approx}147 muV K{sup -1}) and low electrical conductivity ({approx}0.017 S cm{sup -1}). The formation mechanism of the PbTe nanoparticles and films is proposed. - PbTe nanoparticles and films were fabricated at room temperature and ambient pressure in an alkaline aqueous solution by a chemical bath method.

  1. A parallel-plate electrochemical reactor model for the destruction of nitrate and nitrite in alkaline waste solutions

    SciTech Connect

    Coleman, D.H.; White, R.E.; Hobbs, D.T.

    1995-04-01

    The electrochemical treatment of nuclear waste is the subject of much current interest. After radioactive decontamination, the liquid waste from nuclear fuel processing still contains many hazardous substances, among them nitrate and nitrite. A parallel-plate electrochemical reactor model with multiple reactions at both electrodes and anolyte and catholyte recirculation tanks was modeled for the electrochemical destruction of nitrate and nitrite species in an alkaline solution. The model can be used to predict electrochemical reaction current efficiencies and outlet concentrations of species from the reactor, given inlet feed conditions and cell operating conditions. Also, predictions are made for off-gas composition and liquid-phase composition in the recirculation tanks. The results of case studies at different applied potentials are shown here. At lower applied potentials, the model predictions show that the destruction process is more energy efficient, but the time required to destroy a given amount of waste is increased.

  2. Counter-ion specificity explored in abnormal expansion of supra-molecular aggregates in aqueous solution of alkaline metal salts.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Li, Liangbin

    2015-09-21

    Ionic effects in aqueous solution of macro-ions showing specificity and unconventional characters, respectively, receive a lot of interests recently; however, the complexity of specific ion effects in unconventional phenomena remains ambiguous. In this study, the effects of univalent ions on aggregation of supra-molecular nano-fibrils with charged carboxylate groups on the surface as a prototype of macro-ions are investigated by Small Angle X-ray Scattering (SAXS) in aqueous solutions of alkaline metal chlorides. It is found that the columnar bundles of charged fibrils are expanded in certain salt concentration range contradicting the conventional screening effects of salts. The degree of expansion is dominated by cations as Na(+) induces drastic effects in comparison to rather gentle changes from K(+) and Cs(+). The specific cations effects observed by SAXS correlate with the pH behavior of the solutions, an indicator of surface charge, or number of carboxylate groups along the supra-molecular fibrils. It is postulated that while Na(+) with stronger affinity to carboxylates apparently reduces the surface charge, K(+) and Cs(+) only weakly interact with carboxylates and induce minor changes, accounting for the cation-sensitive aggregation behavior of fibrils observed by SAXS. By probing the bundling aggregation of charged supra-molecular nano-fibrils in salty water, we provide direct evidence of specific counter-ion effects in unusual expansion caused by univalent salts. PMID:26395732

  3. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    PubMed

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  4. Spray washing carcasses with alkaline solutions of lauric acid to reduce bacterial contamination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of lauric acid (LA)-potassium hydroxide (KOH) solutions to reduce carcass bacterial contamination was examined. Skin of carcasses was inoculated with a cecal paste containing antibiotic resistant strains of Escherichia coli, Salmonella Typhimirum, and Campylobacter coli. In one trial, in...

  5. The Role of Oxygen in the Copper-Catalyzed Decomposition of Phenylborates in Aqueous Alkaline Solutions

    SciTech Connect

    Hyder, M.L.

    1997-03-17

    The effect of oxygen on the copper-catalyzed hydrolysis of phenyl borates containing from one to four phenyl groups was studied in 1 M aqueous sodium hydroxide solution at 59 degrees C. The results are tentatively explained if the effective catalyst for each of the reactions is either cupric or cuprous ion, with the latter being present in significant concentration only in the absence of air.

  6. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  7. Thermodynamic Model for ThO2(am) Solubility in Alkaline Silica Solutions

    SciTech Connect

    Rai, D; Yui, Mikazu; Moore, Dean A.; Lumetta, Gregg J.; Rosso, Kevin M.; Xia, Yuanxian; Felmy, Andrew R.; Skomurski, Frances N.

    2008-10-11

    literature, agreed closely with the extensive experimental data and showed that under alkaline conditions aqueous Si makes very strong complexes with Th.

  8. Comprehensive study of the chemical reactions resulting from the decomposition of chloroform in alkaline aqueous solution

    NASA Astrophysics Data System (ADS)

    Estevez Mews, Jorge

    Chloroform (CHCl3) is a volatile liquid, which has a rather slow rate of decomposition in ground water. It is a known carcinogen and one of the most common contaminants found at toxic waste sites. The dominant degradation process for chloroform in both the atmosphere and the groundwater is the reaction with the hydroxyl radical or hydroxide ion. This process triggers a sequence of reactions which ultimately yield carbon monoxide, hydrogen chloride, and formic acid. The rate of chloroform degradation is considerably larger in solution than that in the gas phase and it increases dramatically with increasing pH. However, only one of the viable reactions had been studied previously at a high level of theory in solution. It is of great interest to gain a deeper understanding of the decomposition reaction mechanism. Quantum mechanical methods are well suited for studying the mechanism of organic reactions. However, a full quantum mechanical treatment of the entire fluid system is not computationally feasible. In this work, combined quantum mechanical and molecular mechanical (QM/MM) methods are used for studying chemical reactions in condensed phases. In these calculations, the solute molecules are treated quantum mechanically (QM), whereas the solvent molecules are approximated by empirical (MM) potential energy functions. The use of quantum mechanics and statistical sampling simulation is necessary to determine the reaction free energy profile. In the present study, the ab initio Hartree-Fock theory along with the 3-21G basis set was used in the quantum mechanical calculations to elucidate the reaction pathways of chloroform decomposition, with a focus on basic reaction conditions. Statistical mechanical Monte Carlo approach was then applied in molecular mechanical simulations, employing the empirical TIP3P model for water. We employed state-of-the-art electronic structure methods to determine the gas-phase inter-nuclear potential energy profile for all the relevant

  9. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    PubMed Central

    2013-01-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO. PMID:24059434

  10. Solubility of uranium (IV) oxide in alkaline aqueous solutions to 300/sup 0/C

    SciTech Connect

    Tremaine, P.R.; Chen, J.D.; Wallace, G.J.; Boivin, W.A.

    1981-03-01

    The solubility of carefully characterized UO/sub 2/ in pOH 1.5 and pOH 2.5 aqueous solutions has been determined from 25 to 300/sup 0/C using a flow apparatus. Data were analyzed in terms of reversible reaction, UO/sub 2/ + 2H/sub 2/O + OH/sup -/ ..-->.. U(OH)/sub 5//sup -/, where log K = -5.86 + 32/T. The extreme sensitivity of both the UO/sub 2/ surface and aqueous U(IV) to oxidation is discussed.

  11. Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-10-01

    Effect of nano-grained structure on the interface behavior of pure copper in 0.01M KOH solution with chloride ion trace is investigated by various electrochemical techniques. Nano-grained structure was achieved by accumulative roll bonding (ARB) technique. Before any electrochemical measurements, microstructure was evaluated by means of optical microscopy and transmission electron microscopy (TEM). TEM observations showed that nano-grains (with an average size of below 100 nm) appeared after eight passes of ARB. Polarization curves revealed that increasing chloride ion concentration leads to a decrease in the corrosion and pitting potentials of both annealed and nano-grained pure copper samples. Electrochemical impedance spectroscopy revealed that chloride ion trace lowers passive film resistance and charge-transfer resistance in both annealed and nano-grained samples. Mott-Schottky analysis showed that the surface films formed on annealed and nano-grained samples in KOH solution with and without NaCl addition are of p-type semiconducting behavior. Moreover, this analysis showed that the acceptor density increases by increasing chloride ion concentration.

  12. Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Imantalab, Omid; Attarzadeh, Farid Reza

    2016-08-01

    Effect of nano-grained structure on the interface behavior of pure copper in 0.01M KOH solution with chloride ion trace is investigated by various electrochemical techniques. Nano-grained structure was achieved by accumulative roll bonding (ARB) technique. Before any electrochemical measurements, microstructure was evaluated by means of optical microscopy and transmission electron microscopy (TEM). TEM observations showed that nano-grains (with an average size of below 100 nm) appeared after eight passes of ARB. Polarization curves revealed that increasing chloride ion concentration leads to a decrease in the corrosion and pitting potentials of both annealed and nano-grained pure copper samples. Electrochemical impedance spectroscopy revealed that chloride ion trace lowers passive film resistance and charge-transfer resistance in both annealed and nano-grained samples. Mott-Schottky analysis showed that the surface films formed on annealed and nano-grained samples in KOH solution with and without NaCl addition are of p-type semiconducting behavior. Moreover, this analysis showed that the acceptor density increases by increasing chloride ion concentration.

  13. Modeling pitting corrosion of iron exposed to alkaline solutions containing nitrate and nitrite

    NASA Astrophysics Data System (ADS)

    Chen, Lifeng

    2001-07-01

    Pitting corrosion could be extremely serious for dilute high-level radioactive waste stored or processed in carbon steel tanks at the Savannah River Site. In these solutions, nitrate is an aggressive ion with respect to pitting of carbon steel while nitrite can be used as an inhibitor. Excessive additions of nitrite increase the risk of generating unstable nitrogen compounds during waste processing, and insufficient additions of nitrite could increase the risk of corrosion-induced failure. Thus there are strong incentives to obtain a fundamental understanding of the role of nitrite in pitting corrosion prevention with these solution chemistries. In this dissertation, both a 1-D and a 2-D model are used to study the pitting mechanism as a function of nitrite/nitrate ratios. The 1-D model used BAND(J) to test a reaction mechanism for the passivation behavior by comparing the predicted Open Circuit Potential (OCP) with OCP data from experiments at different NO2-/NO3- ratio. The model predictions are compared with Cyclic Potentiodynamic Polarization (CPP) experiments. A 2-D model was developed for the propagation of a pit in iron by writing subroutines for finite element software of GAMBIT and FIDAP. Geometrically distributed anodic and cathodic reactions are assumed. The results show three partial explanations describing the inhibition influence of nitrite to iron corrosion: the competing reduction reaction of nitrate to nitrite, the formation of Fe(OH)+, and the function of the porous film. The current distributions and the effect of porosity of the film on pH are also explained. The calculation results also show that rate of pit growth decreases as the pit diameter increases until it reaches a constant value. The profile of the local current density on the pit wall is parabolic for small pits and it changes to a linear distribution for large pits. The model predicts that addition of nitrite will decrease the production of ferrous ions and those can prevent iron from

  14. Characterization of solid reaction products from wet oxidation of pyrite in coal using alkaline solutions

    SciTech Connect

    Greer, R.T.; Markuszewski, R.; Wheelock, T.D.

    1980-01-01

    Oxidation of pyrite alone and pyrite embedded in coal by leaching with hot solutions of sodium carbonate containing dissolved oxygen under pressure produces hematite, the major solid reaction product. The hematite is deposited as a concentric rim surrounding the core of unreacted pyrite. The thickness of the rim is greater for products obtained after longer leaching time or under conditions of higher oxygen partial pressure. The product is identified as hematite by X-ray diffraction analysis. Data from scanning electron microscopy, and energy-dispersive X-ray analysis show that under these conditions of desulfurization, phase transformations occur (from pyrite to hematite). In addition, great differences in porosity of the two zones (core and rim) are observed. The nature and extent of these transformations are discussed in terms of the desulfurization potential of pyrite in coal. (10 refs.)

  15. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions

    NASA Astrophysics Data System (ADS)

    Althans, Daniel; Enders, Sabine

    2014-09-01

    For development of tailor made drug delivery systems using poly(N-isopropylacrylamide) hydrogels, the influence of acids and bases added to the aqueous solution on the swelling behaviour as function of concentration, temperature and kind of acid or base were investigated experimentally. The selected acids are formic, acetic, propionic, lactic, succinic, α-ketoglutaric and citric acid. The applied bases are sodium and potassium hydroxide. The swelling behaviour was characterised by the degree of swelling and by the uptake of acids by the hydrogel in the swollen state. In the case of weak acids the properties of the swollen hydrogel as well as the phase transition temperature and phase transition acid concentration depends on the type of acids, whereas the properties of the shrunken state do not depend on the acid used. In the case of strong bases, the properties of the shrunken and swollen state depend on the ionic strength, but not on the base applied.

  16. Raman spectroscopic determination of the speciation of ore metals in hydrothermal solutions. I. Speciation of antimony in alkaline sulfide solutions at 25 degree C

    SciTech Connect

    Wood, S.A. )

    1989-02-01

    The Raman spectra of the thio-antimony species present in alkaline Na{sub 2}S solutions were obtained at 25{degree}C. The Na{sub 2}S concentration of the solutions was approximately 1.0 molal and the Sb concentrations ranged from 0.005 to 0.1 molal. The spectrum in 0.1 molal Sb solutions consists of a broad, weak band at 314 cm{sup {minus}1}, a more intense band at 369 cm{sup {minus}1}, and prominent shoulder at approximately 350 cm{sup {minus}1} and a suggestion of a shoulder near 380 cm{sup {minus}1}. All of these bands are polarized. An additional line is observed at 2,574 cm{sup {minus}1} due to the H-S stretch of HS{sup {minus}}. The observed Raman spectrum is consistent with either Sb{sub 2}S{sup 2{minus}}{sub 7}, but the former is preferred based on the small number of bands observed. The spectra of solutions at Sb concentrations of 0.06 or less consist of a polarized band at 369 cm{sup {minus}1} and a polarized shoulder at approximately 380 cm{sup {minus}1}. These spectra are consistent with either a bend SbS{sup {minus}}{sub 2} or a pyramidal SbS{sup 3{minus}}{sub 3} species. The present data suggest that the thioantimony species present in most geological fluids, which are generally at higher temperatures, lower pH and contain lower Sb contents than those employed in this study, will be monomeric rather than polymeric. Most previous experimental reports of polymeric species, based solely on solubility or potentiometric studies, and any thermodynamic data derived from these studies, are suspect.

  17. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  18. Products of pertechnetate radiolysis in highly alkaline solution: structure of TcO2 x xH2O.

    PubMed

    Lukens, Wayne W; Bucher, Jerome I; Edelstein, Norman M; Shuh, David K

    2002-03-01

    The chemistry of technetium in certain high-level nuclear waste (HLW) tanks at the Hanford Site complicates the treatment and vitrification of HLW. A major problem is the presence, in certain tanks, of unidentified, lower-valent technetium species, which are difficult to remove from the waste by current separation processes. Radiolytic reduction of TcO4- in alkaline solutions containing selected organic compounds, approximating the conditions in HLW, was investigated to determine the classes of compounds that can be formed under these conditions. Insoluble TcO2 x xH2O is the primary radiolysis product with the majority of organic compounds investigated, including citrate, dibutyl phosphate, and aminopolycarboxylates. X-ray absorption fine structure (XAFS) measurements show that TcO2 x xH2O has a one-dimensional chain structure consisting of edge-sharing TcO6 octahedra with bridging oxide and trans water ligands. When diols, such as ethylene glycol, are present, only soluble, Tc(IV) alkoxide compounds are produced. The XAFS and UV-visible spectra of these compounds provide evidence for a binuclear structure similar to (H2EDTA)2Tc2(mu-O)2. The properties of the Tc(IV) alkoxide complexes were determined and are consistent with those observed for the soluble, lower-valent technetium complexes that complicate the treatment of HLW at the Hanford site.

  19. Catalytic Activity-d-Band Center Correlation for the O2 Reduction on Platinum in Alkaline Solutions

    SciTech Connect

    Lima,F.; Zhang, J.; Shao, M.; Sasaki, K.; Vukmirovic, M.; Ticianelli, E.; Adzic, R.

    2007-01-01

    We determined, by the rotating disk electrode technique, the kinetics of the oxygen-reduction reaction (ORR) on the surfaces of single crystals of Au(111), Ag(111), Pd(111), Rh(111), Ir(111), and Ru(0001), on Pt monolayers deposited on their surfaces, and also on nanoparticles of these metals dispersed on high-surface-area carbon. Plotting the correlation between the experimentally determined activities of these three types of electrocatalysts with the calculated metal d-band center energies,{var_epsilon}{sub d}, revealed a volcano-type dependence. In all cases, the electronic properties of the metal electrocatalysts, represented by the {var_epsilon}{sub d} value, were used for elucidating the metal-dependent catalytic activities, and establishing their electronic properties-the ORR kinetics relationship. Pt(111), Pt/C, and Pt/Pd(111) were found to top their corresponding volcano plots. Pd in alkaline solutions showed particularly high activity, suggesting it may offer potential replacement for Pt in fuel cells.

  20. Products of pertechnetate radiolysis in highly alkaline solution: structure of TcO2 x xH2O.

    PubMed

    Lukens, Wayne W; Bucher, Jerome I; Edelstein, Norman M; Shuh, David K

    2002-03-01

    The chemistry of technetium in certain high-level nuclear waste (HLW) tanks at the Hanford Site complicates the treatment and vitrification of HLW. A major problem is the presence, in certain tanks, of unidentified, lower-valent technetium species, which are difficult to remove from the waste by current separation processes. Radiolytic reduction of TcO4- in alkaline solutions containing selected organic compounds, approximating the conditions in HLW, was investigated to determine the classes of compounds that can be formed under these conditions. Insoluble TcO2 x xH2O is the primary radiolysis product with the majority of organic compounds investigated, including citrate, dibutyl phosphate, and aminopolycarboxylates. X-ray absorption fine structure (XAFS) measurements show that TcO2 x xH2O has a one-dimensional chain structure consisting of edge-sharing TcO6 octahedra with bridging oxide and trans water ligands. When diols, such as ethylene glycol, are present, only soluble, Tc(IV) alkoxide compounds are produced. The XAFS and UV-visible spectra of these compounds provide evidence for a binuclear structure similar to (H2EDTA)2Tc2(mu-O)2. The properties of the Tc(IV) alkoxide complexes were determined and are consistent with those observed for the soluble, lower-valent technetium complexes that complicate the treatment of HLW at the Hanford site. PMID:11918000

  1. Kinetics of reduction of plutonium(VI) and neptunium(VI) by sulfide in neutral and alkaline solutions

    USGS Publications Warehouse

    Nash, K.L.; Cleveland, J.M.; Sullivan, J.C.; Woods, M.

    1986-01-01

    The rate of reduction of plutonium(VI) and neptunium(VI) by bisulfide ion in neutral and mildly alkaline solutions has been investigated by the stopped-flow technique. The reduction of both of these ions to the pentavalent oxidation state appears to occur in an intramolecular reaction involving an unusual actinide(VI)-hydroxide-bisulfide complex. For plutonium the rate of reduction is 27.4 (??4.1) s-1 at 25??C with ??H* = +33.2 (??1.0) kJ/mol and ??S* = -106 (??4) J/(mol K). The apparent stability constant for the transient complex is 4.66 (??0.94) ?? 103 M-1 at 25??C with associated thermodynamic parameters of ??Hc = +27.7 (??0.4) kJ/mol and ??Sc = +163 (??2) J/(mol K). The corresponding rate and stability constants are determined for the neptunium system at 25??C (k3 = 139 (??30) s-1, Kc. = 1.31 (??0.32) ?? 103 M-1), but equivalent parameters cannot be determined at reduced temperatures. The reaction rate is decreased by bicarbonate ion. At pH > 10.5, a second reaction mechanism, also involving a sulfide complex, is indicated. ?? 1986 American Chemical Society.

  2. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH.

  3. The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries [Bouncing alkaline batteries: A basic solution

    SciTech Connect

    Bhadra, S.; Hertzberg, B. J.; Croft, M.; Gallaway, J. W.; Van Tassell, B. J.; Chamoun, M.; Erdonmez, C.; Zhong, Z.; Steingart, D. A.

    2015-03-13

    The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified into porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.

  4. The relationship between coefficient of restitution and state of charge of zinc alkaline primary LR6 batteries [Bouncing alkaline batteries: A basic solution

    DOE PAGES

    Bhadra, S.; Hertzberg, B. J.; Croft, M.; Gallaway, J. W.; Van Tassell, B. J.; Chamoun, M.; Erdonmez, C.; Zhong, Z.; Steingart, D. A.

    2015-03-13

    The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified intomore » porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.« less

  5. Accelerated carbonation of Friedel's salt in calcium aluminate cement paste

    SciTech Connect

    Goni, S.; Guerrero, A

    2003-01-01

    The stability of Friedel's salt with respect to carbonation has been studied in calcium aluminate cement (CAC) pastes containing NaCl (3% of Cl{sup -} by weight of cement). Carbonation was carried out on a powdered sample in flowing 5% CO{sub 2} gas at 65% relative humidity to accelerate the process. At an intermediate carbonation step, a part of the sample was washed and dried up to 10 cycles to simulate a dynamic leaching attack. The two processes were followed by means of X-ray diffraction (XRD), pH and Cl{sup -} analyses in the simulated pore solution.

  6. Structural Characterization of Spinel Zinc Aluminate Nanoparticles Prepared By Coprecipitation Method

    NASA Astrophysics Data System (ADS)

    Sunder, Shyam; Rohilla, Sunil; Kumar, Sushil; Aghamkar, Praveen

    2011-12-01

    Zinc aluminate is well known wide bandgap semiconductor with cubic spinel structure and transparent for wavelength greater than 320 nm. Therefore, ZnAl2O4 can be used for ultraviolet photoelectronic devices. Furthermore, spinel zinc aluminate is useful in many reactions as catalytic support. Moreover, zinc aluminate can be used as second phase in glaze layer of white ceramics to improve wear resistance and to preserve whiteness. In present study cubic spinel zinc aluminate nanoparticles have been synthesized from aqueous solution of Zn(NO3)2.6H2O (0.1 M) and Al(NO3)2.9H2O (0.2 M) using chemical coprecipitation technique. Ammonium hydroxide was used as precipitating agent and pH was maintained between 8 to 9. The precipitated slurry was filtered and washed several times with deionized double distilled water and dried at 110 °C. The fine powder was annealed at different temperatures from 600 °C to 900 °C for 4h in temperature controlled furnace. Structural characterization of annealed samples was carried out via X-ray Diffraction (XRD), and Fourier Transform Infrared spectroscopy (FTIR). XRD patterns reveal that zinc aluminate samples were cubic spinel nanoparticles and grain size determined by Debye-Scherrer formula is from 5 to 16 nm.

  7. Improving electrochemical properties of AISI 1045 steels by duplex surface treatment of plasma nitriding and aluminizing

    NASA Astrophysics Data System (ADS)

    Haftlang, Farahnaz; Habibolahzadeh, Ali; Sohi, Mahmoud Heydarzadeh

    2015-02-01

    Improvement in electrochemical behavior of AISI 1045 steel after applying aluminum nitride coating was investigated in 3.5% NaCl solution, using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) analyses. Aluminum nitride coating was applied on the steel surface by duplex treatment of pack aluminizing and plasma nitriding. Some specimens were plasma nitrided followed by aluminizing (PN-Al), while the others were pack aluminized followed by plasma nitriding (Al-PN). Topological and structural studies of the modified surfaces were conducted using scanning electron microscope (SEM) equipped by energy dispersive X-ray spectroscope (EDS), and X-ray diffractometer (XRD). The electrochemical measurements showed that the highest corrosion and polarization (Rp) resistances were obtained in PN-Al specimens, having single phase superficial layer of AlN. Pitting mechanism was dominant reason of lower corrosion resistance in the Al-PN specimens.

  8. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOEpatents

    Sim, James W.; Kinoshita, Kimio

    1981-01-01

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  9. Combustion Synthesis of Magnesium Aluminate

    SciTech Connect

    Kale, M. A.; Joshi, C. P.; Moharil, S. V.

    2011-10-20

    In the system MgO-Al{sub 2}O{sub 3}, three compounds MgAl{sub 2}O{sub 4}, MgAl{sub 6}O{sub 10}(also expressed as-Mg{sub 0.4}Al{sub 2.4}O{sub 4}) and MgAl{sub 26}O{sub 40} are well known. Importance of the first two is well established. Magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel is a technologically important material due to its interesting thermal properties. The MgAl{sub 2}O{sub 4} ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl{sub 2}O{sub 4} is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl{sub 6}O{sub 10} has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl{sub 2}O{sub 4} and MgAl{sub 6}O{sub 10} were formed in a single step, while MgAl{sub 26}O{sub 40} was not formed by this procedure. Activation of MgAl{sub 6}O{sub 10} by rare earth ions like Ce{sup 3+}, Eu{sup 3+} and Tb{sup 3+} and ns{sup 2} ion Pb{sup 2+} could be achieved. Excitation bands for MgAl{sub 6}O{sub 10} are at slightly shorter wavelengths compared to those reported for MgAl{sub 2}O{sub 4}.

  10. Atomic Oxygen Durability of Aluminized Polymers

    NASA Technical Reports Server (NTRS)

    Yang, Judith C.

    2003-01-01

    The atomic oxygen durability of aluminized polymers will be investigated. Such aluminized polymers are commonly used in space and specifically on the International Space Station. Recent data from in-space results indicates that vapor deposited aluminum coatings are highly defected with many small pin windows. However, electron microscopy to validate the size and aerial density of such defects remains to be demonstrated. The research project is planned to compare electron microscopy analysis of pristine and atomic oxygen exposed aluminized polyimide Kapton with the results of ground laboratory atomic oxygen erosion data, in-space results and computational Monte Carlo modeling to develop a self consistent understanding of the atomic oxygen degradation processes and effects.

  11. Kinetics of pack aluminization of nickel

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.

    1978-01-01

    The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.

  12. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    PubMed

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide. PMID:18961151

  13. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    PubMed

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  14. An assessment of the long-term environmental impacts of reusing alkaline clay on coal refuse piles with a dynamic solute transport model at a watershed scale

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liang, X.; Davis, T. W.; Patterson, J.; Jaw, F. K.; Koranchie-Boah, P.

    2011-12-01

    Coal refuse piles play a significant role in producing acid mining drainage (AMD) that deteriorates water quality at a watershed scale. The waste produced from coal refuse piles results in a decrease of the pH value in soil water and river flow. Metal compounds, such as ferric and ferrous solutions, are also continuously released from the coal pile due to the extensive and complicated chemical reactions in the acidic environment. Alkaline clay, a byproduct of alumina refining process, has a high residual pH in the material. If the alkaline clay is used innovatively with the coal mine refuse, the problems associated with each (e.g., high and low pH values) are likely to be effectively resolved. In addition, the solubility of the sulfur and iron will be reduced significantly. This will effectively eliminate the AMD problem at the coal refuse pile and improve the water quality at the watershed scale. This study investigates the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment (e.g., in the soil column and in the river system) through systematic modeling simulations in a combination with field measurements. In particular, a dynamic solute transport model that accounts for processes of the pyrite oxidation, oxygen diffusion, absorption, desorption, and advection is developed and is coupled with the Distributed Hydrology Soil and Vegetation Model (DHSVM) to assess the environmental impacts at the watershed scale. The model-simulated sulfur and iron concentrations are compared with field observations and the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment are investigated. This study paves the way for monitoring and assessing the impacts of the reuse of the alkaline clay and refuse mixture on the environment at a watershed scale.

  15. Pitting corrosion of aluminized seals in molten carbonate fuel cells

    SciTech Connect

    Krumpelt, M.; Roche, M.F.; Bloom, I.

    1994-08-01

    The objective of this research is to gain a better understanding of the corrosion of the aluminized type 316 stainless steel employed in the seal areas of the molten carbonate fuel cell. The seals are formed between the aluminized Type 316 SS surface and the electrolyte (generally a mixture of molten alkali carbonates and lithium aluminate).

  16. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents. PMID:23030390

  17. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents.

  18. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.

    2007-12-01

    Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.

  19. An alkalinizing oral rehydration solution containing lecithin-coated citrus fiber is superior to a nonalkalinizing solution in treating 360 calves with naturally acquired diarrhea.

    PubMed

    Goodell, G M; Campbell, J; Hoejvang-Nielsen, L; Stansen, W; Constable, P D

    2012-11-01

    The aim of this field study was to compare the efficacy and cost of 2 commercially available oral rehydration therapy (ORT) solutions in treating dairy calves with naturally acquired diarrhea. A total of 1,349 newborn Holstein-Friesian calves were prospectively enrolled in the study. Calves were housed in individual hutches and fed a mixture of pasteurized hospital milk and an all-milk protein milk replacer twice per day. Calves were monitored twice each day from d 2 of life until 30 d of age for the presence or absence of diarrhea, and were assigned a fecal score and a hydration score at each examination. Calves that developed mild to severe diarrhea that did not need intravenous fluids and did not have clinical evidence of concurrent disease (n = 360) were assigned randomly to receive 1 of 2 commercial ORT solutions: a hypertonic alkalinizing ORT containing lecithin-coated citrus fibers (Diaque, group D, n = 180; Boehringer Ingelheim, Ingelheim, Germany), and an isotonic nonalkalinizing ORT (RE-SORB, group R, n = 180; Pfizer Animal Health, New York, NY) for 2 to 8d; the duration of treatment depended on whether diarrhea was still present. No significant differences were observed in mortality rates or treatment failure rates between the 2 treatment groups. Fecal consistency returned to normal more quickly in group D calves than in group R calves; consequently, group D calves were treated for 1d less than were group R calves. The increase in body weight after 4d of treatment was larger in group D than in group R. The average daily gain from birth to weaning in calves that did not develop concurrent disease (such as pneumonia) during the study period tended to be higher in group D calves (0.53±0.11 kg/d) than in group R calves (0.51±0.09 kg/d). The smaller number of treatments at a lower cost per treatment produced a cost advantage of $4.82 per treated calf in group D calves compared with group R calves. Our findings support the concept that milk should continue

  20. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  1. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  2. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  3. A thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra; Peraudeau, Gilles; McMillan, Paul; Coutures, Jean-Pierre

    1982-11-01

    Enthalpies of solution in molten 2PbO · B 2O 3 at 985 K are reported for series of glasses xCa0.5AlO2-(1- x) SiO2 ( O ≤ x ≤ 0.99) and xNaAlO2-(1- x) SiO2 (0 ≤ x ≤ 0.56). The data are compared to values for the corresponding crystalline aluminosilicates and to preliminary data for systems containing KAlO 2 and Mg 0.5AlO 2. The enthalpies of mixing of glasses become more exothermic with increasing basicity of the mono- or divalent oxide. The tendency toward immiscibility on the silica-rich side, indicated by the shape of the heat of mixing curve between x = 0 and x = 0.4, is pronounced in the calcium aluminate system, but not in the sodium aluminate system. The shape of the heat of mixing curve, which is roughly symmetrical about x = 0.5, can be rationalized in terms of glass structure by considering essentially random substitution of Si and Al on a continuous three dimensional tetrahedral framework, with stabilization arising from electrostatic interactions between aluminum and the nonframework cation balancing the destabilizing effects arising from perturbation of the aluminosilicate framework by the nonframework cation. These trends are consistent with the variation of physical properties of aluminosilicate melts.

  4. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated.

  5. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils

    SciTech Connect

    Emmrich, M.

    1999-11-01

    During the two World Wars, large amounts of TNT were released into the environment. Until today, high concentrations of TNT can be found in the soil of former ammunition plants. To obtain basic data for a novel treatment process for highly contaminated soils, the homogeneous aqueous hydrolysis of TNT in the pH range from 10 to 12 and the alkaline treatment of two contaminated soils at pH 11 and pH 12 were investigated. The experimental data were described for their respective pH values using a pseudo-first-order model. In the homogeneous experiments, 95--97% of the TNT was hydrolyzed. During alkaline hydrolysis, up to two nitrogroups per TNT molecule were released, indicating the irreversible destruction of TNT. Except for the formation of small traces of amino dinitrotoluenes and trinitrobenzenes, no nitroaromatic benzenes or toluenes were detected during GC analysis. For the less contaminated soil, ELBP2, with an initial TNT concentration of 116 mg/kg, a destruction of 99% was achieved. The highly contaminated soil, HTNT2 (16.1 g of TNT/kg), showed a hydrolyzation level of 90-94%. The results show that the alkaline treatment of highly contaminated soils may prove to be effective as an alternative treatment technology.

  6. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine.

    PubMed

    Cao, Nan; Yang, Lan; Dai, Hongmei; Liu, Teng; Su, Jun; Wu, Xiaojun; Luo, Wei; Cheng, Gongzhen

    2014-10-01

    We report a facile liquid impregnation approach for immobilization of ultrafine bimetallic Ni-Pt nanoparticles (NPs) inside the pores of MIL-101. The methods of powder X-ray diffraction, N2 physisorption, X-ray photoelectron spectroscopy, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy were employed to characterize the NiPt@MIL-101 catalysts and further indicated the as-synthesized Ni-Pt NPs were confined in the pores of MIL-101. These as-synthesized bimetallic NiPt@MIL-101 NPs exhibit exceedingly high catalytic activity, selectivity, and durability toward hydrogen generation from alkaline solution of hydrazine. PMID:25197778

  7. Decontamination of alkaline solution from technetium and other fission products and from some actinides by reductive coprecipitation and sorption on metals

    SciTech Connect

    Peretrukhin, V.F.; Silin, V.I.; Tananaev, I.G.; Kareta, A.V.; Trushina, V.E.

    1997-09-01

    Effective decontamination of alkaline solutions and Hanford Site tank waste simulants from technetium has been accomplished by reductive coprecipitation with iron(III) hydroxide. Addition of 1 M (NH{sub 4}){sub 2}Fe(SO{sub 4}){sub 2} to 0.5 to 4.0 M NaOH to a final concentration of 0.1 to 0.15 M coprecipitates more than 99% of the technetium. from 0.5 to 1.0 M NaOH and 98 to 96% from 2.0 to 4.0 M NaOH. Similar results were obtained by reduction of Tc(VII) with 0.1 to 0.15 M hydrazine and subsequent addition of FeCl{sub 3} to a final concentration of 0.15 M. Inclusion of four complex-forming agents [0.01 M phosphate, 0.1 M EDTA (ethylenediaminetetraacetate), 0.03 M citrate, and 0.1 M glycolate (HOCH{sub 2}CO{sub 2}{sup -})] to the alkaline solution decreases technetium coprecipitation with iron hydroxide to 85% under otherwise similar conditions. Inclusion of 0.04 M Na{sub 2}CrO{sub 4} drastically decreases reductive coprecipitation of Tc(VII) in 0.5 to 4.0 M NaOH. Iron(II) salt, added to a 0.07 M excess over that of chromate, completely reduces chromate and provides greater than 99% coprecipitation of technetium with product iron(III) and chromium(III) hydroxides. Technetium(VII) reduction by hydrazine is slow in the presence of chromate in alkaline solution, and technetium coprecipitation is incomplete in these conditions. Decontamination of an alkaline Hanford Site tank waste simulant, containing 0.04M chromate and eleven salts and complex-forming agents, by adding 1 M iron(II) salt solution was studied. Coprecipitation of 15 to 28% of the technetium and more than 99% of the plutonium occurred in the Fe/Cr(III) hydroxide precipitate produced by adding 0.05 to 0.10 M iron(II). Chromate reduction was incomplete. About 75% of the technetium was coprecipitated, and the chromate was completely reduced, after adding 0.2 M iron(II) salt.

  8. Eigenvalue Detonation of Combined Effects Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard

    2007-06-01

    This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.

  9. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  10. The aluminizing in powder technology of AISI 304 steel

    NASA Astrophysics Data System (ADS)

    Băitanu, D. B.; Găluşcă, D. G.; Achiţei, D. C.; Minciună, M. G.; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The paper presents a study about the aluminizing treatments applied to AISI 304 stainless steel, with the purpose to improve the corrosion resistance. The aluminizing is realized in a powder medium, composed by aluminium powder (with 99.95% purity), aluminium oxide Al2O3 and ammonium chloride NH4Cl. The structural characterization was made by scanning electronic microscopy to highlight the structure of layer after aluminizing, at different magnitudes.

  11. A solution for cesium removal from high-salinity acidic or alkaline liquid waste: The crown calix[4]arenes

    SciTech Connect

    Dozol, J.F.; Simon, N.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Marc, D. de; Macias, R.M.

    1999-04-01

    Calix[4]arenes monocrown or biscrown, blocked in 1,3 alternative cone conformation, display an exceptional efficiency for cesium extraction, even from very acid or alkaline media. Moreover, they possess an important selectivity for cesium over sodium that makes possible the extraction of cesium from media containing high sodium nitrate loadings. Another advantage, since the extraction of cesium is reversible, is that the stripping of cesium can be carried out in deionized water, a property which leads to very high concentration factors. 79 refs., 10 figs., 6 tabs.

  12. Synthesis and optical study of barium magnesium aluminate blue phosphors

    SciTech Connect

    Jeet, Suninder Pandey, O. P.; Sharma, Manoj

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  13. Development of a Blue Emitting Calcium-Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    We report methodological advances that enhance the phosphorescence efficiency of a blue-emitting calcium aluminate phosphor (CaAl2O4: Eu2+, Nd3+). The investigation of long-persistence blue-emitting phosphors is highly desirable due to their promising applications, such as white LEDs; however, the development of highly efficient blue-emitting phosphors is still challenging. Here, we have quantitatively characterized the phosphorescence properties of the blue-emitting phosphor CaAl2O4:Eu2+, Nd3+ with various compositions and directly related these properties to the quality of its luminescence. We optimized the composition of the activator Eu2+ and the co-activator Nd3+, the doping conditions with alkaline earth metals, alkali metals, and Si to create crystallographic distortions and, finally, the flux conditions to find the best parameters for bright and persistent blue-emitting phosphors. Our research has identified several doping compositions with good to excellent performance, with which we have demonstrated bright and persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:27648560

  14. Development of a Blue Emitting Calcium-Aluminate Phosphor.

    PubMed

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    We report methodological advances that enhance the phosphorescence efficiency of a blue-emitting calcium aluminate phosphor (CaAl2O4: Eu2+, Nd3+). The investigation of long-persistence blue-emitting phosphors is highly desirable due to their promising applications, such as white LEDs; however, the development of highly efficient blue-emitting phosphors is still challenging. Here, we have quantitatively characterized the phosphorescence properties of the blue-emitting phosphor CaAl2O4:Eu2+, Nd3+ with various compositions and directly related these properties to the quality of its luminescence. We optimized the composition of the activator Eu2+ and the co-activator Nd3+, the doping conditions with alkaline earth metals, alkali metals, and Si to create crystallographic distortions and, finally, the flux conditions to find the best parameters for bright and persistent blue-emitting phosphors. Our research has identified several doping compositions with good to excellent performance, with which we have demonstrated bright and persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:27648560

  15. Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report

    SciTech Connect

    Peretrukhin, V.F.; Silin, V.I.; Kareta, A.V.; Gelis, A.V.; Shilov, V.P.; German, K.E.; Firsova, E.V.; Maslennikov, A.G.; Trushina, V.E.

    1998-09-01

    The coprecipitation of transuranium elements (TRU) and technetium from alkaline solutions and from simulants of Hanford Site tank wastes has been studied in reducing and oxidizing conditions on uranium(IV,VI) hydroxocompounds, tetraalkylammonium perrhenate and perchlorate, and on hydroxides of Fe(III), Co(III), Mn(II), and Cr(III) using the method of appearing reagents (MAR). Coprecipitations in alkaline solution have been shown to give high decontamination factors (DF) at low content of carrier and in the presence of high salt concentrations. Uranium(IV) hydroxide in concentrations higher than 3 {times} 10{sup {minus}3} M coprecipitates Pu and Cm in any oxidation state from 0.2 to 4 M NaOH with DFs of 110 to 1000 and Np and Tc with DFs of 51 to 176. Technetium (VII) coprecipitates with (5 to 8) {times} 10{sup {minus}4} M tetrabutylammonium (TBA) perrhenate in 0.01 to 0.02 M TBA hydroxide from 0.5 to 1.5 M NaOH to give DFs of 150 to 200. Coprecipitations of Np and Pu with Co(OH){sub 3}, Fe(OH){sub 3}, Cr(OH){sub 3}, and Mn(OH){sub 2} obtained by the MAR from precursors in the range from pH 10.5 to 0.4 M NaOH give DFs from 80 to 400.

  16. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  17. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  18. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.

    PubMed

    Obeidy, Carole; Bravin, Matthieu N; Bouchardon, Jean-Luc; Conord, Cyrille; Moutte, Jacques; Guy, Bernard; Faure, Olivier

    2016-04-01

    We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching.

  19. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.

    PubMed

    Obeidy, Carole; Bravin, Matthieu N; Bouchardon, Jean-Luc; Conord, Cyrille; Moutte, Jacques; Guy, Bernard; Faure, Olivier

    2016-04-01

    We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching. PMID:26707185

  20. Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge.

    PubMed

    Hu, Ching-Yao; Shih, Kaimin; Leckie, James O

    2010-09-15

    The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)solution in the kaolinite system precluded the production of CuAlO(2). The hypothesis that the spinel formation mechanism has two stages was supported by the results of the changing Cu/Al mole ratio in the system, and the rate-limiting step was identified as the diffusion process in the second stage. PMID:20570043

  1. Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge.

    PubMed

    Hu, Ching-Yao; Shih, Kaimin; Leckie, James O

    2010-09-15

    The study reported herein indicated the stabilization mechanisms at work when copper-laden sludge is thermally treated with gamma-alumina and kaolinite precursors, and evaluated the prolonged leachability of their product phases. Four copper-containing phases - copper oxide (CuO), cuprous oxide (Cu(2)O), copper aluminate spinel (CuAl(2)O(4)), and cuprous aluminate delafossite (CuAlO(2)) - were found in the thermal reactions of the investigated systems. These phases were independently synthesized for leaching by 0.1M HCl aqueous solution, and the relative leachabilities were found to be CuAl(2)O(4)solution in the kaolinite system precluded the production of CuAlO(2). The hypothesis that the spinel formation mechanism has two stages was supported by the results of the changing Cu/Al mole ratio in the system, and the rate-limiting step was identified as the diffusion process in the second stage.

  2. Urothelial injury to the rabbit bladder from various alkaline and acidic solutions used to dissolve kidney stones.

    PubMed

    Reckler, J; Rodman, J S; Jacobs, D; Rotterdam, H; Marion, D; Vaughan, E D

    1986-07-01

    Different irrigating solutions are used clinically to dissolve uric acid, cystine and struvite stones. These studies were undertaken to assess the toxicity to the rabbit bladder epithelium of several commonly used formulations. Test solutions were infused antegrade through a left ureterotomy overnight. Bladders were removed and routine histological sections made. A pH 7.6 solution of NaHCO3 appeared harmless. The same solution with two per cent acetylcysteine produced slight injury. All pH 4 solutions caused significant damage to the urothelium. Hemiacidrin, which contains magnesium, produced less damage than did other pH 4 solutions without that cation. Our data tend to support Suby's conclusions that addition of magnesium reduces urothelial injury even though the presence of magnesium will slow dissolution of struvite.

  3. Amino-functionalized alkaline clay with cationic star-shaped polymer as adsorbents for removal of Cr(VI) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Pan, Yuanfeng; Cai, Pingxiong; Farmahini-Farahani, Madjid; Li, Yiduo; Hou, Xiaobang; Xiao, Huining

    2016-11-01

    Pentaerythritol (PER) was esterified with 2-bromoisobutyryl bromide to synthesize a four-arm initiator 4Br-PER for atom transfer radical polymerization (ATRP). Star-shaped copolymers (P(AM-co-DMAEMA)4, CSP) were prepared via ATRP using dimethyl aminoethyl methacrylate (DMAEMA) and acrylamide (AM) as comonomers, while Br-PER and CuBr/2,2‧-bipyridine (BPY) as the initiator and the catalyst, respectively. The resulting four-arm initiator and star-shaped polymer (CSP) were characterized with FT-IR, 1H NMR and Ubbelohde viscometry. Alkaline clay (AC) was immobilized with CSPs to yield amino groups, and the cationic star polymer-immobilized alkaline clay (CSP-AC) was applied to remove Cr(VI) from the aqueous solution in batch experiments. Various influencing factors, including pH, contact time and immobilization amount of CSP on adsorption capacity of CSP-AC for Cr(VI) were also investigated. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 4.0. The adsorption isotherms of the adsorbent fit the Langmuir model well, with the maximum adsorption capacity of 137.9 mg/g at 30 °C. The material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity.

  4. On the vibrational behaviour of cyanide adsorbed at Pt(1 1 1) and Pt(1 0 0) surfaces in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Huerta, F.; Montilla, F.; Morallón, E.; Vázquez, J. L.

    2006-03-01

    This communication deals with the vibrational behaviour of cyanide adlayers formed on Pt(1 1 1) and Pt(1 0 0) surfaces in the electrochemical environment. In situ FTIR spectroscopy can be employed to follow the potential dependence of the C-N stretching frequency in acidic electrolytes with quite a low uncertainty. Owing to the stability of the cyanide adlayer in alkaline solutions, experiments performed in NaOH medium are usually perturbed by the significant overlapping of the reference and the sample FTIR spectra. Deconvolution of the spectra was carried out assuming a Lorentz oscillator. The procedure allowed to confirm that two potential regions with different band centre frequency tuning coexist for Pt(1 1 1)-CN in perchloric acid medium. Conversely, in the alkaline electrolyte a single tuning rate for the band position was found for both surfaces studied. The lack of reorientation of the C-N molecular axis together with the occurrence of a certain screening effect of negatively charged hydroxyl anions on the electric field at the interface could be at the origin of the different behaviour displayed in both electrolytic media.

  5. Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2008-12-01

    A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

  6. Enhanced removal of trace Cr(VI) from neutral and alkaline aqueous solution by FeCo bimetallic nanoparticles.

    PubMed

    Qin, Nannan; Zhang, Ya; Zhou, Hongjian; Geng, Zhigang; Liu, Gang; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2016-06-15

    The reactivity of zero valent iron (Fe(0)) for removing Cr(VI) is self-inhibiting under neutral and alkaline conditions, due to the precipitation of ferrous hydroxide on the surface of Fe(0). To overcome this difficulty, we incorporated a second metal (Co) into Fe(0) to form FeCo bimetallic nanoparticles (FeCo BNPs), which can achieve higher activity and significant improvement in the reaction kinetics for the removal of Cr(VI) compared with Fe(0). The FeCo BNPs were synthesized by a hydrothermal reduction method without using any templates. The characterization analysis indicated that the products were highly uniform in large scale with 120-140 nm size in diameter. The obtained FeCo BNPs exhibited a remarkable removal ability for Cr(VI) in the pH range of 5.3-10.0. Especially, FeCo BNPs were able to reduce trace Cr(VI) (1.0 mg L(-1), pH=7.5) down to about 0.025 mg L(-1) within 1h. XPS analysis confirmed that Cr(VI) was reduced to Cr(III) by FeCo BNPs, while Fe and Co was oxidized, implying a chemical reduction process. The enhanced removal of trace Cr(VI) could be originated from the introduction of Co, which not only served as a protecting agent against surface corrosion by galvanic cell effect, but also enhanced the efficient flow of electron transfer between iron and Cr(VI). All the results primarily imply that FeCo BNPs can be employed as high efficient material for wastewater treatment.

  7. Selective colorimetric determination of TNT partitioned between an alkaline solution and a strongly basic Dowex 1-X8 anion exchanger.

    PubMed

    Uzer, Ayşem; Erçağ, Erol; Apak, Reşat

    2008-01-30

    The Meisenheimer anions formed from TNT in KOH solutions in alcohol or acetone were used in screening tests for TNT among possible nitro-explosives. The same reaction was used for the spectrophotometric assay of TNT in soil by CRREL (Cold Regions Research & Engineering Laboratory of the U.S. Army) method, also known as Jenkins' method, but the color stability was too dependent on the solution composition and the water tolerance was low, necessitating complete drying of soil samples (which may cause partial analyte decomposition) prior to analysis. This study reports the development of a colorimetric method based on the solid phase extraction (SPE) of the Meisenheimer anion formed from TNT and aqueous NaOH into a strongly basic anion exchange resin Dowex 1-X8 (OH(-) form). The orange-red color that developed both in the solid resin and solution phases was persistent for at least 1h. The resin was let to swell in alcohol, washed first with 1M aqueous NaOH, and then with H(2)O before use. To 5 mL of 4-400 ppm TNT solutions in 1:1 (v/v) acetone-water, 0.5 mL of 5% NaOH was added, diluted to 50 mL with 1:1 acetone-water, and the resulting solutions (containing the orange-red Meisenheimer anion of TNT) were agitated at room temperature with 0.9 g resin for < or =50 min. TNT exhibited a reasonably constant distribution coefficient between the resin and aqueous phases. The absorbance of the filtered solutions was measured against a reagent blank at 500nm. The TNT-loaded resins were regenerated with 1M HCl containing sodium sulfite. The calibration line of filtrate absorbance versus analytical concentration was linear over two orders of magnitude between 0.4 and 40 ppm TNT in final solution. Unlike Jenkins' method, the method was tolerant to 100-fold (by mass) of common soil anions like sulfate, nitrate, and chloride. The basic advantages of the developed colorimetric method over the similar CRREL/Jenkins' method may be summarized as color stability, water and common ion

  8. Selective colorimetric determination of TNT partitioned between an alkaline solution and a strongly basic Dowex 1-X8 anion exchanger.

    PubMed

    Uzer, Ayşem; Erçağ, Erol; Apak, Reşat

    2008-01-30

    The Meisenheimer anions formed from TNT in KOH solutions in alcohol or acetone were used in screening tests for TNT among possible nitro-explosives. The same reaction was used for the spectrophotometric assay of TNT in soil by CRREL (Cold Regions Research & Engineering Laboratory of the U.S. Army) method, also known as Jenkins' method, but the color stability was too dependent on the solution composition and the water tolerance was low, necessitating complete drying of soil samples (which may cause partial analyte decomposition) prior to analysis. This study reports the development of a colorimetric method based on the solid phase extraction (SPE) of the Meisenheimer anion formed from TNT and aqueous NaOH into a strongly basic anion exchange resin Dowex 1-X8 (OH(-) form). The orange-red color that developed both in the solid resin and solution phases was persistent for at least 1h. The resin was let to swell in alcohol, washed first with 1M aqueous NaOH, and then with H(2)O before use. To 5 mL of 4-400 ppm TNT solutions in 1:1 (v/v) acetone-water, 0.5 mL of 5% NaOH was added, diluted to 50 mL with 1:1 acetone-water, and the resulting solutions (containing the orange-red Meisenheimer anion of TNT) were agitated at room temperature with 0.9 g resin for < or =50 min. TNT exhibited a reasonably constant distribution coefficient between the resin and aqueous phases. The absorbance of the filtered solutions was measured against a reagent blank at 500nm. The TNT-loaded resins were regenerated with 1M HCl containing sodium sulfite. The calibration line of filtrate absorbance versus analytical concentration was linear over two orders of magnitude between 0.4 and 40 ppm TNT in final solution. Unlike Jenkins' method, the method was tolerant to 100-fold (by mass) of common soil anions like sulfate, nitrate, and chloride. The basic advantages of the developed colorimetric method over the similar CRREL/Jenkins' method may be summarized as color stability, water and common ion

  9. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  10. Alkaline titrations of poly(dG-dC).poly(dG-dC): microemulsion versus solution behavior.

    PubMed

    Airoldi, Marta; Gennaro, Giuseppe; Giomini, Marcello; Giuliani, Anna Maria; Giustini, Mauro

    2007-06-01

    PolyGC was titrated with a strong base in the presence of increasing concentrations of NaCl (from 0.00 to 0.60M) either in water solution or with the polynucleotide solubilized in the aqueous core of reverse micelles, i.e., the cationic quaternary water-in-oil microemulsion CTAB/n-hexane/n-pentanol/water. The results for matched samples in the two media were compared. CD and UV spectroscopies and, for the solution experiments, pH measurements were used to follow the course of deprotonation. In both media the primary effect of the addition of base was denaturation of the polynucleotide, reversible by back-titration with a strong acid. In solution, the apparent pK(a) of the transition decreases with increasing the salt concentration and a roughly linear dependence of pK(a) on p[NaCl] has been found. A parallel monotonic decay with ionic strength has been found in solution for R(OH), defined as the number of hydroxyl ions required per monomeric unit of polyGC to reach half-transition. By contrast, in microemulsion, R(OH) has been found to be independent of the NaCl concentration (and 10 to 50 times lower than in solution). This result is proposed as an indirect evidence of the independence of pK(a) on the salt concentration in microemulsion, where the pH cannot be measured. A sort of buffering effect of the positive charges on the micellar wall and of their counter-ions on the ionic strength could well explain this discrepancy of behavior in the two media.

  11. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  12. Computer modeling of the local structure, mixing properties, and stability of solid solutions of alkaline-earth metal oxides

    SciTech Connect

    Urusov, V. S. Petrova, T. G. Eremin, N. N.

    2008-11-15

    A technique for the computer modeling of disordered binary oxide solid solutions MO-M'O in a wide composition range has been developed. The method of atomistic pair potentials was used for 4 x 4 x 4 supercells. The parameters of the potentials are optimized using the structural and elastic properties of pure components MgO, CaO, SrO, and BaO. The temperature dependences of the heat capacity and entropy are calculated for pure components. The excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) are found for different compositions of Mg{sub x}Ca{sub (1-x)}O, Ca{sub x}Sr{sub (1-x)}O, and Sr{sub x}Ba{sub (1-x)}O solid solutions. Temperature and composition dependences of the excess Gibbs energy were constructed, which made it possible to approximately estimate the critical decomposition temperatures and limits of component miscibility. Statistical analysis of lattice distortions in the first and second coordination spheres reveals a detailed picture of the solid-solution local structure.

  13. Computer modeling of the local structure, mixing properties, and stability of solid solutions of alkaline-earth metal oxides

    NASA Astrophysics Data System (ADS)

    Urusov, V. S.; Petrova, T. G.; Eremin, N. N.

    2008-11-01

    A technique for the computer modeling of disordered binary oxide solid solutions MO- M'O in a wide composition range has been developed. The method of atomistic pair potentials was used for 4 × 4 × 4 supercells. The parameters of the potentials are optimized using the structural and elastic properties of pure components MgO, CaO, SrO, and BaO. The temperature dependences of the heat capacity and entropy are calculated for pure components. The excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) are found for different compositions of Mg x Ca(1 - x)O, Ca x Sr(1 - x)O, and Sr x Ba(1 - x)O solid solutions. Temperature and composition dependences of the excess Gibbs energy were constructed, which made it possible to approximately estimate the critical decomposition temperatures and limits of component miscibility. Statistical analysis of lattice distortions in the first and second coordination spheres reveals a detailed picture of the solid-solution local structure.

  14. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  15. Solid-phase extraction of gallium(III) with hydrophobic 8-quinolinol derivatives-impregnated resin from aqueous acidic and alkaline solutions.

    PubMed

    Hatori, Nahoko; Imura, Hisanori; Ohashi, Akira; Ohashi, Kousaburo

    2008-12-01

    Solid-phase extraction (SPE) of gallium(III) with hydrophobic 8-quinolinol derivatives (HQs)-impregnated resin from aqueous acidic and alkaline solutions has been investigated. The HQs used were 7-(4-ethyl-1-methyloctyl)-8-quinolinol (HEMOQ), 5-octyloxymethyl-8-quinolinol (HO(8)Q), 2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q), 5-dioctylaminomethyl-8-quinolinol (HN(8)Q), 7-bromo-5-octyloxymethyl-8-quinolinol (HBrO(8)Q), and 5-(2-ethylhexyloxymethyl)-8-quinolinol (HOEHQ). Various factors affecting the SPE, such as the substituents of the HQs, HCl and NaOH concentrations in the aqueous phase, the HQ concentration in the resin, and the equilibration time were clarified. The extractability for gallium(III) from the aqueous solution became higher in the following order: HBrO(8)Q < HEMOQ < HO(8)Q < HN(8)Q < HMO(8)Q at 3 mol l(-1) HCl; HMO(8)Q < HO(8)Q < HOEHQ < HEMOQ < HN(8)Q < HBrO(8)Q at pH 0.4; HMO(8)Q < HO(8)Q asymptotically equal to HOEHQ < HN(8)Q < HEMOQ at 3 mol l(-1) NaOH.

  16. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  17. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  18. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    USGS Publications Warehouse

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  19. Recycling of waste printed circuit boards with simultaneous enrichment of special metals by using alkaline melts: A green and strategically advantageous solution.

    PubMed

    Stuhlpfarrer, Philipp; Luidold, Stefan; Antrekowitsch, Helmut

    2016-04-15

    The increasing consumption of electric and electronic equipment has led to a rise in toxic waste. To recover the metal fraction, a separation of the organic components is necessary because harmful substances such as chlorine, fluorine and bromine cause ecological damage, for example in the form of dioxins and furans at temperature above 400°C. Hence, an alternative, environmentally friendly approach was investigated exploiting that a mixture of caustic soda and potassium hydroxide in eutectic composition melts below 200°C, enabling a fast cracking of the long hydrocarbon chains. The trials demonstrate the removal of organic compounds without a loss of copper and precious metals, as well as a suppressed formation of hazardous off-gases. In order to avoid an input of alkaline elements into the furnace and ensuing problems with refractory materials, a washing step generates a sodium and potassium hydroxide solution, in which special metals like indium, gallium and germanium are enriched. Their concentrations facilitate the recovery of these elements, because otherwise they become lost in the typical recycling processes. The aim of this work was to find an environmental solution for the separation of plastics and metals as well as a strategically important answer for the recycling of printed circuit boards and mobile phones. PMID:26775099

  20. Petrogenesis of Luna 16 aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Nielsen, R. L.; Taylor, G. J.; Warner, R. D.; Keil, K.

    1979-01-01

    Bulk compositions, petrology and mineralogy of Luna 16 aluminous mare basalt particles of less than 0.5 mm are described. The data rule out any close genetic relationships between Luna 16 and other major types of lunar mare basalts. Compared to high-Ti mare basalts, the Luna 16 basalts contain lower TiO2 and Ta and higher Al2O3 and REE abundances, suggesting that the Luna 16 source rocks crystallized later than (i.e. stratigraphically above) the ilmenite-bearing high-Ti basalt cumulate source rocks. The REE pattern for the Luna 16 basalts requires that the source material from which they were derived crystallized from a light REE enriched magma.

  1. Modified Pechini synthesis of tricalcium aluminate powder

    SciTech Connect

    Voicu, Georgeta Ghitulica, Cristina Daniela; Andronescu, Ecaterina

    2012-11-15

    Tricalcium aluminate (Ca{sub 3}Al{sub 2}O{sub 6}-C{sub 3}A) was obtained by a modified Pechini synthesis in order to eliminate successive thermal treatments and intermediate grinding usually performed between the two sintering steps and in order to reduce the sintering temperature. Our results indicated that pure C{sub 3}A was obtained, by a single step thermal treatment at 1300 Degree-Sign C for 4 h and 1350 Degree-Sign C for 1 h. The synthesis was confirmed by XRD, FT-IR and free lime analyses. The morphology of synthesised C{sub 3}A was assessed by electron microscopy (SEM and TEM, HRTEM) and it was observed a high tendency of the particles to form aggregates and the individual particles seem to be single crystals. The bioactivity was assessed by specimen soaking in simulated body fluid (SBF) for 7 days; the hydrate (i.e. 3CaO Bullet-Operator Al{sub 2}O{sub 3} Bullet-Operator 6H{sub 2}O formed at the C{sub 3}A surface), can act as nucleation centers for the resulted phosphate phases. - Highlights: Black-Right-Pointing-Pointer A modified Pechini synthesis was used for obtained of tricalcium aluminate. Black-Right-Pointing-Pointer C{sub 3}A was obtained at 1300 Degree-Sign C/4 h and 1350 Degree-Sign C/1 h. Black-Right-Pointing-Pointer Were eliminated successive thermal treatments and intermediate grinding. Black-Right-Pointing-Pointer The morphology of synthesised C{sub 3}A was assessed by electron microscopy (SEM, TEM). Black-Right-Pointing-Pointer Was observed a high tendency of the particles to form aggregates.

  2. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions.

    PubMed

    Xiao, Meiling; Zhu, Jianbing; Feng, Ligang; Liu, Changpeng; Xing, Wei

    2015-04-17

    Meso-/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers are fabricated by a facile approach. This efficient and robust material exhibits superior catalytic performance toward the oxygen reduction reaction in both acidic and alkaline solutions and is the most promising alternative to a Pt catalyst for use in electrochemical energy devices.

  3. Computer modelling of the reduction of rare earth dopants in barium aluminate

    SciTech Connect

    Rezende, Marcos V. dos S; Valerio, Mario E.G.; Jackson, Robert A.

    2011-08-15

    Long lasting phosphorescence in barium aluminates can be achieved by doping with rare earth ions in divalent charge states. The rare earth ions are initially in a trivalent charge state, but are reduced to a divalent charge state before being doped into the material. In this paper, the reduction of trivalent rare earth ions in the BaAl{sub 2}O{sub 4} lattice is studied by computer simulation, with the energetics of the whole reduction and doping process being modelled by two methods, one based on single ion doping and one which allows dopant concentrations to be taken into account. A range of different reduction schemes are considered and the most energetically favourable schemes identified. - Graphical abstract: The doping and subsequent reduction of a rare earth ion into the barium aluminate lattice. Highlights: > The doping of barium aluminate with rare earth ions reduced in a range of atmospheres has been modelled. > The overall solution energy for the doping process for each ion in each reducing atmosphere is calculated using two methods. > The lowest energy reduction process is predicted and compared with experimental results.

  4. Potential Dependent Adlayer Structures of a Sulfur-Covered Au(111) Electrode in Alkaline Solution: An in Situ STM Study

    SciTech Connect

    Schlaup, C.; Friebel, D.; Broekmann, P.; Wandelt, K.; /Bonn U. /SLAC, SSRL

    2009-05-11

    A sulfur-covered Au(1 1 1) electrode ({Theta}{sub S} = 0.33 ML) subjected to potential increases in an S-free NaOH solution, i.e., at a fixed S coverage, leads to the reversible formation of a rhombic phase at anodic potentials. The local S coverage increase which is required for the formation of the rhombic phase results from a coverage decrease within the ({radical}3 x {radical}3)R30{sup o} regions, where single-S-atom-defects and, in later stages, S vacancy islands are formed. Due to the high potential induced S-Au bond strength, it was possible for the first time to retain islands of this incomplete ({radical}3 x {radical}3)R30{sup o} S layer in the 2D solid state. Furthermore, a Au mass transport was observed during the growth of the rhombic phase. This clearly calls for a reinterpretation of its chemical nature.

  5. Effect of resorbable calcium aluminate ceramics on regulation of calcium and phosphorus in rats.

    PubMed

    Carvalho, B A; Bajpai, P K; Graves, G A

    1976-06-01

    Ions released from resorbable ceramics could be toxic to the animal. Experiments were designed to study the effect of implanting three different weights of porous resorbable calcium aluminate ceramics (0.172, 0.332, and 0.504 g) in rats for a total duration of 300 days. Gross and microscopic examination of heart, liver, kidneys, trachea with thyroid, and muscle adjacent to the implant did not show any pathological changes. Calcium and inorganic phosphate content of bone, serum and urine were not affected by the implants. Urine hydroxyproline excretion did not change in the animals implanted with ceramics. Animals implanted with 0.332 g of ceramics had a significantly higher serum alkaline phosphatase activity than the control animals. Resorption of calcium and depositon of inorganic phosphates in the implanted ceramics suggested that ions were being exchanged with the body fluids. Implantation of 0.172 to 0.332 g porous resorbable calcium aluminate ceramic was not toxic to the animal.

  6. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution

    NASA Astrophysics Data System (ADS)

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-08-01

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution.Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition

  7. Determination of neutron absorbed doses in lithium aluminates.

    PubMed

    Delfín Loya, A; Carrera, L M; Ureña-Núñez, F; Palacios, O; Bosch, P

    2003-04-01

    Lithium-based ceramics have been proposed as tritium breeders for fusion reactors. The lithium aluminate (gamma phase) seems to be thermally and structurally stable, the damages produced by neutron irradiation depend on the absorbed dose. A method based on the measurement of neutron activation of foils through neutron capture has been developed to obtain the neutron absorbed dose in lithium aluminates irradiated in the thermal column facility and in the fixed irradiation system of a Triga Mark III Nuclear Reactor. PMID:12672632

  8. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution.

    PubMed

    De Boni, Silvia; Scriba, Gerhard K E

    2007-01-01

    In order to investigate the degradation of two aspartyl tripeptides, Gly-Asp-PheNH2 and Phe-Asp-GlyNH2 in solution capillary, electrophoresis methods were developed and validated. Separation of most degradation products including those arising from isomerization and enantiomerization of the Asp residues was achieved in a 50 mM sodium phosphate buffer, pH 3.0. Resolution of comigrating compounds could be achieved by addition of cyclodextrins to the background electrolyte. For tripeptide derivatives the assays were linear in the range of 0.015-3.0 mmol/l. Some dipeptides and amino acids exhibited a narrower linear range due to low UV absorbance. The limits of detection were in the range of 0.005-0.1 mmol/l. Incubation of the model peptides was carried out at pH 2 and 10. At pH 2, degradation of the peptides proceeded via C-terminal deamidation and peptide backbone hydrolysis. In contrast, isomerization and enantiomerization were observed in combination with deamidation at pH 10. Generally, degradation of Phe-Asp-GlyNH2 proceeded faster compared to Gly-Asp-PheNH2 due to steric hindrance by the phenyl side chain.

  9. Impact of welan gum on tricalcium aluminate-gypsum hydration

    SciTech Connect

    Ma Lei Zhao Qinglin Yao Chukang; Zhou Mingkai

    2012-02-15

    The retarding effect of welan gum on tricalcium aluminate-gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate-gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV-VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate-gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate-gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C{sub 3}A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate-gypsum hydration. Highlights: Black-Right-Pointing-Pointer Adsorption characteristics of welan gum on C{sub 3}A and ettringite have been studied. Black-Right-Pointing-Pointer C{sub 3}A-gypsum hydration behavior and the hydration products are examined in L/S = 3. Black-Right-Pointing-Pointer Welan gum retards the process of C{sub 3}A-gypsum hydration. Black-Right-Pointing-Pointer The addition of welan gum changes the nucleation growth of ettringite.

  10. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  11. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  12. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  13. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1-xMbxF2 (M: Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2016-10-01

    The capability of mechanochemical synthesis for the formation of solid solutions of alkaline earth metal fluorides Ma1-xMbxF2 (M: Ca, Sr, Ba) was tested by fluorination of metal acetates and metal hydroxides with ammonium fluoride directly at milling. Evidence was found for a mutual substitution of cations on their lattice positions in Ca1-xSrxF2 and Ba1-xSrxF2 samples. For the Ba/Ca-system this synthesis route is only partially successful. X-ray diffraction and 19F MAS NMR spectroscopy were used to characterize all samples concerning their crystal structure and local fluorine coordination. Calculations of 19F chemical shifts with the superposition model along with probability calculations for the intensity of the individual 19F lines, performed in dependence on the molar composition of the samples, perfectly agree with the experimental findings. The fluoride ion conductivity of as-prepared samples, determined by temperature dependent DC conductivity measurements, is significantly higher than those of crystalline binary fluorides. Moreover, a higher F- ion conductivity is observed for samples with higher mixing grade in the Ca/Sr-and the Ba/Sr-systems.

  14. Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution.

    PubMed

    Lai, Qingxue; Gao, Qingwen; Su, Qi; Liang, Yanyu; Wang, Yuxi; Yang, Zhi

    2015-09-21

    Oxygen reduction electrocatalysts with low cost and excellent performance are urgently required for large-scale application in fuel cells and metal-air batteries. Though nitrogen-enriched transition metal/graphene hybrids (N-TM/G, TM = Fe, Co, and Ni and related compounds) have been developed as novel substitutes for precious metal catalysts (PMCs) towards oxygen reduction reaction (ORR), a significant challenge still remains for simple and efficient synthesis of N-TM/G catalysts with satisfactory electrocatalytic behavior. Herein, we demonstrate a universal bottom-up strategy for efficient fabrication of strongly-coupled N-TM/G catalysts. This strategy is implemented via direct polymerization of transition metal phthalocyanine (TMPc) in the two-dimensional confined space of in situ generated g-C3N4 and a subsequent pyrolysis. Such a space-confined bottom-up synthesis route successfully constructs a strongly-coupled triple junction of transition metal-graphitic carbon-nitrogen-doped graphene (TM-GC-NG) with extensive controllability over the specific surface area, nitrogen content/types as well as the states of metal. As a result, the optimized N-Fe/G materials have promising potential as high-performance NPMCs towards ORR both in alkaline and acidic solution. PMID:26282404

  15. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  16. Mechanical strength and stability of lithium aluminate

    NASA Astrophysics Data System (ADS)

    Brimhall, J. L.

    1992-06-01

    Pacific Northwest Laboratory (PNL) investigated the strength and resistance to thermal shock of lithium aluminate annular pellets. The room temperature, axial compressive fracture strength of pellets made at Westinghouse Advanced Energy Systems (WAES) varied from 80 to 133 ksi. The strength at 430 C (806 F) was to 30 to 40 percent lower. The strength at 900 C (1652 F) showed a wide variation with one measurement near 90 ksi. These strength values are consistent with other data and predictions made in the literature when the grain size and porosity of the microstructure are taken into account. In diametral compression tests, the fracture strengths were much lower due to the existence of tensile stresses in some pellet regions from this type of loading. However, the fracture stresses were still generally higher than those reported in the literature; this fracture resistance probably reflects the better quality of the pellets tested in this study. Measurements on pellets made at PNL indicated lower strengths compared to the WAES material. This strength difference could be accounted for by different processing technologies: material made at PNL was cold-pressed and sintered with high porosity whereas the WAES material was isostatically hot-pressed with high density. Thermal shocking of the material by ramping to 900 C in two minutes did not have an observable effect on the microstructure or the strength of any of the pellets.

  17. Investigation on the coprecipitation of transuranium elements from alkaline solutions by the method of appearing reagents. Study of the effects of waste components on decontamination from Np(IV) and Pu(IV)

    SciTech Connect

    Bessonov, A.A.; Budantseva, N.A.; Gelis, A.V.; Nikonov, M.V.; Shilov, V.P.

    1997-09-01

    The third stage of the study on the homogeneous coprecipitation of neptunium and plutonium from alkaline high-level radioactive waste solutions by the Method of Appearing Reagents has been completed. Alkaline radioactive wastes exist at the U.S. Department of Energy Hanford Site. The recent studies investigated the effects of neptunium chemical reductants, plutonium(IV) concentration, and the presence of bulk tank waste solution components on the decontamination from tetravalent neptunium and plutonium achieved by homogeneous coprecipitation. Data on neptunium reduction to its tetravalent state in alkaline solution of different NaOH concentrations are given. Eleven reductants were tested to find those most suited to remove neptunium, through chemical reduction, from alkaline solution by homogeneous coprecipitation. Hydrazine, VOSO{sub 4}, and Na{sub 2}S{sub 2}O{sub 4} were found to be the most effective reductants. The rates of reduction with these reductants were comparable with the kinetics of carrier formation. Solution decontamination factors of about 400 were attained for 10{sup -6}M neptunium. Coprecipitation of plutonium(IV) with carriers obtained as products of thermal hydrolysis, redox transformations, and catalytic decomposition of [Co(NH{sub 3}){sub 6}]{sup 3+}, [Fe(CN){sub 5}NO]{sup 2-}, Cr(NO{sub 3}){sub 3}, KMnO{sub 4}, and Li{sub 4}UO{sub 2}(O{sub 2}){sub 3} was studied and results are described. Under optimum conditions, a 100-fold decrease of plutonium concentration was possible with each of these reagents.

  18. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  19. Surface Modification of Nickel Foams by a Slurry Aluminizing Process

    NASA Astrophysics Data System (ADS)

    Omar, H.; Papanastasiou, N.; Psyllaki, P.; Tsipas, S. A.; Stergioudi, F.; Michailidis, N.; Tsipas, D. N.

    2010-01-01

    A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850° C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

  20. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    SciTech Connect

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-11-15

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl{sub 2}–N{sub 2} flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al{sub 2}O{sub 3} (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl{sub 2} atmosphere of the MgO–Al{sub 2}O{sub 3} mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C.

  1. Surface Modification of Nickel Foams by a Slurry Aluminizing Process

    SciTech Connect

    Omar, H.; Papanastasiou, N.; Psyllaki, P.; Stergioudi, F.; Tsipas, D. N.; Tsipas, S. A.; Michailidis, N.

    2010-01-21

    A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850 deg. C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

  2. Limestone reaction in calcium aluminate cement–calcium sulfate systems

    SciTech Connect

    Bizzozero, Julien Scrivener, Karen L.

    2015-10-15

    This paper reports a study of ternary blends composed of calcium aluminate cement, calcium sulfate hemihydrate and limestone. Compressive strength tests and hydration kinetics were studied as a function of limestone and calcium sulfate content. The phase evolution and the total porosity were followed and compared to thermodynamic simulation to understand the reactions involved and the effect of limestone on these binders. The reaction of limestone leads to the formation of hemicarboaluminate and monocarboaluminate. Increasing the ratio between sulfate and aluminate decreases the extent of limestone reaction.

  3. Synthesis and characterization of metal complexes containing tetrazolate, poly(tetrazolyl)borate, and poly(azolyl)aluminate ligands as high energy density materials

    NASA Astrophysics Data System (ADS)

    Snyder, Christopher James

    A series of heavy alkaline earth metal tetrazolate complexes has been synthesized that contain metal ions saturated by aqua ligands. Tetrazolates with small ring-core carbon substituents favor formation of two dimensional polymers with micro3-coordination of the tetrazolate to the metal centers. Tetrazolates with bulkier groups block coordination to the 1- and 4-nitrogen atoms, resulting in monomer formation. The first example of a trihydro(tetrazolyl)borate was prepared, and its bonding is heavily influenced by the basic BH3 moiety. 18-Crown-6 adducts of dihydrobis(tetrazolyl)borate complexes have been prepared that contain B-N bonding to the 2-nitrogen atoms, due to bulky ring-core atom substituents. A series of alkali metal hydrotris(tetrazolyl)borate complexes has been prepared by closely monitoring the reactions by electrospray ionization-mass spectrometry. The lithium hydrotris(tetrazolyl)borate complex contains kappa3-N,N,N bonding that is analgous to the bonding mode of hydrotris(pyrazolyl)borate ligands. The 18-crown-6 adducts of the sodium and potassium hydrotris(tetrazolyl)borate salts adopt eta 2-N,N and kappa2-N,H coordination modes, respectively, due to steric hindrances between the 18-crown-6 and hydrotris(tetrazolyl)borate ligands. The bonding modes of the hydrotris(tetrazolyl)borate complexes are stabilized by many hydrogen-bonding and dihydrogen-bonding contacts between the hydrotris(tetrazolyl)borate ligand and the ancillary ligand on the metal center. A series of poly(pyrazolyl)aluminate complexes containing aluminum-hydrogen bonds has been prepared, and these complexes exhibit similar coordination modes to their poly(pyrazolyl)borate analogues. Pyrazolyl exchange processes occur at room temperature in solution due to the weak Al-N and Al-H bonds. Salt metathesis of the new complexes with metal(II) halides yielded ligand, hydride, or pyrazolate transfer, depending on the metal and reaction conditions. The reactivity of 5-substituted tetrazoles

  4. Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material

    PubMed Central

    SILVA, Emmanuel João Nogueira Leal; HERRERA, Daniel Rodrigo; ROSA, Tiago Pereira; DUQUE, Thais Mageste; JACINTO, Rogério Castilho; GOMES, Brenda Paula Figueiredo de Almeida; ZAIA, Alexandre Augusto

    2014-01-01

    A calcium aluminate-based endodontic material, EndoBinder, has been developed in order to reduce MTA negative characteristics, preserving its biological properties and clinical applications. Objectives The aim of this study was to evaluate the cytotoxicity, antimicrobial activity, pH, solubility and water sorption of EndoBinder and to compare them with those of white MTA (WMTA). Material and Methods Cytotoxicity was assessed through a multiparametric analysis employing 3T3 cells. Antimicrobial activity against Enterococcus faecalis (ATCC 29212), Staphylococcus aureus. (ATCC 25923) and Candida albicans (ATCC 10556) was determined by the agar diffusion method. pH was measured at periods of 3, 24, 72 and 168 hours. Solubility and water sorption evaluation were performed following ISO requirements. Data were statistically analyzed by ANOVA and Tukey`s test with a significance level of 5%. Results EndoBinder and WMTA were non-cytotoxic in all tested periods and with the different cell viability parameters. There was no statistical differences between both materials (P>.05). All tested materials were inhibitory by direct contact against all microbial strains tested. EndoBinder and WMTA presented alkaline pH in all tested times with higher values of pH for WMTA (P<.05). Both materials showed values complying with the solubility minimum requirements. However, EndoBinder showed lower solubility than WMTA (P<.05). No statistical differences were observed regarding water sorption (P>.05). Conclusion Under these experimental conditions, we concluded that the calcium aluminate-based endodontic material EndoBinder demonstrated suitable biological and physicochemical properties, so it can be suggested as a material of choice in root resorption, perforations and root-end filling. PMID:24626250

  5. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  6. SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE

    EPA Science Inventory

    The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...

  7. A phase-field study of the aluminizing of nickel

    NASA Astrophysics Data System (ADS)

    Philippe, T.; Erdeniz, D.; Dunand, D. C.; Voorhees, P. W.

    2015-03-01

    A quantitative phase-field approach for multiphase systems that is based upon CALPHAD free energies is used to model the aluminization of nickel wires, wherein vapour-phase alloying is used to deposit Al on the surface of the Ni wire and then the wire is annealed so that to remove all Al gradients and achieve a homogenous Ni-Al alloy. Both processes are modelled and numerical results are compared with experiments. It is found that the kinetics of both processes is controlled by bulk diffusion. During aluminization at 1273 K, formation and growth of intermetallics, Ni2Al3 NiAl and Ni3Al, are strongly dependent on the Al content in the vapour phase. Ni2Al3 growth is very fast compared with NiAl and Ni3Al. It is also found that an intermediate Al content in the vapour phase is preferable for aluminization, since the Ni2Al3 coating thickness is difficult to control. Ni2Al3 is found to disappear in a few minutes during homogenization at 1373 K. Thereafter, the NiAl phase, in which the composition is highly non-uniform after aluminization, continues growing until the supersaturation in this phase vanishes. Then, NiAl coating disappears concomitantly with the growth of Ni3Al, which disappears thereafter. Finally, the Al concentration profile in Ni(Al) homogenizes.

  8. IMPACT OF TIME / TEMPERATURE CURING CONDITIONS AND ALUMINATE CONCENTRATIONS ON SALTSTONE PROPERTIES

    SciTech Connect

    Harbour, J.; Edwards, T.; Williams, V.

    2009-05-05

    This report addresses the impact of (1) the time and temperature curing conditions (profile) and (2) the impact of higher aluminate concentrations in the decontaminated salt solution on Saltstone processing and performance properties. The results demonstrate that performance properties as well as some of the processing properties of Saltstone are highly sensitive to the conditions of time and temperature under which curing occurs. This sensitivity is in turn dependent on the concentration of aluminate in the salt feed solution. In general, the performance properties and indicators (Young's modulus, compressive strength and total porosity) are reduced when curing is initially carried out under high temperature. However, this reduction in performance properties is dependent on the sequence of temperatures (the time/temperature profile) experienced during the curing process. That is, samples that are subjected to a 1, 2, 3 or 4 day curing time at 60 C followed by final curing at 22 C lead to performance properties that are significantly different than the properties of grouts allowed to cure for 1, 2, 3 or 4 days at 22 C followed by a treatment at 60 C. The performance properties of Saltstone cured in the sequence of higher temperature first are generally less (and in some cases significantly less) than performance properties of Saltstone cured only at 22 C. This loss in performance was shown to be mitigated by increased slag content or cement content in the premix at the expense of fly ash. For the sequence in which the Saltstone is initially cured at 22 C followed by a higher temperature cure, the performance properties can be equal to or greater than the properties observed with curing only at 22 C curing. The results in this report indicate that in order to meaningfully measure and report the performance properties of Saltstone, one has to know the time/temperature profile conditions under which the Saltstone will be cured. This will require thermal modeling and

  9. Mechanical properties of a permanent dental restorative material based on calcium aluminate.

    PubMed

    Loof, J; Engqvist, H; Ahnfelt, N-O; Lindqvist, K; Hermansson, L

    2003-12-01

    This paper deals with some important mechanical properties (hardness, dimensional stability, compressive and flexural strength) of an experimental version of a translucent calcium aluminate dental restorative material. All samples investigated have been made from pre-pressed tablets, with a compaction degree of approximately 60%, hydrated using a 0.15 wt % Li salt solution as an accelerator. The samples were stored in water at 37 degrees C between the measurements. As reference materials one composite, Tetric Ceram, and one glass ionomer, Fuji II, were used with specimens prepared according to the manufacturer's recommendations. For the reference materials some of the properties were published data. The results show that the calcium aluminate material has sufficient mechanical properties to be used as a permanent dental restorative taking as a reference the ISO 9917 and the ISO 4049 as well as the reference materials. In addition the results indicate that the mechanical properties are controlled by the microstructure, which is mainly determined by the grain size of the filler.

  10. Corrosion Resistant Ceramic Coating for X80 Pipeline Steel by Low-Temperature Pack Aluminizing and Oxidation Treatment

    NASA Astrophysics Data System (ADS)

    Min, Huang; Qian-Gang, Fu; Yu, Wang; Wen-Wu, Zhong

    2013-12-01

    In this paper, we discuss the formation of ceramic coatings by a combined processing of low-temperature pack aluminizing and oxidation treatment on the surface of X80 pipeline steel substrates in order to improve the corrosion resistance ability of X80 pipeline steel. First, Fe-Al coating consisting of FeAl3 and Fe2Al5 was prepared by a low-temperature pack aluminizing at 803 K which was fulfilled by adding zinc in the pack powder. Pre-treatment of X80 pipeline steel was carried out through surface mechanical attrition treatment (SMAT). Further oxidation treatment of as-aluminized sample was carried out in the CVD reactor at 833 K under oxygen containing atmosphere. After 1 h duration in these conditions, ceramic coating consisting of α-Al2O3 was formed by in situ oxidation reaction of Fe-Al coating. Those coatings have been characterized by different techniques including X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscope (EDS), respectively. Ceramic coating shows a dense and uniform microstructure, and exhibits good coherences with X80 pipeline steel substrates. By electrochemical corrosion test, the self-corrosion current density of X80 pipeline steel with as-obtained ceramics coating in 3.5% NaCl solution shows an obvious decrease. The formation of α-Al2O3 ceramic coating is considered as the main reason for the corrosion resistance improvement of X80 pipeline steel.

  11. Atmospheric Effects on the Combustion of Detonating Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Carney, Joel

    2005-07-01

    The detonation and subsequent combustion of aluminized explosive formulations depend heavily on the reactions of aluminum and oxygen. Fuel-rich formulations require oxygen from an external source (nominally an oxygen-containing atmosphere) to burn the fuel to completion. Dynamic spectroscopic measurements were made for two different aluminized explosives (PBXIH-135 and PBXN-111) to investigate the effect of changing atmospheres on the combustion properties of aluminum. Both explosive formulations were tested under normal atmospheric conditions and in an atmosphere of nitrogen. Light emission (from 350-550 nm) from the explosive events was collected in a spectrometer and dispersed temporally in a streak camera. New, nitrogen-containing species (near 387 and 416 nm) arise in the nitrogen atmosphere experiments for both formulations that seem to replace aluminum monoxide as a primary intermediate product for the fuel. The peak assignments and global kinetics of each species will be presented and the implications of these results on atmospheric effects will be discussed.

  12. Study of Detonation and Cylinder Velocities for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest

    2005-07-01

    The detonation properties of aluminized explosives have been studied using experimental data available in the literature and EXP-6 thermo-chemical potential calculations with the JAGUAR computer program. It has been found that the observed detonation velocity behavior for aluminized explosives can be accurately represented by a reaction zone model in which unreacted aluminum is initially in equilibrium with H-C-N-O compounds. The JAGUAR procedures have been modified to represent the aluminum reaction zone behavior and to enable specified temperature differences between the gas and aluminum particles in the initial portion of this reaction zone. The modified procedures enable isentropic expansion for incomplete or complete aluminum reaction in the zone, and result in close agreement with experimental cylinder test data for several explosives. In order to aid in the application of the model, constants of thermodynamic equations of state are related to the extent of aluminum reaction.

  13. Study of Detonation and Cylinder Velocities for Aluminized Explosives

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard I.; Baker, Ernest L.; Capellos, Christos

    2006-07-01

    The detonation properties of aluminized explosives have been studied using experimental data and EXP-6 thermo-chemical potential calculations with the JAGUAR computer program. It has been found that the observed detonation velocity behavior for aluminized explosives can be accurately represented by a reaction zone model in which unreacted aluminum is initially in equilibrium with H-C-N-O compounds. The JAGUAR procedures have been modified to represent the reaction zone behavior and to enable specified temperature differences between the gas and aluminum particles in the initial portion of this reaction zone. The modified procedures enable isentropic expansion for incomplete or complete aluminum reaction in the zone, and result in close agreement with experimental cylinder test data.

  14. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine

    NASA Astrophysics Data System (ADS)

    Kim, Bohoon; Park, Jungsu; Lee, Kyung-Cheol; Yoh, Jack J.

    2014-07-01

    An accurate and reliable prediction of reactive flow is a challenging task when characterizing an energetic material subjected to an external shock impact as the detonation transition time is on the order of a micro second. The present study aims at investigating the size effect behavior of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum by using a detonation rate model that includes ignition and growth mechanisms for shock initiation and subsequent detonation. A series of unconfined rate stick tests and two-dimensional hydrodynamic simulations are conducted to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the charge. A pressure chamber test is conducted to further validate the reactive flow model for predicting the response of a heavily aluminized high explosive subjected to an external impact.

  15. A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine

    SciTech Connect

    Kim, Bohoon; Lee, Kyung-Cheol; Yoh, Jack J.; Park, Jungsu

    2014-07-14

    An accurate and reliable prediction of reactive flow is a challenging task when characterizing an energetic material subjected to an external shock impact as the detonation transition time is on the order of a micro second. The present study aims at investigating the size effect behavior of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum by using a detonation rate model that includes ignition and growth mechanisms for shock initiation and subsequent detonation. A series of unconfined rate stick tests and two-dimensional hydrodynamic simulations are conducted to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the charge. A pressure chamber test is conducted to further validate the reactive flow model for predicting the response of a heavily aluminized high explosive subjected to an external impact.

  16. Inhibited Aluminization of an ODS FeCr Alloy

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small ({approx} 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  17. Morphological and microstructural studies on aluminizing coating of carbon steel

    SciTech Connect

    Samsu, Zaifol; Othman, Norinsan Kamil; Daud, Abd Razak; Hussein, Hishammuddin

    2013-11-27

    Hot dip aluminizing is one of the most effective methods of surface protection for steels and is gradually gaining popularity. The morphology and microstructure of an inter-metallic layer form on the surface of low carbon steel by hot dip aluminization treatment had been studied in detail. This effect has been investigated using optical and scanning electron microscopy, and X-ray diffraction. The result shows that the reaction between the steel and the molten aluminium leads to the formation of Fe–Al inter-metallic compounds on the steel surface. X-ray diffraction and electron microscopic studies showed that a two layer coating was formed consisting of an external Al layer and a (Fe{sub 2}Al{sub 5}) inter metallic on top of the substrate after hot dip aluminizing process. The inter-metallic layer is ‘thick’ and exhibits a finger-like growth into the steel. Microhardness testing shown that the intermetallic layer has high hardness followed by steel substrate and the lowest hardness was Al layer.

  18. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  19. Electrolysis products in a system formed by Na/sub 2/SO/sub 4/ solution with Al (OH)/sub 3/ hydrogel

    SciTech Connect

    Epifanov, Y.V.; Kul'skii, L.A.; Matskevich, E.S.

    1985-11-01

    This paper examines the dissolution of aluminum hydroxide gel on the electrolysis of aqueous electrolyte solutions and determine the compositions of the resulting compounds and the current yields. The authors used sodium sulfate to provide equivalent production of acid or alkali in the anode and cathode chambers. There is close correspondence between the anolyte and catholyte potentiometric and conductometric titration curves, which means that the methods can be used to analyze the electrolysis products in electrochemical coagulant regeneration. Data presented for determining the contents of the soluble aluminum compounds in the anolyte and catholyte in relation to the amount of electricity passed. It is shown that electrolysis in the system Na/sub 2/SO/sub 4/ solution + Al (OH)/sub 3/ hydrogel in a diaphragmed electrolyzer provides water-soluble aluminum compounds: aluminum sulfate as intermediate and basic salts in the anolyte and an alkaline solution of sodium aluminate in the catholyte.

  20. Base catalysed isomerisation of aldoses of the arabino and lyxo series in the presence of aluminate.

    PubMed

    Ekeberg, Dag; Morgenlie, Svein; Stenstrøm, Yngve

    2002-04-30

    Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.

  1. Determination of Na(2)O from sodium aluminate NaAlO(2).

    PubMed

    Näykki, T; Raimo, A; Paavo, P; Antero, K; Päivi, N

    2000-07-31

    The aim of the work was to find a suitable method and conditions for determining Na(2)O wt.% from NaAlO(2). Problems were encountered while titrating NaAlO(2) with hydrochloric acid. The problematic area was the pH range 4-10 where aluminum precipitates as hydroxides. The different species of the aluminate solution were determined using potentiometric and complexometric titrations. The equivalent point of the potentiometric titration was detected using Gran's plotting method. Precipitation of aluminum hydroxides did not interfere with titrations, because in potentiometric titrations the pH value was over 10 and in complexometric titrations the pH was 4. The results were accurate and determinations were easy to carry out. Sodium was also determined by DCP-AES.

  2. Use of continuous solid-phase synthesis to obtain phosphors based on strontium aluminate

    NASA Astrophysics Data System (ADS)

    Kerbel, B.; Katsnelson, L.; Falkovich, Yu; Prokopyev, D.

    2016-02-01

    The effect of conditions of continuous solid-phase synthesis on particle size distribution of nanostructured powders of strontium aluminate was studied. It was shown that continuous solid-phase synthesis allows for: synthesis of strontium aluminate in the form of nanostructured powders with controlled particle size distribution directly during its synthesis; in the presence of a liquid phase strontium aluminate is synthesized with a high level of monophasity. It was shown that in order to optimize the illuminating parameters of phosphors based on strontium aluminate, it is advisable to use continuous solid-phase synthesis.

  3. Structural and Luminescent Properties of Eu2+-doped Aluminates Prepared by the Sol-gel Method.

    PubMed

    Celan-Korošin, Nataša; Meden, Anton; Bukovec, Nataša

    2012-12-01

    Alkaline earth aluminates with the overall nominal compositions Mg0.5Sr0.5Al2O4 (MSA), Ca0.5Sr0.5Al2O4 (CSA) and Ca0.5Mg0.5Al2O4 (CMA) doped with 0.5 or 1 mol% of Eu2+ ions were obtained by a modified aqueous sol-gel method and annealed in a reductive atmosphere at 900, 1000, 1100 and 1300 °C. The sample compositions and their structures were studied by XRD employing the Rietveld method. Solid solubility was confirmed in CSA only, due to the similar ionic radii of Ca2+ and Sr2+. UV excited luminescence was observed in the blue region (λ = 440 nm) in samples of CSA and CMA containing the monoclinic phase of CaAl2O4 and in the green region (λ = 512 nm) in samples of MSA containing hexagonal or monoclinic phases of SrAl2O4. PMID:24061375

  4. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  5. Treatment of massive haematuria with aluminous salts.

    PubMed

    Arrizabalaga, M; Extramiana, J; Parra, J L; Ramos, C; Díaz González, R; Leiva, O

    1987-09-01

    Fifteen patients with massive vesical haematuria were treated with a 1% aluminium potassium sulphate solution in sterile distilled water, using continuous intravesical lavage with a double channel catheter. The haematuria was caused by vesical tumours in 13 patients, radiation cystitis in one and transurethral resection in one. Immediate side effects were few and none were noted in the long term, as judged by randomised biopsies from vesical mucosa. A complete response was noted in 66% of the patients, partial response in 15% and failure in 20%. This treatment is recommended for intractable bleeding from radiation cystitis and bladder tumours. PMID:3676666

  6. Prolonged toxicity characteristic leaching procedure for nickel and copper aluminates.

    PubMed

    Shih, Kaimin; Tang, Yuanyuan

    2011-04-01

    The toxicity characteristic leaching procedure (TCLP) is a regulatory testing method widely employed to evaluate the environmental friendliness of waste materials. TCLP analysis provides a fast, easy and economical way to determine the mobility of waste pollutants under simulated landfill conditions. Recent studies on metal stabilization have reported the potential for nickel and copper aluminates to form in thermal treatment conditions, and suggested a more reliable method of stabilizing hazardous metals, particularly when products are to be reused. There is thus an urgent need for a convenient and effective method of quantifying metal leachability and identifying the metal leaching behavior of sparingly soluble materials. In this study, standard TCLP analysis was modified into a prolonged leaching experiment to investigate the leaching behavior of nickel and copper oxides (NiO and CuO) and their aluminates (NiAl(2)O(4), CuAl(2)O(4) and CuAlO(2)). The results demonstrate the difficulty of differentiating the leachability of highly insoluble phases, such as NiO and NiAl(2)O(4), using the standard TCLP. The prolonged TCLP method, however, confirmed NiAl(2)O(4) to have a lower degree of intrinsic leachability than NiO and that it could be expected to undergo congruent dissolution under landfill conditions. For the more soluble copper system, the aluminates were still found to possess a much lower degree of leachability, and their leaching behavior to follow an incongruent dissolution pattern. The results of this study prove prolonged TCLP analysis to be a convenient and effective way to evaluate the environmental friendliness of metal waste and to identify the leaching behavior of waste materials. PMID:21279218

  7. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    SciTech Connect

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  8. 40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23,...

  9. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution.

    PubMed

    Brückner, Christin; Imhof, Diana; Scriba, Gerhard K E

    2013-03-25

    The aim of the present study was the investigation of the isomerization and epimerization kinetics of the aspartyl tetrapeptide Gly-Phe-Asp-GlyOH at alkaline conditions. Incubations of the model tetrapeptide in sodium borate buffer, pH 10 and ionic strength 0.2M, at 25°C and 80°C were analyzed by a validated CE-UV assay and fitted according to a pharmacokinetic model. CE-ESI-MS was used for peptide identification. Enantiomerization and isomerization of the aspartyl residue of the model tetrapeptide was observed under all experimental conditions applied. Differences in the velocity and the ratios of the rates of the degradation reactions indicated different effects of temperature on the individual reactions. At 80°C, a rapid formation of β-Asp and d-Asp containing isomers from Gly-l-Phe-α-l-Asp-GlyOH was monitored. Rate constants of the hydrolysis of the succinimide (Asu) intermediate generally exceeded the formation of the intermediate from α/β-Asp peptides. A higher rate constant was observed for the enantiomerization from l-configured Asu compared to d-Asu. At 25°C, epimerization and isomerization equilibrium was not reached within 5208h. Compared to 80°C different ratios of the individual reaction rates were noted. Moreover, inversion of the sequence of the first 2 amino acids was noted as a minor side reaction at 80°C.

  10. Combined capillary electrophoresis and high performance liquid chromatography studies on the kinetics and mechanism of the hydrogen peroxide-thiocyanate reaction in a weakly alkaline solution.

    PubMed

    Hu, Ying; Song, Yanan; Horváth, Attila K; Cui, Yin; Ji, Chen; Zhao, Yuemin; Gao, Qingyu

    2014-03-01

    The hydrogen peroxide-thiocyanate reaction has been reinvestigated by means of capillary electrophoresis and high performance liquid chromatography under weakly alkaline conditions at 25.0±0.1 °C. Concentration-time series of thiocyanate, sulfate and cyanate have been followed by capillary electrophoresis as well as that of thiocyanate and hydrogen peroxide by HPLC. It has been clearly demonstrated that OxSCN(-) (where x=1, 2 and 3) cannot be accumulated in detectable amount in contrast to the results of Christy and Egeberg, hence these species can only be regarded as short-lived intermediates. It has been shown that the overall rate law is first-order with respect to both reactants, but no pH-dependence was observed within the pH range of 8.86-10.08. A simple kinetic model has been proposed to fit all the concentration-time curves simultaneously at five different pHs demonstrating the powerful combination of the experimental techniques CE and HPLC with simultaneous evaluation of kinetic curves. It is also enlightened that the quality of the buffer strongly affects the rate of the overall reaction that increases in the order of application of ammonia, phosphate, carbonate and borate, respectively at a constant ionic strength and pH.

  11. Aluminized film, seam sealing tests and observations. Final report

    SciTech Connect

    Not Available

    1994-06-16

    The purpose of this work was to investigate various seam sealing techniques, reinforcing methods, fitting installations, seam tolerances and geometric configurations pertinent to an aluminized plastic laminate. The program seeks a successful fabricating method for producing low-diffusion, cylindrical, spar liners to contain pressurized GH{sub 2} and GO{sub 2}. The test plan included: (1) seaming techniques on metallized Mylar film; (2) ``double patches`` for end fittings; (3) stainless steel bulkhead fitting assembly with seals; (4) minimum run tolerance on linear shear seam; (5) peel seam vs. inverted seal seam fabrication.

  12. System and process for aluminization of metal-containing substrates

    SciTech Connect

    Chou, Yeong-Shyung; Stevenson, Jeffry W

    2015-11-03

    A system and method are detailed for aluminizing surfaces of metallic substrates, parts, and components with a protective alumina layer in-situ. Aluminum (Al) foil sandwiched between the metallic components and a refractory material when heated in an oxidizing gas under a compression load at a selected temperature forms the protective alumina coating on the surface of the metallic components. The alumina coating minimizes evaporation of volatile metals from the metallic substrates, parts, and components in assembled devices during operation at high temperature that can degrade performance.

  13. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOEpatents

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  14. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2008-03-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  15. Thermal Properties of Double-Aluminized Kapton at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Tuttle, J.; DiPirro, M.; Canavan, E.; Hait, T.

    2007-01-01

    Double-aluminized kapton (DAK) is commonly used in multi-layer insulation blankets in cryogenic systems. NASA plans to use individual DAK sheets in lightweight deployable shields for satellites carrying instruments. A set of these shields will reflect away thermal radiation from the sun, the earth, and the instrument's warm side and allow the instrument's cold side to radiate its own heat to deep space. In order to optimally design such a shield system, it is important to understand the thermal characteristics of DAK down to low temperatures. We describe experiments which measured the thermal conductivity and electrical resistivity down to 4 Kelvin and the emissivity down to 10 Kelvin.

  16. Alkaline injection for enhanced oil recovery: a status report

    SciTech Connect

    Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

    1983-01-01

    In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

  17. On the kinetics of the pack - Aluminization process

    NASA Technical Reports Server (NTRS)

    Sivakumar, R.; Seigle, L. L.

    1976-01-01

    An investigation has been made of the aluminization of unalloyed Ni in fluoride-activated packs of varying Al activity. In packs of low Al activity, in which the ratio of Al to Ni was less than 50 at. pct, the specimen surface quickly came to equilibrium with the pack and remained close to equilibrium for the duration of normal coating runs. In these packs the kinetics of aluminization was controlled by diffusion in the solid. In packs of higher Al activity the surface of the specimen did not come to equilibrium with the pack and the kinetics of the process was governed by a combination of solid and gas diffusion rates. Under most conditions however, the surface composition was time-invariant and a steady-state appeared to exist at the pack-coating interface. By combining Levine and Caves' model for gaseous diffusion in pure-Al packs with calculations of solid diffusion rates some success has been achieved in explaining the results.

  18. High-temperature oxidation behavior of aluminized AISI 4130 steel

    NASA Astrophysics Data System (ADS)

    Badaruddin, Mohammad; Wang, Chaur Jeng; Wardono, Herry; Tarkono, Asmi, Dwi

    2016-02-01

    AISI 4130 steel was dipped into a molten aluminum bath at 700°C for 16 s to produce an aluminide coating on the steel substrate. The coating, which consisted of an Al-rich layer and an FeAl3 and Fe2Al5 intermetallic layer, strongly adhered to the steel substrate. High-temperature oxidation of the bare steel and aluminized steel was performed by thermogravimetry at 850°C for 49 h in static air. The oxidation products were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The aluminide coating could increase the oxidation resistance of the bare steel by a factor of ˜19. The increase in high-temperature oxidation resistance of the aluminized steel is attributed to the formation of protective alumina scale (α-Al2O3). Although iron oxide nodules grew on the aluminide coating surface, the oxidation rate of the aluminide coatings was very low. After 49 h of oxidation, agglomerates of α-Al2O3 fine grains grew on the rod-shaped FeAl phases.

  19. QM/MM analysis suggests that Alkaline Phosphatase (AP) and Nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily

    PubMed Central

    Hou, Guanhua

    2011-01-01

    Several members of the Alkaline Phosphatase (AP) superfamily exhibit a high level of catalytic proficiency and promiscuity in structurally similar active sites. A thorough characterization of the nature of transition state for different substrates in these enzymes is crucial for understanding the molecular mechanisms that govern those remarkable catalytic properties. In this work, we study the hydrolysis of a phosphate diester, MpNPP−, in solution, two experimentally well-characterized variants of AP (R166S AP, R166S/E322Y AP) and wild type Nucleotide pyrophosphatase/phosphodiesterase (NPP) by QM/MM calculations in which the QM method is an approximate density functional theory previously parameterized for phosphate hydrolysis (SCC-DFTBPR). The general agreements found between these calculations and available experimental data for both solution and enzymes support the use of SCC-DFTBPR/MM for a semi-quantitative analysis of the catalytic mechanism and nature of transition state in AP and NPP. Although phosphate diesters are cognate substrates for NPP but promiscuous substrates for AP, the calculations suggest that their hydrolysis reactions catalyzed by AP and NPP feature similar synchronous transition states that are slightly tighter in nature compared to that in solution, due in part to the geometry of the bimetallic zinc motif. Therefore, this study provides the first direct computational support to the hypothesis that enzymes in the AP superfamily catalyze cognate and promiscuous substrates via similar transition states to those in solution. Our calculations do not support the finding of recent QM/MM studies by López-Canut and coworkers, who suggested that the same diester substrate goes through a much looser transition state in NPP/AP than in solution, a result likely biased by the large structural distortion of the bimetallic zinc site in their simulations. Finally, our calculations for different phosphate diester orientations and phosphorothioate diesters

  20. The effects of acid and alkaline solutions on cut marks and on the structure of bone: An experimental study on porcine ribs.

    PubMed

    Amadasi, Alberto; Camici, Arianna; Sironi, Luca; Profumo, Antonella; Merli, Davide; Mazzarelli, Debora; Porta, Davide; Duday, Henri; Cattaneo, Cristina

    2015-11-01

    Among taphonomical modifications during decomposition processes, little is known about the action of high or low pH to human tissues and bones. Moreover, acid or basic solutions are seldom used to ease decomposition and wrecking of the body. In this study a total of 60 samples of porcine bones on which two cut marks were produced before the beginning of the experiment, were put in six different solutions with different pH (1, 3, 5, 9, 12, 14) and analyzed every five days over a period of 70 days. Surveys were carried out macroscopically, with stereomicroscopy and with light microscopy on thin sections. Only the specimens exposed to extremely acid (<1) or basic (>12) pH showed evident modifications of the bone's structure, as witnessed by the analyses with stereomicroscopy as well. Many samples showed a detachment of the periosteum; cut marks became soon unrecognizable with pH 14 but still detectable in all the other samples. The information gained from the present study can be of great help in detecting the exposure of human tissues to high or low environmental pH and in understanding the effects that these solutions can exert on human bones. PMID:26593998

  1. The effects of acid and alkaline solutions on cut marks and on the structure of bone: An experimental study on porcine ribs.

    PubMed

    Amadasi, Alberto; Camici, Arianna; Sironi, Luca; Profumo, Antonella; Merli, Davide; Mazzarelli, Debora; Porta, Davide; Duday, Henri; Cattaneo, Cristina

    2015-11-01

    Among taphonomical modifications during decomposition processes, little is known about the action of high or low pH to human tissues and bones. Moreover, acid or basic solutions are seldom used to ease decomposition and wrecking of the body. In this study a total of 60 samples of porcine bones on which two cut marks were produced before the beginning of the experiment, were put in six different solutions with different pH (1, 3, 5, 9, 12, 14) and analyzed every five days over a period of 70 days. Surveys were carried out macroscopically, with stereomicroscopy and with light microscopy on thin sections. Only the specimens exposed to extremely acid (<1) or basic (>12) pH showed evident modifications of the bone's structure, as witnessed by the analyses with stereomicroscopy as well. Many samples showed a detachment of the periosteum; cut marks became soon unrecognizable with pH 14 but still detectable in all the other samples. The information gained from the present study can be of great help in detecting the exposure of human tissues to high or low environmental pH and in understanding the effects that these solutions can exert on human bones.

  2. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  3. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH.

    PubMed

    Waite, D T; Snihura, A D; Liu, Y; Huang, G H

    2002-10-01

    Mercury (Hg) is well known as a toxic environmental pollutant that is among the most highly bioconcentrated trace metals in the human food chain. The atmosphere is one of the most important media for the environmental cycling of mercury, since it not only receives mercury emitted from natural sources such as volcanoes and soil and water surfaces but also from anthropogenic sources such as fossil fuel combustion, mining and metal smelting. Although atmospheric mercury exists in different physical and chemical forms, as much as 90% can occur as elemental vapour Hg0, depending on the geographic location and time of year. Atmospheric mercury can be deposited to aquatic ecosystems through both wet (rain or snow) and dry (vapour adsorption and particulate deposition) processes. The purpose of the present study was to measure, under laboratory conditions, the rate of deposition of gaseous, elemental mercury (Hg0) to deionized water and to solutions of inorganic salt species of varying ionic strengths with a pH range of 2-12. In deionized water the highest deposition rates occurred at both low (pH 2) and high (pH 12). The addition of different species of salt of various concentrations for the most part had only slight effects on the absorption and retention of atmospheric Hg0. The low pH solutions of various salt concentrations and the high pH solutions of high salt concentrations tested in this study generally showed a greater tendency to absorb and retain atmospheric Hg0 than those at a pH closer to neutral.

  4. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  5. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  6. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  7. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-12-01

    The evolution of the corrosion process of AA 2024-T3 in 0.58 g L-1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La3Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  8. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, R.O.; Keller, R.; Yao, N.P.

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (A1S) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  9. Method of winning aluminum metal from aluminous ore

    DOEpatents

    Loutfy, Raouf O.; Keller, Rudolf; Yao, Neng-Ping

    1981-01-01

    Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

  10. Micro-stress dominant displacive reconstructive transition in lithium aluminate

    NASA Astrophysics Data System (ADS)

    Hu, Qiwei; Lei, Li; Yan, Xiaozhi; Zhang, Leilei; Li, Xiaodong; Peng, Fang; He, Duanwei

    2016-08-01

    It is supposed that diffusive reconstructive transitions usually take place under hydrostatic pressure or low stresses, and displacive reconstructive phase transitions easily occur at nonhydrostatic pressure. Here, by in-situ high pressure synchrotron X-ray diffraction and single-crystal Raman scattering studies on lithium aluminate at room temperature, we show that the reconstructive transition mechanism is dependent on the internal microscopic stresses rather than the macroscopic stresses. In this case, even hydrostatic pressure can favor the displacive transition if the compressibility of crystal is anisotropic. During hydrostatic compression, γ-LiAlO2 transforms to δ-LiAlO2 at about 4 GPa, which is much lower than that in previous nonhydrostatic experiments (above 9 GPa). In the region where both phases coexist, there are enormous microscopic stresses stemming from the lattice mismatch, suggesting that this transition is displacive. Furthermore, the atomic picture is drawn with the help of the shear Raman modes.

  11. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  12. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  13. Determination of bisphenol A in thermal printing papers treated by alkaline aqueous solution using the combination of single-drop microextraction and HPLC.

    PubMed

    Gao, Leihong; Zou, Jing; Liu, Haihong; Zeng, Jingbin; Wang, Yiru; Chen, Xi

    2013-04-01

    A method for the quantitative determination of bisphenol A in thermal printing paper was developed and validated. Bisphenol A was extracted from the paper samples using 2% NaOH solution, then the extracted analyte was enriched using single-drop microextraction followed by HPLC analysis. Several parameters relating to the single-drop microextraction efficiency including extraction solvent, extraction temperature and time, stirring rate, and pH of donor phase were studied and optimized. Spiked recovery of bisphenol A at 20 and 5 mg/g was found to be 95.8 and 108%, and the method detection limit and method quantification limit was 0.03 and 0.01 mg/g, respectively. Under the optimized conditions, the proposed method was applied to the determination of bisphenol A in seven types of thermal printing paper samples, and the concentration of bisphenol A was found in the range of 0.53-20.9 mg/g. The considerably minimum usage of organic solvents (5 μL 1-octanol) and high enrichment factor (189-197) in the sample preparation are the two highlighted advantages in comparison with previously published works.

  14. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  15. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    PubMed

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%. PMID:26415430

  16. A scanning tunneling microscopy investigation of the phases formed by the sulfur adsorption on Au(100) from an alkaline solution of 1,4-piperazine(bis)-dithiocarbamate of potassium

    NASA Astrophysics Data System (ADS)

    Martínez, Javier A.; Valenzuela B., José; Cao Milán, R.; Herrera, José; Farías, Mario H.; Hernández, Mayra P.

    2014-11-01

    Piperazine-dithiocarbamate of potassium (K2DTC2pz) was used as a new precursor for the spontaneous deposition of sulfur on the Au(100) surface in alkaline solution. Two new sulfur phases were studied by scanning tunneling microscopy (STM). These phases were formed by six sulfur atoms (S6 phase, hexamer) and by four sulfur atoms (S4 phase, tetramer with (√{ 2} ×√{ 2}) structure), and they were observed in coexistence with the well-known quasi-square patterns formed by eight sulfur atoms (S8 phase, octomer). A model was proposed where sulfur multilayers were formed by a (√{ 2} ×√{ 2}) phase adsorbed directly on the gold surface while one of the other structures: hexamers or octomers were deposited on top. Sulfur layers were formed on gold terraces, vacancies and islands produced by lifting reconstructed surface. Sequential high-resolution STM images allowed the direct observation of the dynamic of the octomers, while the (√{ 2} ×√{ 2}) structure remained static. Images also showed the reversible association/dissociation of the octomer.

  17. Interaction of adenylic acid with alkaline earth metal ions in the crystalline solid and aqueous solution. Evidence for the sugar C'2-endo/anti, C'3-endo/anti and C'4-exon/anti conformational changes.

    PubMed

    Tajmir-Riahi, H A

    1990-09-10

    The reaction of adenosine 5'-monophosphoric acid (H2-AMP) with the alkaline earth metal ions has been investigated in aqueous solution at neutral pH. The solid salts of Mg-AMP.5H2O, Ca-AMP.6H2O, Sr-AMP.7H2O and Ba-AMP.7H2O were isolated and characterized by Fourier transform infrared, 1H-NMR spectroscopy and X-ray powder diffraction measurements. Spectroscopic and other evidence showed that the Sr-AMP.7H2O and Ba-AMP.7H2O are isomorphous, whereas the Mg-AMP.5H2O and Ca-AMP.6H2O are not similar. The Mg2+ binding is through the N-7 (inner-sphere) and the phosphate group (outer-sphere via H2O), while the Ca2+ binds to the phosphate group (inner-sphere) and to the base N-7 site (outer-sphere through H2O). The Sr2+ and Ba2+ bind to H2O molecules, H-bonding to the N-7, N-1 and the phosphate group (outer-sphere). In aqueous solution, an equilibrium between the inner- and outer-sphere metal ion bindings can be established. The sugar moiety exhibited C'2-endo/anti conformation, in the free H2-AMP acid and the magnesium salt, C'3-endo/anti in the calcium salt and unusual C'4-exo/anti, in the strontium and barium salts.

  18. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  19. Formation of calcium aluminates in the lime sinter process. [Extraction of alumina from fly ash

    SciTech Connect

    Chou, K.S.

    1980-03-01

    A study of the formation of several calcium aluminates from pure components in the lime sinter process was undertaken to determine the kinetics of formation and subsequent leaching using a dilute sodium carbonate solution. The composition CaO 61.98%, SiO/sub 2/ 26.67%, and Al/sub 2/O/sub 3/ 11.53% was used. Isothermal sintering runs of 0.2 to 10.0 h were carried out at 1200, 1250, 1300, and 1350/sup 0/C. When the sintering temperature was below the eutectic temperature (1335/sup 0/C), the ternary mixture behaved like two binary systems, i.e. CaO-Al/sub 2/O/sub 3/ and CaO-SiO/sub 2/. Only one compound, 3CaO.SiO/sub 2/, was formed between CaO and SiO/sub 2/. With lower sintering temperature and shorter sintering time, the ..beta..-phase was dominant. However, when both temperature and time increased, more and more of the ..beta..-C/sub 2/S was transformed into the ..gamma..-phase. Several different aluminates were formed during the sintering of CaO and Al/sub 2/O/sub 3/. The compounds CaO.Al/sub 2/O/sub 3/ and 3CaO.Al/sub 2/O/sub 3/ were observed at all tested sintering temperatures, while the 5CaO.3Al/sub 2/O/sub 3/ phase was found only at 1200/sup 0/C and 12CaO.7Al/sub 2/O/sub 3/ at 1250/sup 0/C or higher. The first compound formed between CaO and Al/sub 2/O/sub 3/ was probably 12CaO.7Al/sub 2/O/sub 3/, but the amount did not increase immediately with time. The first dominant compound between CaO and Al/sub 2/O/sub 3/ was CaO.3Al/sub 2/O/sub 3/. When the calcium ion diffused through the product layer of CaO.Al/sub 2/O/sub 3/, 3CaO.Al/sub 2/O/sub 3/ was formed. If unreacted Al/sub 2/O/sub 3/ were present after the formation of CaO.Al/sub 2/O/sub 3/, CaO.2Al/sub 2/O/sub 3/ would form. Subsequent leaching of the sinters showed that the extractable alumina in the products increased with both sintering temperature and time, reaching a max of about 90%. These extraction data corresponded very well to the quantities of aluminates in the sinters. 59 figures, 13 tables.

  20. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  1. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    SciTech Connect

    Yusufali, C. Sengupta, P.; Dutta, R. S.; Dey, G. K.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.

    2014-04-24

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al{sub 2}O{sub 3} layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  2. Surface studies on aluminized and thermally oxidized superalloy 690 substrates interacted with simulated nuclear waste and sodium borosilicate melt

    NASA Astrophysics Data System (ADS)

    Yusufali, C.; Kshirsagar, R. J.; Mishra, R. K.; Kaushik, C. P.; Sengupta, P.; Dutta, R. S.; Dey, G. K.

    2014-04-01

    Aluminized and thermally oxidized Ni-Cr-Fe based superalloy 690 substrates with Al2O3 layer on top have been exposed in nitrate based environment (simulated high level nuclear liquid waste) at 373 K for 216 hours and sodium borosilicate melt at 1248 K for 192 hours. The surfaces of exposed samples have been characterized by using Electron probe micro-analyzer (EPMA). Elemental X-ray mapping on coated specimen that exposed in simulated nuclear waste solution revealed that the surface is enriched with Ni, Cr and Al. X-ray mapping on surface of the specimen that interacted with sodium borosilicate melt indicated that the surface is composed of Al, Fe, Ni and Cr.

  3. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  4. Amorphization of rare earth aluminate garnets by ionic irradiation and decay of 244Cm admixture

    SciTech Connect

    Livshits, T. S.; Lizin, A. A.; Zhang, J. M.; Ewing, R. C.

    2010-08-29

    The stability of synthetic REE-aluminate garnets irradiated by accelerated Kr2+ ions and affected by alpha decay of ²⁴⁴Cm (T1/2 = 18.1 yr) has been studied. The dose of irradiation sufficient for the complete disordering of the aluminate garnet structure is 0.40–0.55 displacements per atom. This value increases with rising temperature due to the increasing intensity of recovery from radiation damage to the lattice by heating. The critical temperature above which the structure of REE-aluminate is not damaged by radiation is 550°C. The amorphization dose for aluminates with garnet structure is two to three times higher than of that previously studied ferrites; the critical temperature of both is similar. In resistance to radiation, aluminate garnets do not yield to zirconolite and exceed titanate pyrochlore. Heating to 250°C does not lead to substantial recovery from radiation defects in the garnet structure. The radiation impact on matrices of real actinide (An) wastes is lower than that related to ion irradiation and ²⁴⁴Cm doping, and this facilitates a higher radiation resistance of garnets containing HLW.

  5. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26553167

  6. Microwave absorption in single crystals of lanthanum aluminate

    NASA Astrophysics Data System (ADS)

    Zuccaro, Claudio; Winter, Michael; Klein, Norbert; Urban, Knut

    1997-12-01

    A very sensitive dielectric resonator technique is employed to measure loss tangent tan δ and relative permittivity ɛr of lanthanum aluminate (LaAlO3) single crystals at 4-300 K and 4-12 GHz. A variety of single crystals grown by different techniques and purchased from different suppliers are considered. For T>150 K the loss tangent tan δ is almost sample independent with linear frequency dependence and monotonous temperature variation from 8×10-6 at 300 K to 2.5×10-6 at 150 K and 4.1 GHz. In this temperature range the experimental data are explained by a model based on lifetime broadened two-phonon difference processes. The loss tangent below 150 K is characterized by a peak in tan δ(T) at about 70 K. The height of this peak is frequency and strongly sample dependent. This leads to a variation of the loss tangent from 10-6 to 1.5×10-5 at 77 K and 8.6 GHz, the lowest values are generally achieved with Verneuil grown crystals and approach the intrinsic lower limit predicted by the phonon model. The peak is explained by defect dipole relaxation (local motions of ions). The activation energy of the relaxation process is determined from the measured data to be 31 meV. This low value indicates that the defect dipoles are associated with interstitials, possibly impurities in interstitial positions. Considering absorption due to phonons and due to defect dipole relaxation the loss tangent is calculated for a wide frequency range.

  7. Study of optical properties of cerium ion doped barium aluminate phosphor

    NASA Astrophysics Data System (ADS)

    Lohe, P. P.; Omanwar, S. K.; Bajaj, N. S.; Belsare, P. D.

    2016-05-01

    In the recent years due to their various optical and technological applications aluminate materials have attracted attention of several researchers. When these materials are doped with rare earth ions they show properties favorable for many optical applications such as high quantum efficiencies. These materials are used in various applications such as lamp phosphors, optically and thermoluminescence dosimeter etc Barium aluminate BaAl2O4 doped with Ce is well known long lasting phosphor. This paper reports synthesis of BaAl2O4: Ce phosphor prepared by a simple combustion synthesis. The samples were characterized for the phase purity, chemical bonds and luminescent properties.

  8. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  9. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  10. Charge-Exchange Processes of Titanium-Doped Aluminate Crystals

    NASA Astrophysics Data System (ADS)

    Wong, Wing Cheong

    1995-01-01

    Titanium exists in more than one charge state in the aluminate crystals: it is stable as Ti^ {3+} and Ti^{4+}. Other than the intense Ti^{4+ } absorption, a ubiquitous absorption/luminescence excitation band in the UV region is identified as a titanium -bound exciton in Al_2rm O_3, Y_3Al_5rm O_{12}, {rm YAlO}_3, MgAl_2O _4, and LaMgAl_{11} {rm O}_{19}. One -step and two-step photoconductivities of Ti^ {3+} are measured and compared. While the selectivity of the two-step process is demonstrated, its use in locating the energy threshold is hampered by the small Franck-Condon factor for the transition between the Ti^{3+} ^2{ rm E} excited state and Ti^ {4+}. The titanium-bound exciton band, together with the one-step photocurrent signal, makes it possible to determine the photoionization energy threshold accurately. The charge-transfer transition energy thresholds of Ti^{4+} are obtained from the emission and the luminescence excitation spectra. Locally and non-locally charge compensated Ti^{4+ } are found in Al_2{rm O}_3. The luminescence kinetics for the two kinds of Ti^{4+} are well explained by a three-level system with a lower triplet excited state and a higher singlet excited state. These charge-exchange threshold energies can be deduced from the Born-Haber thermodynamical cycle. The electrostatic site potentials are calculated and from it, the calculated photoionization and charge-transfer energy thresholds are found to be consistent with the experimental results. The deficiency of this model is pointed out and possible improvement is discussed. Quantitatively, the sum of the two charge-exchange energy thresholds is close to the band-gap energy of the host crystal. This offers a convenient way for material characterization. Provided that any two of the three quantities (band-gap energy, photoionization energy threshold, and charge-transfer transition energy threshold) have been found, the third quantity can be calculated. In addition, the trapping of charge

  11. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  12. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  13. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  14. [Study on the influence of mineralizer on the structures and spectral properties of calcium aluminates].

    PubMed

    Zheng, Huai-Li; Liu, Jun-Yu; Li, Lin-Tao; Li, Fang

    2009-11-01

    The present paper investigated the effect of mineralizer on the structure and properties of calcium aluminates formation. Calcium aluminates powder was synthesized under high temperature calcination by mixing bauxite, limestone and a certain amount of mineralizer. The product structure, compositional information and spectral properties were carefully characterized by XRD, IR and DTA-TG, and the mineralization mechanism of mineralizer was studied during the process of calcium aluminates preparation. The results showed that calcium aluminates powder could be obtained under lower temperature calcination after adding mineralizer to the raw materials. The main products of the reaction were CaAl10 O18 and CaAl2 Si2 O8 without mineralizer, however, the main products of the reaction were CaAl3 BO7 and Ca3 Al10 O18 with mineralizer, in which Al2 O3s could be extracted easily, while CaAl2 Si2 O8 was reduced greatly in which Al2 O3 could not be extracted easily. At the same time, it is easy for calcspar to decompose after adding mineralizer. It is favorable to Al-Si bond break and Al stripping from bauxite. These facts could improve the extraction rate of Al2 O3 from raw materials. Also, in the case of adding mineralizer to the raw mixes, the crystal structure and composition are changed, which is beneficial to reducing calcination temperature.

  15. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  16. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  17. Alkaline galvanic cell

    SciTech Connect

    Inoue, T.; Maeda, Y.; Momose, K.; Wakahata, T.

    1983-10-04

    An alkaline galvanic cell is disclosed including a container serving for a cathode terminal, a sealing plate in the form of a layered clad plate serving for an anode terminal to be fitted into the container, and an insulating packing provided between the sealing plate and container for sealing the cell upon assembly. The cell is provided with a layer of epoxy adduct polyamide amine having amine valence in the range of 50 to 400 and disposed between the innermost copper layer of the sealing plate arranged to be readily amalgamated and the insulating packing so as to serve as a sealing agent or liquid leakage suppression agent.

  18. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  19. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  20. Process of treating cellulosic membrane and alkaline with membrane separator

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  1. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. Microstructural and compositional change of NaOH-activated high calcium fly ash by incorporating Na-aluminate and co-existence of geopolymeric gel and C-S-H(I)

    SciTech Connect

    Oh, Jae Eun; Moon, Juhyuk; Oh, Sang-Gyun; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-05-15

    This study explores the reaction products of alkali-activated Class C fly ash-based aluminosilicate samples by means of high-resolution synchrotron X-ray diffraction (HSXRD), scanning electron microscope (SEM), and compressive strength tests to investigate how the readily available aluminum affects the reaction. Class C fly ash-based aluminosilicate raw materials were prepared by incorporating Na-aluminate into the original fly ashes, then alkali-activated by 10 M NaOH solution. Incorporating Na-aluminate reduced the compressive strength of samples, with the reduction magnitude relatively constant regardless of length of curing period. The HSXRD provides evidence of the co-existence of C-S-H with geopolymeric gels and strongly suggests that the C-S-H formed in the current system is C-S-H(I). The back-scattered electron images suggest that the C-S-H(I) phase exists as small grains in a finely intermixed form with geopolymeric gels. Despite providing extra source of aluminum, adding Na-aluminate to the mixes did not decrease the Si/Al ratio of the geopolymeric gel.

  3. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  4. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  6. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-01

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  7. Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Li, Denian; Tai, Qile; Feng, Qiang; Li, Qi; Xu, Xizhe; Li, Hairong; Huang, Jing; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2014-08-01

    Aluminized poly(vinyl chloride) (PVC) film with high reflectivity and strong adhesion was facilely fabricated by vacuum evaporation. The technical study revealed that both alkali-pretreatment of the PVC matrix and thermal annealing after aluminization could greatly promote the peeling adhesion force of this metal/polymer composite by producing interfacial active chemical groups and removing the inner stress, respectively. Reflectivity test and AFM study indicated that the reflecting capacitance of the aluminum coating was closely related to the surface roughness, which can be easily controlled by modulating deposition of aluminum. Moreover, the formation of aluminum layer follows an island model process, and a continuous and smooth coating with highest reflectivity and lowest surface resistance was achieved at deposition time of 60 s. We anticipate that the cost-effective metallized PVC film by this strategy may find extensive applications in light harvesting, solar energy, and flexible mirrors, among others.

  8. Effect of solvents on the preparation of lithium aluminate by sol-gel method

    SciTech Connect

    Oksuzomer, Faruk; Koc, S. Naci; Boz, Ismail; Gurkaynak, M. Ali

    2004-04-02

    {gamma}-Lithium aluminate was prepared by sol-gel method using lithium methoxide and aluminum-sec-butoxide precursors in i-propanol, n- and tert-butanol. Clear gels could be obtained due to the addition of ethylacetoacetate and the dried solids were calcined at 550 and 900 deg. C. The resulting solids were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermo-gravimetric analysis/differential thermal analysis (TGA/DTA). {gamma}-Lithium aluminate with the highest purity was obtained with t-butanol solvent and LiAl{sub 5}O{sub 8} was the second major phase.

  9. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    SciTech Connect

    Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  10. Multi-dimensional hydrodynamic simulations aimed at characterizing heavily aluminized RDX

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; Kim, Bohoon; Kim, Minsung

    2015-06-01

    An accurate and reliable prediction of reactive flow is a challenging task for an energetic material subjected to an external shock impact. The present study aims at simulating the shock induced detonation of heavily aluminized RDX which contains 35% of aluminum. A series of gap tests with the longitudinal simulations involving gap substances are conducted to understand the inherent initiation process that depends on the shock propagation through multi-material domain and the high strain dynamics of nearby confinement materials. A pressure chamber test is used to validate the blast wave calculation of the sample charge, and a full 3-D hydrodynamic simulation is performed to predict fragmentation of an explosively loaded steel casing. The paper provides an elaborate description of how a heavily aluminized RDX is characterized in terms of its thermo-chemical response and multi-material interaction with inert confinement materials.

  11. Coating Prospects in Corrosion Prevention of Aluminized Steel and Its Coupling with Magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Fuyan

    In this study, a plasma electrolytic oxidation (PEO) process was used to form oxide coating on aluminized steel, heated aluminized steel and magnesium. A potentiodynamic polarization corrosion test was employed to investigate the general corrosion properties. Galvanic corrosion of steel samples and magnesium samples was studied by zero resistance ammeter (ZRA) tests and boiling tests. Scanning electron microscopy (SEM) and EDS were used to investigate the coating microstructure and the coating/substrate interface. In general, the PEO coatings on all three substrate can help prevent general corrosion. 6-min coated magnesium with unipolar current mode performs best in most galvanic couplings for preventing both general corrosion and galvanic corrosion. Factors which could influence galvanic corrosion behaviors of tested samples were discussed based on area ratios of anode/cathode and cell potential driving force during the ZRA corrosion tests and boiling tests.

  12. Boundary conditions for diffusion in the pack-aluminizing of nickel.

    NASA Technical Reports Server (NTRS)

    Sivakumar, R.; Seigle, L. L.; Menon, N. B.

    1973-01-01

    The surface compositions of nickel specimens coated for various lengths of time in aluminizing packs at 2000 F were studied, in order to obtain information about the kinetics of the pack-cementation process in the formation of aluminide coatings. The results obtained indicate that the surface compositions of the coated nickel specimens are independent of time, at least for time between 0.5 and 20 hrs. Another important observation is that the specimens gained weight during the coating process.

  13. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    DOE PAGES

    Li, Xufan; Budai, John D.; Liu, Feng; Chen, Yu-Sheng; Howe, Jane Y.; Sun, Chengjun; Tischler, Jonathan Zachary; Meltzer, Richard; Pan, Zhengwei

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (01-xEuxAl2O4 (01-xEuxAl2O4 (0

  14. Effect of X-Rays on the Mechanical Properties of Aluminized FEP Teflon(trademark)

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Brinkmeier, Michael R.; Gaier, Elizabeth M.

    1999-01-01

    Pieces of the multilayer insulation (MLI) that is integral to the thermal control of the Hubble Space Telescope (HST) have been returned by two servicing missions after 3.6 and 6.8 years in orbit. They reveal that the outer layer, which is made from 5 mil (0.13 mm) thick aluminized fluorinated ethylenepropylene (FEP) Teflon. has become severely embrittled. Although possible agents of this embrittlement include electromagnetic radiation across the entire solar spectrum, trapped particle radiation, atomic oxygen, and thermal cycling, intensive investigations have not yielded unambiguous causes. Previous studies utilizing monoenergetic photons in the 69-1900 eV range did not cause significant embrittlement, even at much higher doses than were experienced by the HST MLI. Neither did x-rays in the 3 to 10 keV range generated in a modified electron bean evaporator. An antidotal aluminized FEP sample that was exposed to an intensive dose from unfiltered Mo x-ray radiation from a rotating anode generator, however, did show the requisite embrittlement. Thus, a study was undertaken to determine the effects of x-ray exposure on the embrittlement of aluminized FEP in hopes that it might elucidate the HST MLI degradation mechanism. Tensile specimens of aluminized 5 mil thick FEP were exposed to a constant fluence of unfiltered x-ray radiation from a Mo target whose maximum energy ranged from 20-60 kV. Other samples were annealed, thermally cycled (100x) between 77-333 K, or cycled and irradiated. Tensile tests and density measurements were then performed on the samples. Only the samples which had been irradiated had the drastically reduced elongation-to-break, characteristic of the HST samples. Thermal cycling may accelerate the embrittlement, but the effect was near the scatter in the measurements. Annealing and thermal cycling had no apparent effect. Only the samples which had been irradiated and annealed showed significant density increases, likely implicating polymer chain

  15. Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades

    SciTech Connect

    Kameda, J.; Bloomer, T.E. |; Sugita, Y.; Ito, A.; Sakurai, S.

    1997-07-01

    The microstructure/composition and mechanical properties (22-950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades have been examined using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings were made of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface SP tests demonstrated strong dependence of the deformation and fracture behavior on the various coatings regimes. Coatings 1 and 2 showed higher microhardness and easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4. The coating 3 had lower room temperature ductility and conversely higher elevated temperature ductility than the coating 4 due to a precipitous ductility increase above 730 C. The integrity of aluminized coatings while in-service is discussed in light of the variation in the low cycle fatigue life as well as the ductility in the layered structure.

  16. Chemical and radiation stability of 244Cm-doped aluminate perovskite

    NASA Astrophysics Data System (ADS)

    Livshits, T. S.; Lizin, A. A.; Tomilin, S. V.

    2014-11-01

    Aluminate perovskite with a 75% simulator of actinide-REE (Nd, Sm, Ce) fraction of high-level radioactive wastes (HLW) from reprocessing of spent nuclear fuel (SNF) has been synthesized and studied. The radiation stability of perovskite in the process of 244Cm decay ( T 1/2 = 18 yr) was investigated. Its structure has been amorphized at accumulated dose of 2.3 × 1018 α-decays/g, or 0.26 displacements per atom (dpa). The critical temperature above which amorphization does not occur at any dose is estimated to be 500°C. Radiation resistance of aluminate perovskite is close to previously studied titanate pyrochlore and ferrite garnet. The stability of perovskite in water before and after amorphization has been studied as well. The leach rate of Cm by water (90°C) from crystalline perovskite in runs 3-14 days long was 10-2-10-3 g/m2. This value is close to the stability of titanate pyrochlore and aluminate garnet. The intensity of element leaching from perovskite after amorphization of its structure increases 10-100 times and thus is higher than for other previously studied actinide phases.

  17. Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.

    1978-01-01

    Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.

  18. Behaviour of SS316, with and without aluminization, in stagnant Pb17Li

    NASA Astrophysics Data System (ADS)

    Schreinlechner, I.; Sattler, P.

    1992-09-01

    Austenitic SS316 sheet material, partly aluminized, was tested in static Pb17Li (83 at% Pb and 17 at% Li), at 500°C. After 1000 h of exposure polished cross sections of pieces of the sample with and without aluminization were analysed by electron microscopy and compared with the as-received sample. The unprotected surface revealed the expected depletion of alloying elements and the formation of a porous ferritic zone to a depth of ≈ 200 μm into which Pb has penetrated. The aluminized suface does not show any attack by Pb17Li nor penetration of Pb into the grain boundaries. An intermediate layer is found between the matrix and the aluminum surface layer, with distinct borders on either side, consisting of Al+Ni-rich areas, believed to be an AlNi alloy between Cr-rich areas. Quantitative analyses revealed identical concentrations of Al and Ni, for exposed as well as unexposed samples, indicating no counter diffusion to have taken place during the test.

  19. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  20. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  1. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  3. Alkaline extraction of phenolic compounds from intact sorghum kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...

  4. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  6. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  7. Physicochemical properties of the alumina produced by alkaline and acidic methods

    NASA Astrophysics Data System (ADS)

    Vetchinkina, T. N.

    2009-04-01

    Crystal-optical, X-ray diffraction, and thermogravimetric methods are used to study the polymorphic transformations in the products of calcination of the aluminum hydroxide produced by the decomposition and carbonization of aluminate solutions; the aluminum oxide produced by the decomposition of pure grade crystal hydrates of aluminum salts; and the alumina extracted upon the beneficiation of the mineral part of coaly rock with sulfuric, hydrochloric, and nitric acids. The morphology of the products of the thermal decomposition of the initial compounds is examined. The effect of impurities and a reducing agent on the formation of the structural modifications of alumina during heat treatment is revealed.

  8. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  9. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  10. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  11. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  12. Dynamic apparent transition resistance data in spot welding of aluminized 22MnB5.

    PubMed

    Kaars, Jonny; Mayr, Peter; Koppe, Kurt

    2016-09-01

    In-situ resistance measurements of aluminized 22MnB5 steel using a current ramp of 500 A/ms at welding force levels from 2 kN to 8 kN were conducted to obtain data on the dynamic resistance behaviour in spot welding of the material for varying mechanical and electrical loads. The data has been successfully used to calibrate a numerical transition resistance model (KMK-model, Kaars et al., 2016 [1]) in Kaars et al. (2016) [2].

  13. Acyl silicates and acyl aluminates as activated intermediates in peptide formation on clays

    NASA Technical Reports Server (NTRS)

    White, D. H.; Kennedy, R. M.; Macklin, J.

    1984-01-01

    Glycine reacts with heating on dried clays and other minerals to give peptides in much better yield than in the absence of mineral. This reaction was proposed to occur by way of an activated intermediate such as an acyl silicate or acyl aluminate analogous to acyl phosphates involved in several biochemical reactions including peptide bond synthesis. The proposed mechanism has been confirmed by trapping the intermediate, as well as by direct spectroscopic observation of a related intermediate. The reaction of amino acids on periodically dried mineral surfaces represents a widespead, geologically realistic setting for prebiotic peptide formation via in situ activation.

  14. Dynamic apparent transition resistance data in spot welding of aluminized 22MnB5.

    PubMed

    Kaars, Jonny; Mayr, Peter; Koppe, Kurt

    2016-09-01

    In-situ resistance measurements of aluminized 22MnB5 steel using a current ramp of 500 A/ms at welding force levels from 2 kN to 8 kN were conducted to obtain data on the dynamic resistance behaviour in spot welding of the material for varying mechanical and electrical loads. The data has been successfully used to calibrate a numerical transition resistance model (KMK-model, Kaars et al., 2016 [1]) in Kaars et al. (2016) [2]. PMID:27547795

  15. Effect of X-Rays on the Mechanical Properties of Aluminized FEP Teflon(R)

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Brinkmeier, Michael R.; Gaier, Elizabeth M.

    1998-01-01

    Pieces of the multilayer insulation (MLI) that is integral to the thermal control of the Hubble Space Telescope (HST) have been returned by two servicing missions after 3.6 and 6.8 years in orbit. They reveal that the outer layer, which is made from 5 mil (0.13 mm)thick aluminized fluorinated ethylene propylene(FEP) Teflon(R), has become severely embrittled. Although possible agents of this embrittlement include electromagnetic radiation across the entire solar spectrum, trapped particle radiation, atomic oxygen, and thermal cycling, intensive investigations have not yielded unambiguous causes. Previous studies utilizing monoenergetic photons in the 69-1900 eV range did not cause significant embrittlement, even at much higher doses than were experienced by the HST MLI. Neither did x-rays in the 3 to 10 keV range generated in a modified electron beam evaporator. An antidotal aluminized FEP sample that was exposed to an intensive dose from unfiltered Mo x-ray radiation from a rotating anode generator, however, did show the requisite embrittlement. Thus, a study was undertaken to determine the effects of x-ray exposure on the embrittlement of aluminized FEP in hopes that it might elucidate the HST MLI degradation mechanism. Tensile specimens of aluminized 5 mil thick FEP were exposed to a constant fluence of unfiltered x-ray radiation from a Mo target whose maximum energy ranged from 20-60 kV. Other samples were annealed, thermally cycled (100x) between 77-333 K, or cycled and irradiated. Tensile tests and density measurements were then performed on the samples. Only the samples which had been irradiated had the drastically reduced elongation-to-break, characteristic of the HST samples. Thermal cycling may accelerate the embrittlement, but the effect was near the scatter in the measurements. Annealing and thermal cycling had no apparent effect. Only the samples which had been irradiated and annealed showed significant density increases, likely implicating polymer

  16. Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: Effect of preparation conditions

    SciTech Connect

    Mosayebi, Zeinab; Rezaei, Mehran; Hadian, Narges; Kordshuli, Fazlollah Zareie; Meshkani, Fereshteh

    2012-09-15

    Highlights: ► MgAl{sub 2}O{sub 4} showed a high surface area and nanocrystalline structure. ► Addition of polymeric surfactant affected the structural properties of MgAl{sub 2}O{sub 4}. ► MgAl{sub 2}O{sub 4} prepared with surfactant showed a hollow cylindrical shape. -- Abstract: A surfactant assisted co-precipitation method was employed for the low temperature synthesis of magnesium aluminate spinel with nanocrystalline size and high specific surface area. Pluronic P123 triblock copolymer and ammonia solution were used as surfactant and precipitation agent, respectively. The prepared samples were characterized by thermal gravimetric and differential thermal gravimetric analyses (TG/DTG), X-ray diffraction (XRD), N{sub 2} adsorption (BET) and transmission electron microscopy (TEM) techniques. The effects of several process parameters such as refluxing temperature, refluxing time, pH, P123 to metals mole ratio (P123/metals) and calcination temperature on the structural properties of the samples were investigated. The obtained results showed that, among the process parameters pH and refluxing temperature have a significant effect on the structural properties of samples. The results revealed that increase in pH from 9.5 to 11 and refluxing temperature from 40 °C to 80 °C increased the specific surface area of prepared samples in the range of 157–188 m{sup 2} g{sup −1} and 162–184 m{sup 2} g{sup −1}, respectively. The XRD analysis showed the single-phase MgAl{sub 2}O{sub 4} was formed at 700 °C.

  17. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  18. The influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate-pMMA composite cement.

    PubMed

    Oh, S H; Choi, S Y; Choi, S H; Lee, Y K; Kim, K N

    2004-01-01

    The objective of this study is to assess the influence of lithium fluoride on in vitro biocompatibility and bioactivity of calcium aluminate (CA)-polymethylmethacrylate (PMMA) composite cement exhibiting quick setting time ( < 15 min), low exothermic temperature (< 47 degrees C), and high compressive strength (> 100 MPa). The biocompatibility was measured by examining cytotoxicity tests such as the agar diffusion test with L929 cell line and the hemolysis test with fresh rabbit blood. To estimate the bioactivity of CA-PMMA composite cement, we determined hydroxyapatite (HAp) formation on the surface of composite cement in the simulated body (SBF) solution by using thin-film XRD, XPS, SEM, EPMA and ICP-AES. The results of biocompatibility tests indicated that all experimental compositions of this study had no cytotoxicity and no hemolysis so that there was no cytotoxicity with regard to non-reacted monomers (MMA and TEGDMA) and lithium fluoride. The results of bioactivity tests revealed that CA-PMMA composite cement without lithium fluoride did not form HAp on its surface after 60 days of soaking in the SBF. On the other hand, LiAl2(OH)7 . 2H2O and HAp were formed on the surface of CA-PMMA composite cement including 1.0% by weight of lithium fluoride after 7 and 15 days of soaking in the SBF, respectively. The 5 microm of LiAl2(OH)7 . 2H2O and HAp mixed layers were formed on the surface of specimen after 60 days of soaking in the SBF.

  19. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  20. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.

    PubMed

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-25

    Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application.

  1. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  2. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  3. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  4. Mid-mantle anisotropy: Elasticity of aluminous phases in subducted MORB

    NASA Astrophysics Data System (ADS)

    Mookherjee, Mainak

    2011-07-01

    Aluminous phase with the calcium ferrite and calcium titanate structure constitutes around 20% by volume of the subducted mid ocean ridge basalt (MORB) at lower mantle depths. Using first principle simulations, we calculate the equation of state and elasticity of NaAlSiO4 (NaCF) and MgAl2O4 (MgCF and MgCT) up to >150 GPa, encompassing the full range over which NaCF, MgCF and MgCT has been observed experimentally. We calculate the isotropically averaged elastic wave velocities and the anisotropy from our single crystal elastic constants. The elasticity of these phases is sensitive to the chemistry. The bulk modulus decreases with MgAlNa-1Si-1 substitution with a ∂K0/∂x ˜ -15 GPa, whereas the shear modulus stiffens with a ∂G0/∂x ˜ 10 GPa. At lower mantle conditions, the temperature derivative of bulk, ∂K/∂T and shear ∂G/∂T modulus are -0.006 and -0.013 GPa K-1, respectively. The chemistry is likely to have significant influence on the elasticity of these phases. Slab penetrating the lower mantle often develops significant anisotropy. The full elastic constant tensor of these aluminous phases reveal significant anisotropy and are likely candidates to account for the large delay times observed in the Tonga-Kermadec subduction zones.

  5. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation. Revised

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.; Hall, Rachelle L.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FEP. Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  6. Ground Laboratory Soft X-Ray Durability Evaluation of Aluminized Teflon FEP Thermal Control Insulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Stueber, Thomas J.; Sechkar, Edward A.

    1998-01-01

    Metallized Teflon fluorinated ethylene propylene (FEP) thermal control insulation is mechanically degraded if exposed to a sufficient fluence of soft x-ray radiation. Soft x-ray photons (4-8 A in wavelength or 1.55 - 3.2 keV) emitted during solar flares have been proposed as a cause of mechanical properties degradation of aluminized Teflon FEP thermal control insulation on the Hubble Space Telescope (HST). Such degradation can be characterized by a reduction in elongation-to-failure of the Teflon FER Ground laboratory soft x-ray exposure tests of aluminized Teflon FEP were conducted to assess the degree of elongation degradation which would occur as a result of exposure to soft x-rays in the range of 3-10 keV. Tests results indicate that soft x-ray exposure in the 3-10 keV range, at mission fluence levels, does not alone cause the observed reduction in elongation of flight retrieved samples. The soft x-ray exposure facility design, mechanical properties degradation results and implications will be presented.

  7. Synchrontron VUV and Soft X-Ray Radiation Effects on Aluminized Teflon FEP

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1998-01-01

    Surfaces of the aluminized Teflon FEP multi-layer thermal insulation on the Hubble Space Telescope (HST) were found to be cracked and curled in some areas at the time of the second servicing, mission in February 1997, 6.8 years after HST was deployed in low Earth orbit (LEO). As part of a test program to assess environmental conditions which would produce embrittlement sufficient to cause cracking of Teflon on HST, samples of Teflon FEP with a backside layer of vapor deposited aluminum were exposed to vacuum ultraviolet (VUV) and soft x-ray radiation of various energies using facilities at the National Synchrotron Light Source. Brookhaven National Laboratory. Samples were exposed to synchrotron radiation of narrow energy bands centered on energies between 69 eV and 1900 eV. Samples were analyzed for ultimate tensile strength and elongation. Results will be compared to those of aluminized Teflon FEP retrieved from HST after 3.6 years and 6.8 years on orbit and will he referenced to estimated HST mission doses of VUV and soft x-ray radiation.

  8. Pure and Sr(II)-added copper aluminate nanocomposites: structural, electrical and alcohol sensing studies.

    PubMed

    Kumar, R Thinesh; Vijaya, J Judith; Kennedy, L John

    2013-08-01

    The effect of ethylenediamine addition in the sol-gel method for the preparation of pure and Sr(II)-added nano copper aluminate (CuAl2O4) composites for the enhancement in their structural, electrical, and alcohol sensing properties were investigated. The effect of addition of Sr(II) to pure CuAl2O4 in both the methods were also discussed. X-ray diffraction, scanning electron microscopy, nitrogen adsorption/desorption isotherms, temperature dependant conductance measurements and thermoelectric power measurements were used to characterize the composites prepared. Among the composites, 0.8 molar ratio strontium added copper aluminate composite prepared by modified sol-gel method showed the highest sensitivity towards alcohols. The stability, response and recovery of MS-CuSA5 were also discussed. The response and recovery characteristics showed that the order of sensing alcohols by the composites was butanol > isopropanol > ethanol > methanol, which could be explained on the basis of oxidation of alcohols.

  9. Equation of State of Aluminous H-bearing Stishovite to 60 GPa

    NASA Astrophysics Data System (ADS)

    Lakshtanov, D. L.; Vanpeteghem, C. B.; Jackson, J. M.; Prakapenka, V. B.; Shen, G.; Litasov, K. D.; Ohtani, E.; Sinogeikin, S. V.; Bass, J. D.

    2004-12-01

    The equation of state of water-bearing aluminous stishovite has become an important issue in relation to the both the properties of subducting slabs and also the transport and retention of water in the deep mantle. There were numerous studies on elasticity of stishovite, however most of them were performed on pure SiO2 compositions, which is not representative of natural stishovites formed in MORB layer of subducting slabs. We performed elasticity measurements of SiO2 stishovites with various Al3+ and H+ contents with Brillouin scattering and x-ray diffraction techniques at ambient and high pressures. We have determined the P-V equation of state of Al-rich H-bearing SiO2 stishovite by x-ray powder diffraction at pressures up to 60 GPa using synchrotron radiation. The sample contained 1.8 %wt Al2O3 and about 450 ppm or more of H+. This composition corresponds to stishovite that would coexist with aluminous iron-bearing Mg-silicate perovskite in a subducted slab. Our results indicate that Al3+ and H+ have a less pronounced effect on the elastic properties of stishovite than it was reported earlier. Our results suggest that Al and H are retained in stishovite under extreme P-T conditions and that stishovite is an agent for transporting water to the deepest lower mantle. Brillouin scattering measurements of acoustic velocities on stishovites with various chemical compositions will also be discussed.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  11. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  12. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. PMID:25780993

  13. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  14. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  15. Recovery of iron and calcium aluminate slag from high-ferrous bauxite by high-temperature reduction and smelting process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-yi; Lü, Wei; Qi, Yuan-hong; Zou, Zong-shu

    2016-08-01

    A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/ w(SiO2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al2O3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca2SiO4 and Ca12Al14O33, with small amounts of FeAl2O4, CaAl2O4, and Ca2Al2SiO7.

  16. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  17. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  18. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  19. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  20. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  1. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J. R.

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  2. Studies on the best alkaline electrolyte for aluminium/air batteries

    NASA Astrophysics Data System (ADS)

    Kapali, V.; Venkatakrishna Iyer, S.; Balaramachandran, V.; Sarangapani, K. B.; Ganesan, M.; Anbu Kulandainathan, M.; Sheik Mideen, A.

    Two types of alkaline electrolyte, based on 4 M NaOH have been developed for use in aluminium/air cells or batteries. They contain either alkaline citrate or alkaline citrate cum stannate as an additive to suppress the self-corrosion of aluminium without any deleterious effects on the efficient functioning of aluminium anode at a high negative potential. The alkaline citrate cum stannate solution has been adjudged the best electrolyte in terms of electrochemical characteristics and electrolyte management. Hence, results pertaining to the use of alkaline citrate cum stannate are presented in this paper. An aluminium/air battery with this electrolyte can be used safely and effectively at ambient temperature. An added advantage is the employment of 99.8% pure aluminium for the preparation of alloy anodes. This is expected to reduce the cost of aluminium/air batteries. The best anode based on 99.8% pure aluminium is a quaternary alloy containing lead, gallium and indium.

  3. Radiolysis of actinides and technetium in alkaline media

    SciTech Connect

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  4. Rétention de sels simples par une membrane chargée d'ultrafiltration à base d'alumine gamma

    NASA Astrophysics Data System (ADS)

    Benalla, R.; Persin, M.; Toreis, N.; Sarrazin, J.; Larbot, A.; Bouhaouss, A.

    1999-09-01

    Filtration of different electrolytes solutions was performed by means of a γ alumina ultrafiltration membrane. The experimental determination of the rejection rate for the salts leads to their phenomenologic parameters σ and P. The observed rejection are in agreement with a Donnan mechanism of exclusion of the coion outside of the membrane pore. Une membrane d'ultrafiltration en alumine γ a été utilisée pour la filtration de différentes solutions salines. Les rétentions des différents sels ont été d'abord mesurées à l'aide de cette membrane puis les coefficients de réflexion σ et les perméabilités P pour chaque sel ont été déterminées. La rétention des sels peut être expliquée par un mécanisme d'exclusion de type Donnan.

  5. Water solubility in aluminous orthopyroxene and the origin of Earth's asthenosphere.

    PubMed

    Mierdel, Katrin; Keppler, Hans; Smyth, Joseph R; Langenhorst, Falko

    2007-01-19

    Plate tectonics is based on the concept of rigid lithosphere plates sliding on a mechanically weak asthenosphere. Many models assume that the weakness of the asthenosphere is related to the presence of small amounts of hydrous melts. However, the mechanism that may cause melting in the asthenosphere is not well understood. We show that the asthenosphere coincides with a zone where the water solubility in mantle minerals has a pronounced minimum. The minimum is due to a sharp decrease of water solubility in aluminous orthopyroxene with depth, whereas the water solubility in olivine continuously increases with pressure. Melting in the asthenosphere may therefore be related not to volatile enrichment but to a minimum in water solubility, which causes excess water to form a hydrous silicate melt. PMID:17234945

  6. Formation of Apollo 14 aluminous mare basalts by replenishment fractional crystallization and assimilation of precursor crust

    NASA Technical Reports Server (NTRS)

    Dickinson, Tammy L.; Nelson, Dennis O.

    1991-01-01

    Apollo 14 aluminous mare basalts (AMB) have been the subject of considerable controversy. These basalts were divided into 5 distinct groups on the basis of RE and HFS element abundances. The groups are similar in major element compositions but display an 8 fold variation in REE abundances. Open-system processes were explored which are common on Earth: combined replenishment fractional crystallization (RFC); and assimilation fractional crystallization (AFC), where the assimilant is a partial melt of precursor crust. RFC often produces decoupled major and trace element variations, while AFC can produce significant variation in incompatible trace element ratios. A model was envisioned by which magmas of Group 5 composition were emplaced in shallow chambers. The Apollo 14 AMB was modeled by RFC using a parental magma of Group 5 composition with the fractionating assemblage consisting of 60 pct. Px, 30 pct. Plag, and 3 pct. Il.

  7. Optical properties of rare earth doped strontium aluminate (SAO) phosphors: A review

    NASA Astrophysics Data System (ADS)

    Kshatri, D. S.; Khare, A.

    2014-11-01

    After the first news on rare earth (RE) doped strontium aluminate (SAO) phosphors in late 1990s, researchers all over the world geared up to develop stable and efficient persistent phosphors. Scientists studied various features of long lasting phosphors (LLP) and tried to earmark appropriate mechanism. However, about two decades after the discovery of SrAl2O4: Eu2+, Dy3+, the number of persistent luminescent materials is not significant. In this review, we present an overview of the optical characteristics of RE doped SAO phosphors in terms of photoluminescence (PL), thermoluminescence (TL) and afterglow spectra. Also, we refresh the work undertaken to study diverse factors like dopant concentration, temperature, surface energy, role of activator, etc. Simultaneously, some of our important findings on SAO are reported and discussed in the end.

  8. Improved performance of strontium aluminate luminous coating on the ceramic surface

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Xiong, Zhaoxian; Xue, Hao; Liu, Yongxi

    2009-03-01

    Phosphor of strontium aluminate co-actived by Eu2+ and Dy3+ is one kind of important afterglow luminescent materials. In this paper, the phosphors were used with transparent glaze for an inorganic luminous coating on the ceramic surface, which was stable even at high temperature. The chemical structure and microstructure of the luminous coating were identified with X-ray diffraction (XRD) and observed with scanning electron microscopy (SEM), respectively. The photoluminescence of the coating was measured by a HITACHI F-4500 fluorescence spectrophotometer. The afterglow property was recorded by a ST-86LA-3 brightness meter. The samples behaved good performances such as high lighting brightness and long after-glowing time.

  9. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  10. Solidification/stabilization of toxic metals in calcium aluminate cement matrices.

    PubMed

    Navarro-Blasco, I; Duran, A; Sirera, R; Fernández, J M; Alvarez, J I

    2013-09-15

    The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests.

  11. Development of MnCoO Coating with New Aluminizing Process for Planar SOFC Stacks

    SciTech Connect

    Choi, Jung-Pyung; Weil, K. Scott; Chou, Y. S.; Stevenson, Jeffry W.; Yang, Zhenguo

    2011-03-22

    Low-cost, chromia-forming steels find widespread use in SOFCs at operating temperatures below 800°C, because of their low thermal expansion mismatch and low cost. However, volatile Cr-containing species originating from this scale poison the cathode material in the cells and subsequently cause power degradation in the devices. To prevent this, a conductive manganese cobaltite coating has been developed. However, this coating is not compatible with forming hermetic seals between the interconnect or window frame component and ceramic cell. This coating reacts with sealing materials. Thus, a new aluminizing process has been developed for the sealing regions in these parts, as well as for other metallic stack and balance-of-plant components. From this development, the sealing performance and SOFC stack performance became very stable.

  12. Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-lin; Yu, Hai-yan; Dong, Kai-wei; Tu, Gan-feng; Bi, Shi-wen

    2012-11-01

    The effect of lime on the pre-desilication and digestion of gibbsitic bauxite in synthetic sodium aluminate liquor at different temperatures was investigated. The bauxite is comprised of gibbsite, aluminogoethite, hematite, kaolin, quartz, and minor boehmite. Lime increases the desilication efficiency of the bauxite during the pre-desilication process by promoting the conversion of sodalite and cancrinite to hydrogarnet. Desilication reactions during the digestion process promoted by lime result in the loss of Al2O3 entering the red mud, but the amount of aluminogoethite-to-hematite conversion promoted by lime leads to the increase of aluminogoethitic Al2O3 entering the digested liquor. The alumina digestion rate at 245°C is higher than that at 145°C due to the more pronounced conversion of aluminogoethite to hematite. The soda consumption during the digestion process decreases due to lime addition, especially at higher temperatures.

  13. Laser-Induced Fluorescence Photogrammetry for Dynamic Characterization of Transparent and Aluminized Membrane Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.; Pappa, Richard S.

    2003-01-01

    Photogrammetry has proven to be a valuable tool for static and dynamic profiling of membrane based inflatable and ultra-lightweight space structures. However, the traditional photogrammetric targeting techniques used for solid structures, such as attached retro-reflective targets and white-light dot projection, have some disadvantages and are not ideally suited for measuring highly transparent or reflective membrane structures. In this paper, we describe a new laser-induced fluorescence based target generation technique that is more suitable for these types of structures. We also present several examples of non-contact non-invasive photogrammetric measurements of laser-dye doped polymers, including the dynamic measurement and modal analysis of a 1m-by-1m aluminized solar sail style membrane.

  14. Isotopic and REE studies of lunar basalt 12038 - Implications for petrogenesis of aluminous mare basalts

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Wooden, J. L.; Shih, C.-Y.; Wiesmann, H.; Bansal, B. M.

    1981-01-01

    Sr, Nd, and Sm isotopic studies of lunar basalt 12038, one of the so-called aluminous mare basalts, are reported. The evolution of the Sr and Nd isotopic compositions and the rare earth element (REE) abundances is successfully modeled within the framework of the model developed by Nyquist et al. (1977, 1979) for Apollo 12 olivine-pigeonite and ilmenite basalts. It is pointed out that the isotopic and trace element features of 12038 can by modeled as produced by partial melting of a cumulate mantle source which crystallized from a lunar magma ocean with a chondrite-normalized REE pattern of constant negative slope. Chondrite-normalized La/Yb is equal to 2.2 for this hypothetical magma ocean pattern.

  15. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.

  16. Exposing elusive cationic magnesium-chloro aggregates in aluminate complexes through donor control.

    PubMed

    Brouillet, Etienne V; Kennedy, Alan R; Koszinowski, Konrad; McLellan, Ross; Mulvey, Robert E; Robertson, Stuart D

    2016-04-01

    The cationic magnesium moiety of magnesium organohaloaluminate complexes, relevant to rechargeable Mg battery electrolytes, typically takes the thermodynamically favourable dinuclear [Mg2Cl3](+) form in the solid-state. We now report that judicious choice of Lewis donor allows the deliberate synthesis and isolation of the hitherto only postulated mononuclear [MgCl](+) and trinuclear [Mg3Cl5](+) modifications, forming a comparable series with a common aluminate anion [(Dipp)(Me3Si)NAlCl3](-). By pre-forming the Al-N bond prior to introduction of the Mg source, a consistently reproducible protocol is reported. Usage of the green solvent 2-methyltetrahydrofuran in place of THF in the context of Mg/Al battery electrolyte type complexes is also promoted. PMID:26916737

  17. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents.

  18. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  19. Constantes de formation des complexes hydroxydés de l'aluminium en solution aqueuse de 20 a 70°C

    NASA Astrophysics Data System (ADS)

    Couturier, Yves; Michard, Gil; Sarazin, Gérard

    1984-04-01

    Stability constants of hydroxocomplexes of Al(III):Al(OH) 2+ and A1(OH) 4- have been measured in the 20-70°C temperature range by reactions involving only dissolved species. The stability constant ∗K 1 of the first complex ion is studied by measuring pH of solutions of aluminium salts at several concentrations. ∗β 4 of aluminate ion is deduced from equilibrium constants of the reaction between the trioxalato aluminium (III) complex ion and Al 3+ in acid medium, and between the same complex ion and A1(OH) 4- in alkaline medium. The K values and the associated ΔH are ∗K 1 = 10 -5.00 and ΔH1 = 11.8 Kcal; ∗β 4 = 10 -22.20 and ΔH4 = 42.45 Kcal. These last results are not in agreement with the values of recent tables for ΔG 0ƒ and ΔH 0ƒ of Al 3+ and Al(OH) 4-. We suggest a consistent set of data for dissolved and solid Al species and for some aluminosilicates.

  20. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  1. Release of alkaline phosphatase from membranes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Low, M G; Finean, J B

    1977-10-01

    Purified phosphatidylinositol-specific phospholipase C from Staphylococcus aureus released a substantial proportion of the total alkaline phosphatase activity from a wide range of tissues from several mammalian species. Co-purification of the phospholipase C and alkaline phosphatase-releasing activities and the inhibition of both these activities by iso-osmotic salt solutions suggested that the releasing effect was unlikely to be due to a contaminant.

  2. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  3. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  4. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  5. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  6. Tested Demonstrations. The Stepwise Reduction of Permanganate in Alkaline Conditions: A Lecture Demonstration.

    ERIC Educational Resources Information Center

    Ruoff, Peter; Riley, Megan

    1987-01-01

    Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)

  7. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  8. COMBUSTION SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE ALKALINE EARTH ALUMINATE Sr4Al14O25:RE(RE = Eu, Dy, Sm)

    NASA Astrophysics Data System (ADS)

    Hedaoo, V. P.; Bhatkar, V. B.; Omanwar, S. K.

    2013-08-01

    Nanoscale phosphors have superior performance characteristics than the bulk phosphors. This paper explains the synthesis and characterization like XRD, FTIR, SEM and photoluminescence properties of nanocrystalline Sr4Al14O25 doped with rare earth elements like europium, dysprosium and samarium by combustion method. XRD showed the nanoscale crystalline nature of as-prepared samples. SEM confirmed size of the particle less than 100 nm. Photoluminescent emission spectra showed strong orange red emission at 593 nm for Sr4Al14O25:Sm3+. The green emission of Eu2+ was observed at around 490 nm for Sr4Al14O25:Eu2+.

  9. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  10. A Numerical Study on Internal-Blast-Field Characteristics and Dynamic Response of Concrete by Aluminized Explosive

    NASA Astrophysics Data System (ADS)

    Song, P.; Xiao, C.; Gu, X. H.

    2011-09-01

    Three energy release models of aluminized explosive with combustion effects were compared and analyzed, including Miller-Extension model, Additional energy model, Ignition and growth model (Lee-Tarver model). The Ignition and growth model is one three-form equation of reaction rate, which can describe unsteady detonation process of non-ideal explosives well. So, in this paper, the energy release model of aluminized explosive based on the Lee-Tarver rate equation was utilized and an internal-blast dynamic model of concrete was established. Moreover, the smoothed particle hydrodynamics (SPH) method was adopted to research blast field and damage effects of concrete, which widens SPH method for study on explosion of non-ideal explosive in a confined medium, and provides an important way to evaluate the damage effect of internal-blast of concrete.

  11. The design of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1990-01-01

    Alkaline fuel cells recently developed have yielded satisfactory operation even in the cases of their use of mobile and matrix-type electrolytes; the advantages of realistic operation have been demonstrated by a major West German manufacturer's 100 kW alkaline fuel cell apparatus, which was operated in the role of an air-independent propulsion system. Development has begun for a spacecraft alkaline fuel cell of the matrix-electrolyte configuration.

  12. Preparation of iron aluminate (FeAl2O4) nanoparticles from FeAl2O4 hollow particles fabricated by using a spray pyrolysis process

    NASA Astrophysics Data System (ADS)

    Yun, Jaecheol; Kim, Yangdo; Park, Dahee; Yun, Jung-Yeul

    2015-05-01

    Iron aluminate (FeAl2O4) hollow particles with a spinel structure were synthesized by using a spray pyrolysis process. FeAl2O4 hollow particles were formed at a reaction temperature of 900 °C at a flow rate of 40 L/min as a result of the rapid solvent evaporation and decomposition gases from the droplets in the spray solution prepared from metal salts and organic reagents. FeAl2O4 hollow particles were fabricated at a reaction temperature of 900 °C with a flow rate of 40 L/min. The FeAl2O4 hollow particles were heat treated for 3 hours at 600 °C in a 5% H2/Ar atmosphere to form the crystal particles. Subsequently, FeAl2O4 nanoparticles were fabricated from the FeAl2O4 hollow particles by using the wet milling process. After milling for 60 minutes, transmission electron microscopy revealed the FeAl2O4 particles to have a mean size of approximately 50 nm. The FeAl2O4 nanoparticles were fabricated successfully by using a two-step process, spray pyrolysis and wet milling.

  13. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  14. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  15. Characterization of mechanical properties of aluminized coatings in advanced gas turbine blades using a small punch method

    SciTech Connect

    Sugita, Y.; Ito, M.; Sakurai, S.; Bloomer, T.E.; Kameda, J. |

    1997-04-01

    Advanced technologies of superalloy casting and coatings enable one to enhance the performance of combined cycle gas turbines for electric power generation by increasing the firing temperature. This paper describes examination of the microstructure/composition and mechanical properties (22--950 C) in aluminized CoCrAlY coatings of advanced gas turbine blades using scanning Auger microprobe and a small punch (SP) testing method. Aluminized coatings consisted of layered structure divided into four regimes: (1) Al enriched and Cr depleted region, (2) Al and Cr graded region, (3) fine grained microstructure with a mixture of Al and Cr enriched phases and (4) Ni/Co interdiffusion zone adjacent to the interface. SP specimens were prepared in order that the specimen surface would be located in the various coating regions. SP tests indicated strong dependence of the fracture properties on the various coatings regimes. Coatings 1 and 2 with very high microhardness showed much easier formation of brittle cracks in a wide temperature range, compared to coatings 3 and 4 although the coating 2 had ductility improvement at 950 C. The coating 3 had lower room temperature ductility than the coating 4. However, the ductility in the coating 3 exceeded that in the region 4 above 730 C due to a precipitous ductility increase. The integrity of aluminized coatings while in-service is discussed in light of the variation of the low cycle fatigue life as well as the ductility in the layered structure.

  16. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    PubMed

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum. PMID:27140093

  17. Approach for determination of detonation performance and aluminum percentage of aluminized-based explosives by laser-induced breakdown spectroscopy.

    PubMed

    Rezaei, Amir Hossein; Keshavarz, Mohammad Hossein; Tehrani, Masoud Kavosh; Reza Darbani, Seyyed Mohammad; Farhadian, Amir Hossein; Mousavi, Seyyed Jabbar; Mousaviazar, Ali

    2016-04-20

    Energetic materials containing aluminum powder are hazardous compounds, which have wide applications as propellants, explosives, and pyrotechnics. This work introduces a new method on the basis of the laser-induced breakdown spectroscopy technique in air and argon atmospheres to investigate determination of aluminum content and detonation performance of 1,3,5-trinitro-1,3,5-triazine (RDX)-based aluminized explosives. Plasma emission of aluminized RDX explosives are recorded where atomic lines of Al, C, H, N, and O, as well as molecular bands of AlO and CN are identified. The formation mechanism of AlO and CN molecular bands is affected by the aluminum percentage and oxygen content present in the composition and plasma. Relative intensity of the Al/O is used to determine detonation velocity and pressure of the RDX/Al samples. The released energy in the laser-induced plasma of aluminized RDX composition is related to the heat of explosion and percentage of aluminum.

  18. Primary radical yields in pulse irradiated alkaline aqueous solution

    NASA Technical Reports Server (NTRS)

    Fielden, E. M.; Hart, E. J.

    1969-01-01

    Primary radical yields of hydrated electrons, H atoms, and OH radicals are determined by measuring hydrated electron formation following a 4 microsecond pulse of X rays. The pH dependence of free radical yields beyond pH 12 is determined by observation of the hydrated electrons.

  19. Simplified seawater alkalinity analysis: Use of linear array spectrometers

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Byrne, Robert H.

    1998-08-01

    Modified spectrophotometric procedures are presented for the determination of seawater total alkalinity using rapid scan linear array spectrometers. Continuous monitoring of solution pH allows titrations to be terminated at relatively high pH, whereby excess acid terms are very small. Excess acid concentrations are quantified using the sulfonephthalein indicators, bromocresol green and bromocresol purple. The outlined spectrophotometric procedures require no thermal equilibration of samples. Using bromocresol green, solution pH T ([H +] T in moles per kg of solution) is given as: pHT=4.2699+0.002578(35- S)+ log((R(25)-0.00131)/(2.3148-0.1299 R(25))) - log(1-0.001005S) and R(25)= R( t){1+0.00909(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t) is the absorbance ratio ( A616/ A444) at temperature t and salinity S. Using bromocresol purple, the solution pH T is given as pH T=5.8182+0.00129(35- S)+log(( R(25)-0.00381)/(2.8729-0.05104 R(25))) and R(25)= R( t){1+0.01869(25- t)}, where 29⩽S⩽37, 13° C⩽t⩽32° C, and R( t)= A589/ A432. Alkalinity measurements using bromocresol purple had a precision on the order of 0.3 μmol kg -1 and were within 0.3-0.9 μmol kg -1 of the alkalinities of certified seawater reference materials.

  20. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability.

    PubMed

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-14

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering. PMID:26805036

  1. Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling

    NASA Astrophysics Data System (ADS)

    McWhinney, Hylton G.; James, William D.; Schweikert, Emile A.; Williams, John R.; Hollenberg, Glen; Welsh, John; Sereatan, Washington

    1993-07-01

    Lithium Ceramics offer tremendous potential as a source for the production of tritium ( 3H) for fusion power reactors. Their successful application will depend to a great extent upon the diffusion properties of the 6Li within the matrix. Consequently knowledge od 6Li concentration gradients in the ceramic matrices is an important requirement in the continued development of the technology. In this investigation, the neutron depth profile (NDP) technique has been applied to the study of concentration profiles of 6Li in lithium aluminate ceramics, doped with 1.8%, 50% and 95% 6Li isotopic concentrations. Specimen for analysis were prepared at Battelle (PNL) as pellet discs. Samples for diffusion studies were arranged as diffusion couples in the following manner: 1.8% 6Li discs/85% 6Li powder. Experiments were performed at the Texas A&M Nuclear Science Center Reactor Building, utilizing 1 MW equivalent thermal neutron fluxes 3 × 10 11n/ m2s. The depth probed by the technique is approximately 15 μ.m. Diffusion coefficients are in the range of 2.1 × 10 -12 to 7.0 × 10 -11m2s-1 for 1.8% 6Li-doped ceramics annealed at 1200 and 1400° C, for 4 to 48-h anneal times.

  2. Combustion synthesis of γ-lithium aluminate by using various fuels

    NASA Astrophysics Data System (ADS)

    Li, Fei; Hu, Keao; Li, Jianlin; Zhang, Dong; Chen, Gang

    2002-01-01

    Combustion synthesis, which is a quick and straightforward preparation process to produce homogeneous, crystalline and unagglomerated multicomponent oxide ceramic powders without the intermediate decomposition and/or calcining steps, was used to prepare γ-lithium aluminate. Lithium nitrate and aluminium nitrate were used as the starting materials and various organic compounds, such as citric acid, urea, carbohydrazide, glycine and alanine, as the fuels. The mixture of nitrate and fuel could be ignited at 450 °C, but only urea and carbohydrazide could be reacted with the mixed nitrates to result in dry, loose and white γ-LiAlO 2 powders. In this study, the effects of fuel type and ratio of fuel to nitrates on the phase formation of γ-LiAlO 2 powder were investigated and also discussed. Additionally, the phase and morphology of the γ-LiAlO 2 powder synthesized by the combustion reaction were compared with that by the conventional solid state reaction.

  3. Effective fingerprint recognition technique using doped yttrium aluminate nano phosphor material.

    PubMed

    Darshan, G P; Premkumar, H B; Nagabhushana, H; Sharma, S C; Prashanth, S C; Prasad, B Daruka

    2016-02-15

    First time the yttrium aluminate nanoparticles are used to improve the fingerprint quality. Eco-friendly green combustion process is used to synthesize YAlO3:Sm(3+) (0.5-11mol%) nanophosphor using green tea leaf extract as non-toxic and eco-friendly fuel. Powder X-ray diffraction study confirms the orthorhombic phase. The average sizes of the crystallites were found to be in the range 20-35nm. The emission peaks centered at 564, 601 and 647nm is attributed to 4f-4f (4)G5/2→(6)HJ=5/2,7/2,9/2 forbidden transitions of Sm(3+) ions. Judd-Ofelt theory is applied to experimental data for providing qualitative support by determining J-O intensity parameters. The Commission International De I-Eclairage chromaticity co-ordinates are very close to National Television System Committee standard value of white emission (x=0.296, y=0.237). Further, correlated color temperature is found to be ∼11,900K. A simple, fast, highly sensitive and low-cost method for the detection and enhancement of fingermarks in a broad range of surfaces is developed and constitutes an alternative to traditional luminescent powders.

  4. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Carney, Joel R.; Miller, J. Scott; Gump, Jared C.; Pangilinan, G. I.

    2006-06-01

    The dynamic observation and characterization of light emission following the detonation and subsequent combustion of an aluminized explosive is described. The temporal, spatial, and spectral specificity of the light emission are achieved using a combination of optical diagnostics. Aluminum and aluminum monoxide emission peaks are monitored as a function of time and space using streak camera based spectroscopy in a number of light collection configurations. Peak areas of selected aluminum containing species are tracked as a function of time to ascertain the relative kinetics (growth and decay of emitting species) during the energetic event. At the chosen streak camera sensitivity, aluminum emission is observed for 10μs following the detonation of a confined 20g charge of PBXN-113, while aluminum monoxide emission persists longer than 20μs. A broadband optical emission gauge, shock velocity gauge, and fast digital framing camera are used as supplemental optical diagnostics. In-line, collimated detection is determined to be the optimum light collection geometry because it is independent of distance between the optics and the explosive charge. The chosen optical configuration also promotes a constant cylindrical collection volume that should facilitate future modeling efforts.

  5. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process

    NASA Astrophysics Data System (ADS)

    Guikai, Zhang; Ju, Li; Chang'an, Chen; Sanping, Dou; Guoping, Ling

    2011-10-01

    Aluminum rich coatings forming Al 2O 3 on surface are widely applied as tritium permeation barrier (TPB) on structural materials in fusion reactor. In this work, we proposed a new three-step method for preparing such aluminum rich coating on HR-2 steel: ambient temperature melts salt electroplating followed by heat treating and artificial oxidation at 700 °C. Al deposition from AlCl 3/EMIC was performed with a deposition rate of 15 μm/h. After heat treated for 2 h, the aluminized coating appeared homogeneous, with thickness of 11-13 μm and free of visible porosity, and exhibited a three-layer structure. After oxidized in 10 -2 Pa O 2 for 80 h, the finally fabricated coating showed a double-layered structure consisting of an outer γ-A1 2O 3 layer with thickness of 0.1 μm and inner (Fe,Cr,Mn,Ni)Al/(Fe,Cr,Mn,Ni) 3Al layer of 32 μm thickness, without any visible defects. The deuterium permeation rate through the coated HR-2 steel was reduced by 2-3 orders of magnitude at 600-727 °C.

  6. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  7. In situ aluminization of the MMT 6.5m primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Kindred, W.; Williams, J. T.

    2006-06-01

    In May, 2000 the MMT Conversion was dedicated. Space limitations on the summit of Mt. Hopkins, AZ and limited financial resources dictated in-situ aluminization of the φ 6.5m primary mirror. Some of the attendant challenges successfully addressed in the course of accomplishing that task are described. For example: a 22 metric ton, φ7m vacuum head had to be lifted 25m before being lowered through the horizon-pointing telescope truss (clearing by 16 mm), then secured to the mirror cell that serves as a vacuum vessel; dirty mirror-support hardware integral to the cell required isolation of the process volume operating at 10 -6mbar; extensive modeling of source geometry was needed to achieve uniformity goals at very short source-substrate distances; and a cost-effective 75kW DC filament voltage source using commercially-available arc welders was developed that allowed simultaneous firing of 200 evaporation sources. Details of design and construction of the evaporation system are given along with techniques and results of the successful coating in November 2001 and September 2005.

  8. Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets.

    PubMed

    Krishnan, Manu; Tiwari, Brijesh; Seema, Saraswathy; Kalra, Namitha; Biswas, Papiya; Rajeswari, Kotikalapudi; Suresh, Madireddy Buchi; Johnson, Roy; Gokhale, Nitin M; Iyer, Satish R; Londhe, Sanjay; Arora, Vimal; Tripathi, Rajendra P

    2014-11-01

    Adult orthodontics is recently gaining popularity due to its importance in esthetics, oral and general health. However, none of the currently available alumina or zirconia based ceramic orthodontic brackets meet the esthetic demands of adult patients. Inherent hexagonal lattice structure and associated birefringence limits the visible light transmission in polycrystalline alumina and make them appear white and non transparent. Hence focus of the present study was to assess the feasibility of using magnesium aluminate (MgAl2O4) spinel; a member of the transparent ceramic family for esthetic orthodontic brackets. Transparent spinel specimens were developed from commercially available white spinel powder through colloidal shaping followed by pressureless sintering and hot isostatic pressing at optimum conditions of temperature and pressure. Samples were characterized for chemical composition, phases, density, hardness, flexural strength, fracture toughness and optical transmission. Biocompatibility was evaluated with in-vitro cell line experiments for cytotoxicity, apoptosis and genotoxicity. Results showed that transparent spinel samples had requisite physico-chemical, mechanical, optical and excellent biocompatibility for fabricating orthodontic brackets. Transparent spinel developed through this method demonstrated its possibility as a prospective biomaterial for developing esthetic orthodontic brackets.

  9. Aluminizing a Ni sheet through severe plastic deformation induced by ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Shchetinin, I. V.; Park, Y. C.

    2015-07-01

    Aluminizing a Ni sheet was performed through severe plastic deformation induced by ball collisions. The Ni sheet was fixed in the center of a mechanically vibrated vial between two connected parts. The balls were loaded into the vial on both sides of the Ni disk. Al disks, which were fixed on the top and the bottom of the vial, served as the sources of Al contamination. During processing, the Ni sheet was subject to intense ball collisions. The Al fragments were transferred and alloyed to the surface of the Ni sheet by these collisions. The combined effects of deformation-induced plastic flow, mechanical intermixing, and grain refinement resulted in the formation of a dense, continuous nanostructured Al layer on the Ni surface on both sides of the sheet. The Al layer consisted of Al grains with an average size of about 40 nm. The Al layer was reinforced with nano-sized Ni flakes that were introduced from the Ni surface during processing. The local amorphization at the Ni/Al interface revealed that the bonding between Ni and Al was formed by mechanical intermixing of atomic layers at the interface. The hardness of the fabricated Al layer was 10 times that of the initial Al plate. The ball collisions destroyed the initial rolling texture of the Ni sheet and induced the formation of the mixed [1 0 0] + [1 1 1] fiber texture. The laminar rolling structure of the Ni was transformed into an ultrafine grain structure.

  10. Persistent Luminescence Strontium Aluminate Nanoparticles as Reporters in Lateral Flow Assays

    PubMed Central

    2015-01-01

    Demand for highly sensitive, robust diagnostics and environmental monitoring methods has led to extensive research in improving reporter technologies. Inorganic phosphorescent materials exhibiting persistent luminescence are commonly found in electroluminescent displays and glowing paints but are not widely used as reporters in diagnostic assays. Persistent luminescence nanoparticles (PLNPs) offer advantages over conventional photoluminescent probes, including the potential for enhanced sensitivity by collecting time-resolved measurements or images with decreased background autofluorescence while eliminating the need for expensive optical hardware, superior resistance to photobleaching, amenability to quantitation, and facile bioconjugation schemes. We isolated rare-earth doped strontium aluminate PLNPs from larger-particle commercial materials by wet milling and differential sedimentation and water-stabilized the particles by silica encapsulation using a modified Stöber process. Surface treatment with aldehyde silane followed by reductive amination with heterobifunctional amine-poly(ethylene glycol)-carboxyl allowed covalent attachment of proteins to the particles using standard carbodiimide chemistry. NeutrAvidin PLNPs were used in lateral flow assays (LFAs) with biotinylated lysozyme as a model analyte in buffer and monoclonal anti-lysozyme HyHEL-5 antibodies at the test line. Preliminary experiments revealed a limit of detection below 100 pg/mL using the NeutrAvidin PLNPs, which was approximately an order of magnitude more sensitive than colloidal gold. PMID:25247754

  11. Defect sites in highly siliceous HZSM-5 zeolites: A study performed by alumination and IR spectroscopy

    SciTech Connect

    Yamagishi, Kouji; Namba, Seitaro; Yashima, Tatsuaki )

    1991-01-24

    The concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 type zeolite was estimated by the {sup 18}O-exchange reaction between C{sup 18}O{sub 2} and the zeolite. The concentration of oxygen atoms on defect sites could be controlled by means of changes of the gel composition and of the use of various silica sources in the hydrothermal synthesis. The relationship between the concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 and the concentration of aluminum introduced into the framework of the HZSM-5 by an alumination was examined. The concentration of the framework aluminum was the same as one-fourth that of the oxygen atoms on defect sites. These results suggest that the defect sites into which aluminum atoms are introduced tetrahedrally can be identified with hydroxyl nests that consist of four silanol groups. The existence of hydroxyl nests could be confirmed by IR spectroscopy. From the {sup 18}O-exchange reaction and IR measurements, the authors conclude that the sharp band at 3,740 cm{sup {minus}1} can be attributed to both isolated SiOH groups on the external surface and intracrystalline isolated SiOH groups and that the broad band at 3,505 cm{sup {minus}1} can be attributed to the SiOH groups in hydroxyl nests.

  12. Crystal structures and optical properties of new quaternary strontium europium aluminate luminescent nanoribbons

    SciTech Connect

    Li, Xufan; Budai, John D.; Liu, Feng; Chen, Yu-Sheng; Howe, Jane Y.; Sun, Chengjun; Tischler, Jonathan Zachary; Meltzer, Richard; Pan, Zhengwei

    2014-11-12

    We report the synthesis and characterizations of three series of quaternary strontium europium aluminate (Sr-Eu-Al-O; SEAO) luminescent nanoribbons that show blue, green, and yellow luminescence from localized Eu2+ luminescent centers. These three series of SEAO nanoribbons are: blue luminescent, tetragonal Sr1-xEuxAl6O10 (01-xEuxAl2O4 (01-xEuxAl2O4 (0

  13. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Astrophysics Data System (ADS)

    de Groh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket's aluminized-Teflon® fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  14. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability

    NASA Astrophysics Data System (ADS)

    Yang, Jingzhou; Hu, Xiaozhi; Huang, Juntong; Chen, Kai; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Sun, Xudong

    2016-02-01

    Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.

  15. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  16. A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse.

    PubMed

    Kallioinen, Anne; Hakola, Maija; Riekkola, Tiina; Repo, Timo; Leskelä, Markku; von Weymarn, Niklas; Siika-aho, Matti

    2013-07-01

    Alkaline oxidation pretreatment was developed for spruce, birch and sugar cane bagasse. The reaction was carried out in alkaline water solution under 10 bar oxygen pressure and at mild reaction temperature of 120-140°C. Most of the lignin was solubilised by the alkaline oxidation pretreatment and an easily hydrolysable carbohydrate fraction was obtained. After 72 h hydrolysis with a 10 FPU/g enzyme dosage, glucose yields of 80%, 91%, and 97%, for spruce, birch and bagasse, respectively, were achieved. The enzyme dosage could be decreased to 4 FPU/g without a major effect in terms of the hydrolysis performance. Compared to steam explosion alkaline oxidation was found to be significantly better in the conditions tested, especially for the pretreatment of spruce. In hydrolysis and fermentation at 12% d.m. consistency an ethanol yield of 80% could be obtained with both bagasse and spruce in 1-3 days.

  17. A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse.

    PubMed

    Kallioinen, Anne; Hakola, Maija; Riekkola, Tiina; Repo, Timo; Leskelä, Markku; von Weymarn, Niklas; Siika-aho, Matti

    2013-07-01

    Alkaline oxidation pretreatment was developed for spruce, birch and sugar cane bagasse. The reaction was carried out in alkaline water solution under 10 bar oxygen pressure and at mild reaction temperature of 120-140°C. Most of the lignin was solubilised by the alkaline oxidation pretreatment and an easily hydrolysable carbohydrate fraction was obtained. After 72 h hydrolysis with a 10 FPU/g enzyme dosage, glucose yields of 80%, 91%, and 97%, for spruce, birch and bagasse, respectively, were achieved. The enzyme dosage could be decreased to 4 FPU/g without a major effect in terms of the hydrolysis performance. Compared to steam explosion alkaline oxidation was found to be significantly better in the conditions tested, especially for the pretreatment of spruce. In hydrolysis and fermentation at 12% d.m. consistency an ethanol yield of 80% could be obtained with both bagasse and spruce in 1-3 days. PMID:23711947

  18. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule.

  19. After-effects of lithium-mediated alumination of 3-iodoanisole: isolation of molecular salt elimination and trapped-benzyne products.

    PubMed

    Crosbie, Elaine; Kennedy, Alan R; Mulvey, Robert E; Robertson, Stuart D

    2012-02-14

    Gaining a deeper understanding of the modus operandi of heterometallic lithium aluminate bases towards deprotonative metallation of substituted aromatic substrates, we have studied the reactions and their aftermath between our recently developed bis-amido base '(i)Bu(2)Al(μ-TMP)(2)Li'3 and 3-halogenated anisoles. Ortho-metallation of 3-iodoanisole with 3 results in a delicately poised heterometallic intermediate whose breakdown into homometallic species and benzyne cannot be suppressed, even at low temperature or in a non-polar solvent (hexane). Homometallic components [LiI·TMP(H)](4) (5) and (i)Bu(2)Al(TMP)·THF (6) have been isolated while the reactive benzyne intermediate has been trapped via Diels-Alder cyclization with 1,3-diphenylisobenzofuran yielding 1-methoxy-9-10-diphenyl-9-10-epoxyanthracene (7). In polar THF solution, nucleophilic addition of LiTMP across the benzyne functionality followed by electrophilic quenching with iodine yields the trisubstituted aromatic species 1-(2-iodo-3-methoxyphenyl)-2,2,6,6-tetramethylpiperidide (8). Compounds 5-8 have been characterized by single-crystal X-ray diffraction in the solid state and multinuclear NMR spectroscopy in solution. By considering these collated results, a plausible reaction mechanism has been proposed for the breakdown of the aforementioned intermediate bimetallic framework. Interestingly, the metallation reaction can be controlled by changing to 3-chloroanisole with an excess of base 3, as evidenced by electrophilically trapping the deprotonated aromatic with iodine to give 2-iodo-3-chloroanisole (9).

  20. The Component Slope Linear Model for Calculating Intensive Partial Molar Properties: Application to Waste Glasses and Aluminate Solutions - 13099

    SciTech Connect

    Reynolds, Jacob G.

    2013-07-01

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOHNaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components. (authors)

  1. The component slope linear model for calculating intensive partial molar properties /application to waste glasses and aluminate solutions

    SciTech Connect

    Reynolds, Jacob G.

    2013-01-11

    Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.

  2. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  3. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  4. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  5. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-01

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV–visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3–0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  6. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    PubMed

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections. PMID:27319289

  7. Transition of Blast Furnace Slag from Silicates-Based to Aluminates-Based: Viscosity

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Lv, Xuewei; Liang, Dong; Zhang, Jie; Bai, Chenguang

    2016-05-01

    The effect of Al2O3 and the Al2O3/SiO2(A/S) ratio on the viscosity of the CaO-SiO2-Al2O3-MgO-TiO2 slag system was studied in the present work. At a fixed CaO/SiO2(C/S) ratio of 1.20, 9 mass pct MgO, and 1 mass pct TiO2, the viscosity increases with an increase in Al2O3 content at a range of 16 to 24 mass pct due to the polymerization of the aluminosilicate structures, while it decreases when the Al2O3 is higher than 24 mass pct, which means that Al2O3 acts as a network modifier at higher content. Increasing A/S from 0.47 to 0.92 causes a slight decrease in viscosity of the slags and has an opposite effect when A/S is more than 0.92. The free running temperature increases with the Al2O3 content and appears to show a peak at an A/S ratio of 0.92. The change of the apparent activation energy is in accordance with the change of viscosity. When Al2O3 content is more than 24 mass pct with low SiO2, CaO content ranges from 35 to 45 mass pct, and the slag transform from silicates-based to aluminates-based can still get a good operation region. Four different viscosity models were employed to predict the viscosity and RIBOUD's model was found to be the best in predicting the viscosity by comparing the estimated viscosity with the measured viscosity.

  8. Usefulness of an aluminized polyester film for reducing heat in polyethylene calf hutches

    NASA Astrophysics Data System (ADS)

    Binion, W. R.; Friend, T. H.; Holub, G. A.

    2014-01-01

    This study determined the efficacy of a radiant barrier material used in the construction industry to moderate summer temperatures in polyethylene calf hutches. The cover consisted of a single layer of two-sided reflective aluminized polyester film with a center polyester scrim reinforcement (reflectivity = 95 %). At each of two dairies, six hutches containing a young calf were either uncovered (control) or had reflective covers across the top and sides of the hutch, leaving the front, back, and 1.2 × 1.8-m attached outdoor wire pen exposed. Duplicate loggers mounted 20 cm above the flooring in the center of each hutch recorded interior temperature at 30-min intervals over 22 days during late August to early September. The mean daily interior peak temperatures in each of the hutches over 21 days of observation were significantly less (P < 0.001) in the hutches with reflective covers (37.48 ± 0.14 °C) than in the uncovered hutches (41.65 ± 0.45 °C) and did not differ (P = 0.77) between dairies. The mean daily interior peak temperatures in each of the hutches over the warmest 10 days of observation were significantly less (P < 0.001) in hutches with reflective covers (40.15 °C ± 0.16) than in the uncovered hutches (44.93 ± 0.47 °C). The mean interior ceiling temperatures in each of the hutches over 4 days of observation were significantly lower (P < 0.001) in the hutches with reflective covers (37.82 ± 0.36 °C) than in the uncovered hutches (46.89 ± 0.47 °C). The reflective cover used in this study moderated interior hutch temperatures but showed signs of delamination after 22 days and was relatively expensive, so more suitable material needs to be identified.

  9. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements

    SciTech Connect

    Falzone, Gabriel; Balonis, Magdalena; Sant, Gaurav

    2015-06-15

    Phase conversion phenomena are often observed in calcium aluminate cements (CACs), when the water-rich hydrates (e.g., CAH{sub 10}, C{sub 2}AH{sub 8}) formed at early ages, at temperatures ≤ 30 °C, expel water in time to form more compact, less water-rich structures (C{sub 3}AH{sub 6}). The phase conversions follow a path regulated by the thermodynamic stabilities (solubilities) of phases. Based on this premise, it is proposed that conversion phenomena in CACs can be bypassed by provoking the precipitation of phases more preferred than those typically encountered along the conversion pathway. Therefore, X-AFm formation (where in this case, X = NO{sub 3}{sup −}) triggered by the sequential addition of calcium nitrate (Ca(NO{sub 3}){sub 2} = CN) additives is identified as a new means of bypassing conversion. A multi-method approach comprising X-ray diffraction (XRD), thermal analytics, and evaluations of the compressive strength is applied to correlate phase balances and properties of CAC systems cured at 25 °C and 45 °C. The results highlight the absence of the C{sub 3}AH{sub 6} phase across all systems and the curing conditions considered, with enhanced strengths being noted, when sufficient quantities of CN are added. The experimental outcomes are supported by insights gained from thermodynamic calculations which highlight thermodynamic selectivity as a means of regulating and controlling the evolutions of solid phase balances using inorganic salts in CACs, and more generally in cementing material systems.

  10. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  11. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase.

  12. Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge.

    PubMed

    Tang, Yuanyuan; Shih, Kaimin; Chan, King

    2010-06-01

    This study aims to evaluate the feasibility of stabilizing copper-laden sludge by the application of alumina-based ceramic products. The processing temperature, material leaching behaviour, and the effect of detoxification were investigated in detail. CuO was used to simulate the copper-laden sludge and X-ray Diffraction was performed to monitor the incorporation of copper into the copper aluminate spinel (CuAl(2)O(4)) phase in ceramic products. It was found that the development of CuAl(2)O(4) increased with elevating temperatures up to and including 1000 degrees C in the 3h short-sintering scheme. When the sintering temperature went above 1000 degrees C, the CuAl(2)O(4) phase began to decompose due to the high temperature transformation to CuAlO(2). The leachability and leaching behaviour of CuO and CuAl(2)O(4) were compared by usage of a prolonged leaching test modified from US EPA's toxicity characteristic leaching procedure. The leaching results show that CuAl(2)O(4) is superior to CuO for the purpose of copper immobilization over longer leaching periods. Furthermore, the detoxification effect of CuAl(2)O(4) was tested through bacterial adhesion with Escherichia coli K12, and the comparison of bacterial adhesion on CuO and CuAl(2)O(4) surfaces shows the beneficial detoxification effect in connection with the formation of the CuAl(2)O(4) spinel. This study demonstrates the feasibility of transforming copper-laden sludge into the spinel phase by using readily available and inexpensive ceramic materials, and achieving a successful reduction of metal mobility and toxicity. PMID:20478609

  13. Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge.

    PubMed

    Tang, Yuanyuan; Shih, Kaimin; Chan, King

    2010-06-01

    This study aims to evaluate the feasibility of stabilizing copper-laden sludge by the application of alumina-based ceramic products. The processing temperature, material leaching behaviour, and the effect of detoxification were investigated in detail. CuO was used to simulate the copper-laden sludge and X-ray Diffraction was performed to monitor the incorporation of copper into the copper aluminate spinel (CuAl(2)O(4)) phase in ceramic products. It was found that the development of CuAl(2)O(4) increased with elevating temperatures up to and including 1000 degrees C in the 3h short-sintering scheme. When the sintering temperature went above 1000 degrees C, the CuAl(2)O(4) phase began to decompose due to the high temperature transformation to CuAlO(2). The leachability and leaching behaviour of CuO and CuAl(2)O(4) were compared by usage of a prolonged leaching test modified from US EPA's toxicity characteristic leaching procedure. The leaching results show that CuAl(2)O(4) is superior to CuO for the purpose of copper immobilization over longer leaching periods. Furthermore, the detoxification effect of CuAl(2)O(4) was tested through bacterial adhesion with Escherichia coli K12, and the comparison of bacterial adhesion on CuO and CuAl(2)O(4) surfaces shows the beneficial detoxification effect in connection with the formation of the CuAl(2)O(4) spinel. This study demonstrates the feasibility of transforming copper-laden sludge into the spinel phase by using readily available and inexpensive ceramic materials, and achieving a successful reduction of metal mobility and toxicity.

  14. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria.

    PubMed

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-17

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F(+) centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  15. Formation of lead-aluminate ceramics: Reaction mechanisms in immobilizing the simulated lead sludge.

    PubMed

    Lu, Xingwen; Shih, Kaimin

    2015-11-01

    We investigated a strategy of blending lead-laden sludge and an aluminum-rich precursor to reduce the release of hazardous lead from the stabilized end products. To quantify lead transformation and determine its incorporation behavior, PbO was used to simulate the lead-laden sludge fired with γ-Al2O3 by Pb/Al molar ratios of 1/2 and 1/12 at 600-1000 °C for 0.25-10 h. The sintered products were identified and quantified using Rietveld refinement analysis of X-ray diffraction data from the products generated under different conditions. The results indicated that the different crystallochemical incorporations of hazardous lead occurred through the formation of PbAl2O4 and PbAl12O19 in systems with Pb/Al ratios of 1/2 and 1/12, respectively. PbAl2O4 was observed as the only product phase at temperature of 950 °C for 3h heating in Pb/Al of 1/2 system. For Pb/Al of 1/12 system, significant growth of the PbAl12O19 phase clearly occurred at 1000 °C for 3 h sintering. Different product microstructures were found in the sintered products between the systems with the Pb/Al ratios 1/2 and 1/12. The leaching performances of the PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases were compared using a constant pH 4.9 leaching test over 92 h. The leachability data indicated that the incorporation of lead into PbAl12O19 crystal is a preferred stabilization mechanism in aluminate-ceramics.

  16. Color-center production and recovery in electron-irradiated magnesium aluminate spinel and ceria

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Lelong, Gérald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-08-01

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (1 0 0) or (1 1 0) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0 MeV and 2.5 MeV electrons in a high-fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in color-center formation were observed for the two crystal orientations. Using calculations from displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at room temperature. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200 °C with almost full bleaching at 600 °C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub-band-gap absorption feature, which peaked at ~3.1 eV, was recorded for 2.5 MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.

  17. Color-Center Production and Formation in Electron-Irradiated Magnesium Aluminate Spinel and Ceria

    DOE PAGES

    Costantini, Jean-Marc; Lelong, Gerald; Guillaumet, Maxime; Weber, William J.; Takaki, Seiya; Yasuda, Kazuhiro

    2016-06-20

    Single crystals of magnesium aluminate spinel (MgAl2O4) with (100) or (110) orientations and cerium dioxide or ceria (CeO2) were irradiated by 1.0-MeV and 2.5-MeV electrons in a high fluence range. Point-defect production was studied by off-line UV-visible optical spectroscopy after irradiation. For spinel, regardless of both crystal orientation and electron energy, two characteristic broad bands centered at photon energies of 5.4 eV and 4.9 eV were assigned to F and F+ centers (neutral and singly-ionized oxygen vacancies), respectively, on the basis of available literature data. No clear differences in colour-centre formation were observed for the two crystal orientations. Using calculationsmore » of displacement cross sections by elastic collisions, these results are consistent with a very large threshold displacement energy (200 eV) for oxygen atoms at RT. A third very broad band centered at 3.7 eV might be attributed either to an oxygen hole center (V-type center) or an F2 dimer center (oxygen di-vacancy). The onset of recovery of these color centers took place at 200°C with almost full bleaching at 600°C. Activation energies (~0.3-0.4 eV) for defect recovery were deduced from the isochronal annealing data by using a first-order kinetics analysis. For ceria, a sub band-gap absorption feature peaked at ~3.1 eV was recorded for 2.5-MeV electron irradiation only. Assuming a ballistic process, we suggest that the latter defect might result from cerium atom displacement on the basis of computed cross sections.« less

  18. Hydrogen production from steam reforming of acetic acid over Cu-Zn supported calcium aluminate.

    PubMed

    Mohanty, Pravakar; Patel, Madhumita; Pant, Kamal K

    2012-11-01

    Hydrogen can be produced by catalytic steam reforming (CSR) of biomass-derived oil. Typically bio oil contains 12-14% acetic acid; therefore, this acid was chosen as model compound for reforming of biooil with the help of a Cu-Zn/Ca-Al catalyst for high yield of H(2) with low CH(4) and CO content. Calcium aluminate support was prepared by solid-solid reaction at 1350°C. X-ray diffraction indicates 12CaO·7Al(2)O(3) as major, CaA(l4)O(7) and Ca(5)A(l6)O(14) as minor phases. Cu and Zn were loaded onto the support by wet-impregnation at 10 and 1wt.%, respectively. The catalysts were characterized by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy TEM and the surface area for both support and Cu-Zn were 10.5 and 5.8m(2)/g, respectively. CSR was carried out in a tubular fixed bed reactor (I.D.=19mm) at temperatures between 600 and 800°C with 3-g loadings and (H(2)O/acetic acid) wt. ratio of 9:1. Significantly high (80%) yield of hydrogen was obtained over Cu-Zn/Ca-Al catalyst, as incorporation of Zn enhanced the H(2) yield by reducing deactivation of the catalyst. The coke formation on the support (Ca-12/Al-7) surface was negligible due to the presence of excess oxygen in the 12CaO·7Al(2)O(3) phase. PMID:22944490

  19. Experimental studies on the toxicity of lithographic developer solution.

    PubMed

    Saito, T; Takeichi, S

    1995-01-01

    The purpose of this study was to determine whether the toxicity of a lithographic developer solution which contains hydroquinone is caused by hydroquinone or the alkaline lithographic developer solution. Male Wistar rats were divided into seven groups. In four groups, rats were dosed orally with 3% hydroquinone or 3% hydroquinone in 3% lithographic developer solution. Hydroquinone levels were measured after one and 24 hours. In two groups, rats were dosed orally with 6% hydroquinone or 6% hydroquinone in lithographic developer solution. In the seventh group, rats received the alkaline solution only. Hydroquinone measurement was made using gas chromatography-mass spectrometry. Hydroquinone was rapidly absorbed from the gastrointestinal tract and subsequently distributed throughout the body. Nearly all hydroquinone was excreted in the urine as either a glucuronide or a sulfate (78-82%) within 24 hours. All rats administered 6% hydroquinone in non-alkaline vehicle died, but the mortality rate of rats administered 6% hydroquinone in lithographic developer solution was 60%. Tissue hydroquinone was lower at one hour and 24 hours after administration in lithographic developer solution than in equal dose of hydroquinone in non-alkaline vehicle suggesting decreased absorption in an alkaline pH. Hydroquinone was not associated with gross pathologic changes of the intestine but all animals treated with lithographic developer solution or alkaline solution had congestion, hemorrhagic petechiae and purple-brown discoloration throughout the small intestine. The combination of alkaline/formaldehyde diluent with hydroquinone may delay hydroquinone absorption but increase the risk of intestinal necrosis.

  20. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  1. Ratiometric electrochemical detection of alkaline phosphatase.

    PubMed

    Goggins, Sean; Naz, Christophe; Marsh, Barrie J; Frost, Christopher G

    2015-01-11

    A novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).

  2. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  3. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  4. Leaching properties of electric arc furnace dust prior/following alkaline extraction.

    PubMed

    Orescanin, Visnja; Mikelić, Luka; Sofilić, Tahir; Rastovcan-Mioc, Alenka; Uzarević, Krunoslav; Medunić, Gordana; Elez, Loris; Lulić, Stipe

    2007-02-15

    This study was carried out to determine the appropriate treatment of electric arc furnace (EAF) dust prior to permanent disposal. The total heavy metal content as well as heavy metal leaching from EAF dust was investigated in five composite samples obtained from three Croatian and Slovenian steelworks. In order to recover zinc and reduce its leaching from the dust, all five samples were submitted to alkaline extraction with 10 M NaOH. Reduction of Cr (VI) to Cr(III) was conducted using FeSO4 x 7H2O solution. The elements Mn, Fe, Cu, Ni, and notably Zn and Pb, exhibited highest mobility during toxicity characteristic leaching procedure (TCLP). Comparing to TCLP extracts of initial EAF dust, zinc was found to be over 15 times lower and lead over 200 times lower in TCLP extracts of EAF dust processed by the alkaline leaching method. Since Cr (VI) exceeded its permissible level in the DIN 38414-S4 extracts of both initial and alkaline digested dust, its reduction to Cr (III) prior to permanent disposal is necessary. The recovery of zinc from EAF dust treated with alkaline agent ranged from 50.3% to 73.2%. According to phase analysis, recovery yield showed dependence on zincite/franklinite ratio. The results of the study indicate that permanent disposal of EAF dust require the following procedure: alkaline digestion (followed by leachate purification and alkaline zinc electrolyses), chromate reduction (if necessary), solidification of leaching residue and its testing using the leaching analyses.

  5. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  6. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  7. Voltammetric studies on the palladium oxides in alkaline media

    SciTech Connect

    Moo Cheol Jeong; In Hyeong Yeo . Dept. of Chemistry); Chong Hong Pyun . Solid State Chemistry Lab.)

    1993-07-01

    The formation and stripping of palladium oxides on a palladium electrode in a 0.1M LiOH solution was studied by cyclic voltammetry. Cyclic polarization methods were used to form palladium oxides on the surface of the palladium electrode. Three different types of palladium oxides were found to be formed in alkaline solutions. A higher oxidation state of palladium oxide (PdO[sub 3]) can be formed (induced) on the surface of the electrode even at low anodic potential limit, 0.6 V (vs. SCE). Strong evidence that PdO[sub 3] can only be formed in a specific potential range is presented. From the voltammograms obtained after a long cyclic polarization time, the peak in the range of [minus]0.47 to [minus]0.60 V could be attributed to the reduction of dehydrated PdO.

  8. Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Gummow, Jonathan D.

    2000-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), a common spacecraft thermal control material, from the exterior layer of the Hubble Space Telescope (HST) has become embrittled and suffers from extensive cracking. Teflon samples retrieved during Hubble servicing missions and from the Long Duration Exposure Facility (LDEF) indicate that there may be continued degradation in tensile properties over time. An investigation has been conducted to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray exposed FEP. Aluminized-FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in air or under vacuum for various time periods. Tensile data indicate that samples stored in air display larger decreases in tensile properties than for samples stored under vacuum. Air-stored samples developed a hazy appearance, which corresponded to a roughening of the aluminized surface. Optical property changes were also characterized. These findings indicate that air exposure plays a role in the degradation of irradiated FEP, therefore proper sample handling and storage is necessary with materials retrieved from space.

  9. Characterization of magnetite in silico-aluminous fly ash by SEM, TEM, XRD, magnetic susceptibility, and Moessbauer spectroscopy

    SciTech Connect

    Gomes, S.; Francois, M.; Abdelmoula, M.; Refait, P.; Pellissier, C.; Evrard, O.

    1999-11-01

    Spinel magnetite contained in a silico-aluminous fly ash (originating from la Maxe's power plant, near Metz in the east of France) issued from bituminous coal combustion has been studied by scanning and transmission electron microscopy linked with energy dispersive spectroscopy. X-ray diffraction, susceptibility measurements, and Moessbauer spectroscopy. The results show that in this magnetite Mg is strongly substituted for Fe and the chemical formula is closer to MgFe{sub 2}O{sub 4} than Fe{sub 3}O{sub 4}. Magnetite also contains Mn, Ca, and Si elements, but at a lower proportion. The results are compatible with the chemical formula Fe{sub 2.08}Mg{sub 0.75}Mn{sub 0.11}Ca{sub 0.04}Si{sub 0.02}O{sub 4} and crystallochemical formula [Fe{sup 2{minus}}{sub 0.92}Ca{sup 2+}{sub 0.06}Si{sup 4+}{sub 0.02}]{sup tetra}[Fe{sup 3+}Fe{sup 2+}{sub 0.16}Mg{sup 2+}{sub 0.73}Mn{sup 2+}{sub 0.11}]{sup octa}O{sub 4}, showing the cation distribution on octahedral and tetrahedral sites of the spinel structure. The reason Mg element is not incorporated in soluble surface salt and in glass composition of the silico-aluminous fly ashes is now understood.

  10. Processing method and process modeling of large aperture transparent magnesium aluminate spinel domes

    NASA Astrophysics Data System (ADS)

    Yu, Jian; McWilliams, Brandon; Kilczewski, Steven; Gilde, Gary; Lidie, Ashley; Sands, James

    2009-05-01

    Polycrystalline spinel serves as an alternative to materials such as sapphire and magnesium fluoride that are currently being used in electromagnetic window applications such as missile domes, where high strength, high hardness and high transmittance in the visible and infrared spectra are required. The cubic crystal lattice of spinel imparts an isotropy to the bulk optical property, which eliminates optical distortion due to birefringence that occurs in sapphire and other non-cubic materials. The current study is to find a reliable manufacturing process to produce large magnesium aluminate spinel domes from powder consolidation efficiently. A binder-less dry ball milling process was used to deflocculate the spinel powder to increase its fluidity in an effort to ease the shape-forming. Dry ball milling time trials were conducted at several intervals to determine the appropriate level of time required to break up both the hard and soft agglomerates associated with the virgin spinel powder. The common problems encountered in dry powder shape-forming are crack growth and delamination of the green body during cold isostatic pressing (CIPing). The cracking and the delamination are due to the buildup of stress gradients on the green body that are created by the frictional force between the powder and the die wall or mold wall. To understand the stresses during the CIPing process, a finite element analysis of stresses on the green body was conducted. The simulation was used to evaluate the effect of die tooling and process characteristics on the development of stress gradients in the green body dome. Additionally, the effect of friction between the die wall and powder was examined by the simulation. It was found that by mitigating the frictional forces, cracking and delamination on the green body could be eliminated. A stepped-pressure CIPing technique was developed to reduce stress gradient build-up during CIPing. Also, oleic acid lubricant was applied to the die wall to

  11. Kinetics of calcium sulfoaluminate formation from tricalcium aluminate, calcium sulfate and calcium oxide

    SciTech Connect

    Li, Xuerun Zhang, Yu; Shen, Xiaodong Wang, Qianqian; Pan, Zhigang

    2014-01-15

    The formation kinetics of tricalcium aluminate (C{sub 3}A) and calcium sulfate yielding calcium sulfoaluminate (C{sub 4}A{sub 3}$) and the decomposition kinetics of calcium sulfoaluminate were investigated by sintering a mixture of synthetic C{sub 3}A and gypsum. The quantitative analysis of the phase composition was performed by X-ray powder diffraction analysis using the Rietveld method. The results showed that the formation reaction 3Ca{sub 3}Al{sub 2}O{sub 6} + CaSO{sub 4} → Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 6CaO was the primary reaction < 1350 °C with and activation energy of 231 ± 42 kJ/mol; while the decomposition reaction 2Ca{sub 4}Al{sub 6}O{sub 12}(SO{sub 4}) + 10CaO → 6Ca{sub 3}Al{sub 2}O{sub 6} + 2SO{sub 2} ↑ + O{sub 2} ↑ primarily occurred beyond 1350 °C with an activation energy of 792 ± 64 kJ/mol. The optimal formation region for C{sub 4}A{sub 3}$ was from 1150 °C to 1350 °C and from 6 h to 1 h, which could provide useful information on the formation of C{sub 4}A{sub 3}$ containing clinkers. The Jander diffusion model was feasible for the formation and decomposition of calcium sulfoaluminate. Ca{sup 2+} and SO{sub 4}{sup 2−} were the diffusive species in both the formation and decomposition reactions. -- Highlights: •Formation and decomposition of calcium sulphoaluminate were studied. •Decomposition of calcium sulphoaluminate combined CaO and yielded C{sub 3}A. •Activation energy for formation was 231 ± 42 kJ/mol. •Activation energy for decomposition was 792 ± 64 kJ/mol. •Both the formation and decomposition were controlled by diffusion.

  12. Cloning and Overexpression of Alkaline Phosphatase PhoK from Sphingomonas sp. Strain BSAR-1 for Bioprecipitation of Uranium from Alkaline Solutions▿

    PubMed Central

    Nilgiriwala, Kayzad S.; Alahari, Anuradha; Rao, Amara Sambasiva; Apte, Shree Kumar

    2008-01-01

    Cells of Sphingomonas sp. strain BSAR-1 constitutively expressed an alkaline phosphatase, which was also secreted in the extracellular medium. A null mutant lacking this alkaline phosphatase activity was isolated by Tn5 random mutagenesis. The corresponding gene, designated phoK, was cloned and overexpressed in Escherichia coli strain BL21(DE3). The resultant E. coli strain EK4 overexpressed cellular activity 55 times higher and secreted extracellular PhoK activity 13 times higher than did BSAR-1. The recombinant strain very rapidly precipitated >90% of input uranium in less than 2 h from alkaline solutions (pH, 9 ± 0.2) containing 0.5 to 5 mM of uranyl carbonate, compared to BSAR-1, which precipitated uranium in >7 h. In both strains BSAR-1 and EK4, precipitated uranium remained cell bound. The EK4 cells exhibited a much higher loading capacity of 3.8 g U/g dry weight in <2 h compared to only 1.5 g U/g dry weight in >7 h in BSAR-1. The data demonstrate the potential utility of genetically engineering PhoK for the bioprecipitation of uranium from alkaline solutions. PMID:18641147

  13. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    PubMed

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  14. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2014-01-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  15. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    PubMed

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  16. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    SciTech Connect

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  17. Photoelastic response of alkaline earth aluminosilicate glasses.

    PubMed

    Smedskjaer, Morten M; Saxton, Scott A; Ellison, Adam J; Mauro, John C

    2012-02-01

    Understanding the structural origins of the photoelastic response in oxide glasses is important for discovering new families of zero-stress optic glasses and for developing a predictive physical model. In this Letter, we have investigated the composition dependence of the stress optic coefficient C of 32 sodium aluminosilicate glasses with different types of alkaline earth oxides (MgO, CaO, SrO, and BaO). We find that most of the composition dependence of the stress optic response can be captured by a linear regression model and that the individual contributions from the alkaline earths to C depend on the alkaline earth-oxygen bond metallicity. High bond metallicity is required to allow bonds to be distorted along both the bonding direction and perpendicular to it. These findings are valuable for understanding the photoelastic response of oxide glasses.

  18. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    PubMed Central

    2013-01-01

    Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor) and alkali loading based on biomass solids (g alkali/g dry biomass) have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass) governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline pretreatment technology

  19. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  20. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  1. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  2. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  3. [Rapid extraction of DNA from Chinese medicinal products by alkaline lysis].

    PubMed

    Zheng, Qi; Jiang, Chao; Huang, Lu-Qi; Zhang, Zhi-Jie; Li, Rao-Rao; Chen, Kang; Yuan, Yuan; Jin, Yan

    2014-10-01

    The study is aimed to explore a rapid method to extract DNA from fried Chinese medicinal products. The alkaline lysis buffer was made of sodium hydroxide, 1% PVP and 1% TritonX-100 and Tris-HCl solution was neutralized, through heat cracking and neutralization two step to extract DNA from processed and prepared products of traditional Chinese medicine. Then universal primes were used to amplify PCR products for fired Chinese medicinal materials. The results indicated the optimized alkaline lysis method for extracting DNA is quick and easy. Extracting of the different processed Sophora japonica of DNA concentration was (420.61 ± 123.91) g x L(-1). Using 5% Chelex-100 resin purification can improve the DNA concentration. Our results showed that the optimized alkaline lysis method is suitable for Chinese medicinal materials for quickly DNA extraction. PMID:25612420

  4. Effect of Air and Vacuum Storage on the Degradation of X-Ray-Exposed Aluminized-Teflon Investigated

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Gummow, Jonathan D.

    2001-01-01

    Metalized Teflon FEP (fluorinated ethylene propylene, DuPont), a common thermal control material, has been found to degrade in the low-Earth-orbit space environment. The aluminized-FEP (Al-FEP) exterior layer on the Hubble Space Telescope has become extremely embrittled, with extensive cracking occurring on all sides of the telescope. This embrittlement has been primarily attributed to radiation exposure (x-rays from solar flares, electron/proton radiation, and possibly near-ultraviolet radiation) combined with thermal cycling. Limited samples of FEP tested after long-term exposure to low Earth orbit on the Hubble Space Telescope and on the Long Duration Exposure Facility indicated that there might be continued degradation in tensile properties over time. An investigation was conducted at the NASA Glenn Research Center to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray-exposed FEP. Aluminized-FEP (5-mil-thick) tensile samples were x-ray exposed with 15.3-kV copper xrays for 2 hr, reducing the percent elongation to failure by approximately 50 percent in comparison to that for pristine Al-FEP. X-ray-exposed samples were stored in air or under vacuum for various time periods to see the effect of storage on tensile properties. Tensile results indicated that samples stored in air had larger decreases in tensile properties than samples stored under vacuum had, as seen in the graph. Samples stored under vacuum (for up to 400 hr) showed no further decrease in tensile properties over time, whereas samples stored in air (for up to 900 hr) appeared to show decreases in tensile properties over time. X-ray-exposed samples stored in air developed a hazy appearance in the exposed area, as seen in the photographs. When the source of the haziness was evaluated using scanning electron microscopy and atomic force microscopy, it was found to reside at the Al/FEP interface as witnessed by an increased surface roughness of the aluminized side of the

  5. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    SciTech Connect

    Nash, Kenneth L.

    2008-11-20

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinides under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.

  6. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  7. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes.

    PubMed

    Lin, Hao; Chen, Wei; Ding, Hui

    2013-01-01

    The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH<5) or alkaline (pH>9) solution. Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and 97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment.

  8. AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes

    PubMed Central

    Lin, Hao; Chen, Wei; Ding, Hui

    2013-01-01

    The structure and activity of enzymes are influenced by pH value of their surroundings. Although many enzymes work well in the pH range from 6 to 8, some specific enzymes have good efficiencies only in acidic (pH<5) or alkaline (pH>9) solution. Studies have demonstrated that the activities of enzymes correlate with their primary sequences. It is crucial to judge enzyme adaptation to acidic or alkaline environment from its amino acid sequence in molecular mechanism clarification and the design of high efficient enzymes. In this study, we developed a sequence-based method to discriminate acidic enzymes from alkaline enzymes. The analysis of variance was used to choose the optimized discriminating features derived from g-gap dipeptide compositions. And support vector machine was utilized to establish the prediction model. In the rigorous jackknife cross-validation, the overall accuracy of 96.7% was achieved. The method can correctly predict 96.3% acidic and 97.1% alkaline enzymes. Through the comparison between the proposed method and previous methods, it is demonstrated that the proposed method is more accurate. On the basis of this proposed method, we have built an online web-server called AcalPred which can be freely accessed from the website (http://lin.uestc.edu.cn/server/AcalPred). We believe that the AcalPred will become a powerful tool to study enzyme adaptation to acidic or alkaline environment. PMID:24130738

  9. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  10. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  11. Efficiency of alkaline hydrolysis method in environment protection.

    PubMed

    Kricka, Tajana; Toth, Ivan; Kalambura, Sanja; Jovicić, Nives

    2014-06-01

    Development of new technologies for the efficient use of proteins of animal origin, apart from heat treatment in rendering facilities that was used to date, has become the primary goal of the integral waste management system. The emergence of bovine spongiform encephalopathy in Europe and in the World in the 1990s opened up new questions regarding medical safety and use of meat bone meal in the animal feed, which is produced by processing animal waste. Animal waste is divided into three categories, out of which the first category is high-risk waste. Alkaline hydrolysis is alternative method for management of animal by-products not intended for human diet and imposes itself as one of the solutions for disposal of high-risk proteins. The paper will present the analyses of animal by-products not intended for human diet treated in laboratory reactor for alkaline hydrolysis, as one of the two recognized methods in EU for the disposal of this type of material and use in fertilization. PMID:25144977

  12. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  13. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  14. Alkaline Bohr effect of human hemoglobin Ao.

    PubMed

    Di Cera, E; Doyle, M L; Gill, S J

    1988-04-01

    Differential oxygen binding measurements obtained over the pH range 6.95 to 9.10 at 25 degrees C have allowed a detailed description of the alkaline Bohr effect of human hemoglobin Ao. Phenomenological analysis of the data in terms of the Adair equation shows that: (1) the oxygen binding curves are asymmetrical with the population of the triply oxygenated species being negligible throughout the pH range studied: (2) the shape of the oxygen binding curve is affected by pH, especially at low saturation; and (3) the maximum O2-proton linkage is -0.52 mole of proton per mole of oxygen at pH 7.4. A possible molecular mechanism of the Bohr effect is proposed within the framework of an allosteric model which accounts for the low population of triply oxygenated hemoglobin species. At least three Bohr groups are necessary for a quantitative description of the alkaline Bohr effect. Two of these groups titrate in the range of the His146 beta and Vall alpha residues, which have long been identified as the main alkaline Bohr groups, and altogether contribute 84% of the alkaline Bohr effect at physiological pH. A third ionizable group, linked to oxygenation presumably at the beta chains, is implicated and is titrated in a pH range characteristic of a surface histidyl residue.

  15. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  16. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  17. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management.

  18. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  19. Application of mix-salts composed of lithium borate and lithium aluminate in PEO-based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Tao, Ruoyuan; Fujinami, Tatsuo

    Mix-salts were prepared by mixing lithium borate (salt A or salt B) with lithium aluminate (salt C). Polymer electrolytes were prepared by dissolving lithium salt in PEO. Mix-salt polymer electrolytes exhibited higher ionic conductivities than pure-salt polymer electrolytes. The optimum-mixing ratio was investigated. Conductivity as high as 1 × 10 -4 S cm -1 at 40 °C was obtained for the optimized electrolyte system. A potential window of 4.3 V was determined for the mix-salt electrolyte. Good charge-discharge performance was observed for the mix-salt electrolyte composed cell, LiNi 0.8Co 0.2O 2//salt A(3)/salt C(11.8) 2/1-PEO 22//Li.

  20. Recent Alkaline Lakes: Clues to Understanding the Evolution of Early Planetary Alkaline Oceans and Biogenesis

    NASA Astrophysics Data System (ADS)

    Kempe, S.; Hartmann, J.; Kazmierczak, J.

    2008-09-01

    Abstract New models suggest that terrestrial weathering consumes 0.26GtC/a (72% silicate-, 28% carbonateweathering), equivalent to a loss of one atmospheric C content every 3700a. Rapid weathering leads in volcanic areas to alkaline conditions, illustrated by the crater lake of Niuafo`ou/Tonga and Lake Van/Turkey, the largest soda lake on Earth. Alkaline conditions cause high CaCO3 supersaturation, permineralization of algal mats and growth of stromatolites. Alkaline conditions can nearly depress free [Ca2+] to levels necessary for proteins to function. Therefore early oceans on Earth (and possibly on Mars) should have been alkaline (i.e. "Soda Oceans"). Recent findings of MgSO4 in top soils on Mars may be misleading about the early history of martian oceans.

  1. Physicochemical changes in the hull of corn grains during their alkaline cooking.

    PubMed

    González, Regino; Reguera, Edilso; Mendoza, Leobardo; Figueroa, Juan Manuel; Sánchez-Sinencio, Feliciano

    2004-06-16

    The alkaline cooking of corn in a solution of Ca(OH)2 to produce corn-based foods is oriented to make corn proteins available, to incorporate Ca to the cooked grains, and also to remove the corn hull. This process (nixtamalization) is known in Mexico and Guatemala from prehispanic times; however, the effect of the alkaline cooking on the corn hull remains poorly documented. In this work, the physicochemical changes that take place in the corn hull during its cooking in a saturated solution of Ca(OH)2 were studied using infrared, X-ray diffraction, 13C cross-polarization/magic-angle spinning (CP/MAS) NMR, confocal imaging microscopy, differential scanning calorimetry, and thermogravimetry techniques. The main effect of this treatment on the hull is the removal of hemicelluloses and lignin, increasing the hull permeability and, as a consequence, facilitating the entry of the alkaline solution into the corn kernel. No significant changes were observed in the cellulose fiber network, which remains as native cellulose I, with a crystalline index, according to 13C CP/MAS NMR spectra, of 0.60. The alkaline treatment does not allow the cellulose fibers to swell and their regeneration in the form of cellulose(II). It seems any attempt to make use of the Ca binding capacity of the hull to increase the Ca availability in nixtamalized corn-based foods requires a separated treatment for the hull and kernel. On alkaline cooking, the hull hemicellulose fraction dissolves, losing its ability to bind Ca as a way to incorporate this element into foods elaborated from nixtamalized corn.

  2. Mechanism and models for zinc metal morphology in alkaline media

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.

    1981-01-01

    Based on experimental observations, a mechanism is presented to explain existence of the different morphologies of electrodeposited zinc in alkaline solution. The high current density dendrites appear to be due to more rapid growth on the nonbasal crystallographic planes than on the basal plane. The low current density moss apparently results from dissolution from the nonbasal planes at low cathodic voltages. Electrochemical models were sought which would produce such a phenomenon. The fundamental plating mechanism alone accounts only for different rates on different planes, not for zinc dissolution from a plane in the cathodic region. Fourteen models were explored; two models were in accord with the proposed mechanism. One involves rapid disproportionation of the zinc +1 species on the nonbasal planes. The other involves a redox reaction (corrosion) between the zinc-zincate and hydrogen-water systems.

  3. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  4. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  5. Utilizing ultrafiltration to remove alkaline phosphatase from clinical analyzer water.

    PubMed

    Bôle, Julien; Mabic, Stéphane

    2006-01-01

    Alkaline phosphatase (ALP) conjugated to antibodies is often used in enzyme immunoassays (EIAs). These assays are notably sensitive to experimental conditions. A possible source of interference is bacterial ALP, which is released when bacterial contamination occurs in clinical analyzers. Preliminary experiments led to the selection of a detection kit, ALP source, and specific types of tubes for collecting water samples and performing assays. The release of ALP from various strains of bacteria identified in pure water was demonstrated (10-30 x 10(6) cfu/mL released 6-10 microU/microL). It was shown that ultrafiltration is totally efficient in removing ALP from water, while residual ALP activity (2.21 microU/microL after filtration of an ALP solution of 6.22 microU/microL) was observed after filtration using a 0.22-mum filter.

  6. Mechanism and models for zinc metal morphology in alkaline media

    SciTech Connect

    May, C.E.; Kautz, H.E.

    1981-12-01

    Based on experimental observations, a mechanism is presented to explain existence of the different morphologies of electrodeposited zinc in alkaline solution. The high current density dendrites appear to be due to more rapid growth on the nonbasal crystallographic planes than on the basal plane. The low current density moss apparently results from dissolution from the nonbasal planes at low cathodic voltages. Electrochemical models were sought which would produce such a phenomenon. The fundamental plating mechanism alone accounts only for different rates on different planes, not for zinc dissolution from a plane in the cathodic region. Fourteen models were explored two models were in accord with the proposed mechanism. One involves rapid disproportionation of the zinc +1 species on the nonbasal planes. The other involves a redox reaction (corrosion) between the zinc-zincate and hydrogen-water systems.

  7. Factors affecting alkalinity generation by successive alkalinity-producing systems: regression analysis.

    PubMed

    Jage, C R; Zipper, C E; Noble, R

    2001-01-01

    Use of successive alkalinity-producing systems (SAPS) for treatment of acidic mine drainage (AMD) has grown in recent years. However, inconsistent performance has hampered widespread acceptance of this technology. This research was conducted to determine the influence of system design and influent AMD chemistry on net alkalinity generation by SAPS. Monthly observations were obtained from eight SAPS cells in southern West Virginia and southwestern Virginia. Analysis of these data revealed strong, positive correlations between net alkalinity generation and three variables: the natural log of limestone residence time, influent dissolved Fe concentration, and influent non-Mn acidity. A statistical model was constructed to describe SAPS performance. Subsequent analysis of data obtained from five systems in western Pennsylvania (calibration data set) was used to reevaluate the model form, and the statistical model was adjusted using the combined data sets. Limestone residence time exhibited a strong, positive logarithmic correlation with net alkalinity generation, indicating net alkalinity generation occurs most rapidly within the first few hours of AMD-limestone contact and additional residence time yields diminishing gains in treatment. Influent Fe and non-Mn acidity concentrations both show strong positive linear relationships with net alkalinity generation, reflecting the increased solubility of limestone under acidic conditions. These relationships were present in the original and the calibration data sets, separately, and in the statistical model derived from the combined data set. In the combined data set, these three factors accounted for 68% of the variability in SAPS systems performance. PMID:11401248

  8. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-01

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  9. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  10. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    PubMed

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode. PMID:11080580

  11. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.

    PubMed

    Youcai, Z; Stanforth, R

    2000-12-30

    In this study, a novel and integrated hydrometallurgical process for the production of zinc powder from electric arc furnace (EAF) dust in alkaline medium is reported. The dust is firstly hydrolysed in water, and then fused in caustic soda at 350 degrees C for 1h, followed by leaching in alkaline solution in which both zinc and lead are effectively extracted. Zinc powder is then produced by electrowinning from the leach solution after the lead is selectively removed by precipitation using sodium sulphide as precipitant. The EAF dust tested contained 25% Zn, 1.8% Pb and 33% Fe. It was found that 38% of zinc and 68% of lead could be extracted from the dust when leached directly in caustic soda solution. Leaching of zinc increased to 80% when dust was directly fused with caustic soda followed by alkaline leaching. However, the leaching further increased to 95% when the dust was hydrolysed first with water before fusion. Zinc powder with a purity of 99.95% was then produced by electrowinning from the lead depleted solution. Stainless electrodes were used as both anode and cathode.

  12. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    SciTech Connect

    Ayyagari, M.; Kamtekar, S.; Pande, R.; Marx, K.; Kumar, J.

    1994-12-31

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalyst both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.

  13. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  14. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  15. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  16. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    PubMed Central

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared by the students in the laboratory. The GC and CP were modified with palladium nanoparticles (PdNP) suspensions. The electrodes efficiencies were studied for ethanol oxidation in alkaline solution using cyclic voltammetry techniques. The ethanol oxidation currents obtained were used to determine the current density using the geometric and surface area of each electrode. Finally, students were able to choose the best electrode and relate catalytic activity to surface area for ethanol oxidation in alkaline solution by completing a critical analysis of the cyclic voltammetry results. With this activity, fundamental electrochemical concepts were reinforced. PMID:25691801

  17. Determination of soluble aluminium concentration in alkaline humic water using atomic absorption spectrophotometry.

    PubMed

    Nguyen, K L; Lewis, D M; Jolly, M; Robinson, J

    2004-11-01

    The steps of the standard method to determine soluble aluminium concentration are filtering, followed by acidifying, then analysing with the atomic absorption spectrophotometer (AAS). When applied to alkaline humic water, acidification gives rise to the formation of humic acid as a brown particulate matter. Of the total soluble aluminium in the original water, 49-61% forms complexes with the particulate humic acid upon acidification. Although the AAS is capable of detecting the binding aluminium, the particulate nature of humic acid easily induces inaccurate readings as a result of the non-uniform distribution of the particulate matter. A more precise analysis of soluble aluminium concentration of alkaline humic water is shown to be achievable in basicified solutions instead. Basicified solutions keep humic acid in the soluble form; hence maintain the homogeneity of the sample.

  18. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  19. Ion exchange pretreatment of alkaline radwaste for cesium removal

    SciTech Connect

    Bibler, J.P.

    1994-08-01

    A cation exchange resin has been tested for its ability to remove the Cs ion from simulants of highly alkaline liquid nuclear wastes found at the Savannah River Site, Oak Ridge, and Hanford. The resin is a condensation polymer of the K salt of resorcinol and formaldehyde. It removes milli- and micromolar amounts of Cs{sup +} from solutions that contain as high as 11 molar Na{sup +}. Small column tests indicate that approximately 200 column volumes of SRS simulant and 205 column volumes of OR Tank 25 supernatant simulant can be processed before the resin requires regeneration. For these two wastes, a carousel arrangement of two columns in series and a third in reserve can be used effectively in a process. Hanford 101-AW simulant generates a less sharp breakthrough profile with this resin, though an operation using a maximum of three columns in series with another column off-line for regeneration would be effective if the resin beds are allowed to reach about 90% breakthrough before taking them out of service. Parameters that effect the performance of the resin with a particular feed solution are the concentrations of the two primary ions of interest, Cs{sup +} and Na{sup +}, as well as the concentrations of K{sup +} and OH{sup {minus}}. A further ramification of the hydroxide ion concentration is its role in assisting oxidation of the resin, thereby destroying its usefulness in cesium removal. Although the performance of the resin is unaffected at doses of 1 E+8 rad ionizing radiation, it shows noticeable degradation after storage for 100 hours in alkaline solutions, generating quinone and ketone groups, as determined from C-13 NMR and by an increase in total organic C content of the contacting solution. Gases detected from the radiolysis of the resin/simulant mixture are CO{sub 2} from the resin, N{sub 2}O from nitrate in the simulant, and H{sub 2} possibly from resin and simulant. Oxygen depletion in the mixture results from radiolysis and chemical degradation.

  20. Chromium substitution in mullite type bismuth aluminate: Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0≤x≤2.0

    SciTech Connect

    Debnath, Tapas; Ullah, Ahamed; Rüscher, Claus H.; Hussain, Altaf

    2014-12-15

    Nominal compositions Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi{sub 2}M{sub x}/M′{sub 4−x}O{sub 9} (M/M′=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicating a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi–O related vibration changes from 96 cm{sup −1} to 93 cm{sup −1} with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm{sup −1} as assigned to the characteristic tetrahedral type dimer, Al{sub 2}O{sub 7}, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too. - Graphical abstract: Structural model of Cr doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9}. - Highlights: • Chromium doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with mullite type structure are synthesized. • The samples are characterized by XRD and FTIR techniques. • Cr can replace only certain amount of octahedrally coordinated Al in Bi{sub 2}Al{sub 4}O{sub 9} under present experimental conditions.