Science.gov

Sample records for alkaline anaerobic respiration

  1. Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium

    PubMed Central

    Ye, Qi; Roh, Yul; Carroll, Susan L.; Blair, Benjamin; Zhou, Jizhong; Zhang, Chuanlun L.; Fields, Matthew W.

    2004-01-01

    Iron-reducing enrichments were obtained from leachate ponds at the U.S. Borax Company in Boron, Calif. Based on partial small-subunit (SSU) rRNA gene sequences (approximately 500 nucleotides), six isolates shared 98.9% nucleotide identity. As a representative, the isolate QYMF was selected for further analysis. QYMF could be grown with Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, or Cr(VI) as electron acceptors, and yeast extract and lactate could serve as electron donors. Growth during iron reduction occurred over the pH range of 7.5 to 11.0 (optimum, pH 9.5), a sodium chloride range of 0 to 80 g/liter (optimum, 20 g/liter), and a temperature range of 4 to 45°C (optimum, approximately 35°C), and iron precipitates were formed. QYMF was a strict anaerobe that could be grown in the presence of borax, and the cells were straight rods that produced endospores. Sodium chloride and yeast extract stimulated growth. Phylogenetic analysis of the SSU rRNA gene indicated that the bacterium was a low-G+C gram-positive microorganism and had 96 and 92% nucleotide identity with Alkaliphilus transvaalensis and Alkaliphilus crotonatoxidans, respectively. The major phospholipid fatty acids were 14:1, 16:1ω7c, and 16:0, which were different from those of other alkaliphiles but similar to those of reported iron-reducing bacteria. The results demonstrated that the isolate might represent a novel metal-reducing alkaliphilic species. The name Alkaliphilus metalliredigens sp. nov. is proposed. The isolation and activity of metal-reducing bacteria from borax-contaminated leachate ponds suggest that bioremediation of metal-contaminated alkaline environments may be feasible and have implications for alkaline anaerobic respiration. PMID:15345448

  2. Molecular AND logic gate based on bacterial anaerobic respiration.

    PubMed

    Arugula, Mary Anitha; Shroff, Namita; Katz, Evgeny; He, Zhen

    2012-10-21

    Enzyme coding genes that integrate information for anaerobic respiration in Shewanella oneidensis MR-1 were used as input for constructing an AND logic gate. The absence of one or both genes inhibited electrochemically-controlled anaerobic respiration, while wild type bacteria were capable of accepting electrons from an electrode for DMSO reduction.

  3. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  4. The Energetics of Aerobic versus Anaerobic Respiration.

    ERIC Educational Resources Information Center

    Champion, Timothy D.; Schwenz, Richard W.

    1990-01-01

    Background information, laboratory procedures, and a discussion of the results of an experiment designed to investigate the difference in energy gained from the aerobic and anaerobic oxidation of glucose are presented. Sample experimental and calculated data are included. (CW)

  5. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in

  6. Enumeration of Organohalide Respirers in Municipal Wastewater Anaerobic Digesters

    PubMed Central

    Smith, Bryan JK; Boothe, Melissa A; Fiddler, Brice A; Lozano, Tania M; Rahi, Russel K; Krzmarzick, Mark J

    2015-01-01

    Organohalide contaminants such as triclosan and triclocarban have been well documented in municipal wastewater treatment plants (WWTPs), but the degradation of these contaminants is not well understood. One possible removal mechanism is organohalide respiration by which bacteria reduce the halogenated compound. The purpose of this study was to determine the abundance of organohalide-respiring bacteria in eight WWTP anaerobic digesters. The obligate organohalide respiring Dehalococcoides mccartyi was the most abundant and averaged 3.3 × 107 copies of 16S rRNA genes per gram, while the Dehalobacter was much lower at 2.6 × 104 copies of 16S rRNA genes per gram. The genus Sulfurospirillum spp. was also detected at 1.0 × 107 copies of 16S rRNA genes per gram. No other known or putatively organohalide-respiring strains in the Dehalococcoidaceae family were found to be present nor were the genera Desulfitobacterium or Desulfomonile. PMID:26508873

  7. [Anaerobic humus respiration by Shewanella cinica D14T].

    PubMed

    Xu, Zhi-cheng; Hong, Yi-guo; Luo, Wei; Chen, Xing-juan; Sun, Guo-ping; Xu, Mei-ying; Guo, Jun; Cen, Ying-hua

    2006-12-01

    Experimental results suggested Shewanella cinica D14T is capable of humus respiration utilizing various organic acids and some important environmental pollutants (e.g., toluene. etc) as electron donors and AQS or AQDS as a sole terminal electron acceptor under anaerobic condition. The dissimilatory reduction of 1mmol/L AQDS can couple to the production of enough ATP to support cell growth about 60 generations; The oxidization of electron donors was coupled to the reduction of humus, as reduced humus increased corresponding with increasing of electron donor; The typical inhibitors such as Cu2+ which inhibited Fe-S center, Stigmatellin which was methyl-naphthoquinone model, Dicumarol which inhibited oxidized methyl-naphthoquinone transform to reduced one, Metyrapone which was specific inhibitor for P450 enzyme blocked the humus respiration seriously. These were powerful evidences for humus-respiration by D14.

  8. Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    SciTech Connect

    Schultz, J.E.; Weaver, P.F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and succinate plus dimethyl sulfoxide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxides. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 6o% of thevalues obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O/sub 2/ in conserving energy through electron transport-linked respiration.

  9. Fermentation and Anaerobic Respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata

    PubMed Central

    Schultz, J. E.; Weaver, P. F.

    1982-01-01

    Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and dimethyl sulfide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxide. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 60% of the values obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O2 in conserving energy through electron transport-linked respiration. PMID:6798016

  10. The respiration pattern as an indicator of the anaerobic threshold.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration.

  11. The respiration pattern as an indicator of the anaerobic threshold.

    PubMed

    Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier

    2015-08-01

    The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration. PMID:26736320

  12. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis.

    PubMed

    Yoon, Sang Sun; Hennigan, Robert F; Hilliard, George M; Ochsner, Urs A; Parvatiyar, Kislay; Kamani, Moneesha C; Allen, Holly L; DeKievit, Teresa R; Gardner, Paul R; Schwab, Ute; Rowe, John J; Iglewski, Barbara H; McDermott, Timothy R; Mason, Ronald P; Wozniak, Daniel J; Hancock, Robert E W; Parsek, Matthew R; Noah, Terry L; Boucher, Richard C; Hassett, Daniel J

    2002-10-01

    Recent data indicate that cystic fibrosis (CF) airway mucus is anaerobic. This suggests that Pseudomonas aeruginosa infection in CF reflects biofilm formation and persistence in an anaerobic environment. P. aeruginosa formed robust anaerobic biofilms, the viability of which requires rhl quorum sensing and nitric oxide (NO) reductase to modulate or prevent accumulation of toxic NO, a byproduct of anaerobic respiration. Proteomic analyses identified an outer membrane protein, OprF, that was upregulated approximately 40-fold under anaerobic versus aerobic conditions. Further, OprF exists in CF mucus, and CF patients raise antisera to OprF. An oprF mutant formed poor anaerobic biofilms, due, in part, to defects in anaerobic respiration. Thus, future investigations of CF pathogenesis and therapy should include a better understanding of anaerobic metabolism and biofilm development by P. aeruginosa.

  13. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.

    PubMed

    Grein, Fabian; Ramos, Ana Raquel; Venceslau, Sofia S; Pereira, Inês A C

    2013-02-01

    Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. PMID:22982583

  14. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism.

    PubMed

    Grein, Fabian; Ramos, Ana Raquel; Venceslau, Sofia S; Pereira, Inês A C

    2013-02-01

    Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  15. Bacterial drug tolerance under clinical conditions is governed by anaerobic adaptation but not anaerobic respiration.

    PubMed

    Hemsley, Claudia M; Luo, Jamie X; Andreae, Clio A; Butler, Clive S; Soyer, Orkun S; Titball, Richard W

    2014-10-01

    Noninherited antibiotic resistance is a phenomenon whereby a subpopulation of genetically identical bacteria displays phenotypic tolerance to antibiotics. We show here that compared to Escherichia coli, the clinically relevant genus Burkholderia displays much higher levels of cells that tolerate ceftazidime. By measuring the dynamics of the formation of drug-tolerant cells under conditions that mimic in vivo infections, we show that in Burkholderia bacteria, oxygen levels affect the formation of these cells. The drug-tolerant cells are characterized by an anaerobic metabolic signature and can be eliminated by oxygenating the system or adding nitrate. The transcriptome profile suggests that these cells are not dormant persister cells and are likely to be drug tolerant as a consequence of the upregulation of anaerobic nitrate respiration, efflux pumps, β-lactamases, and stress response proteins. These findings have important implications for the treatment of chronic bacterial infections and the methodologies and conditions that are used to study drug-tolerant and persister cells in vitro.

  16. Influence of the molybdenum cofactor biosynthesis on anaerobic respiration, biofilm formation and motility in Burkholderia thailandensis.

    PubMed

    Andreae, Clio A; Titball, Richard W; Butler, Clive S

    2014-01-01

    Burkholderia thailandensis is closely related to Burkholderia pseudomallei, a bacterial pathogen and the causative agent of melioidosis. B. pseudomallei can survive and persist within a hypoxic environment for up to one year and has been shown to grow anaerobically in the presence of nitrate. Currently, little is known about the role of anaerobic respiration in pathogenesis of melioidosis. Using B. thailandensis as a model, a library of 1344 transposon mutants was created to identify genes required for anaerobic nitrate respiration. One transposon mutant (CA01) was identified with an insertion in BTH_I1704 (moeA), a gene required for the molybdopterin biosynthetic pathway. This pathway is involved in the synthesis of a molybdopterin cofactor required for a variety of molybdoenzymes, including nitrate reductase. Disruption of molybdopterin biosynthesis prevented growth under anaerobic conditions, when using nitrate as the sole terminal electron acceptor. Defects in anaerobic respiration, nitrate reduction, motility and biofilm formation were observed for CA01. Mutant complementation with pDA-17:BTH_I1704 was able to restore anaerobic growth on nitrate, nitrate reductase activity and biofilm formation, but did not restore motility. This study highlights the potential importance of molybdoenzyme-dependent anaerobic respiration in the survival and virulence of B. thailandensis.

  17. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions.

  18. Cholera Toxin Production Induced upon Anaerobic Respiration is Suppressed by Glucose Fermentation in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Lee, Kang-Mu; Bari, Wasimul; Kim, Hwa Young; Kim, Hye Jin; Yoon, Sang Sun

    2016-03-01

    The causative agent of pandemic cholera, Vibrio cholerae, infects the anaerobic environment of the human intestine. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly induced during anaerobic respiration with trimethylamine N-oxide (TMAO) as an alternative electron acceptor. However, the molecular mechanism of TMAO-stimulated CT production is not fully understood. Herein, we reveal that CT production during anaerobic TMAO respiration is affected by glucose fermentation. When the seventh pandemic V. cholerae O1 strain N16961 was grown with TMAO and additional glucose, CT production was markedly reduced. Furthermore, an N16961 Δcrp mutant, devoid of cyclic AMP receptor protein (CRP), was defective in CT production during growth by anaerobic TMAO respiration, further suggesting a role of glucose metabolism in regulating TMAO-mediated CT production. TMAO reductase activity was noticeably decreased when grown together with glucose or by mutation of the crp gene. A CRP binding region was identified in the promoter region of the torD gene, which encodes a structural subunit of the TMAO reductase. Gel shift assays further confirmed the binding of purified CRP to the torD promoter sequence. Together, our results suggest that the bacterial ability to respire using TMAO is controlled by CRP, whose activity is dependent on glucose availability. Our results reveal a novel mechanism for the regulation of major virulence factor production by V. cholerae under anaerobic growth conditions. PMID:26718467

  19. Siderophores are not involved in Fe(III) solubilization during anaerobic Fe(III) respiration by Shewanella oneidensis MR-1.

    PubMed

    Fennessey, Christine M; Jones, Morris E; Taillefert, Martial; DiChristina, Thomas J

    2010-04-01

    Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.

  20. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  1. Predicting Phosphorus Release from Anaerobic, Alkaline, Flooded Soils.

    PubMed

    Amarawansha, Geethani; Kumaragamage, Darshani; Flaten, Don; Zvomuya, Francis; Tenuta, Mario

    2016-07-01

    Anaerobic conditions induced by prolonged flooding often lead to an enhanced release of phosphorus (P) to floodwater; however, this effect is not consistent across soils. This study aimed to develop an index to predict P release potential from alkaline soils under simulated flooded conditions. Twelve unamended or manure-amended surface soils from Manitoba were analyzed for basic soil properties, Olsen P (Ols-P), Mehlich-3 extractable total P (M3P), Mehlich-3 extractable molybdate-reactive P (M3P), water extractable P (WEP), soil P fractions, single-point P sorption capacity (P), and Mehlich-3 extractable Ca (M3Ca), and Mg (M3Mg). Degree of P saturation (DPS) was calculated using Ols-P, M3P or M3P as the intensity factor, and an estimated adsorption maximum based on either P or M3Ca + M3Mg as the capacity factor. To develop the model, we used the previously reported floodwater dissolved reactive P (DRP) concentration changes during 8 wk of flooding for the same unamended and manured soils. Relative changes in floodwater DRP concentration (DRP), calculated as the ratio of maximum to initial DRP concentration, ranged from 2 to 15 across ten of the soils, but were ≤1.5 in the two soils with the greatest clay content. Partial least squares analysis indicated that DPS3 calculated using M3P as the intensity factor and (2 × P) + M3P as the capacity factor with clay percentage can effectively predict DRP ( = 0.74). Results suggest that P release from a soil to floodwater may be predicted using simple and easily measurable soil properties measured before flooding, but validation with more soils is needed. PMID:27380097

  2. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.

    PubMed

    Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

    2012-11-16

    Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.

  3. Bacteria associated with deep, alkaline, anaerobic groundwaters in Southeast Washington.

    PubMed

    Stevens, T O; McKinley, J P; Fredrickson, J K

    1993-01-01

    The microbial diversity in two deep, confined aquifers, the Grande Ronde (1270 m) and the Priest Rapids (316 m), Hanford Reservation, Washington, USA, was investigated by sampling from artesian wells. These basaltic aquifers were alkaline (pH 8.5 to 10.5) and anaerobic (Eh -200 to -450 mV). The wells were allowed to free-flow until pH and Eh stabilized, then the microflora was sampled with water filtration and flow-through sandtrap methods. Direct microscopic counts showed 7.6 × 10(5) and 3.6 × 10(3) bacteria ml(-1) in water from the Grande Ronde and Priest Rapids aquifers, respectively. The sand filter method yielded 5.7 × 10(8) and 1.1 × 10(5) cells g(-1) wet weight of sand. The numbers of bacteria did not decrease as increasing volumes of water were flushed out. The heterotrophic diversity of these bacterial populations was assessed using enrichments for 20 functional groups. These groups were defined by their ability to grow in a matrix of five different electron acceptors (O2, Fe(III), NO3 (-), SO4 (2-), HCO3 (-)) and four groups of electron donors (fermentation products, monomers, polymers, aromatics) in a mineral salts medium at pH 9.5. Growth was assessed by protein production. Culture media were subsequently analyzed to determine substrate utilization patterns. Substrate utilization patterns proved to be more reliable indicators of the presence of a particular physiological group than was protein production. The sand-trap method obtained a greater diversity of bacteria than did water filtration, presumably by enriching the proportion of normally sessile bacteria relative to planktonic bacteria. Substrate utilization patterns were different for microflora from the two aquifers and corresponded to their different geochemistries. Activities in the filtered water enrichments more closely matched those predicted by aquifer geochemistry than did the sand-trap enrichments. The greatest activities were found in Fe(III)-reducing enrichments from both wells, SO4

  4. An assessment of continental shelf anaerobic processes on oceanic alkalinity budget

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cai, W.

    2010-12-01

    Recent interest in the ocean’s capacity to absorb atmospheric CO2 and buffer the accompanying “ocean acidification” has prompted discussion on the magnitude of continental shelf alkalinity production via anaerobic processes (denitrification, sulfate and redox metal reduction). Recent studies have suggested that atmospheric CO2 could be sequestered along with these reactions. Unfortunately, available estimates are largely based on gross reaction rates or misconceptions regarding reaction stoichiometry. In fact, net alkalinity gain does not result from the internal cycling of nitrogen and sulfur species, or from the reduction of metal oxides. Instead, only the processes that involve permanent loss of anaerobic remineralization products, i.e., nitrogen gas from net denitrification and reduced sulfur (i.e., pyrite burial) from net sulfate reduction, could contribute to this anaerobic alkalinity production. Our revised estimate of net alkalinity production from anaerobic processes is on the order of 4-5 Tmol yr-1 in global continental shelf areas, significantly smaller than the previously estimated rates. In addition, pyrite burial in coastal habitats (salt marshes, mangroves, and seagrass meadows) may contribute another 0.1-1.1 Tmol yr-1 alkalinity although their long-term effect is not yet clear under current changing climate conditions and rising sea levels. Finally, we propose that these alkalinity production reactions can be viewed as “charge transfer” processes, in which negative charges of nitrate and sulfate ions are converted to those of bicarbonate along with a net loss of these oxidative anions.

  5. The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3.

    PubMed

    Yang, Xin-Wei; He, Ying; Xu, Jun; Xiao, Xiang; Wang, Feng-Ping

    2013-01-01

    Ferric uptake regulator (Fur) is a global regulator that controls bacterial iron homeostasis. In this study, a fur deletion mutant of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. Physiological studies revealed that the growth rate of this mutant under aerobic conditions was only slightly lower than that of wild type (WT), but severe growth defects were observed under anaerobic conditions when different electron acceptors (EAs) were provided. Comparative transcriptomic analysis demonstrated that Fur is involved not only in classical iron homeostasis but also in anaerobic respiration. Fur exerted pleiotropic effects on the regulation of anaerobic respiration by controlling anaerobic electron transport, the heme biosynthesis system, and the cytochrome c maturation system. Biochemical assays demonstrated that levels of c-type cytochromes were lower in the fur mutant, consistent with the transcriptional profiling. Transcriptomic analysis and electrophoretic mobility shift assays revealed a primary regulation network for Fur in WP3. These results suggest that Fur may act as a sensor for anoxic conditions to trigger and influence the anaerobic respiratory system.

  6. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum.

    PubMed

    Takeno, Seiki; Ohnishi, Junko; Komatsu, Tomoha; Masaki, Tatsuya; Sen, Kikuo; Ikeda, Masato

    2007-07-01

    Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.

  7. Effect of alkaline pretreatment on anaerobic digestion of solid wastes.

    PubMed

    López Torres, M; Espinosa Lloréns, Ma del C

    2008-11-01

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH)2), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH)2/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m3CH4/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW. PMID:18068345

  8. Effect of alkaline pretreatment on anaerobic digestion of solid wastes

    SciTech Connect

    Lopez Torres, M. Espinosa Llorens, Ma. del C.

    2008-11-15

    The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

  9. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget

    NASA Astrophysics Data System (ADS)

    Hu, Xinping; Cai, Wei-Jun

    2011-09-01

    Recent interest in the ocean's capacity to absorb atmospheric CO2 and buffer the accompanying "ocean acidification" has prompted discussions on the magnitude of ocean margin alkalinity production via anaerobic processes. However, available estimates are largely based on gross reaction rates or misconceptions regarding reaction stoichiometry. In this paper, we argue that net alkalinity gain does not result from the internal cycling of nitrogen and sulfur species or from the reduction of metal oxides. Instead, only the processes that involve permanent loss of anaerobic remineralization products, i.e., nitrogen gas from net denitrification and reduced sulfur (i.e., pyrite burial) from net sulfate reduction, could contribute to this anaerobic alkalinity production. Our revised estimate of net alkalinity production from anaerobic processes is on the order of 4-5 Tmol yr-1 in global ocean margins that include both continental shelves and oxygen minimum zones, significantly smaller than the previously estimated rate of 16-31 Tmol yr-1. In addition, pyrite burial in coastal habitats (salt marshes, mangroves, and seagrass meadows) may contribute another 0.1-1.1 Tmol yr-1, although their long-term effect is not yet clear under current changing climate conditions and rising sea levels. Finally, we propose that these alkalinity production reactions can be viewed as "charge transfer" processes, in which negative charges of nitrate and sulfate ions are converted to those of bicarbonate along with a net loss of these oxidative anions.

  10. Alkaline and acid hydrolytic processes in aerobic and anaerobic sludges: effect on total EPS and fractions.

    PubMed

    Cassini, S T; Andrade, M C E; Abreu, T A; Keller, R; Gonçalves, R F

    2006-01-01

    Sludge samples from an upflow anaerobic sludge blanket (UASB) reactor and four submerged aerated biofilters (BFs) of a wastewater treatment plant (1,000 inhab.) were processed at bench scale by alkaline and acid hydrolysis with the objective to evaluate the organic matter solubilization, volatile solids (VS) destruction and the effect of hydrolytic processes on the extracellular polymeric substances (EPS) fraction of the sludge samples. The results showed that alkaline hydrolysis of sludge samples treatment with 1.0% total solids (TS) using NaOH 20 meq L(-1) was more efficient on organic matter solubilization and VS destruction than acid hydrolysis. The EPS sludge content was also affected by the alkaline treatment of anaerobic sludge samples. The EPS concentrations (mg EPS/gVSS) on the anaerobic sludge after the alkaline treatment were significantly lowered according to sample height in the UASB reactor. Data indicated that the EPS sludge fraction is the main component affected by the alkaline hydrolytic process of anaerobic sludge samples. PMID:16784189

  11. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  12. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration

    PubMed Central

    Richter, Katrin; Schicklberger, Marcus

    2012-01-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions. PMID:22179232

  13. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration.

    PubMed

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M; Romine, Margaret; Zhou, Jizhong

    2010-07-01

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well-studied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  14. Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration

    SciTech Connect

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lianming; Dong, Yangyang; Reed, Samantha B.; Chen, Jingrong; Culley, David E.; Kennedy, David W.; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.; Romine, Margaret F.; Zhou, Jizhong

    2010-06-24

    Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c-type cytochromes. To investigate the involvement of c-type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr -1, 36 in-frame deletion mutants, among possible 41 predicted, c-type cytochrome genes were obtained. The potential involvement of each individual c-type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the wellstudied c-type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr -1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c-type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis.

  15. Impacts of Shewanella oneidensis c‐type cytochromes on aerobic and anaerobic respiration

    PubMed Central

    Gao, Haichun; Barua, Soumitra; Liang, Yili; Wu, Lin; Dong, Yangyang; Reed, Samantha; Chen, Jingrong; Culley, Dave; Kennedy, David; Yang, Yunfeng; He, Zhili; Nealson, Kenneth H.; Fredrickson, James K.; Tiedje, James M.; Romine, Margaret; Zhou, Jizhong

    2010-01-01

    Summary Shewanella are renowned for their ability to utilize a wide range of electron acceptors (EA) for respiration, which has been partially accredited to the presence of a large number of the c‐type cytochromes. To investigate the involvement of c‐type cytochrome proteins in aerobic and anaerobic respiration of Shewanella oneidensis Mr ‐1, 36 in‐frame deletion mutants, among possible 41 predicted, c‐type cytochrome genes were obtained. The potential involvement of each individual c‐type cytochrome in the reduction of a variety of EAs was assessed individually as well as in competition experiments. While results on the well‐studied c‐type cytochromes CymA(SO4591) and MtrC(SO1778) were consistent with previous findings, collective observations were very interesting: the responses of S. oneidensis Mr ‐1 to low and highly toxic metals appeared to be significantly different; CcoO, CcoP and PetC, proteins involved in aerobic respiration in various organisms, played critical roles in both aerobic and anaerobic respiration with highly toxic metals as EA. In addition, these studies also suggested that an uncharacterized c‐type cytochrome (SO4047) may be important to both aerobiosis and anaerobiosis. PMID:21255343

  16. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  17. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion. PMID:24410687

  18. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.

    PubMed

    Laue, H; Denger, K; Cook, A M

    1997-05-01

    Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204-210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors and a single organic sulfonate as an electron sink, and we used material from anaerobic digestors in communal sewage works as inocula. None of the four aromatic sulfonates, the three unsubstituted alkanesulfonates, or the N-sulfonate tested gave positive enrichment cultures requiring both the electron donor and electron sink for growth. Nine cultures utilizing the natural products taurine, cysteate, or isethionate were considered positive for growth, and all formed sulfide. Two clearly different pure cultures were examined. Putative Desulfovibrio sp. strain RZACYSA, with lactate as the electron donor, utilized sulfate, aminomethanesulfonate, taurine, isethionate, and cysteate, converting the latter to ammonia, acetate, and sulfide. Strain RZATAU was identified by 16S rDNA analysis as Bilophila wadsworthia. In the presence of, e.g., formate as the electron donor, it utilized, e.g., cysteate and isethionate and converted taurine quantitatively to cell material and products identified as ammonia, acetate, and sulfide. Sulfite and thiosulfate, but not sulfate, were utilized as electron sinks, as was nitrate, when lactate was provided as the electron donor and carbon source. A growth requirement for 1,4-naphthoquinone indicates a menaquinone electron carrier, and the presence of cytochrome c supports the presence of an electron transport chain. Pyruvate-dependent disappearance of taurine from cell extracts, as well as formation of alanine and release of ammonia and acetate, was

  19. Alkaline treatment of high-solids sludge and its application to anaerobic digestion.

    PubMed

    Li, Chenchen; Li, Huan; Zhang, Yuyao

    2015-01-01

    High-solids anaerobic digestion is a promising new process for sludge reduction and bioenergy recovery, requiring smaller digestion tanks and less energy for heating, but a longer digestion time, than traditional low-solids anaerobic digestion. To accelerate this process, alkaline sludge disintegration was tested as a pretreatment method for anaerobic digestion of high-solids sludge. The results showed that alkaline treatment effectively disintegrated both low-solids sludge and high-solids sludge, and treatment duration of 30 min was the most efficient. The relation between sludge disintegration degree and NaOH dose can be described by a transmutative power function model. At NaOH dose lower than 0.2 mol/L, sludge disintegration degree remained virtually unchanged when sludge total solids (TS) content increased from 2.0 to 11.0%, and decreased only slightly when sludge TS increased to 14.2%. Although high-solids sludge required a slightly higher molarity of NaOH to reach the same disintegration level of low-solids sludge, the required mass of NaOH actually decreased due to sludge thickening. From the view of NaOH consumption, sludge TS of 8-12% and a NaOH dose of 0.05 mol/L were optimum conditions for alkaline pretreatment, which resulted in a slight increase in accumulative biogas yield, but a decrease by 24-29% in digestion time during the subsequent anaerobic digestion.

  20. Gene expression profiling of Corynebacterium glutamicum during Anaerobic nitrate respiration: induction of the SOS response for cell survival.

    PubMed

    Nishimura, Taku; Teramoto, Haruhiko; Inui, Masayuki; Yukawa, Hideaki

    2011-03-01

    The gene expression profile of Corynebacterium glutamicum under anaerobic nitrate respiration revealed marked differences in the expression levels of a number of genes involved in a variety of cellular functions, including carbon metabolism and respiratory electron transport chain, compared to the profile under aerobic conditions using DNA microarrays. Many SOS genes were upregulated by the shift from aerobic to anaerobic nitrate respiration. An elongated cell morphology, similar to that induced by the DivS-mediated suppression of cell division upon cell exposure to the DNA-damaging reagent mitomycin C, was observed in cells subjected to anaerobic nitrate respiration. None of these transcriptional and morphological differences were observed in a recA mutant strain lacking a functional RecA regulator of the SOS response. The recA mutant cells additionally showed significantly reduced viability compared to wild-type cells similarly grown under anaerobic nitrate respiration. These results suggest a role for the RecA-mediated SOS response in the ability of cells to survive any DNA damage that may result from anaerobic nitrate respiration in C. glutamicum.

  1. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate

    USGS Publications Warehouse

    Switzer, Blum J.; Stolz, J.F.; Oren, A.; Oremland, R.S.

    2001-01-01

    We isolated an obligately anaerobic halophilic bacterium from the Dead Sea that grew by respiration of selenate. The isolate, designated strain DSSe-1, was a gram-negative, non-motile rod. It oxidized glycerol or glucose to acetate+CO2 with concomitant reduction of selenate to selenite plus elemental selenium. Other electron acceptors that supported anaerobic growth on glycerol were nitrate and trimethylamine-N-oxide; nitrite, arsenate, fumarate, dimethylsulfoxide, thiosulfate, elemental sulfur, sulfite or sulfate could not serve as electron acceptors. Growth on glycerol in the presence of nitrate occurred over a salinity range from 100 to 240 g/l, with an optimum at 210 g/l. Analysis of the 16S rRNA gene sequence suggests that strain DSSe-1 belongs to the order Halanaerobiales, an order of halophilic anaerobes with a fermentative or homoacetogenic metabolism, in which anaerobic respiratory metabolism has never been documented. The highest 16S rRNA sequence similarity (90%) was found with Acetohalobium arabaticum (X89077). On the basis of physiological properties as well as the relatively low homology of 16S rRNA from strain DSSe-1 with known genera, classification in a new genus within the order Halanaerobiales, family Halobacteroidaceae is warranted. We propose the name Selenihalanaerobacter shriftii. Type strain is strain DSSe-1 (ATCC accession number BAA-73).

  2. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome.

    PubMed

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na(+)). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L(-1) day(-1) organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the "ML635J-40 aquatic group" while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  3. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents.

  4. Periplasmic Nitrate Reductase (NapABC Enzyme) Supports Anaerobic Respiration by Escherichia coli K-12

    PubMed Central

    Stewart, Valley; Lu, Yiran; Darwin, Andrew J.

    2002-01-01

    Periplasmic nitrate reductase (NapABC enzyme) has been characterized from a variety of proteobacteria, especially Paracoccus pantotrophus. Whole-genome sequencing of Escherichia coli revealed the structural genes napFDAGHBC, which encode NapABC enzyme and associated electron transfer components. E. coli also expresses two membrane-bound proton-translocating nitrate reductases, encoded by the narGHJI and narZYWV operons. We measured reduced viologen-dependent nitrate reductase activity in a series of strains with combinations of nar and nap null alleles. The napF operon-encoded nitrate reductase activity was not sensitive to azide, as shown previously for the P. pantotrophus NapA enzyme. A strain carrying null alleles of narG and narZ grew exponentially on glycerol with nitrate as the respiratory oxidant (anaerobic respiration), whereas a strain also carrying a null allele of napA did not. By contrast, the presence of napA+ had no influence on the more rapid growth of narG+ strains. These results indicate that periplasmic nitrate reductase, like fumarate reductase, can function in anaerobic respiration but does not constitute a site for generating proton motive force. The time course of Φ(napF-lacZ) expression during growth in batch culture displayed a complex pattern in response to the dynamic nitrate/nitrite ratio. Our results are consistent with the observation that Φ(napF-lacZ) is expressed preferentially at relatively low nitrate concentrations in continuous cultures (H. Wang, C.-P. Tseng, and R. P. Gunsalus, J. Bacteriol. 181:5303-5308, 1999). This finding and other considerations support the hypothesis that NapABC enzyme may function in E. coli when low nitrate concentrations limit the bioenergetic efficiency of nitrate respiration via NarGHI enzyme. PMID:11844760

  5. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    SciTech Connect

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  6. Anaerobic respiration using a complete oxidative TCA cycle drives multicellular swarming in Proteus mirabilis.

    PubMed

    Alteri, Christopher J; Himpsl, Stephanie D; Engstrom, Michael D; Mobley, Harry L T

    2012-10-30

    Proteus mirabilis rapidly migrates across surfaces using a periodic developmental process of differentiation alternating between short swimmer cells and elongated hyperflagellated swarmer cells. To undergo this vigorous flagellum-mediated motility, bacteria must generate a substantial proton gradient across their cytoplasmic membranes by using available energy pathways. We sought to identify the link between energy pathways and swarming differentiation by examining the behavior of defined central metabolism mutants. Mutations in the tricarboxylic acid (TCA) cycle (fumC and sdhB mutants) caused altered patterns of swarming periodicity, suggesting an aerobic pathway. Surprisingly, the wild-type strain swarmed on agar containing sodium azide, which poisons aerobic respiration; the fumC TCA cycle mutant, however, was unable to swarm on azide. To identify other contributing energy pathways, we screened transposon mutants for loss of swarming on sodium azide and found insertions in the following genes that involved fumarate metabolism or respiration: hybB, encoding hydrogenase; fumC, encoding fumarase; argH, encoding argininosuccinate lyase (generates fumarate); and a quinone hydroxylase gene. These findings validated the screen and suggested involvement of anaerobic electron transport chain components. Abnormal swarming periodicity of fumC and sdhB mutants was associated with the excretion of reduced acidic fermentation end products. Bacteria lacking SdhB were rescued to wild-type pH and periodicity by providing fumarate, independent of carbon source but dependent on oxygen, while fumC mutants were rescued by glycerol, independent of fumarate only under anaerobic conditions. These findings link multicellular swarming patterns with fumarate metabolism and membrane electron transport using a previously unappreciated configuration of both aerobic and anaerobic respiratory chain components. Bacterial locomotion and the existence of microbes were the first scientific

  7. Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1.

    PubMed

    Charania, M A; Brockman, K L; Zhang, Y; Banerjee, A; Pinchuk, G E; Fredrickson, J K; Beliaev, A S; Saffarini, D A

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  8. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K. L.; Zhang, Y.; Banerjee, A.; Pinchuk, Grigoriy E.; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, Shewanella oneidensis MR-1 uses the cyclic AMP receptor protein (CRP) for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases, respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an Escherichia coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, dimethyl sulfoxide (DMSO), or Fe(III), whereas deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III) and, to a lesser extent, with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways, such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagellum biosynthesis, and electron transport were differentially expressed in the cyaC mutant but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration and may contribute to additional signaling pathways independent of CRP.

  9. Involvement of a Membrane-Bound Class III Adenylate Cyclase in Regulation of Anaerobic Respiration in Shewanella oneidensis MR-1

    SciTech Connect

    Charania, M.; Brockman, K.; Zhang, Yang; Banerjee, A.; Pinchuk, Grigoriy; Fredrickson, Jim K.; Beliaev, Alex S.; Saffarini, Daad

    2009-07-01

    Unlike other bacteria that use FNR to regulate anaerobic respiration, S. oneidensis MR-1 uses the cAMP receptor protein, CRP, for this purpose. Three putative genes, cyaA, cyaB, and cyaC, predicted to encode class I, class IV, and class III adenylate cyclases respectively, have been identified in the genome sequence of this bacterium. Functional validation through complementation of an E. coli cya mutant confirmed that these genes encode proteins with adenylate cyclase activities. Chromosomal deletion of either cyaA or cyaB did not affect anaerobic respiration with fumarate, DMSO, or Fe(III), whereas the deletion of cyaC caused deficiencies in respiration with DMSO and Fe(III), and to a lesser extent with fumarate. A phenotype similar to that of a crp mutant, which lacks the ability to grow anaerobically with DMSO, fumarate, and Fe(III), was obtained when both cyaA and cyaC were deleted. Microarray analysis of gene expression in the crp and the cyaC mutants revealed the involvement of both genes in the regulation of key respiratory pathways such as DMSO, fumarate, and Fe(III) reduction. Additionally, several genes associated with plasmid replication, flagella biosynthesis, and electron transport, were differentially expressed in the cyaC mutant, but not in the crp mutant. Our results indicated that CyaC plays a major role in regulating anaerobic respiration, and may contribute to additional signaling pathways independent of CRP.

  10. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    PubMed

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW.

  11. Effects of alkalinity sources on the stability of anaerobic digestion from food waste.

    PubMed

    Chen, Shujun; Zhang, Jishi; Wang, Xikui

    2015-11-01

    This study investigated the effects of some alkalinity sources on the stability of anaerobic digestion (AD) from food waste (FW). Four alkalinity sources, namely lime mud from papermaking (LMP), waste eggshell (WES), CaCO3 and NaHCO3, were applied as buffer materials and their stability effects were evaluated in batch AD. The results showed that LMP and CaCO3 had more remarkable effects than NaHCO3 and WES on FW stabilization. The methane yields were 120.2, 197.0, 156.2, 251.0 and 194.8 ml g(-1) VS for the control and synergistic digestions of CaCO3, NaHCO3, LMP and WES added into FW, respectively. The corresponding final alkalinity reached 5906, 7307, 9504, 7820 and 6782 mg l(-1), while the final acidities were determined to be 501, 200, 50, 350 and 250 mg l(-1), respectively. This indicated that the synergism between alkalinity and inorganic micronutrients from different alkalinity sources played an important role in the process stability of AD from FW. PMID:26391806

  12. The anaerobic corrosion of carbon steel in alkaline media - Phase 2 results

    NASA Astrophysics Data System (ADS)

    Smart, N. R.; Rance, A. P.; Fennell, P. A. H.; Kursten, B.

    2013-07-01

    In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  13. Anaerobic digestion of poplar processing residues for methane production after alkaline treatment.

    PubMed

    Yao, Yiqing; He, Mulan; Ren, Yubing; Ma, Liying; Luo, Yang; Sheng, Hongmei; Xiang, Yun; Zhang, Hua; Li, Qien; An, Lizhe

    2013-04-01

    Poplar processing residues were used for methane production by anaerobic digestion after alkaline treatment and methane production was measured. The highest methane production of 271.9 L/kg volatile solid (VS) was obtained at conditions of 35 g/L and 5.0% NaOH, which was 113.8% higher than non-alkaline treated samples, and 28.9% higher than that of corn straw, which is the conventional anaerobic digestion material in China. The maximal enhancement of 275.5% obtained at conditions of 50 g/L and 7.0% NaOH. Degradation of cellulose, hemicellulose and lignin after treatment increased by 4.0-9.0%, 3.3-6.2%, and 11.1-20.5%, respectively, with NaOH dose ranged from 3.0% to 7.0%. Scanning electron microscopy (SEM), FTIR spectra and Crystallinity measurements showed that the lignocellulosic structures were disrupted by NaOH. The results indicate poplar processing residues might be an efficient substrate for methane production after alkaline treatment.

  14. Anaerobic respiration: In vitro efficacy of Nitazoxanide against mitochondriate Acanthamoeba castellanii of the T4 genotype.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Farooq, Maria; Khan, Naveed Ahmed

    2015-10-01

    Acanthamoeba is an opportunistic protist pathogen that is responsible for serious human and animal infection. Being one of the most frequently isolated protists from the environment, it is likely that it readily encounters microaerophilic environments. For respiration under anaerobic or low oxygen conditions in several amitochondriate protists, decarboxylation of pyruvate is catalyzed by pyruvate ferredoxin oxidoreductase instead of pyruvate dehydrogenase. In support, Nitazoxanide, an inhibitor of pyruvate ferredoxin oxidoreductase, is effective and non-mutagenic clinically against a range of amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The overall aim of the present study was to determine in vitro efficacy of Nitazoxanide against Acanthamoeba castellanii. At micromolar concentrations, the findings revealed that Nitazoxanide neither affected A. castellanii growth or viability nor amoeba-mediated host cell monolayer damage in vitro or extracellular proteolytic activities. Similarly, microaerophilic conditions alone had no significant effects. In contrast, microaerophilic conditions together with Nitazoxanide showed amoebicidal effects and inhibited A. castellanii-mediated host cell monolayer damage as well as extracellular proteases. Using encystation assays, it was observed that Nitazoxanide inhibited trophozoite transformation into cysts both under aerophilic and microaerophilic conditions. Furthermore, pre-treatment of cysts with Nitazoxanide inhibited A. castellanii excystation. These findings are important in the identification of potential targets that could be useful against parasite-specific respiration as well as to understand the basic biology of the life cycle of Acanthamoeba.

  15. Cholera toxin production during anaerobic trimethylamine N-oxide respiration is mediated by stringent response in Vibrio cholerae.

    PubMed

    Oh, Young Taek; Park, Yongjin; Yoon, Mi Young; Bari, Wasimul; Go, Junhyeok; Min, Kyung Bae; Raskin, David M; Lee, Kang-Mu; Yoon, Sang Sun

    2014-05-01

    As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.

  16. The multidrug efflux pump MdtEF protects against nitrosative damage during the anaerobic respiration in Escherichia coli.

    PubMed

    Zhang, Yiliang; Xiao, Minfeng; Horiyama, Tsukasa; Zhang, Yinfeng; Li, Xuechen; Nishino, Kunihiko; Yan, Aixin

    2011-07-29

    Drug efflux represents an important protection mechanism in bacteria to withstand antibiotics and environmental toxic substances. Efflux genes constitute 6-18% of all transporters in bacterial genomes, yet the expression and functions of only a handful of them have been studied. Among the 20 efflux genes encoded in the Escherichia coli K-12 genome, only the AcrAB-TolC system is constitutively expressed. The expression, activities, and physiological functions of the remaining efflux genes are poorly understood. In this study we identified a dramatic up-regulation of an additional efflux pump, MdtEF, under the anaerobic growth condition of E. coli, which is independent of antibiotic exposure. We found that expression of MdtEF is up-regulated more than 20-fold under anaerobic conditions by the global transcription factor ArcA, resulting in increased efflux activity and enhanced drug tolerance in anaerobically grown E. coli. Cells lacking mdtEF display a significantly decreased survival rate under the condition of anaerobic respiration of nitrate. Deletion of the genes responsible for the biosynthesis of indole, tnaAB, or replacing nitrate with fumarate as the terminal electron acceptor during the anaerobic respiration restores the decreased survival of ΔmdtEF cells. Moreover, ΔmdtEF cells are susceptible to indole nitrosative derivatives, a class of toxic byproducts formed and accumulated within E. coli when the bacterium respires nitrate under anaerobic conditions. Taken together, we conclude that the multidrug efflux pump MdtEF is up-regulated during the anaerobic physiology of E. coli to protect the bacterium from nitrosative damage through expelling the nitrosyl indole derivatives out of the cells.

  17. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri.

    PubMed

    Septer, Alecia N; Bose, Jeffrey L; Dunn, Anne K; Stabb, Eric V

    2010-05-01

    Vibrio fischeri induces both anaerobic respiration and bioluminescence during symbiotic infection. In many bacteria, the oxygen-sensitive regulator FNR activates anaerobic respiration, and a preliminary study using the light-generating lux genes from V. fischeri MJ1 cloned in Escherichia coli suggested that FNR stimulates bioluminescence. To test for FNR-mediated regulation of bioluminescence and anaerobic respiration in V. fischeri, we generated fnr mutants of V. fischeri strains MJ1 and ES114. In both strains, FNR was required for normal fumarate- and nitrate-dependent respiration. However, contrary to the report in transgenic E. coli, FNR mediated the repression of lux. ArcA represses bioluminescence, and P(arcA)-lacZ reporters showed reduced expression in fnr mutants, suggesting a possible indirect effect of FNR on bioluminescence via arcA. Finally, the fnr mutant of ES114 was not impaired in colonization of its host squid, Euprymna scolopes. This study extends the characterization of FNR to the Vibrionaceae and underscores the importance of studying lux regulation in its native background.

  18. Enhanced coproduction of hydrogen and methane from cornstalks by a three-stage anaerobic fermentation process integrated with alkaline hydrolysis.

    PubMed

    Cheng, Xi-Yu; Liu, Chun-Zhao

    2012-01-01

    A three-stage anaerobic fermentation process including H(2) fermentation I, H(2) fermentation II, methane fermentation was developed for the coproduction of hydrogen and methane from cornstalks. Hydrogen production from cornstalks using direct microbial conversion by Clostridium thermocellum 7072 was markedly enhanced in the two-stage thermophilic hydrogen fermentation process integrated with alkaline treatment. The highest total hydrogen yield from cornstalks in the two-stage fermentation process reached 74.4 mL/g-cornstalk. The hydrogen fermentation effluents and alkaline hydrolyzate were further used for methane fermentation by anaerobic granular sludge, and the total methane yield reached 205.8 mL/g-cornstalk. The total energy recovery in the three-stage anaerobic fermentation process integrated with alkaline hydrolysis reached 70.0%.

  19. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  20. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Green, Stefan J.; Beazley, Melanie J.; Webb, Samuel M.; Kostka, Joel E.; Taillefert, Martial

    2013-04-01

    Although bioreduction of uranyl ions (U(VI)) and biomineralization of U(VI)-phosphate minerals are both able to immobilize uranium in contaminated sediments, the competition between these processes and the role of anaerobic respiration in the biomineralization of U(VI)-phosphate minerals has yet to be investigated. In this study, contaminated sediments incubated anaerobically in static microcosms at pH 5.5 and 7.0 were amended with the organophosphate glycerol-2-phosphate (G2P) as sole phosphorus and external carbon source and iron oxides, sulfate, or nitrate as terminal electron acceptors to determine the most favorable geochemical conditions to these two processes. While sulfate reduction was not observed even in the presence of G2P at both pHs, iron reduction was more significant at circumneutral pH irrespective of the addition of G2P. In turn, nitrate reduction was stimulated by G2P at both pH 5.5 and 7.0, suggesting nitrate-reducing bacteria provided the main source of inorganic phosphate in these sediments. U(VI) was rapidly removed from solution in all treatments but was not reduced as determined by X-ray absorption near edge structure (XANES) spectroscopy. Simultaneously, wet chemical extractions and extended X-ray absorption fine structure (EXAFS) spectroscopy of these sediments indicated the presence of U-P species in reactors amended with G2P at both pHs. The rapid removal of dissolved U(VI), the simultaneous production of inorganic phosphate, and the existence of U-P species in the solid phase indicate that uranium was precipitated as U(VI)-phosphate minerals in sediments amended with G2P. Thus, under reducing conditions and in the presence of G2P, bioreduction of U(VI) was outcompeted by the biomineralization of U(VI)-phosphate minerals and U(VI) sorption at both pHs.

  1. Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse.

    PubMed

    Boncz, M A; Formagini, E L; Santos, L da S; Marques, R D; Paulo, P L

    2012-01-01

    Pushed by demand for renewable energy, the ethanol industry in Brazil is expanding. However, production of 1 m(3) of ethanol generates around 13 m(3) of liquid residues (vinasse), so this expansion results in an increasing need for a more adequate destination of these residues. Nowadays the vinasse is dispersed on the sugar cane fields in the practice of fertirrigation, but anaerobic digestion of this residue may be a better solution, additionally offering an alternative source of energy, able to complement hydroelectric power supply in the dry season. However, when trying to digest vinasse at reduced hydraulic retention times, complications arise from its strong tendency toward acidification, upsetting the fragile balance of transformations normally occurring under anaerobic conditions. For successful operation of an anaerobic treatment process with acceptable hydraulic residence times, increasing alkalinity levels inside the reactor is neces-sary. In the present work we show that pH regulation by means of urea dosing, in spite of the risk posed by ammonia toxicity towards methanogenic biomass, can be a viable alternative to avoid vinasse acidification. The ammonia formed in urea conversion remains in solution, rather than escaping to the biogas, and so its use as fertiliser can offset its cost of application in the process. PMID:23032778

  2. Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse.

    PubMed

    Boncz, M A; Formagini, E L; Santos, L da S; Marques, R D; Paulo, P L

    2012-01-01

    Pushed by demand for renewable energy, the ethanol industry in Brazil is expanding. However, production of 1 m(3) of ethanol generates around 13 m(3) of liquid residues (vinasse), so this expansion results in an increasing need for a more adequate destination of these residues. Nowadays the vinasse is dispersed on the sugar cane fields in the practice of fertirrigation, but anaerobic digestion of this residue may be a better solution, additionally offering an alternative source of energy, able to complement hydroelectric power supply in the dry season. However, when trying to digest vinasse at reduced hydraulic retention times, complications arise from its strong tendency toward acidification, upsetting the fragile balance of transformations normally occurring under anaerobic conditions. For successful operation of an anaerobic treatment process with acceptable hydraulic residence times, increasing alkalinity levels inside the reactor is neces-sary. In the present work we show that pH regulation by means of urea dosing, in spite of the risk posed by ammonia toxicity towards methanogenic biomass, can be a viable alternative to avoid vinasse acidification. The ammonia formed in urea conversion remains in solution, rather than escaping to the biogas, and so its use as fertiliser can offset its cost of application in the process.

  3. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment.

    PubMed

    Zhu, Jiying; Wan, Caixia; Li, Yebo

    2010-10-01

    Alkaline pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion. Different NaOH loadings (1%, 2.5%, 5.0% and 7.5% (w/w)) were tested for solid-state pretreatment of corn stover. Lignin degradation during pretreatment increased from 9.1% to 46.2% when NaOH concentration increased from 1.0% to 7.5%. The NaOH-pretreated corn stover was digested using effluent of liquid anaerobic digestion as inoculum and nitrogen source. NaOH loading of 1% did not cause significant improvement on biogas yield. The highest biogas yield of 372.4 L/kg VS was obtained with 5% NaOH-pretreated corn stover, which was 37.0% higher than that of the untreated corn stover. However, a higher NaOH loading of 7.5% caused faster production of volatile fatty acids during the hydrolysis and acidogenesis stages, which inhibited the methanogenesis. Simultaneous NaOH treatment and anaerobic digestion did not significantly improve the biogas production (P>0.05).

  4. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance.

    PubMed

    Du, Huamao; Lo, Tat-Ming; Sitompul, Johnner; Chang, Matthew Wook

    2012-08-10

    Despite extensive use of silver nanoparticles for antimicrobial applications, cellular mechanisms underlying microbial response to silver nanoparticles remain to be further elucidated at the systems level. Here, we report systems-level response of Escherichia coli to silver nanoparticles using transcriptome-based biochemical and phenotype assays. Notably, we provided the evidence that anaerobic respiration is induced upon exposure to silver nanoparticles. Further we showed that anaerobic respiration-related regulators and enzymes play an important role in E. coli resistance to silver nanoparticles. In particular, our results suggest that arcA is essential for resistance against silver NPs and the deletion of fnr, fdnH and narH significantly increases the resistance. We envision that this study offers novel insights into modes of antimicrobial action of silver nanoparticles, and cellular mechanisms contributing to the development of microbial resistance to silver nanoparticles.

  5. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Yakimov, Mikhail M; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S

    2016-06-01

    Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T).

  6. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake.

    PubMed

    Sorokin, Dimitry Y; Kublanov, Ilya V; Yakimov, Mikhail M; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S

    2016-06-01

    Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T). PMID:27031647

  7. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1.

    PubMed

    Hunt, Kristopher A; Flynn, Jeffrey M; Naranjo, Belén; Shikhare, Indraneel D; Gralnick, Jeffrey A

    2010-07-01

    It is well established that respiratory organisms use proton motive force to produce ATP via F-type ATP synthase aerobically and that this process may reverse during anaerobiosis to produce proton motive force. Here, we show that Shewanella oneidensis strain MR-1, a nonfermentative, facultative anaerobe known to respire exogenous electron acceptors, generates ATP primarily from substrate-level phosphorylation under anaerobic conditions. Mutant strains lacking ackA (SO2915) and pta (SO2916), genes required for acetate production and a significant portion of substrate-level ATP produced anaerobically, were tested for growth. These mutant strains were unable to grow anaerobically with lactate and fumarate as the electron acceptor, consistent with substrate-level phosphorylation yielding a significant amount of ATP. Mutant strains lacking ackA and pta were also shown to grow slowly using N-acetylglucosamine as the carbon source and fumarate as the electron acceptor, consistent with some ATP generation deriving from the Entner-Doudoroff pathway with this substrate. A deletion strain lacking the sole F-type ATP synthase (SO4746 to SO4754) demonstrated enhanced growth on N-acetylglucosamine and a minor defect with lactate under anaerobic conditions. ATP synthase mutants grown anaerobically on lactate while expressing proteorhodopsin, a light-dependent proton pump, exhibited restored growth when exposed to light, consistent with a proton-pumping role for ATP synthase under anaerobic conditions. Although S. oneidensis requires external electron acceptors to balance redox reactions and is not fermentative, we find that substrate-level phosphorylation is its primary anaerobic energy conservation strategy. Phenotypic characterization of an ackA deletion in Shewanella sp. strain MR-4 and genomic analysis of other sequenced strains suggest that this strategy is a common feature of Shewanella.

  8. Isolation, growth, and metabolism of an obligately anaerobic, selenate- respiring bacterium, strain SES-3

    USGS Publications Warehouse

    Oremland, R.S.; Blum, J.S.; Culbertson, C.W.; Visscher, P.T.; Miller, L.G.; Dowdle, P.; Strohmaier, F.E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate- grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m- chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.

  9. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3

    PubMed Central

    Oremland, Ronald S.; Blum, Jodi Switzer; Culbertson, Charles W.; Visscher, Pieter T.; Miller, Laurence G.; Dowdle, Phillip; Strohmaier, Frances E.

    1994-01-01

    A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate-grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m-chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions. Images PMID:16349362

  10. Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1.

    PubMed

    Arai, Hiroyuki; Roh, Jung Hyeob; Kaplan, Samuel

    2008-01-01

    Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration

  11. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat.

    PubMed

    Lin, Xueju; Handley, Kim M; Gilbert, Jack A; Kostka, Joel E

    2015-12-01

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  12. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat

    SciTech Connect

    Lin, Xueju; Handley, Kim M.; Gilbert, Jack A.; Kostka, Joel E.

    2015-05-22

    To probe the metabolic potential of abundant Archaea in boreal peats, we reconstructed two near-complete archaeal genomes, affiliated with Thaumarchaeota group 1.1c (bin Fn1, 8% abundance), which was a genomically unrepresented group, and Thermoplasmata (bin Bg1, 26% abundance), from metagenomic data acquired from deep anoxic peat layers. Each of the near-complete genomes encodes the potential to degrade long-chain fatty acids (LCFA) via β-oxidation. Fn1 has the potential to oxidize LCFA either by syntrophic interaction with methanogens or by coupling oxidation with anaerobic respiration using fumarate as a terminal electron acceptor (TEA). Fn1 is the first Thaumarchaeota genome without an identifiable carbon fixation pathway, indicating that this mesophilic phylum encompasses more diverse metabolisms than previously thought. Furthermore, we report genetic evidence suggestive of sulfite and/or organosulfonate reduction by Thermoplasmata Bg1. In deep peat, inorganic TEAs are often depleted to extremely low levels, yet the anaerobic respiration predicted for two abundant archaeal members suggests organic electron acceptors such as fumarate and organosulfonate (enriched in humic substances) may be important for respiration and C mineralization in peatlands.

  13. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment.

  14. Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains

    PubMed Central

    Harrison, Jesse P.; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L.; Cockell, Charles S.

    2015-01-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  15. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. PMID:26354829

  16. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    PubMed

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-01

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division.

  17. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    PubMed

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mônica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-01-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400 mg L(-1) of TVFA) was obtained with 30°C and 3 g L(-1) of sodium bicarbonate. The peak of VFA was in 45 h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53 cm(3) h(-1)). The process was validated experimentally and 3400 g L(-1) of TVFA were obtained with a low relative standard deviation.

  18. Positive regulation of the Shewanella oneidensis OmpS38, a major porin facilitating anaerobic respiration, by Crp and Fur.

    PubMed

    Gao, Tong; Ju, Lili; Yin, Jianhua; Gao, Haichun

    2015-09-18

    Major porins are among the most abundant proteins embedded in the outer membrane (OM) of Gram-negative bacteria, playing crucial roles in maintenance of membrane structural integrity and OM permeability. Although many OM proteins (especially c-type cytochromes) in Shewanella oneidensis, a research model for respiratory versatility, have been extensively studied, physiological significance of major porins remains largely unexplored. In this study, we show that OmpS38 and OmpA are two major porins, neither of which is responsive to changes in osmolarity or contributes to the intrinsic resistance to β-lactam antibiotics. However, OmpS38 but not OmpA is largely involved in respiration of non-oxygen electron acceptors. We then provide evidence that expression of ompS38 is transcribed from two promoters, the major of which is favored under anaerobic conditions while the other appears constitutive. The major promoter is under the direct control of Crp, the master regulator dictating respiration. As a result, the increase in the level of OmpS38 correlates with an elevated activity in Crp under anaerobic conditions. In addition, we show that the activity of the major promoter is also affected by Fur, presumably indirectly, the transcription factor for iron-dependent gene expression.

  19. [Effects of D-arginine on polyamine content and anaerobic respiration metabolism of cucumber seedling roots under hypoxia stress].

    PubMed

    Li, Jing; Hu, Xiao-hui; Guo, Shi-rong; Jia, Yong-xia; Du, Chang-xia

    2007-02-01

    By the method of solution culture, this paper studied the effects of D-arginine on the seedling roots polyamine content and anaerobic respiration metabolism of two cucumber ( Cucumis Sativus L. ) cultivars Zhongnong No. 8 and Lübachun No. 4 differed in hypoxia tolerance. The results showed that under hypoxia stress, the putrescine (Put), spermidine (Spd) and spermine (Spm) contents in the seedling roots of test cultivars increased significantly, and anaerobic respiration accelerated. The ethanol fermentation activity was higher in the seedling roots of hypoxia-tolerant cultivar Lübachun No. 4 than in those of hypoxia-sensitive cultivar Zhongnong No. 8, while lactate fermentation activity had an opposite trend. Comparing with treatment hypoxia, hypoxia plus D -arginine decreased the Put, Spd and Spm contents in roots significantly, enhanced the activities of alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH) and the contents of ethanol and lactate, and inhibited plant growth. Exogenous Put application lessened the effects of D-arginine. Higher level of polyamines in roots could have great benefits for cucumber seedlings to improve their resistance to hypoxia stress.

  20. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    PubMed

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans.

  1. Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings.

    PubMed

    Maltman, Chris; Piercey-Normore, Michele D; Yurkov, Vladimir

    2015-09-01

    The newly discovered strain CM-3, a Gram-negative, rod-shaped bacterium from gold mine tailings of the Central Mine in Nopiming Provincial Park, Canada, is capable of dissimilatory anaerobic reduction of tellurite, tellurate, and selenite. CM-3 possesses very high level resistance to these oxides, both aerobically and anaerobically. During aerobic growth, tellurite and tellurate resistance was up to 1500 and 1000 µg/ml, respectively. In the presence of selenite, growth occurred at the highest concentration tested, 7000 µg/ml. Under anaerobic conditions, resistance was decreased to 800 µg/ml for the Te oxides; however, much like under aerobic conditions, growth with selenite still took place at 7000 µg/ml. In the absence of oxygen, CM-3 couples oxide reduction to an increase in biomass. Following an initial drop in viable cells, due to switching from aerobic to anaerobic conditions, there was an increase in CFU/ml greater than one order of magnitude in the presence of tellurite (6.6 × 10(3)-8.6 × 10(4) CFU/ml), tellurate (4.6 × 10(3)-1.4 × 10(5) CFU/ml), and selenite (2.7 × 10(5)-5.6 × 10(6) CFU/ml). A control culture without metalloid oxides showed a steady decrease in CFU/ml with no recovery. ATP production was also increased in the presence of each oxide, further indicating anaerobic respiration. Partial 16S rRNA gene sequencing revealed a 99.0 % similarity of CM-3 to Pseudomonas reactans. PMID:26254805

  2. The contribution of genes required for anaerobic respiration to the virulence of Salmonella enterica serovar Gallinarum for chickens.

    PubMed

    Paiva, J B; Penha Filho, R A C; Pereira, E A; Lemos, M V F; Barrow, P A; Lovell, M A; Berchieri, A

    2009-10-01

    Salmonella enterica serovar Gallinarum (SG) is an intracellular pathogen of chickens. To survive, to invade and to multiply in the intestinal tract and intracellularly it depends on its ability to produce energy in anaerobic conditions. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. In this study mortality rates of chickens challenged with mutants of Salmonella Gallinarum, which were defective in utilising anaerobic electron acceptors, were assessed in comparison to group of bird challenged with wild strain. The greatest degree of attenuation was observed with mutations affecting nitrate reductase (napA, narG) with additional attenuations induced by a mutation affecting fumarate reductase (frdA) and a double mutant (dmsA torC) affecting DMSO and TMAO reductase.

  3. Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers.

    PubMed Central

    Fry, N K; Fredrickson, J K; Fishbain, S; Wagner, M; Stahl, D A

    1997-01-01

    Microbial communities of two deep (1,270 and 316 m) alkaline (pH 9.94 and 8.05), anaerobic (Eh, -137 and -27 mV) aquifers were characterized by rRNA-based analyses. Both aquifers, the Grande Ronde (GR) and Priest rapids (PR) formations, are located within the Columbia River Basalt Group in south-central Washington, and sulfidogenesis and methanogenesis characterize the GR and PR formations, respectively. RNA was extracted from microorganisms collected from groundwater by ultrafiltration through hollow-fiber membranes and hybridized to taxon-specific oligonucleotide probes. Of the three domains, Bacteria dominated both communities, making up to 92.0 and 64.4% of the total rRNA from the GR and PR formations, respectively. Eucarya comprised 5.7 and 14.4%, and Archaea comprised 1.8% and 2.5%, respectively. The gram-positive target group was found in both aquifers, 11.7% in GR and 7.6% in PR. Two probes were used to target sulfate- and/or metal-reducing bacteria within the delta subclass of Proteobacteria. The Desulfobacter groups was present (0.3%) only in the high-sulfate groundwater (GR). However, comparable hybridization to a probe selective for the desulfovibrios and some metal-reducing bacteria was found in both aquifers, 2.5 and 2.9% from the GR and PR formations, respectively. Selective PCR amplification and sequencing of the desulfovibrio/metal-reducing group revealed a predominance of desulfovibrios in both systems (17 of 20 clones), suggesting that their environmental distribution is not restricted by sulfate availability. PMID:9097447

  4. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter

    SciTech Connect

    Wang, Z.; Banks, C.J.

    2007-07-01

    The research looks at the feasibility of treating an alkaline sulphate-rich leachate arising from the co-disposal of municipal solid waste with cement kiln dust by means of an anaerobic filter (AF). This type of leachate with a high sulphate concentration is commonly prohibited for discharge to sewer and requires an on-site treatment solution. The AF used had a working volume of 4 l and contained reticulated polyurethane foam as the biomass support material. The filters were operated over a 152 day experimental period during which the COD loading onto the filter was increased from 0.76 to 7.63 kg COD m{sup -3} d{sup -1}. In the early stages of operation at low loading, soluble sulphides accumulated that inhibited methanogenic activity. This was restored by dosing FeCl{sub 3} to the reactor. The continued dosing allowed efficient COD removal of between 75% and 90% until the nominal retention time in the reactor was 3 days, at which point reactor performance declined significantly. The main mechanism for COD removal was by sulphate-reducing bacteria, which also resulted in up to 88% sulphate removal from the leachate. The average methane generation rate was 0.10 l g{sup -1} COD removed. The results indicate the potential for using this approach as a pre-treatment that could significantly reduce the COD load to a second stage treatment process, but problems associated with the implementation of the technology at a larger scale have been identified.

  5. Shewanella oneidensis MR-1 mutants selected for their inability to produce soluble organic-Fe(III) complexes are unable to respire Fe(III) as anaerobic electron acceptor.

    PubMed

    Jones, Morris E; Fennessey, Christine M; DiChristina, Thomas J; Taillefert, Martial

    2010-04-01

    Recent voltammetric analyses indicate that Shewanella putrefaciens strain 200 produces soluble organic-Fe(III) complexes during anaerobic respiration of sparingly soluble Fe(III) oxides. Results of the present study expand the range of Shewanella species capable of producing soluble organic-Fe(III) complexes to include Shewanella oneidensis MR-1. Soluble organic-Fe(III) was produced by S. oneidensis cultures incubated anaerobically with Fe(III) oxides, or with Fe(III) oxides and the alternate electron acceptor fumarate, but not in the presence of O(2), nitrate or trimethylamine-N-oxide. Chemical mutagenesis procedures were combined with a novel MicroElectrode Screening Array (MESA) to identify four (designated Sol) mutants with impaired ability to produce soluble organic-Fe(III) during anaerobic respiration of Fe(III) oxides. Two of the Sol mutants were deficient in anaerobic growth on both soluble Fe(III)-citrate and Fe(III) oxide, yet retained the ability to grow on a suite of seven alternate electron acceptors. The rates of soluble organic-Fe(III) production were proportional to the rates of iron reduction by the S. oneidensis wild-type and Sol mutant strains, and all four Sol mutants retained wild-type siderophore production capability. Results of this study indicate that the production of soluble organic-Fe(III) may be an important intermediate step in the anaerobic respiration of both soluble and sparingly soluble forms of Fe(III) by S. oneidensis.

  6. [2, 4, 6-Trichlorophenol Mineralization Promoted by Anaerobic Reductive Dechlorination of Acclimated Sludge and Extracellular Respiration Dechlorination Pathway].

    PubMed

    Song, Jia-xiu; Li, Ling; Sheng, Fan-fan; Guo, Cui-xiang; Zhang, Yong-ming; Li, Zu-yuan; Wang, Tian-li

    2015-10-01

    In anaerobic conditions, the acclimation of activated sludge was studied with sodium lactate as the electron donor and 2,4,6-trichlorophenol as the electron acceptor. Metabolic characteristics of dechlorination were the focus of this study. The result showed highly efficient dechlorination on 2, 4, 6-trichlorophenol that the conversion rate reached to 100% in 9 - 24 h when initial concentrations of sodium lactate and 2,4, 6-trichlorophenol were 20 mmol x L(-1) and 40 - 80 μmol x L(-1), respectively. The intermediate product 2,4-dichlorophenol was found in low concentration (< 4.22 μmol x L(-1)). And 4-chlorophenol and phenol were the main products. Ortho chlorophenol (2, 4, 6-trichlorophenol, 2, 4-dichlorophenol) can be converted rapidly by acclimated sludge, while the further conversion of 4-chlorophenol and phenol was limited. The residues of anaerobic metabolism were degraded by aerobic sludge, among which 4-chlorophenol (initial concentration of 33 mol x L(-1)) removal rate was up to 100% under aerobic conditions. The acclimated bacteria can rapidly transfer Fe(III) and humus (AQDS) into reductive Fe(II) and AQH2DS which indicated that the dissimilatory iron reducing bacteria was enriched in the acclimated sludge. The electron mediator [Fe(III) and AQDS] significantly accelerated the dechlorination rate. The acclimated sludge could perform extracellular respiration dechlorination with electron mediators.

  7. Germination of Echinochloa crus-galli (Barnyard Grass) Seeds under Anaerobic Conditions : Respiration and Response to Metabolic Inhibitors.

    PubMed

    Kennedy, R A; Rumpho, M E; Vanderzee, D

    1983-07-01

    Echinochloa crus-galli L. Beauv., a rice-field weed, can germinate and grow for extended periods of time in an anaerobic environment. Compared to pea, which does not germinate under anaerobiosis, the evolution of CO(2) in Echinochloa and rice is lower and the peak rate of CO(2) evolution is delayed when germinated without oxygen. The plants studied also differ with respect to their respiration ratio ([CO(2)] N(2)/[CO(2)] air) and metabolism used during the early stages of germination. Echinochloa does not increase its glycolytic rate under anaerobiosis, whereas pentose phosphate pathway activity appears to increase during the first 40 to 50 hours of germination.Based on its response to metabolic inhibitors (NaF, dinitrophenol, and malonate), anaerobic metabolism in Echinochloa proceeds primarily through glycolysis, with partial operation of the tricarboxylic acid cycle and little or no oxidative phosphorylation. Also, Echinochloa is sensitive to CN during aerobic germination, whereas rice appears to be able to shift to CN-insensitive electron transport. Finally, the effectiveness of cyanide and azide on inhibiting germination of Echinochloa in N(2), but not CO, suggests that cytochrome oxidase is not used to reoxidize pyridine nucleotides in the absence of oxygen. The possible existence of an alternate electron acceptor is discussed.

  8. [2, 4, 6-Trichlorophenol Mineralization Promoted by Anaerobic Reductive Dechlorination of Acclimated Sludge and Extracellular Respiration Dechlorination Pathway].

    PubMed

    Song, Jia-xiu; Li, Ling; Sheng, Fan-fan; Guo, Cui-xiang; Zhang, Yong-ming; Li, Zu-yuan; Wang, Tian-li

    2015-10-01

    In anaerobic conditions, the acclimation of activated sludge was studied with sodium lactate as the electron donor and 2,4,6-trichlorophenol as the electron acceptor. Metabolic characteristics of dechlorination were the focus of this study. The result showed highly efficient dechlorination on 2, 4, 6-trichlorophenol that the conversion rate reached to 100% in 9 - 24 h when initial concentrations of sodium lactate and 2,4, 6-trichlorophenol were 20 mmol x L(-1) and 40 - 80 μmol x L(-1), respectively. The intermediate product 2,4-dichlorophenol was found in low concentration (< 4.22 μmol x L(-1)). And 4-chlorophenol and phenol were the main products. Ortho chlorophenol (2, 4, 6-trichlorophenol, 2, 4-dichlorophenol) can be converted rapidly by acclimated sludge, while the further conversion of 4-chlorophenol and phenol was limited. The residues of anaerobic metabolism were degraded by aerobic sludge, among which 4-chlorophenol (initial concentration of 33 mol x L(-1)) removal rate was up to 100% under aerobic conditions. The acclimated bacteria can rapidly transfer Fe(III) and humus (AQDS) into reductive Fe(II) and AQH2DS which indicated that the dissimilatory iron reducing bacteria was enriched in the acclimated sludge. The electron mediator [Fe(III) and AQDS] significantly accelerated the dechlorination rate. The acclimated sludge could perform extracellular respiration dechlorination with electron mediators. PMID:26841610

  9. Enhancement of waste activated sludge anaerobic digestion by a novel chemical free acid/alkaline pretreatment using electrolysis.

    PubMed

    Charles, W; Ng, B; Cord-Ruwisch, R; Cheng, L; Ho, G; Kayaalp, A

    2013-01-01

    Anaerobic digestion of waste activated sludge (WAS) is relatively poor due to hydrolysis limitations. Acid and alkaline pretreatments are effective in enhancing hydrolysis leading to higher methane yields. However, chemical costs often prohibit full-scale application. In this study, 12 V two-chamber electrolysis using an anion exchange membrane alters sludge pH without chemical dosing. pH dropped from 6.9 to 2.5 in the anode chamber and increased to 10.1 in the cathode chamber within 15 h. The volatile suspended solids solubilisation of WAS was 31.1% in the anode chamber and 34.0% in the cathode chamber. As a result, dissolved chemical oxygen demand increased from 164 to 1,787 mg/L and 1,256 mg/L in the anode and cathode chambers, respectively. Remixing of sludge from the two chambers brought the pH back to 6.5, hence no chemical neutralisation was required prior to anaerobic digestion. Methane yield during anaerobic digestion at 20 d retention time was 31% higher than that of untreated sludge. An energy balance assessment indicated that the non-optimised process could approximately recover the energy (electricity) expended in the electrolysis process. With suitable optimisation of treatment time and voltages, significant energy savings would be expected in addition to the benefit of decreased sludge volume.

  10. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  11. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.

  12. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  13. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins.

    PubMed

    Phillips, Nancy J; Steichen, Christopher T; Schilling, Birgit; Post, Deborah M B; Niles, Richard K; Bair, Thomas B; Falsetta, Megan L; Apicella, Michael A; Gibson, Bradford W

    2012-01-01

    Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC) to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13)C(6)-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H) planktonic and light (L) biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not explicitly related

  14. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    NASA Astrophysics Data System (ADS)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  15. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities.

  16. Systematic genomic analysis reveals the complementary aerobic and anaerobic respiration capacities of the human gut microbiota.

    PubMed

    Ravcheev, Dmitry A; Thiele, Ines

    2014-01-01

    Because of the specific anatomical and physiological properties of the human intestine, a specific oxygen gradient builds up within this organ that influences the intestinal microbiota. The intestinal microbiome has been intensively studied in recent years, and certain respiratory substrates used by gut inhabiting microbes have been shown to play a crucial role in human health. Unfortunately, a systematic analysis has not been previously performed to determine the respiratory capabilities of human gut microbes (HGM). Here, we analyzed the distribution of aerobic and anaerobic respiratory reductases in 254 HGM genomes. In addition to the annotation of known enzymes, we also predicted a novel microaerobic reductase and novel thiosulfate reductase. Based on this comprehensive assessment of respiratory reductases in the HGM, we proposed a number of exchange pathways among different bacteria involved in the reduction of various nitrogen oxides. The results significantly expanded our knowledge of HGM metabolism and interactions in bacterial communities. PMID:25538694

  17. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis.

    PubMed

    Gao, Haichun; Wang, Xiaohu; Yang, Zamin K; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-12-28

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  18. Physiological roles of ArcA, Crp, and EtrA and their interactive control on aerobic and anaerobic respiration in Shewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Xiaohu; Chen, Jingrong; Liang, Yili; Chen, Haijiang; Palzkill, Timothy; Zhou, Jizhong

    2010-01-01

    In the genome of Shewanella oneidensis, genes encoding the global regulators ArcA, Crp, and EtrA have been identified. All these proteins deviate from their counterparts in E. coli significantly in terms of functionality and regulon. It is worth investigating the involvement and relationship of these global regulators in aerobic and anaerobic respiration in S. oneidensis. In this study, the impact of the transcriptional factors ArcA, Crp, and EtrA on aerobic and anaerobic respiration in S. oneidensis were assessed. While all these proteins appeared to be functional in vivo, the importance of individual proteins in these two major biological processes differed. The ArcA transcriptional factor was critical in aerobic respiration while the Crp protein was indispensible in anaerobic respiration. Using a newly developed reporter system, it was found that expression of arcA and etrA was not influenced by growth conditions but transcription of crp was induced by removal of oxygen. An analysis of the impact of each protein on transcription of the others revealed that Crp expression was independent of the other factors whereas ArcA repressed both etrA and its own transcription while EtrA also repressed arcA transcription. Transcriptional levels of arcA in the wild type, crp, and etrA strains under either aerobic or anaerobic conditions were further validated by quantitative immunoblotting with a polyclonal antibody against ArcA. This extensive survey demonstrated that all these three global regulators are functional in S. oneidensis. In addition, the reporter system constructed in this study will facilitate in vivo transcriptional analysis of targeted promoters.

  19. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  20. Production of Submicron-Sized Elemental Selenium Spheres by Anaerobic Bacteria that Respire Oxyanions of Selenium

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Herbel, M. J.; Switzer Blum, J.; Oscarson, R.

    2002-12-01

    Since the phenomenon of dissimilatory selenate reduction (DSeR) was first reported in (Macy et al., 1989; Oremland et al., 1989) at least 13 phylogenetically and physiologically diverse species of prokaryotes have been isolated from both the Bacterial and Archaeal domains that are capable of growth via DSeR. These microbes link the oxidation of various electron donors (e.g, lactate, acetate, hydrogen) to the terminal electron acceptors selenate, or in some cases selenite. The reduction product is amorphous, elemental selenium [Se(0)] that accumulates in large quantities in the medium as a bright orange-red precipitate. It was not clear to us how this precipitate was first formed on the cell surface. We first noted the accumulation of sub-micron sized spheres of Se(0) on the surface of Bacillus selenitireducens (Switzer Blum et al., 1998) grown on selenite. Here we report that this phenomenon occurs in at least 3 other species, including another haloalkaliphile B. arsenicoselenatis, the moderate halophile Selenihalanaerobacter shriftii, and the fresh water isolate Sulfurosprillum barnseii. Cell suspensions of all four species examined by scanning electron microscopy were noted to form spheres of Se(0) on their surfaces that sometimes accumulated in clusters. In general, the diameter of these spheres uniformly ranged in size between 100 - 200 nm. These results imply that most, if not all species of prokaryotes that respire via DSeR form these spheres. Although Se(0) spheres have not been as yet looked for as in anoxic sediments via imaging techniques, we would predict that they occur therein. Moreover, the emerging field of nanotechnology could find some application for uniformly-sized spheres of these dimensions because Se(0) is both a semiconductor and photoconductor. Macy et al. 1989, FEMS Microbiol. Lett. 61: 195 - 198. Oremland et al., 1989. Appl. Environ. Microbiol. 55: 2333 - 2343. Switzer Blum et al., 1998. Arch. Microbiol. 171: 19 - 30.

  1. Dissimilatory Reduction of Elemental Selenium to Selenide in Sediments and Anaerobic Cultures of Selenium Respiring Bacteria

    NASA Astrophysics Data System (ADS)

    Herbel, M. J.; Switzer-Blum, J.; Oremland, R. S.

    2001-12-01

    Selenium contaminated environments often contain elemental Se (Se0) in their sediments that originates from dissimilatory reduction of Se oxyanions. The forms of Se in sedimentary rocks similarly contain high proportions of Se0, but much of the Se is also in the form of metal selenides, Se-2. It is not clear if the occurrence of these selenides is due to microbial reduction of Se0, or some other biological or chemical process. In this investigation we examined the possibility that bacterial respiratory reduction of Se0 to Se-2 could explain the presence of the latter species in sedimentary rocks. We conducted incubations of anoxic sediment slurries amended with different forms of Se0. High levels of Se0 (mM) were added to San Francisco Bay sediments in order to enhance the detection of soluble HSe-, which was precipitated with Cu2+ then redissolved and quantified by ICP-MS. Concentrations of HSe- were highest in live samples amended with red amorphous Se0 formed by either microbial reduction of Se+4 ("biogenic Se0") or by chemical oxidation of H2Se(g) ("chem. Se0"); very little HSe- was formed in those amended with black crystalline Se0, indicating the general lack of reactivity of this allotrope. Controls poisoned with 10% formalin did not produce HSe- from additions of chem. Se0. Reduction of both forms of red amorphous Se0 to HSe- occurred vigorously in growing cultures of Bacillus selenitireducens, an anaerobic halophile previously isolated from sediments of Mono Lake, CA. Up to 73% and 68% of red amorphous, biogenic Se0 or chem. Se0, respectively, was reduced to HSe- during growth of B. selenitireducens, (incubation time ~ 200 hrs): oxidation of lactate to acetate as well as cell density increases indicated that a dissimilatory reduction pathway was likely. Reduction was most enhanced when cells were previously grown on elemental sulfur or Se+4. In contrast to the growth experiments, washed cell suspensions of B. selenitireducens exhibited no HSe- production

  2. Effect of thermal-alkaline pretreatment on the anaerobic digestion of streptomycin bacterial residues for methane production.

    PubMed

    Zhong, Weizhang; Li, Zaixing; Yang, Jingliang; Liu, Chun; Tian, Baokuo; Wang, Yongjun; Chen, Ping

    2014-01-01

    The anaerobic digestion of streptomycin bacterial residues, solutions with hazardous waste treatments and bioenergy recovery, was tested in laboratory-scale digesters at 35°C at various organic loading rates (OLRs). The methane production and biomass digestion were efficient at OLRs below 2.33 gVS L(-1) d(-1) but were deteriorated as OLR increased because of the increased total ammonia nitrogen (TAN) concentration from cell protein decay. The thermal-alkaline pretreatment with 0.10 NaOH/TS at 70°C for 2 h significantly improved the digestion performance. With the thermal-alkaline pretreatment, the volumetric reactor productivity and specific methane yield of the pretreated streptomycin bacterial residue increased by 22.08-27.08% compared with those of the unpretreated streptomycin bacterial residue at an OLR of 2.33 gVS L(-1) d(-1). The volatile solid removal was 64.09%, with less accumulation of TAN and total volatile fatty acid.

  3. Anaerobic respiration and antioxidant responses of Corythucha ciliata (Say) adults to heat-induced oxidative stress under laboratory and field conditions.

    PubMed

    Ju, Rui-Ting; Wei, He-Ping; Wang, Feng; Zhou, Xu-Hui; Li, Bo

    2014-03-01

    High temperature often induces oxidative stress and antioxidant response in insects. This phenomenon has been well documented under controlled laboratory conditions, but whether it happens under fluctuating field conditions is largely unknown. In this study, we used an invasive lace bug (Corythucha ciliata) as a model species to compare the effects of controlled thermal treatments (2 h at 33-43 °C with 2 °C intervals in the laboratory) and naturally fluctuating thermal conditions (08:00-14:00 at 2-h intervals (29.7-37.2 °C) on a hot summer day in a field in Shanghai, China) on lipid peroxidation (malondialdehyde (MDA) was the marker) and anaerobic respiration (lactate dehydrogenase (LDH) was the marker), as well as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione reductase (GR). The results show that MDA concentration increased significantly in response to heat stresses with similar trend in the laboratory and field. LDH activities did not significantly vary across temperatures in the laboratory-exposed individuals, but they significantly increased by rising temperature in the field. The activities or concentrations of SOD, CAT, GSH, and GR all significantly increased with increasing temperature in the two populations. These findings indicate that high temperature induces oxidative stress, resulting in high anaerobic respiration and antioxidant defenses in C. ciliata under both the laboratory and field conditions, which likely provide a defense mechanism against oxidative damage due to the accumulation of ROS.

  4. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process.

  5. Generation of High Current Densities by Pure Cultures of Anode-Respiring Geoalkalibacter spp. under Alkaline and Saline Conditions in Microbial Electrochemical Cells

    PubMed Central

    Badalamenti, Jonathan P.; Krajmalnik-Brown, Rosa; Torres, César I.

    2013-01-01

    ABSTRACT Anode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity of Geobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for the Geobacteraceae family of the Deltaproteobacteria. Here we report high current densities generated by haloalkaliphilic Geoalkalibacter spp., thus broadening the capability for high anode respiration rates by including other genera within the Geobacteraceae. In this study, acetate-fed pure cultures of two related Geoalkalibacter spp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m−2 under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilic Glk. subterraneus DSM 23483 and alkaliphilic Glk. ferrihydriticus DSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles. Glk. ferrihydriticus also oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m−2 and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiring Gb. sulfurreducens biofilms producing similar current densities (~5 to 9 A m−2). PMID:23631915

  6. Respiration and respiratory enzyme activity in aerobic and anaerobic cultures of the marine denitrifying bacterium, Pseudomonas perfectomarinus

    NASA Astrophysics Data System (ADS)

    Packard, T. T.; Garfield, P. C.; Martinez, R.

    1983-03-01

    Oxygen consumption, nitrate reduction, respiratory electron transport activity, and nitrate reductase activity were measured in aerobic and anaerobic cultures of the marine bacterium, Pseudomonas perfectomarinus. The respiratory electron transport activity was closely correlated with oxygen consumption ( r = 0.98) in aerobic cultures and nearly as well correlated with nitrate reductase activity ( r = 0.91) and nitrate reduction ( r = 0.85) in anaerobic cultures. It was also well correlated with biomass in both aerobic ( r = 0.99) and anaerobic ( r = 0.94) cultures supporting the use of tetrazolium reduction as an index of living biomass. Time courses of nitrate and nitrate in the anaerobic cultures demonstrated that at nitrate concentrations above 1 mM, denitrification proceeds stepwise. Time courses of pH in anaerobic cultures revealed a rise from 7 to 8.5 during nitrite reduction indicating net proton utilization. This proton utilization is predicted by the stoichiometry of denitrification. Although the experiments were not under 'simulated in situ' conditions, the results are relevant to studies of denitrification, to bacterial ATP production, and to the respiratory activity of marine plankton in the ocean.

  7. Comparative Genomics Analysis and Phenotypic Characterization of Shewanella putrefaciens W3-18-1: Anaerobic Respiration, Bacterial Microcompartments, and Lateral Flagella

    SciTech Connect

    Qiu, D.; Tu, Q.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Respiratory versatility and psychrophily are the hallmarks of Shewanella. The ability to utilize a wide range of electron acceptors for respiration is due to the large number of c-type cytochrome genes present in the genome of Shewanella strains. More recently the dissimilatory metal reduction of Shewanella species has been extensively and intensively studied for potential applications in the bioremediation of radioactive wastes of groundwater and subsurface environments. Multiple Shewanella genome sequences are now available in the public databases (Fredrickson et al., 2008). Most of the sequenced Shewanella strains were isolated from marine environments and this genus was believed to be of marine origin (Hau and Gralnick, 2007). However, the well-characterized model strain, S. oneidensis MR-1, was isolated from the freshwater lake sediment of Lake Oneida, New York (Myers and Nealson, 1988) and similar bacteria have also been isolated from other freshwater environments (Venkateswaran et al., 1999). Here we comparatively analyzed the genome sequence and physiological characteristics of S. putrefaciens W3-18-1 and S. oneidensis MR-1, isolated from the marine and freshwater lake sediments, respectively. The anaerobic respirations, carbon source utilization, and cell motility have been experimentally investigated. Large scale horizontal gene transfers have been revealed and the genetic divergence between these two strains was considered to be critical to the bacterial adaptation to specific habitats, freshwater or marine sediments.

  8. Asparagus stem as a new lignocellulosic biomass feedstock for anaerobic digestion: increasing hydrolysis rate, methane production and biodegradability by alkaline pretreatment.

    PubMed

    Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei

    2014-07-01

    Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem.

  9. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.

    PubMed

    Schwalb, Carsten; Chapman, Stephen K; Reid, Graeme A

    2003-08-12

    The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.

  10. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.

    PubMed

    Taillefert, Martial; Beckler, Jordon S; Carey, Elizabeth; Burns, Justin L; Fennessey, Christine M; DiChristina, Thomas J

    2007-11-01

    The mechanism of Fe(III) reduction was investigated using voltammetric techniques in anaerobic incubations of Shewanella putrefaciens strain 200 supplemented with Fe(III) citrate or a suite of Fe(III) oxides as terminal electron acceptor. Results indicate that organic complexes of Fe(III) are produced during the reduction of Fe(III) at rates that correlate with the reactivity of the Fe(III) phase and bacterial cell density. Anaerobic Fe(III) solubilization activity is detected with either Fe(III) oxides or Fe(III) citrate, suggesting that the organic ligand produced is strong enough to destabilize Fe(III) from soluble or solid Fe(III) substrates. Results also demonstrate that Fe(III) oxide dissolution is not controlled by the intrinsic chemical reactivity of the Fe(III) oxides. Instead, the chemical reaction between the endogenous organic ligand is only affected by the number of reactive surface sites available to S. putrefaciens. This report describes the first application of voltammetric techniques to demonstrate production of soluble organic-Fe(III) complexes by any Fe(III)-reducing microorganism and is the first report of a Fe(III)-solubilizing ligand generated by a metal-reducing member of the genus Shewanella.

  11. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism.

    PubMed

    Weigel, W A; Demuth, D R; Torres-Escobar, A; Juárez-Rodríguez, M D

    2015-10-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment.

  12. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    PubMed Central

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  13. Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2.

    PubMed

    Burns, Justin L; DiChristina, Thomas J

    2009-08-01

    Shewanella oneidensis MR-1, a facultatively anaerobic gammaproteobacterium, respires a variety of anaerobic terminal electron acceptors, including the inorganic sulfur compounds sulfite (SO3(2-)), thiosulfate (S2O3(2-)), tetrathionate (S4O6(2-)), and elemental sulfur (S(0)). The molecular mechanism of anaerobic respiration of inorganic sulfur compounds by S. oneidensis, however, is poorly understood. In the present study, we identified a three-gene cluster in the S. oneidensis genome whose translated products displayed 59 to 73% amino acid similarity to the products of phsABC, a gene cluster required for S(0) and S2O3(2-) respiration by Salmonella enterica serovar Typhimurium LT2. Homologs of phsA (annotated as psrA) were identified in the genomes of Shewanella strains that reduce S(0) and S2O3(2-) yet were missing from the genomes of Shewanella strains unable to reduce these electron acceptors. A new suicide vector was constructed and used to generate a markerless, in-frame deletion of psrA, the gene encoding the putative thiosulfate reductase. The psrA deletion mutant (PSRA1) retained expression of downstream genes psrB and psrC but was unable to respire S(0) or S2O3(2-) as the terminal electron acceptor. Based on these results, we postulate that PsrA functions as the main subunit of the S. oneidensis S2O3(2-) terminal reductase whose end products (sulfide [HS-] or SO3(2-)) participate in an intraspecies sulfur cycle that drives S(0) respiration.

  14. The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken.

    PubMed

    Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret

    2015-10-01

    The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca.

  15. The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken.

    PubMed

    Barrow, Paul Andrew; Berchieri, Angelo; Freitas Neto, Oliveiro Caetano de; Lovell, Margaret

    2015-10-01

    The basic mechanism whereby Salmonella serovars colonize the chicken intestine remains poorly understood. Previous studies have indicated that proton-translocating proteins utilizing oxygen as terminal electron acceptor do not appear to be of major importance in the gut of the newly hatched chicken and consequently they would be even less significant during intestinal colonization of more mature chickens where the complex gut microflora would trap most of the oxygen in the lumen. Consequently, alternative electron acceptors may be more significant or, in their absence, substrate-level phosphorylation may also be important to Salmonella serovars in this environment. To investigate this we constructed mutants of Salmonella enterica serovar Typhimurium defective in various aspects of oxidative or substrate-level phosphorylation to assess their role in colonization of the chicken intestine, assessed through faecal shedding, and virulence. Mutations affecting use of oxygen or alternative electron acceptors did not eliminate faecal shedding. By contrast mutations in either pta (phosphotransacetylase) or ackA (acetate kinase) abolished shedding. The pta but not the ackA mutation also abolished systemic virulence for chickens. An additional ldhA (lactate dehydrogenase) mutant also showed poor colonizing ability. We hypothesise that substrate-level phosphorylation may be more important than respiration using oxygen or alternative electron acceptors for colonization of the chicken caeca. PMID:26443064

  16. Effects of the anaerobic respiration of Shewanella oneidensis MR-1 on the stability of extracellular U(VI) nanofibers.

    PubMed

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO(3)·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes.

  17. Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment.

    PubMed

    Takahashi, Eiji; Sato, Michihiko

    2014-02-15

    To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500-2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.

  18. Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite.

    PubMed

    Barth, Kenneth; Clark, Virginia L

    2008-08-01

    Neisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule. Laboratory strain F62 has been shown to establish and maintain a NO steady-state level that is a function of the nitrite reductase/NO reductase ratio and is independent of cell number. The nitrite reductase activities (122-197 nmol NO2 reduced x min(-1) x OD600(-1)) and NO reductase activities (88-155 nmol NO reduced x min(-1) x OD600(-1)) in a variety of gonococcal clinical isolates were similar to the specific activities seen in F62 (241 nmol NO2 reduced x min(-1) x OD600(-1) and 88 nmol NO reduced x min(-1) x OD600(-1), respectively). In seven gonococcal strains, the NO steady-state levels established in the presence of nitrite were similar to that of F62 (801-2121 nmol x L-1 NO), while six of the strains, identified as arginine, hypoxanthine, and uracil auxotrophs (AHU), that cause asymptomatic infection in men had either two- to threefold (373-579 nmol x L-1 NO) or about 100-fold (13-24 nmol x L-1 NO) lower NO steady-state concentrations. All tested strains in the presence of a NO donor, 2,2'-(hydroxynitrosohydrazono)bis-ethanimine/NO, quickly lowered and maintained NO levels in the noninflammatory range of NO (<300 nmol x L-1). The generation of a NO steady-state concentration was directly affected by alterations in respiratory control in both F62 and an AHU strain, although differences in membrane function are suspected to be responsible for NO steady-state level differences in AHU strains.

  19. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye.

    PubMed

    Işik, Mustafa; Sponza, Delia Teresa

    2005-03-01

    The effect of substrate (glucose) concentrations and alkalinitiy (NaHCO3) on the decolorization of a synthetic wastewater containing Congo Red (CR) azo dye was performed in an upflow anaerobic sludge blanket (UASB). Color removal efficiencies approaching 100% were obtained at glucose-COD concentrations varying between 0 and 3000 mg/l. The methane production rate and total aromatic amine (TAA) removal efficiencies were found to be 120 ml per day and 43%, respectively, while the color was completely removed during glucose-COD free operation of the UASB reactor. The complete decolorization of CR dye under co-substrate free operation could be attributed to TAA metabolism which may provide the electrons required for the cleavage of azo bond in CR dye exist in the UASB reactor. No significant differences in pH levels (6.6-7.4), methane production rates (2000-2700 ml/day) and COD removal efficiencies (82-90%) were obtained for NAHCO3 concentrations ranging between 550 and 3000 mg/l. However, decolorization efficiency remained at 100% with decreasing NaHCO3 concentrations as low as 250 mg/l in the feed. An alkalinity/COD ratio of 0.163 in the feed was suggested for simultaneous optimum COD and color removal. PMID:15501672

  20. Arsenic, Anaerobes, and Autotrophy.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.

    2008-12-01

    That microbes have resistance to the toxic arsenic oxyanions arsenite [As(III)] and arsenate [As(V)] has been recognized for some time. More recently it was shown that certain prokaryotes can demonstrate As- dependent growth by conserving the energy gained from the aerobic oxidation of As(III) to As(V), or from the reduction of As(V) to As(III) under anaerobic conditions. During the course of our field studies of two alkaline, hypersaline soda lakes (Mono Lake and Searles Lake, CA) we have discovered several new anaerobic chemo- and photo-autotrophic bacteria that can center their energy gain around the redox reactions between As(III) and As(V). Alkalilimnicola ehrlichii, isolated from the water column of Mono Lake is a nitrate-respiring, As(III)-oxidizing chemoautotroph of the gamma-proteobacteria that has a highly flexible metabolism. It can function either as a facultative anaerobe or as a chemo-autotroph, or as a heterotroph (Hoeft et al., 2007). In contrast, strain MLMS-1 of the delta-proteobacteria was also isolated from Mono Lake, but to date is the first example of an obligate As(V)-respirer that is also an obligate chemo-autotroph, gaining its energy via the oxidation of sulfide to sulfate (Hoeft et al., 2004). Strain SLAS-1, isolated from salt-saturated Searles Lake is a member of the Halananerobiales, and can either grow as a heterotroph (lactate e-donor) or chemo- autotroph (sulfide e-donor) while respiring As(V). The fact that it can achieve this feat at salt-saturation (~ 340 g/L) makes it a true extremophile (Oremland et. al., 2005). Finally, strain PHS-1 isolated from a hot spring on Paoha island in Mono Lake is the first example of a photosynthetic bacterium of the gamma- proteobacteria able to link its growth to As(III)-dependent anoxygenic photosynthesis (Kulp et al., 2008). These novel microbes give us new insights into the evolution of arsenic-based metabolism and their role in the biogeochemical cycling of this toxic element. Hoeft, S.E., et

  1. Availability of Fe(III) for Anaerobic Respiration across an Age Gradient of Drained Thaw Lake Basins in the Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Raab, T. K.; Bozzolo, F.; Emerson, C.; Hale, I.; Mauritz, M.; Miller, K.

    2010-12-01

    Our previous work demonstrated that Fe(III) reduction is an important respiratory pathway in a drained thaw lake basin (DTLB) of the Arctic coastal plain in northern Alaska (Lipson et al. 2010). When Fe(III) is available in anoxic environments that otherwise lack electron acceptors, it can act as a terminal electron acceptor, allowing anaerobic respiration to occur in favor of methanogenesis. Therefore, Fe(III) availability could be a key control over CO2 and CH4 emission from such ecosystems. Our previous work focused on a DTLB of medium age (50-300 years old). As DTLB’s age, the organic layer thickens, eventually to the point where the underlying mineral layers are buried completely in permafrost. The mineral layers are likely to be the source for the majority of Fe available for redox transformations by soil microbes. We therefore hypothesized that older basins with permanently frozen mineral layers would have lower Fe(III) availability than younger basins with active layers that include mineral material. To test this hypothesis we studied a gradient that comprised four DTLB, including young (<50 y), medium (50-300 y), old (300-2000 y) and ancient (2000-5500 y). We compared extractable Fe minerals in depth profiles from each DTLB, soluble Fe species in soil pore water, and other properties of soils and soil water. As expected, the youngest DTLB had the thinnest organic layer, a shallow mineral layer, and hence the largest total amount of HCl-extractable Fe(III) in the upper 25 cm. The medium DTLB had the lowest amounts of extractable Fe(III), while the old and ancient basins had intermediate amounts of extractable Fe(III). The amount of total Fe(III) present was related to the amount of mineral material found in the profile; the larger amounts in the old and ancient site relative to the medium site could be explained by cryoturbation, a process which mixes organic and mineral layers in older gelisols. S and Mn followed the same trends, but were orders of

  2. Anaerobic treatment

    SciTech Connect

    Witt, E.R.; Humphrey, W.J.; Cave, J.P.

    1982-12-28

    This invention provides for the anaerobic treatment of acidic petrochemical wastes in an anaerobic filter at high loadings and high recycle rates. The effluent from the top of the filter passes into a gas-disengaging/solids-settling zone containing a quiescent body of the effluent liquid. The settled solids are withdrawn and recycled to the base of the filter together with fresh acidic waste and an inorganic alkaline material (preferably magnesium oxide or carbonate) to maintain a neutral pH. The liquid portion of the effluent is sent to an aerobic digester to remove the rest of the organic material, which is used to support the growth of bacteria and fed back to the anaerobic system.

  3. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  4. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  5. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J. R.

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  6. Interactions of Cd and Cu in anaerobic estuarine sediments. 2: Bioavailability, body burdens and respiration effects as related to geochemical partitioning

    SciTech Connect

    Rule, J.H.; Alden, R.W. III

    1996-04-01

    The relationship between Cd and Cu distribution in sediment geochemical fractions and their bioavailability was studied. A fine-sandy textured estuarine sediment was treated with all combinations of 0, 2.5, and 5 mg/kg Cd and 0, 12, and 25 mg/kg Cu using the chloride salts of each metal. Grass shrimp (Palaemonetes pugio), blue mussel (Mytilus edulis), and hard clam (Mercenaria mercenaria) were exposed to the treated sediments in aquaria with 20 ppt artificial seawater for 14 d. Sediments were sequentially extracted before and after organism exposure to determine the exchangeable, easily reducible, organic-sulfide, moderately reducible, and acid extractable phases. Low mortalities were observed for all organism types and none were attributable to any of the treatments. The Cd and Cu concentrations in the easily reducible and organic-sulfide phases were found to be significantly related to the bioavailability of these metals. The most highly significant relationship was established between Cd in the easily reducible phase and body burden of Cd in the blue mussel. Notable interactions were found between Cd and Cu in some of the geochemical phases, body burdens, and respiration rates. Metal uptake, respiration, and interactions were highly dependent on the test species. A significant correlation was found between increased body burden and depressed respiration for Cd but not for Cu. Multiple regression models are used to describe these relationships. It appears that the interactive responses in the organisms are driven primarily by the sediment geochemical effects and mediated by individual organism processes. These results underscore the necessity of multicomponent (multielement) studies in assessing the fate and effects of toxic elements in the environment.

  7. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration

    USGS Publications Warehouse

    Oremland, Ronald S.; Hollibaugh, James T.; Maest, Ann S.; Presser, Theresa S.; Miller, Laurence G.; Culbertson, Charles W.

    1989-01-01

    Interstitial water profiles of SeO42−, SeO32−, SO42−, and Cl− in anoxic sediments indicated removal of the seleno-oxyanions by a near-surface process unrelated to sulfate reduction. In sediment slurry experiments, a complete reductive removal of SeO42− occurred under anaerobic conditions, was more rapid with H2 or acetate, and was inhibited by O2, NO3−, MnO2, or autoclaving but not by SO42− or FeOOH. Oxidation of acetate in sediments could be coupled to selenate but not to molybdate. Reduction of selenate to elemental selenium was determined to be the mechanism for loss from solution. Selenate reduction was inhibited by tungstate and chromate but not by molybdate. A small quantity of the elemental selenium precipitated into sediments from solution could be resolublized by oxidation with either nitrate or FeOOH, but not with MnO2. A bacterium isolated from estuarine sediments demonstrated selenate-dependent growth on acetate, forming elemental selenium and carbon dioxide as respiratory end products. These results indicate that dissimilatory selenate reduction to elemental selenium is the major sink for selenium oxyanions in anoxic sediments. In addition, they suggest application as a treatment process for removing selenium oxyanions from wastewaters and also offer an explanation for the presence of selenite in oxic waters.

  8. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2015-01-01

    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion.

  9. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pre-treatments on anaerobic digestion of Ulva rigida for biogas production.

    PubMed

    Karray, Raida; Hamza, Manel; Sayadi, Sami

    2015-01-01

    Pre-treatment of macroalgae has received considerable research globally due to its influence on the technical, economic and environmental sustainability of algae biogas production. Some of the most promising pre-treatment methods require the application of chemicals, enzymatic, and mechanical. This study focused on these pre-treatments of Ulva rigida for biogas production. The evaluation of different pre-treatment in terms of reducing sugar yields demonstrates that 3.62, 2.88, 2.53 and 7.3g/L of reducing sugar was obtained in acid catalysis, thermoalkaline, ultrasonication and enzymatic pre-treatment, respectively. However in crude macroalgae only 0.6g/L of reducing sugar was given. After anaerobic digestion, the enzymatic hydrolysis was demonstrated the best biogas yield than other pre-treatment which reached 626.5mL/gCODint with 62.65% of biodegradability. The best demonstrated method which uses crude broth of Aspergillus niger showed an effective and environmentally friendly strategy for enhancing the biogas production yields after the anaerobic digestion. PMID:25855526

  10. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9.

  11. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi.

    PubMed

    Löffler, Frank E; Yan, Jun; Ritalahti, Kirsti M; Adrian, Lorenz; Edwards, Elizabeth A; Konstantinidis, Konstantinos T; Müller, Jochen A; Fullerton, Heather; Zinder, Stephen H; Spormann, Alfred M

    2013-02-01

    Six obligately anaerobic bacterial isolates (195(T), CBDB1, BAV1, VS, FL2 and GT) with strictly organohalide-respiring metabolisms were obtained from chlorinated solvent-contaminated aquifers, contaminated and uncontaminated river sediments or anoxic digester sludge. Cells were non-motile with a disc-shaped morphology, 0.3-1 µm in diameter and 0.1-0.2 µm thick, and characteristic indentations on opposite flat sides of the cell. Growth occurred in completely synthetic, reduced medium amended with a haloorganic electron acceptor (mostly chlorinated but also some brominated compounds), hydrogen as electron donor, acetate as carbon source, and vitamins. No other growth-supporting redox couples were identified. Aqueous hydrogen consumption threshold concentrations were <1 nM. Growth ceased when vitamin B(12) was omitted from the medium. Addition of sterile cell-free supernatant of Dehalococcoides-containing enrichment cultures enhanced dechlorination and growth of strains 195 and FL2, suggesting the existence of so-far unidentified stimulants. Dechlorination occurred between pH 6.5 and 8.0 and over a temperature range of 15-35 °C, with an optimum growth temperature between 25 and 30 °C. The major phospholipid fatty acids were 14 : 0 (15.7 mol%), br15 : 0 (6.2 mol%), 16 : 0 (22.7 mol%), 10-methyl 16 : 0 (25.8 mol%) and 18 : 0 (16.6 mol%). Unusual furan fatty acids including 9-(5-pentyl-2-furyl)-nonanoate and 8-(5-hexyl-2-furyl)-octanoate were detected in strains FL2, BAV1 and GT, but not in strains 195(T) and CBDB1. The 16S rRNA gene sequences of the six isolates shared more than 98 % identity, and phylogenetic analysis revealed an affiliation with the phylum Chloroflexi and more than 10 % sequence divergence from other described isolates. The genome sizes and G+C contents ranged from 1.34 to 1.47 Mbp and 47 to 48.9 mol% G+C, respectively. Based on 16S rRNA gene sequence comparisons, genome-wide average nucleotide identity and phenotypic

  12. Waiting to inhale: HIF-1 modulates aerobic respiration.

    PubMed

    Boutin, Adam T; Johnson, Randall S

    2007-04-01

    The hypoxia-inducible factor HIF-1 is known to promote anaerobic respiration during low oxygen conditions (hypoxia). In this issue, Fukuda et al. (2007) expand the range of HIF-1's functions by showing that it modulates aerobic respiration as well.

  13. BACTERIAL RESPIRATION OF ARSENIC AND SELENIUM. (R826105)

    EPA Science Inventory

    Abstract

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichme...

  14. Anaerobic bacteria

    MedlinePlus

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these ... Goldstein EJ. Diseases caused by non-spore forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman's ...

  15. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well. PMID:26820263

  16. Nosepiece respiration monitor

    NASA Technical Reports Server (NTRS)

    Lavery, A. L.; Long, L. E.; Rice, N. E.

    1968-01-01

    Comfortable, inexpensive nosepiece respiration monitor produces rapid response signals to most conventional high impedance medical signal conditioners. The monitor measures respiration in a manner that produces a large signal with minimum delay.

  17. Chemoautotrophic production and respiration in the hyporheic zone of a sonoran desert stream

    SciTech Connect

    Jones, J.B. Jr.; Holmes, R.M.; Fisher, S.G.; Grimm, N.B.

    1994-12-31

    Chemoautotrophic production and respiration (aerobic and anaerobic) were examined along flowpaths in three subsystems in Sycamore Creek, Arizona. Chemoautotrophic production was highest where surface waters enter parafluvial sediments (64 to 76 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}) and lowest in anoxic bank sediments (14 to 16 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Aerobic respiration was considerable greater than chemoautotrophy in oxygenated hyporheic and parafluvial zones (2,400 to 4,900 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). In anoxic bank sediments, respiration was also much greater than chemoautotrophy, but was entirely anaerobic (i.e., methane production; 3,500 mgC{center_dot}m{sup {minus}2}{center_dot}d{sup {minus}1}). Weighting subsystems by areal extent, the largest proportion of aerobic respiration and chemoautotrophic production occurred in parafluvial sediments (64 to 76%), whereas anoxic bank sediments were most important for anaerobic respiration (94% of total anaerobic respiration). Overall, chemoautotrophic production was only 1.0 to 1.3% of respiration and methane production was only 5% of total sediment respiration.

  18. Anaerobic Process.

    PubMed

    Yang, Qian; Ju, Mei-Ting; Li, Wei-Zun; Liu, Le; Wang, Yan-Nan; Chang, Chein-Chi

    2016-10-01

    A review of the literature published in 2015 on the focus of Anaerobic Process. It is divided into the following sections. Pretreatment Organic waste Multiple-stage co-digestion Process Methodology and Technology. PMID:27620085

  19. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  20. Structure, Growth, and Decomposition of Laminated Algal-Bacterial Mats in Alkaline Hot Springs

    PubMed Central

    Doemel, W. N.; Brock, Thomas D.

    1977-01-01

    Laminated mats of unique character in siliceous alkaline hot springs of Yellowstone Park are formed predominantly by two organisms, a unicellular blue-green alga, Synechococcus lividus, and a filamentous, gliding, photosynthetic bacterium, Chloroflexus aurantiacus. The mats can be divided approximately into two major zones: an upper, aerobic zone in which sufficient light penetrates for net photosynthesis, and a lower, anaerobic zone, where photosynthesis does not occur and decomposition is the dominant process. Growth of the mat was followed by marking the mat surface with silicon carbide particles. The motile Chloroflexus migrates vertically at night, due to positive aerotaxis, responding to reduced O2 levels induced by dark respiration. The growth rates of mats were estimated at about 50 μm/day. Observations of a single mat at Octopus Spring showed that despite the rapid growth rate, the thickness of the mat remained essentially constant, and silicon carbide layers placed on the surface gradually moved to the bottom of the mat, showing that decomposition was taking place. There was a rapid initial rate of decomposition, with an apparent half-time of about 1 month, followed by a slower period of decomposition with a half-time of about 12 months. Within a year, complete decomposition of a mat of about 2-cm thickness can occur. Also, the region in which decomposition occurs is strictly anaerobic, showing that complete decomposition of organic matter from these organisms can occur in the absence of O2. Images PMID:16345254

  1. Microbial iron respiration can protect steel from corrosion.

    PubMed

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration.

  2. Respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Chowdhury, Fatema Z; Fabich, Andrew J; Anderson, April; Schreiner, Darrel M; House, Anetra L; Autieri, Steven M; Leatham, Mary P; Lins, Jeremy J; Jorgensen, Mathias; Cohen, Paul S; Conway, Tyrrell

    2007-10-01

    Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo(3) oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine. PMID:17698572

  3. Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions.

    PubMed

    Huang, Jiexun; Ning, Guojing; Li, Feili; Sheng, G Daniel

    2015-03-01

    Anaerobic transformation of 2,4-DNT by obligate marine Shewanella marisflavi EP1 was investigated. The cell growth of EP1 was proportional to the total amount of 2,4-DNT reduced. The eventual transformation product was 2,4-diaminotoluene, via 2-amino-4-nitrotoluene and 4-amino-2-nitrotoluene as intermediates. The presence of Cu(2+), dicumarol, metyrapone and flavins intensively influenced the reduction activity of 2,4-DNT, suggesting that dehydrogenease, menaquinone, cytochromes and flavins are essentially involved in electron transport process for 2,4-DNT reduction. These results indicate that biotransformation of 2,4-DNT by EP1 is a form of microbial anaerobic respiration. Furthermore, EP1 was capable of transforming 2,4-DNT at relatively alkaline range of pH (7-9), and at a wide range of temperature (4-40°C) and salinity (2-8% NaCl concentration). Our findings not only deepen our understanding of the environmental fate of 2,4-DNT, but also provide an extension to the application of shewanellae in the site bioremediation and/or wastewater treatment.

  4. Respiration in Aquatic Insects.

    ERIC Educational Resources Information Center

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  5. Teaching Cellular Respiration & Alternate Energy Sources with a Laboratory Exercise Developed by a Scientist-Teacher Partnership

    ERIC Educational Resources Information Center

    Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy

    2009-01-01

    Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…

  6. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.

  7. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.

    PubMed

    Qi, Qiuzi; Ito, Yoshiyasu; Yoshimatsu, Katsuhiko; Fujiwara, Taketomo

    2016-01-01

    The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator. PMID:26507955

  8. Draft Genome of Thermanaerothrix daxensis GNS-1, a Thermophilic Facultative Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Pace, Laura A; Hemp, James; Ward, Lewis M; Fischer, Woodward W

    2015-01-01

    We present the draft genome of Thermanaerothrix daxensis GNS-1, a thermophilic member of the Chloroflexi phylum. This organism was initially characterized as a nonmotile, strictly anaerobic fermenter; however, genome analysis demonstrates that it encodes genes for a flagellum and multiple pathways for aerobic and anaerobic respiration. PMID:26586891

  9. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  10. Flow microcalorimetry of a respiration-deficient mutant of Saccharomyces cerevisiae.

    PubMed

    Loureiro-Dias, M C; Arrabaça, J D

    1982-01-01

    In aerobic batch cultures in mineral medium with glucose of a respiration-deficient mutant of Saccharomyces cerevisiae, growth parameters were estimated and the heat evolved was measured by a flow microcalorimeter. A growth enthalpy of -163.6 joule per mole of glucose consumed was measured. Under anaerobic conditions, the value was -134.6 joule, closer to the expected for alcoholic fermentation alone. The difference was found to be due to cyanide-resistant respiration under aerobic conditions.

  11. Perspectives of the microbial carbon pump with special references to microbial respiration and ecological efficiency

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2014-01-01

    Although respiration consumes fixed carbon and produce CO2, it provides energy for essential biological processes of an ecosystem, including the microbial carbon pump (MCP). In MCP-driving biotransformation of labile DOC to recalcitrant DOC (RDOC), microbial respiration provides the metabolic energy for environmental organic substrate sensing, cellular enzyme syntheses and catalytic processes such as uptake, secretion, modification, fixation and storage of carbon compounds. The MCP efficiency of a heterotrophic microorganism is thus related to its energy production efficiency and hence to its respiration efficiency. Anaerobically respiring microbes usually have lower energy production efficiency and lower energy-dependent carbon transformation efficiency, and consequently lower MCP efficiency at per cell level. This effect is masked by the phenomena that anoxic environments often store more organic matter. Here we point out that organic carbon preservation and RDOC production is different in mechanisms, and anaerobically respiring ecosystems could also have lower MCP ecological efficiency. Typical cases can be found in large river estuarine ecosystems. Due to strong terrigenous input of nutrients and organic matter, estuarine ecosystems usually experience intense heterotrophic respiration processes that rapidly consume dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river input prompt enhanced anaerobic respiration processes. Thus, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation and primary production. In this situation, the ecological functioning of the estuarine ecosystem is altered and the ecological efficiency is lowered, as less carbon is fixed and less energy is produced. Ultimately this would have negatively impacts

  12. Anaerobic Thermophiles

    PubMed Central

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has

  13. Neither respiration nor cytochrome c oxidase affects mitochondrial morphology in Saccharomyces cerevisiae.

    PubMed

    Church, C; Poyton, R O

    1998-06-01

    Previous studies have reported that mitochondrial morphology and volume in yeast cells are linked to cellular respiratory capacity. These studies revealed that mitochondrial morphology in glucose-repressed or anaerobically grown cells, which lack or have reduced levels of respiration, is different from that in fully respiring cells. Although both oxygen deprivation and glucose repression decrease the levels of respiratory chain proteins, they decrease the expression of many non-mitochondrial proteins as well, making it difficult to determine whether it is a defect in respiration or something else that effects mitochondrial morphology. To determine whether mitochondrial morphology is dependent on respiration per se, we used a strain with a null mutation in PET100, a nuclear gene that is specifically required for the assembly of cytochrome c oxidase. Although this strain lacks respiration, the mitochondrial morphology and volumes are both comparable to those found in its respiration-proficient parent. These findings indicate that respiration is not involved in the establishment or maintenance of yeast mitochondrial morphology, and that the previously observed effects of oxygen availability and glucose repression on mitochondrial morphology are not exerted through the respiratory chain. By applying the principle of symmorphosis to these findings, we conclude that the shape and size of the mitochondrial reticulum found in respiring yeast cells is maintained for reasons other than respiration.

  14. Comparison of aerobic and anaerobic biotreatment of municipal solid waste.

    PubMed

    Borglin, Sharon E; Hazen, Terry C; Oldenburg, Curtis M; Zawislanski, Peter T

    2004-07-01

    To increase the operating lifetime of landfills and to lower leachate treatment costs, an increasing number of municipal solid waste (MSW) landfills are being managed as either aerobic or anaerobic bioreactors. Landfill gas composition, respiration rates, and subsidence were measured for 400 days in 200-L tanks filled with fresh waste materials to compare the relative effectiveness of the two treatments. Tanks were prepared to provide the following conditions: (1) air injection and leachate recirculation (aerobic), (2) leachate recirculation (anaerobic), and (3) no treatment (anaerobic). Respiration tests on the aerobic wet tank showed a steady decrease in oxygen consumption rates from 1.3 mol/day at 20 days to 0.1 mol/day at 400 days. Aerobic wet tanks produced, on average, 6 mol of carbon dioxide (CO2)/kg of MSW as compared with anaerobic wet tanks, which produced 2.2 mol methane/kg of MSW and 2.0 mol CO2/kg methane. Over the test period, the aerobic tanks settled on average 35%, anaerobic tanks settled 21.7%, and the no-treatment tank settled 7.5%, equivalent to overall mass loss in the corresponding reactors. Aerobic tanks reduced stabilization time and produced negligible odor compared with anaerobic tanks, possibly because of the 2 orders of magnitude lower leachate ammonia levels in the aerobic tank. Both treatment regimes provide the opportunity for disposal and remediation of liquid waste.

  15. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    PubMed

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

  16. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  17. Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View

    PubMed Central

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F.; Valderrama, J. Andrés; Barragán, María J. L.; García, José Luis; Díaz, Eduardo

    2009-01-01

    Summary: Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach. PMID:19258534

  18. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    PubMed

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  19. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  1. Anaerobic Digestion Analysis. Training Module 5.120.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with alkalinity, volatile acids and carbon dioxide determinations for an anaerobic sludge digester. Included are objectives, instructor guides, student handouts and transparency masters. This module considers total and bicarbonate…

  2. Enhanced alkalinity and dissolved inorganic carbon release in intertidal sands from the Oosterschelde (The Netherlands) induced by a natural macrofaunal community

    NASA Astrophysics Data System (ADS)

    Brenner, Heiko; Montserrat, Francesc; Meysman, Filip

    2014-05-01

    The influence of bioturbation and bioirrigation in intertidal sandflat sediments from the Oosterschelde (The Netherlands) on the rates and sources of benthic alkalinity (TA) and dissolved inorganic carbon (DIC) generation was examined using measurements of sediment-water fluxes of bromide, oxygen, nutrients, TA and DIC. Sediments from the Oosterschelde typically contain the deep-burrowing polychaete Arenicola marina, the sub-surface bioturbator Macoma balthica and the surface bioturbator Cerastoderma edule. Measurements were carried out in six tanks (106 cm x 87 cm x 20 cm). The sediment was collected in November 2012. Measurements were started in June 2013. Each tank was sampled twice for benthic fluxes over the course of one month. Prior measurements three tanks were defaunated by covering the sediment surface with a black plastic sheet. Benthic flux measurements were carried out in closed plastic chambers (diameter 66 cm). These chambers typically contained about 10 cm sediment and 20 cm overlying water. The tank was completely covered with opaque a black plastic sheet during measurements. The incubation time ranged from 6 to 8 hours. Here we present preliminary results from both experimental runs. High benthic fluxes of TA (10 - 70 mmol m-2 d-1) and DIC (35 - 150 mmol m-2 d-1) were observed in all tanks. Whereas benthic TA and DIC fluxes were significantly higher in faunated tanks, total oxygen uptake (TOU: 30 - 75 mmol m-2 d-1) did not show any meaningful trend between the two treatments. Therefore, the apparent community respiratory quotient (CRQ = DIC/TOU) varied between 0.9 and 3.3, with significant higher values in faunated tanks, suggesting enhanced flushing of DIC produced in deeper layers and released by bioirrigation. This DIC was either produced by anaerobic respiration or carbonate dissolution. To unravel the contribution of carbonate dissolution and anaerobic respiration on the observed TA and DIC fluxes, we further present estimations for relevant

  3. Cytochrome c Biogenesis Genes Involved in Arsenate Respiration by Shewanella trabarsenatis ANA-3

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Arsenate can be used as a terminal electron acceptor in anaerobic respiration by diverse bacteria. The detection of these bacteria in numerous contaminated environments suggests that they are widespread and metabolically active in nature. Arsenate-respiring bacteria have been implicated in the mobilization of arsenic from arsenic-contaminated sediments. However, the enzymatic mechanisms supporting arsenate respiration are largely unknown. Here, we describe c-type cytochromes that are involved in arsenate respiration by the bacterium Shewanella trabarsenatis strain ANA-3, a facultative anaerobe that is able to use a variety of electron acceptors for growth. We performed transposon mutagenesis to study the electron transport pathway in ANA-3 during arsenate respiration. 10 arsenate-respiration deficient mutants were found after screening up to 7,000 mutants, and 4 were shown to have unique transposon insertions through Southern Blot analysis. The physiological properties of these mutants were determined, including characterization of their growth on different electron acceptors. The genes flanking the transposon insertions were sequenced for each mutant, and several were found to encode c-type cytochrome biogenesis genes. UV/VIS spectra and SDS/PAGE were used to confirm the absence of c-type cytochromes in the mutants. Based on these findings, we proposed a model for respiratory electron transport to arsenate.

  4. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  5. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.

  6. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.

    PubMed

    Unden, Gottfried; Strecker, Alexander; Kleefeld, Alexandra; Kim, Ok Bin

    2016-06-01

    C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new. PMID:27415771

  7. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  8. Ecology and Biotechnology of Selenium-Respiring Bacteria

    PubMed Central

    2015-01-01

    SUMMARY In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  9. Ecology and biotechnology of selenium-respiring bacteria.

    PubMed

    Nancharaiah, Y V; Lens, P N L

    2015-03-01

    In nature, selenium is actively cycled between oxic and anoxic habitats, and this cycle plays an important role in carbon and nitrogen mineralization through bacterial anaerobic respiration. Selenium-respiring bacteria (SeRB) are found in geographically diverse, pristine or contaminated environments and play a pivotal role in the selenium cycle. Unlike its structural analogues oxygen and sulfur, the chalcogen selenium and its microbial cycling have received much less attention by the scientific community. This review focuses on microorganisms that use selenate and selenite as terminal electron acceptors, in parallel to the well-studied sulfate-reducing bacteria. It overviews the significant advancements made in recent years on the role of SeRB in the biological selenium cycle and their ecological role, phylogenetic characterization, and metabolism, as well as selenium biomineralization mechanisms and environmental biotechnological applications. PMID:25631289

  10. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres

    PubMed Central

    Sorokin, Dimitry Y.; Rakitin, Andrey L.; Gumerov, Vadim M.; Beletsky, Alexey V.; Sinninghe Damsté, Jaap S.; Mardanov, Andrey V.; Ravin, Nikolai V.

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5–10.5 and total Na+ concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  11. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres.

  12. Phenotypic and Genomic Properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., A Haloalkaliphilic Anaerobic Chitinolytic Bacterium Representing a Novel Class in the Phylum Fibrobacteres.

    PubMed

    Sorokin, Dimitry Y; Rakitin, Andrey L; Gumerov, Vadim M; Beletsky, Alexey V; Sinninghe Damsté, Jaap S; Mardanov, Andrey V; Ravin, Nikolai V

    2016-01-01

    Anaerobic enrichment from sediments of hypersaline alkaline lakes in Wadi el Natrun (Egypt) with chitin resulted in the isolation of a fermentative haloalkaliphilic bacterium, strain ACht6-1, growing exclusively with insoluble chitin as the substrate in a sodium carbonate-based medium at pH 8.5-10.5 and total Na(+) concentrations from 0.4 to 1.75 M. The isolate had a Gram-negative cell wall and formed lipid cysts in old cultures. The chitinolytic activity was associated with cells. Analysis of the 4.4 Mb draft genome identified pathways for chitin utilization, particularly, secreted chitinases linked to the cell surface, as well as genes for the hydrolysis of other polysaccharides and fermentation of sugars, while the genes needed for aerobic and anaerobic respiration were absent. Adaptation to a haloalkaliphilic lifestyle was reflected by the gene repertoire encoding sodium rather than proton-dependent membrane-bound ion pumps, including the Rnf-type complex, oxaloacetate decarboxylase, V-type ATPase, and pyrophosphatase. The phylogenetic analysis using 16S rRNA gene and ribosomal proteins indicated that ACht6-1 forms a novel deep lineage at the class level within the bacterial candidate division TG3. Based on phylogenetic, phenotypic and genomic analyses, the novel chitinolytic bacterium is described as Chitinispirillum alkaliphilum gen. nov., sp. nov., within a novel class Chitinispirillia that could be included into the phylum Fibrobacteres. PMID:27065971

  13. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells.

    PubMed

    Grüning, Nana-Maria; Rinnerthaler, Mark; Bluemlein, Katharina; Mülleder, Michael; Wamelink, Mirjam M C; Lehrach, Hans; Jakobs, Cornelis; Breitenbach, Michael; Ralser, Markus

    2011-09-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.

  14. Overview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases

    PubMed Central

    Hug, Laura A.; Maphosa, Farai; Leys, David; Löffler, Frank E.; Smidt, Hauke; Edwards, Elizabeth A.; Adrian, Lorenz

    2013-01-01

    Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyla, and can be categorized as obligate and non-obligate organohalide respirers. The majority of the currently known organohalide-respiring bacteria carry multiple reductive dehalogenase genes. Analysis of a curated set of reductive dehalogenases reveals that sequence similarity and substrate specificity are generally not correlated, making functional prediction from sequence information difficult. In this article, an orthologue-based classification system for the reductive dehalogenases is proposed to aid integration of new sequencing data and to unify terminology. PMID:23479752

  15. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production.

    PubMed

    Sambusiti, C; Ficara, E; Malpei, F; Steyer, J P; Carrère, H

    2013-09-01

    The assessment of the pretreatment effect on the anaerobic digestion process is generally based on the results of batch tests, which may fail in truly predicting full-scale anaerobic reactors performance. Therefore, in this study, the effect of alkaline pretreatment on the anaerobic digestion of ensiled sorghum forage was evaluated by comparing the results of two semi-continuous CSTR (Continuously Stirred Tank Reactor) anaerobic reactors. Results showed that an alkaline pretreatment step, prior to the anaerobic digestion of ensiled sorghum forage, can have a beneficial effect both in enhancing methane production (an increase of 25% on methane production was observed, if compared to that of untreated sorghum) and in giving more stability to the anaerobic digestion process.

  16. Anaerobic alkalithermophiles, a novel group of extremophiles.

    PubMed

    Wiegel, J

    1998-08-01

    Although some anaerobic and aerobic mesophiles have long been known to grow at alkaline pH (above 9.5), little was known until recently about thermophilic alkaliphiles, termed now alkalithermophiles. This minireview describes presently known and recently validly described anaerobic alkalithermophilic bacteria (pHopt55C > 8.5; Topt > 55 degrees C) and alkalitolerant thermophiles (pHopt55C < 8.5 but pHmax55C above 9.0). Some of these are widely distributed, but others have been isolated (thus far) only from one specific location. This novel group of anaerobic bacteria is comprised of physiologically different genera and species which, so far, all belong to the Gram-type positive Bacillus-Clostridium phylogenetic subbranch. An interesting feature of these anaerobic alkalithermophiles is that most of the isolates have short doubling times. The fastest growing among them are strains of Thermobrachium celere, with doubling times as short as 10 min while growing above pH 9.0 and above 55 degrees C.

  17. Respiration signals from photoplethysmography.

    PubMed

    Nilsson, Lena M

    2013-10-01

    respiratory modulation of the pulse oximeter waveform and has been shown to predict fluid responsiveness in mechanically ventilated patients including infants. The pleth variability index value depends on the size of the tidal volume and on positive end-expiratory pressure. In conclusion, the respiration modulation of the PPG signal can be used to monitor respiratory rate. It is probable that improvements in neural network technology will increase sensitivity and specificity for detecting both central and obstructive apnea. The size of the PPG respiration variation can predict fluid responsiveness in mechanically ventilated patients. PMID:23449854

  18. Anxiety during respirator use: comparison of two respirator types.

    PubMed

    Wu, Samantha; Harber, Philip; Yun, David; Bansal, Siddharth; Li, Yuan; Santiago, Silverio

    2011-03-01

    Anxiety may interfere with proper respirator use. This study directly compares the effect of two types of respirators--elastomeric half-face mask with dual-cartridges (HFM) and N95 filtering facepiece--on anxiety levels. Twelve volunteers with normal or mildly impaired respiratory conditions performed a series of simulated work tasks using the HFM and N95 on different days. The State-Trait Anxiety Inventory (STAI) measured state anxiety (SA) before and during respirator use. STAI also measured trait anxiety (TA), a stable personal characteristic. The effect of the respirator was measured as the difference between SA pre-use and during use. Work with HFM was associated with an increase in SA (2.92 units, p < .01), whereas work with the N95 had no observed effect. Anxiety should be considered in the selection of the best respirator for a user. Impact on anxiety should be considered for respirator design and certification purposes, particularly if the device is to be widely used in workplace and community settings. PMID:21318920

  19. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  20. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs. PMID:25532022

  1. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1.

    PubMed

    Gralnick, Jeffrey A; Vali, Hojatollah; Lies, Douglas P; Newman, Dianne K

    2006-03-21

    Shewanella species are renowned for their respiratory versatility, including their ability to respire poorly soluble substrates by using enzymatic machinery that is localized to the outside of the cell. The ability to engage in "extracellular respiration" to date has focused primarily on respiration of minerals. Here, we identify two gene clusters in Shewanella oneidensis strain MR-1 that each contain homologs of genes required for metal reduction and genes that are predicted to encode dimethyl sulfoxide (DMSO) reductase subunits. Molecular and genetic analyses of these clusters indicate that one (SO1427-SO1432) is required for anaerobic respiration of DMSO. We show that DMSO respiration is an extracellular respiratory process through the analysis of mutants defective in type II secretion, which is required for transporting proteins to the outer membrane in Shewanella. Moreover, immunogold labeling of DMSO reductase subunits reveals that they reside on the outer leaflet of the outer membrane under anaerobic conditions. The extracellular localization of the DMSO reductase in S. oneidensis suggests these organisms may perceive DMSO in the environment as an insoluble compound.

  2. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  3. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    PubMed

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A; Graco, Michelle I; Kuypers, Marcel M M

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  4. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Löscher, Carolin; Schunck, Harald; Desai, Dhwani K.; Hauss, Helena; Kiko, Rainer; Holtappels, Moritz; LaRoche, Julie; Schmitz, Ruth A.; Graco, Michelle I.; Kuypers, Marcel M. M.

    2015-01-01

    Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein. PMID:26192623

  5. Anaerobic bag culture method.

    PubMed

    Rosenblatt, J E; Stewart, P R

    1975-06-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. PMID:1100671

  6. Anaerobic bag culture method.

    PubMed Central

    Rosenblatt, J E; Stewart, P R

    1975-01-01

    In a new method of anaerobic culture, a transparent, gas-impermeable bag is used and the anaerobic environment is established with copper sulfate-saturated steel wool. An Alka-Seltzer tablet generates carbon dioxide. The agar plate surface can be inspected through the bag at any time without interrupting the anaerobic atmosphere or disturbing other specimens. Methylene blue indicator strips are completely reduced by 4 h after the bag is set up and have remained reduced for as long as 3 weeks. Growth of 16 different stock culture anaerobes was generally equivalent by the bag and GasPak jar methods. Yield and growth of anaerobic isolates also were equivalent with 7 of 10 clinical specimens; from the other 3 specimens, 13 isolates were recovered, 5 by both the bag and jar methods and the rest by one method or the other. No consistent differences were found between the anaerobic bag and GasPak jar methods in the yield of anaerobes from clinical specimens. Early growth (24 h of incubation) of anaerobes from one specimen was detected with the bag method. Images PMID:1100671

  7. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  8. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter.

  9. Anaerobic Metabolism in Haloferax Genus: Denitrification as Case of Study.

    PubMed

    Torregrosa-Crespo, J; Martínez-Espinosa, R M; Esclapez, J; Bautista, V; Pire, C; Camacho, M; Richardson, D J; Bonete, M J

    2016-01-01

    A number of species of Haloferax genus (halophilic archaea) are able to grow microaerobically or even anaerobically using different alternative electron acceptors such as fumarate, nitrate, chlorate, dimethyl sulphoxide, sulphide and/or trimethylamine. This metabolic capability is also shown by other species of the Halobacteriaceae and Haloferacaceae families (Archaea domain) and it has been mainly tested by physiological studies where cell growth is observed under anaerobic conditions in the presence of the mentioned compounds. This work summarises the main reported features on anaerobic metabolism in the Haloferax, one of the better described haloarchaeal genus with significant potential uses in biotechnology and bioremediation. Special attention has been paid to denitrification, also called nitrate respiration. This pathway has been studied so far from Haloferax mediterranei and Haloferax denitrificans mainly from biochemical point of view (purification and characterisation of the enzymes catalysing the two first reactions). However, gene expression and gene regulation is far from known at the time of writing this chapter. PMID:27134021

  10. Draft Genome Sequence of Leptolinea tardivitalis YMTK-2, a Mesophilic Anaerobe from the Chloroflexi Class Anaerolineae.

    PubMed

    Ward, Lewis M; Hemp, James; Pace, Laura A; Fischer, Woodward W

    2015-01-01

    We present the draft genome sequence of Leptolinea tardivitalis YMTK-2, a member of the Chloroflexi phylum. This organism was initially characterized as a strictly anaerobic nonmotile fermenter; however, genome analysis demonstrates that it encodes for a flagella and might be capable of aerobic respiration. PMID:26586893

  11. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  12. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.

    PubMed

    Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

    2014-11-01

    To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning.

  13. Anaerobic Digestion and its Applications

    EPA Science Inventory

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  14. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  15. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  16. Measuring aerobic respiration in stream ecosystems using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Myrold, David D.

    2012-09-01

    The use of smart tracers to study hydrologic systems is becoming more widespread. Smart tracers are compounds that irreversibly react in the presence of a process or condition under investigation. Resazurin (Raz) is a smart tracer that undergoes an irreversible reduction to resorufin (Rru) in the presence of cellular metabolic activity. We quantified the relationship between the transformation of Raz and aerobic bacterial respiration in pure culture experiments using two obligate aerobes and two facultative anaerobes, and in colonized surface and shallow (<10 cm) hyporheic sediments using reach-scale experiments. We found that the transformation of Raz to Rru was nearly perfectly (minr2 = 0.986), positively correlated with aerobic microbial respiration in all experiments. These results suggest that Raz can be used as a surrogate to measure respiration in situ and in vivoat different spatial scales, thus providing an alternative to investigate mechanistic controls of solute transport and stream metabolism on nutrient processing. Lastly, a comparison of respiration and mass-transfer rates in streams suggests that field-scale respiration is controlled by the slower of respiration and mass transfer, highlighting the need to understand both biogeochemistry and physics in stream ecosystems.

  17. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  18. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  19. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle.

  20. ENDOGENOUS RESPIRATION OF STAPHYLOCOCCUS AUREUS

    PubMed Central

    Ramsey, H. H.

    1962-01-01

    Ramsey, H. H. (Stanford University, Palo Alto, Calif.). Endogenous respiration of Staphylococcus aureus. J. Bacteriol. 83:507–514. 1962.—The endogenous respiration of Staphylococcus aureus is dependent upon the medium used to grow the cell suspension. Within wide ranges, the concentration of glucose in the medium has no effect upon subsequent endogenous respiration of the cells, but the concentration of amino acids in the medium, within certain limits, has a very marked effect. The total carbohydrate content of the cells does not decrease during endogenous respiration. As endogenous respiration proceeds, ammonia appears in the supernatant, and the concentration of glutamic acid in the free amino acid pool decreases. Organisms grown in the presence of labeled glutamic acid liberate labeled CO2 when allowed to respire without added substrate. The principal source of this CO2 is the free glutamate in the metabolic pool; its liberation is not suppressed by exogenous glucose or glutamate. With totally labeled cells, the free pool undergoes a rapid, but not total, depletion and remains at a low level for a long time. Activity of the protein fraction declines with time and shows the largest net decrease of all fractions. Exogenous glucose does not inhibit the release of labeled CO2 by totally labeled cells. Other amino acids in the free pool which can serve as endogenous substrates are aspartic acid and, to much lesser extents, glycine and alanine. The results indicate that both free amino acids and cellular protein may serve as endogenous substrates of S. aureus. PMID:14490204

  1. Predicting soil respiration from peatlands.

    PubMed

    Rowson, J G; Worrall, F; Evans, M G; Dixon, S D

    2013-01-01

    This study considers the relative performance of six different models to predict soil respiration from upland peat. Predicting soil respiration is important for global carbon budgets and gap filling measured data from eddy covariance and closed chamber measurements. Further to models previously published new models are presented using two sub-soil zones and season. Models are tested using data from the Bleaklow plateau, southern Pennines, UK. Presented literature models include ANOVA using logged environmental data, the Arrhenius equation, modified versions of the Arrhenius equation to include soil respiration activation energy and water table depth. New models are proposed including the introduction of two soil zones in the peat profile, and season. The first new model proposes a zone of high CO(2) productivity related to increased soil microbial CO(2) production due to the supply of labile carbon from plant root exudates and root respiration. The second zone is a deeper zone where CO(2) production is lower with less labile carbon. A final model allows the zone of high CO(2) production to become dormant during winter months when plants will senesce and will vary depending upon vegetation type within a fixed location. The final model accounted for, on average, 31.9% of variance in net ecosystem respiration within 11 different restoration sites whilst, using the same data set, the best fitting literature equation only accounted for 18.7% of the total variance. Our results demonstrate that soil respiration models can be improved by explicitly accounting for seasonality and the vertically stratified nature of soil processes. These improved models provide an enhanced basis for calculating the peatland carbon budgets which are essential in understanding the role of peatlands in the global C cycle. PMID:23178842

  2. [Dark respiration of terrestrial vegetations: a review].

    PubMed

    Sun, Jin-Wei; Yuan, Feng-Hui; Guan, De-Xin; Wu, Jia-Bing

    2013-06-01

    The source and sink effect of terrestrial plants is one of the hotspots in terrestrial ecosystem research under the background of global change. Dark respiration of terrestrial plants accounts for a large fraction of total net carbon balance, playing an important role in the research of carbon cycle under global climate change. However, there is little study on plant dark respiration. This paper summarized the physiological processes of plant dark respiration, measurement methods of the dark respiration, and the effects of plant biology and environmental factors on the dark respiration. The uncertainty of the dark respiration estimation was analyzed, and the future hotspots of related researches were pointed out.

  3. Anaerobic digestion of yard waste with hydrothermal pretreatment.

    PubMed

    Li, Wangliang; Zhang, Guangyi; Zhang, Zhikai; Xu, Guangwen

    2014-03-01

    The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79%, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.

  4. Defining Anaerobic Digestion Stability-Full Scale Study

    NASA Astrophysics Data System (ADS)

    Demitry, M. E., Sr.

    2014-12-01

    A full-scale anaerobic digester receiving a mixture of primary and secondary sludge was monitored for one hundred days. A chemical oxygen demand, COD, and a volatile solids, VS, mass balance was conducted to evaluate the stability of the digester and its capability of producing methane gas. The COD mass balance could account for nearly 90% of the methane gas produced while the VS mass balance showed that 91% of the organic matter removed resulted in biogas formation. Other parameters monitored included: pH, alkalinity, VFA, and propionic acid. The values of these parameters showed that steady state had occurred. Finally, at mesophilic temperature and at steady state performance, the anaerobic digester stability was defined as a constant ratio of methane produced per substrate of ΔVS (average ratio=0.404 l/g). This ratio can be used as universal metric to determine the anaerobic digester stability in an easy and inexpensive way.

  5. Hydrogen thresholds and steady-state concentrations associated with microbial arsenate respiration.

    PubMed

    Heimann, Axel C; Blodau, Christian; Postma, Dieke; Larsen, Flemming; Viet, Pham H; Nhan, Pham Q; Jessen, Søren; Duc, Mai T; Hue, Nguyen T M; Jakobsen, Rasmus

    2007-04-01

    H2 thresholds for microbial respiration of arsenate (As(V)) were investigated in a pure culture of Sulfurospirillum arsenophilum. H2 was consumed to threshold concentrations of 0.03-0.09 nmol/L with As(V) as terminal electron acceptor, allowing for a Gibbs free-energy yield of 36-41 kJ per mol of reaction. These thresholds are among the lowest measured for anaerobic respirers and fall into the range of denitrifiers or Fe(III)-reducers. In sediments from an arsenic-contaminated aquifer in the Red River flood plain, Vietnam, H2 levels decreased to 0.4-2 nmol/L when As(V) was added under anoxic conditions. When As-(V) was depleted, H2 concentrations rebounded by a factor of 10, a level similar to that observed in arsenic-free controls. The sediment-associated microbial population completely reduced millimolar levels of As(V) to arsenite (As-(III)) within a few days. The rate of As(V)-reduction was essentially the same in sediments amended with a pure culture of S. arsenophilum. These findings together with a review of observed H2 threshold and steady-state values suggest that microbial As(V)-respirers have a competitive advantage over several other anaerobic respirers through their ability to thrive at low H2 levels. PMID:17438780

  6. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia.

  7. Soil Respiration - A Geochemist's Perspective

    NASA Astrophysics Data System (ADS)

    Van Cappellen, P.

    2015-12-01

    Soil biogeochemistry is largely driven by the decomposition of plant-derived organic matter by soil microorganisms. In addition to its effects on water quality and soil fertility, the decomposition of organic matter couples soil processes to climate, via the production and emission of greenhouse gases. In this presentation, I will review a number of key factors controlling the rate of decomposition of soil organic matter. In particular, I will discuss the importance of the spatial and temporal variations in redox conditions as drivers of soil respiration. The discussion will highlight the limitations of current soil respiration models based on partitioning soil organic matter in a finite number of pools of different degradability. In order to predict the sensitivity of soil respiration to anthropogenic pressures - including climate warming - it is crucial to relate the apparent degradability of soil organic matter to the geochemical and hydrological dynamics of the soil environment. Overall, there remains much scope for geochemists to help develop more robust, process-based, representations of soil respiration in global carbon models and climate predictions.

  8. Persistence of respirator use learning.

    PubMed

    Harber, Philip; Su, Jing; Hu, Cheng Cheng

    2014-01-01

    Although retraining and repeat fit-testing are needed for respirator users, the optimal frequency is uncertain. The persistence of proper respirator donning/doffing techniques and changes in quantitative fit factor over 6 months after initial training were measured in this study. Initial training was designed for rapid rollout situations in which direct contact with well-trained occupational health professionals may be infeasible. Subjects (n = 175) were assigned randomly to use either a filtering facepiece N95 (FFR) or dual cartridge half facemask (HFM) respirator. Each was assigned randomly to one of three training methods-printed brochure, video, or computer-based training. Soon after initial training, quantitative fit and measures of proper technique were determined. These measurements were repeated 6 months later. In the six-month followup, subjects were randomized to receive either a brief reminder card or a placebo card. Total performance score, major errors, and quantitative fit all became significantly worse at 6 months. An individual's result soon after training was the most important predictor of performance 6 months later. There was a marginal not statistically significant tendency for those initially trained by video to have better protection 6 months later. The study suggests that persons who use respirators intermittently should be thoroughly retrained and reevaluated periodically. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: Additional statistical analyses. PMID:24847912

  9. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  10. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  11. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  12. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  13. 30 CFR 57.5044 - Respirators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceeding 1.0 WL, miners shall wear respirators approved by NIOSH for radon daughters prior to July 10, 1995 or under the equivalent section of 42 CFR part 84 and such respirator use shall be in compliance...

  14. The Source of Carbon for Root Respiration

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, L.; Trumbore, S.; Zheng, S.

    2004-12-01

    In the Enriched Background Isotope Study (EBIS) that took advantage of a whole-ecosystem radiocarbon label that occurred in the temperate forest near Oak Ridge, Tennessee, we measured the radiocarbon signature of total soil respiration, heterotrophic respiration and root respiration, at different times during the last 3 growing seasons (2002-2004). By applying a mass balance approach, the relative and absolute contributions of heterotrophic and root respiration to total soil respiration were estimated. In contrast to heterotrophic respiration, root respiration seemed to be less affected by changes in soil moisture and temperature but rather showed a link to photosynthetic activity with a very similar pattern during the growing season as that of leaf area index. The radiocarbon signature of root respiration was very dynamic with low values in spring compared to the summer. The sources of variation can include changes in the local atmospheric signature and/or changes in the source of C being respired. Two different sites with different values and patterns of local atmospheric radiocarbon signature showed the same pattern in radiocarbon signatures of root respiration indicating that the source of variation was phenological. Low values during the spring could indicate the use of stored carbohydrates switching to more recent photosynthetic products as the summer progresses. As a first attempt to elucidate the source of C respired by roots, we will compare the radiocarbon content of starch, cellulose and soluble sugars in roots to that of bulk root material and root respired CO2. These radiocarbon signatures can help us identify the pool of C that is most likely being respired by roots during the growing season. A better understanding of the source of C for root respiration has implications for understanding the role of root respiration in C cycling in temperate forests, specifically the timescale over which carbon is fixed through photosynthesis and returned to the

  15. Alkaline galvanic cell

    SciTech Connect

    Inoue, T.; Maeda, Y.; Momose, K.; Wakahata, T.

    1983-10-04

    An alkaline galvanic cell is disclosed including a container serving for a cathode terminal, a sealing plate in the form of a layered clad plate serving for an anode terminal to be fitted into the container, and an insulating packing provided between the sealing plate and container for sealing the cell upon assembly. The cell is provided with a layer of epoxy adduct polyamide amine having amine valence in the range of 50 to 400 and disposed between the innermost copper layer of the sealing plate arranged to be readily amalgamated and the insulating packing so as to serve as a sealing agent or liquid leakage suppression agent.

  16. The potential of anaerobic bacteria to degrade chlorinated compounds.

    PubMed

    van Eekert, M H; Schraa, G

    2001-01-01

    Chlorinated ethenes and chlorinated aromatics are often found as pollutants in sediments, groundwater, and wastewater. These compounds were long considered to be recalcitrant under anaerobic conditions. In the past years however, dechlorination of these compounds has been found to occur under anaerobic conditions at contaminated sites and in wastewater treatment systems. This dechlorination is mainly attributed to halo-respiring bacteria, which are able to couple this dechlorination to energy conservation via electron transport coupled phosphorylation. The dechlorinating activities of the halo-respiring bacteria seem to be confined to the dechlorination of chloroethenes and chlorinated aromatic compounds. In addition, methanogenic and acetogenic bacteria are also able to reduce the chlorinated ethenes via a-specific cometabolic pathways. Although these latter reactions may not be important in the remediation of contaminated sites, they may be of substantial influence in the start-up of remediation processes and in the application of granular sludge from UASB reactors. Specific halo-respiring bacteria may be used to increase the dechlorination activities via bioaugmentation in the case that the appropriate microorganisms are not present at the contaminated site or in the sludge.

  17. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  18. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  19. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  20. A coral polyp model of photosynthesis, respiration and calcification incorporating a transcellular ion transport mechanism

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nadaoka, K.; Watanabe, A.

    2013-09-01

    A numerical simulation model of coral polyp photosynthesis, respiration and calcification was developed. The model is constructed with three components (ambient seawater, coelenteron and calcifying fluid), and incorporates photosynthesis, respiration and calcification processes with transcellular ion transport by Ca-ATPase activity and passive transmembrane CO2 transport and diffusion. The model calculates dissolved inorganic carbon and total alkalinity in the ambient seawater, coelenteron and calcifying fluid, dissolved oxygen (DO) in the seawater and coelenteron and stored organic carbon (CH2O). To reconstruct the drastic variation between light and dark respiration, respiration rate dependency on DO in the coelenteron is incorporated. The calcification rate depends on the aragonite saturation state in the calcifying fluid (Ω a cal). Our simulation result was a good approximation of "light-enhanced calcification." In our model, the mechanism is expressed as follows: (1) DO in the coelenteron is increased by photosynthesis, (2) respiration is stimulated by increased DO in the light (or respiration is limited by DO depletion in the dark), then (3) calcification increases due to Ca-ATPase, which is driven by the energy generated by respiration. The model simulation results were effective in reproducing the basic responses of the internal CO2 system and DO. The daily calcification rate, the gross photosynthetic rate and the respiration rate under a high-flow condition increased compared to those under the zero-flow condition, but the net photosynthetic rate decreased. The calculated calcification rate responses to variations in the ambient aragonite saturation state (Ω a amb) were nonlinear, and the responses agreed with experimental results of previous studies. Our model predicted that in response to ocean acidification (1) coral calcification will decrease, but will remain at a higher value until Ω a amb decreases to 1, by maintaining a higher Ω a cal due to

  1. Simulated workplace performance of N95 respirators.

    PubMed

    Coffey, C C; Campbell, D L; Zhuang, Z

    1999-01-01

    During July 1995 the National Institute for Occupational Safety and Health (NIOSH) began to certify nine new classes of particulate respirators. To determine the level of performance of these respirators, NIOSH researchers conducted a study to (1) measure the simulated workplace performance of 21 N95 respirator models, (2) determine whether fit-testing affected the performance, and (3) investigate the effect of varying fit-test pass/fail criteria on respirator performance. The performance of each respirator model was measured by conducting 100 total penetration tests. The performance of each respirator model was then estimated by determining the 95th percentile of the total penetration through the respirator (i.e., 95% of wearers of that respirator can expect to have a total penetration value below the 95th percentile penetration value). The 95th percentile of total penetrations for each respirator without fit-testing ranged from 6 to 88%. The 95th percentile of total penetrations for all the respirators combined was 33%, which exceeds the amount of total penetration (10%) normally expected of a half-mask respirator. When a surrogate fit test (1% criterion) was applied to the data, the 95th percentile of total penetrations for each respirator decreased to 1 to 16%. The 95th percentile of total penetrations for all the respirators combined was only 4%. Therefore, fit-testing of N95 respirators is necessary to ensure that the user receives the expected level of protection. The study also found that respirator performance was dependent on the value of the pass/fail criterion used in the surrogate fit-test. PMID:10529991

  2. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  3. Trimethylamine oxide respiration in Proteus sp. strain NTHC153: electron transfer-dependent phosphorylation and L-serine transport.

    PubMed Central

    Stenberg, E; Styrvold, O B; Strøm, A R

    1982-01-01

    Cells of Proteus sp. strains NTHC153 grown anaerobically with glucose and trimethylamine oxide (TMAO) were converted to spheroplasts by the penicillin method. The spheroplasts were lysed by osmotic shock, and the membrane vesicles were purified by sucrose gradient centrifugation. Vesicles energized electron transfer from formate to TMAO displayed active anaerobic transport of serine. An anaerobic cell-free extract of Proteus sp. disrupted in a French pressure cell reduced TMAO with formate and NADH with the concomitant formation of organic phosphate. The net P/2e- ratios determined were 0.1 and 0.3, respectively. The NADH- and TMAO-dependent phosphorylation was sensitive to uncouplers of oxidative phosphorylation (protonophores), and the formate- and TMAO-dependent serine transport was sensitive to ionophores and protonophores. We conclude that TMAO reduction in Proteus sp. fulfills the essential features of anaerobic respiration. PMID:6798018

  4. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  5. Developments of anaerobic treatment

    SciTech Connect

    Roy, D.; Jones, L.M.

    1984-01-01

    Two modifications of anaerobic fermentation of biomass were studied: separation of acid and CH4 phases of the anaerobic process used in CH4 production from the biomass and the use of attached growth methanogenesis. A continuously stirred tank reactor (CSTR) was used for the acid phase. Effluent from the acid reactor was fed simultaneously to a conventional CSTR and an anaerobic rotating biological contactor (ARBC) operating in parallel for the CH4 phase. The temperature of all the reactors was 35 plus or minus 1 degree, the pH of the acid phase was 4.3, and the CH4 phase was studied at pH 7.5. The retention time for the acid phase CSTR was 4.5 h, and that for the ARBC and CSTR in the CH4 phase was 36 h.

  6. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    PubMed

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible.

  7. Impact of Anodic Respiration on Biopolymer Production and Consequent Membrane Fouling.

    PubMed

    Ishizaki, So; Terada, Kotaro; Miyake, Hiroshi; Okabe, Satoshi

    2016-09-01

    Microbial fuel cells (MFCs) have recently been integrated with membrane bioreactors (MBRs) for wastewater treatment and energy recovery. However, the impact of integration of the two reactors on membrane fouling of MBR has not been reported yet. In this study, MFCs equipped with different external resistances (1-10 000 ohm) were operated, and membrane-fouling potentials of the MFC anode effluents were directly measured to study the impact of anodic respiration by exoelectrogens on membrane fouling. It was found that although the COD removal efficiency was comparable, the fouling potential was significantly reduced due to less production of biopolymer (a major foulant) in MFCs equipped with lower external resistance (i.e., with higher current generation) as compared with aerobic respiration. Furthermore, it was confirmed that Geobacter sulfurreducens strain PCA, a dominant exoelectrogen in anode biofilms of MFCs in this study, produced less biopolymer under anodic respiration condition than fumarate (anaerobic) respiration condition, resulting in lower membrane-fouling potential. Taken together, anodic respiration can mitigate membrane fouling of MBR due to lower biopolymer production, suggesting that development of an electrode-assisted MBR (e-MBR) without aeration is feasible. PMID:27427998

  8. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.; DeVincenzi, D. L. (Principal Investigator)

    1989-01-01

    Compilations have been made of sulfate reduction rates and oxic respiration rates over the entire range of marine sedimentation rates, and sedimentary environments, including several euxinic sites. These data show, consistent with the findings of Jorgensen (1982, Nature, 296, 643-645), that sulfate reduction and oxic respiration oxidize equal amounts of organic carbon in nearshore sediments. As sedimentation rates decrease, oxic respiration, becomes progressively more important, and in deep-sea sediments 100-1000 times more organic carbon is oxidized by oxic respiration than by sulfate reduction. By contrast, nearly as much organic carbon is oxidized by sulfate reduction in euxinic sediments as is oxidized by the sum of sulfate reduction and oxic respiration in normal marine sediments of similar deposition rate. This observation appears at odds with the enhanced preservation of organic carbon observed in euxinic sediments. However, only small reductions in (depth-integrated) organic carbon decomposition rates (compared to normal marine) are required to give both high organic carbon concentrations and enhanced carbon preservation in euxinic sediments. Lower rates of organic carbon decomposition (if only by subtle amounts) are explained by the diminished ability of anaerobic bacteria to oxidize the full suite of sedimentary organic compounds.

  9. Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids.

    PubMed

    Wang, Xiao; Duan, Xu; Chen, Jianguang; Fang, Kuo; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi

    2016-01-01

    In this study the effect of volatile to total solids (VS/TS) on anaerobic digestion of waste activated sludge (WAS) pretreated by alkaline, thermal and thermal-alkaline strategies was studied. Experimental results showed that the production of methane from sludge was increased with VS/TS. When anaerobic digesters were fed with sludge pretreated by the thermal-alkaline method, the average methane yield was improved from 2.8 L/d at VS/TS 0.35 to 4.7 L/d at VS/TS 0.56. Also, the efficiency of VS reduction during sludge anaerobic digestion varied between 18.9% and 45.6%, and increased gradually with VS/TS. Mechanism investigation of VS/TS on WAS anaerobic digestion suggested that the general activities of anaerobic microorganisms, activities of key enzymes related to sludge hydrolysis, acidification and methanogenesis, and the ratio of Archaea to Bacteria were all increased with VS/TS, showing good agreement with methane production.

  10. Anaerobic bacteria in otitis media.

    PubMed

    Fulghum, R S; Daniel, H J; Yarborough, J G

    1977-01-01

    Anaerobic bacteria, Peptostrepotococcus intermedius and Propionibacterium acnes, were found in mixed culture specimens from four to ten tested cases of chronic secretory otitis media. These anaerobic bacteria were in a mixed infection flora with aerobic bacteria most often Staphylococcus epidermidis and Cornybacterium sp. which do not fit any established species. The findings of anaerobic bacteria in otitis media is consistent with the sporadic report of the involvement of anaerobic bacteria in otitis media in the literature since 1898.

  11. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  12. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  13. Diatoms respire nitrate to survive dark and anoxic conditions

    PubMed Central

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.; Lavik, Gaute; Stief, Peter

    2011-01-01

    Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO3− intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11–274 mM NO3− in their cells survived for 6–28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84–87% of its intracellular NO3− pool within 1 d. A stable-isotope labeling experiment proved that 15NO3− consumption was accompanied by the production and release of 15NH4+, indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO3− in sediment layers without O2 and NO3−. The rapid depletion of the intracellular NO3− storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH4+ source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones. PMID:21402908

  14. Anaerobic Biotransformation and Mobility of Pu and of Pu-EDTA

    SciTech Connect

    Xun, Luying

    2009-11-20

    The enhanced mobility of radionuclides by co-disposed chelating agent, ethylenediaminetetraacetate (EDTA), is likely to occur only under anaerobic conditions. Our extensive effort to enrich and isolate anaerobic EDTA-degrading bacteria has failed. Others has tried and also failed. To explain the lack of anaerobic biodegradation of EDTA, we proposed that EDTA has to be transported into the cells for metabolism. A failure of uptake may contribute to the lack of EDTA degradation under anaerobic conditions. We demonstrated that an aerobic EDTA-degrading bacterium strain BNC1 uses an ABC-type transporter system to uptake EDTA. The system has a periplasmic binding protein that bind EDTA and then interacts with membrane proteins to transport EDTA into the cell at the expense of ATP. The bind protein EppA binds only free EDTA with a Kd of 25 nM. The low Kd value indicates high affinity. However, the Kd value of Ni-EDTA is 2.4 x 10^(-10) nM, indicating much stronger stability. Since Ni and other trace metals are essential for anaerobic respiration, we conclude that the added EDTA sequestrates all trace metals and making anaerobic respiration impossible. Thus, the data explain the lack of anaerobic enrichment cultures for EDTA degradation. Although we did not obtain an EDTA degrading culture under anaerobic conditions, our finding may promote the use of certain metals that forms more stable metal-EDTA complexes than Pu(III)-EDTA to prevent the enhanced mobility. Further, our data explain why EDTA is the most dominant organic pollutant in surface waters, due to the lack of degradation of certain metal-EDTA complexes.

  15. Effect of Rocking Movements on Respiration

    PubMed Central

    Omlin, Ximena; Crivelli, Francesco; Heinicke, Lorenz; Zaunseder, Sebastian; Achermann, Peter; Riener, Robert

    2016-01-01

    For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not

  16. Anaerobic thermophilic culture system

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  17. The anaerobic digestion process

    SciTech Connect

    Rivard, C.J.; Boone, D.R.

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  18. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change.

  19. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  20. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  1. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    NASA Astrophysics Data System (ADS)

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, A.; Buegger, F.; Fischer, D.; Radl, V.; Fuß, R.; Chroňáková, A.; Elhottová, D.; Šimek, M.; Schloter, M.

    2012-04-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  2. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    NASA Astrophysics Data System (ADS)

    Bannert, A.; Bogen, C.; Esperschütz, J.; Koubová, A.; Buegger, F.; Fischer, D.; Radl, V.; Fuß, R.; Chroňáková, A.; Elhottová, D.; Šimek, M.; Schloter, M.

    2012-10-01

    While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  3. Cyanide-insensitive Respiration in Pea Cotyledons.

    PubMed

    James, T W; Spencer, M S

    1979-09-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed.

  4. Respirator selection for clandestine methamphetamine laboratory investigation.

    PubMed

    Nelson, Gary O; Bronder, Gregory D; Larson, Scott A; Parker, Jay A; Metzler, Richard W

    2012-01-01

    First responders to illicit drug labs may not always have SCBA protection available. Air-purifying respirators using organic vapor cartridges with P-100 filters may not be sufficient. It would be better to use a NIOSH-approved CBRN respirator with its required multi-purpose cartridge system, which includes a P-100 filter. This would remove all the primary drug lab contaminants—organic vapors, acid gases, ammonia, phosphine, iodine, and airborne meth particulates. To assure the proper selection and use of a respirator, it is recommended that the contaminants present be identified and quantified and the OSHA 29 CFR 1910.134 respirator protection program requirements followed. PMID:22571884

  5. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  6. Decrease of time for pathogen inactivation in alkaline disinfection systems using pressure.

    PubMed

    Fitzmorris, Kari B; Reimers, Robert S; Oleszkiewicz, Jan A; Little, M Dale

    2007-04-01

    From field studies conducted by Tulane University (New Orleans, Louisiana), efficiency of advanced alkaline disinfection in closed systems was found to depend on ammonia concentration, pH, exposure time, temperature, total solids content, pretreatment storage time, and mixing effectiveness. In this study of a closed alkaline system, an additional pathogen stressor pressure was tested. The effect of the alkaline dosing has been assessed for dewatered raw and aerobically and anaerobically digested municipal sludge cake that produce un-ionized ammonia at concentrations of 0.05 to 2% on a dry-weight basis. Inactivation of Ascaris suum eggs increased from 50 to 99% as the temperature was increased from 40 to 55 degrees C, thus achieving Class A levels. The systems studied were compared with an alkaline process operated under open conditions, which limited the concentrations of ammonia available because of Henry's Law. Under a closed pressurized system, the effect of un-ionized ammonia was greatly increased, and the resulting time required for inactivation was reduced from hours or days to minutes. In the next few years, it is expected that alkaline disinfection of biosolids will be optimized in relation to the factors stated above, at much lower doses of the alkaline agents. The closed-system alkaline processes that will be developed will be more energy-efficient, cost-effective, and have full control of potential odorous emissions.

  7. Respirator protection factors: Part II-protection factors of supplied-air respirators.

    PubMed

    Hack, A L; Bradley, O D; Trujillo, A

    1980-05-01

    Protection Factors provided by 25 NIOSH approved supplied-air respirators were determined while the devices were worn by a panel of test subjects anthropometrically selected to represent adult facial sizes. Polydispersed DOP aerosol was used for respirator fit tests on continuous flow, demand, and pressure-demand respirators. Based on facepiece leakage measurements it appears that demand-type respirators should neither be used nor approved. The highest level of protection was provided by pressure-demand devices.

  8. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2014-07-01

    Although respiration-based oxidation of reduced carbon releases CO2 into the environment, it provides an ecosystem with the metabolic energy for essential biogeochemical processes, including the newly proposed microbial carbon pump (MCP). The efficiency of MCP in heterotrophic microorganisms is related to the mechanisms of energy transduction employed and hence is related to the form of respiration utilized. Anaerobic organisms typically have lower efficiencies of energy transduction and hence lower efficiencies of energy-dependent carbon transformation. This leads to a lower MCP efficiency on a per-cell basis. Substantial input of terrigenous nutrients and organic matter into estuarine ecosystems typically results in elevated heterotrophic respiration that rapidly consumes dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river discharge lead to enhanced anaerobic respiration processes such as denitrification and dissimilatory nitrate reduction to ammonium. Thus, some nutrients may be consumed through anaerobic heterotrophs, instead of being utilized by phytoplankton for autotrophic carbon fixation. In this manner, eutrophied estuarine ecosystems become largely fueled by anaerobic respiratory pathways and their efficiency is less due to lowered ecosystem productivity when compared to healthy and balanced estuarine ecosystems. This situation may have a negative impact on the ecological function and efficiency of the MCP which depends on the supply of both organic carbon and metabolic energy. This review presents our current understanding of the MCP mechanisms from the view point of ecosystem energy transduction efficiency, which has not been discussed in previous literature.

  9. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  10. The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review.

    PubMed

    Leitão, Renato Carrhá; van Haandel, Adrianus Cornelius; Zeeman, Grietje; Lettinga, Gatze

    2006-06-01

    With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes.

  11. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped... commercial designation of the respirator it contains and all appropriate approval labels....

  12. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  13. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped... commercial designation of the respirator it contains, and all appropriate approval labels....

  14. 42 CFR 84.250 - Vinyl chloride respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Vinyl chloride respirators; description. 84.250... Respirators § 84.250 Vinyl chloride respirators; description. Vinyl chloride respirators, including all completely assembled respirators which are designed for use as respiratory protection during entry into...

  15. Early anaerobic metabolisms

    PubMed Central

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  16. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    PubMed

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes. PMID:26935968

  17. Ecology and application of haloalkaliphilic anaerobic microbial communities.

    PubMed

    Sousa, João A B; Sorokin, Dimitry Y; Bijmans, Martijn F M; Plugge, Caroline M; Stams, Alfons J M

    2015-11-01

    Haloalkaliphilic microorganisms that grow optimally at high-pH and high-salinity conditions can be found in natural environments such as soda lakes. These globally spread lakes harbour interesting anaerobic microorganisms that have the potential of being applied in existing technologies or create new opportunities. In this review, we discuss the potential application of haloalkaliphilic anaerobic microbial communities in the fermentation of lignocellulosic feedstocks material subjected to an alkaline pre-treatment, methane production and sulfur removal technology. Also, the general advantages of operation at haloalkaline conditions, such as low volatile fatty acid and sulfide toxicity, are addressed. Finally, an outlook into the main challenges like ammonia toxicity and lack of aggregation is provided. PMID:26359181

  18. Direct reading of electrocardiograms and respiration rates

    NASA Technical Reports Server (NTRS)

    Wise, J. P.

    1969-01-01

    Technique for reading heart and respiration rates is more accurate and direct than the previous method. Index of a plastic calibrated card is aligned with a point on the electrocardiogram. Complexes are counted as indicated on the card and heart or respiration rate is read directly from the appropriate scale.

  19. Photosynthesis and Respiration in a Jar.

    ERIC Educational Resources Information Center

    Buttner, Joseph K.

    2000-01-01

    Describes an activity that reduces the biosphere to a water-filled jar to simulate the relationship between cellular respiration, photosynthesis, and energy. Allows students in high school biology and related courses to explore quantitatively cellular respiration and photosynthesis in almost any laboratory setting. (ASK)

  20. Process performance of anaerobic co-digestion of raw and acidified pig slurry.

    PubMed

    Moset, V; Cerisuelo, A; Sutaryo, S; Møller, H B

    2012-10-15

    The effect of incorporating different ratios of acidified pig slurry on methane yield was evaluated in two scales of anaerobic digesters: Thermophilic (50 °C) pilot scale digester (120 l), operating with an average hydraulic retention time of 20 days and thermophilic (52 °C) full-scale digesters (10 and 30 m(3)), operating with an average hydraulic retention time of 30 days. In the lab-scale digester, different inclusion levels of acidified slurry (0-60%) were tested each 15 days, to determine the maximum ratio of acidified to non-acidified slurry causing inhibition and to find process state indicators helping to prevent process failure. In the full-scale digesters, the level of inclusion of the acidified slurry was chosen from the ratio causing methane inhibition in the pilot scale experiment and was carried on in a long-term process of 100 days. The optimal inclusion level of acidified pig slurry in anaerobic co-digestion with conventional slurry was 10%, which promoted anaerobic methane yield by nearly 20%. Higher inclusion levels caused methane inhibition and volatile fatty acids accumulations in both experiments. In order to prevent process failure, the most important traits to monitor in the anaerobic digestion of acidified pig slurry were found to be: sulfate content of the slurry, alkalinity parameters (especially partial alkalinity and the ratio of alkalinity) and total volatile fatty acids (especially acetic and butyric acids).

  1. Low-potential respirators support electricity production in microbial fuel cells.

    PubMed

    Grüning, André; Beecroft, Nelli J; Avignone-Rossa, Claudio

    2015-07-01

    In this paper, we analyse how electric power production in microbial fuel cells (MFCs) depends on the composition of the anodic biofilm in terms of metabolic capabilities of identified sets of species. MFCs are a promising technology for organic waste treatment and sustainable bioelectricity production. Inoculated with natural communities, they present a complex microbial ecosystem with syntrophic interactions between microbes with different metabolic capabilities. Our results demonstrate that low-potential anaerobic respirators--that is those that are able to use terminal electron acceptors with a low redox potential--are important for good power production. Our results also confirm that community metabolism in MFCs with natural inoculum and fermentable feedstock is a two-stage system with fermentation followed by anode respiration.

  2. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  3. Expedited CO2 respiration in people with Miltenberger erythrocyte phenotype GP.Mur.

    PubMed

    Hsu, Kate; Kuo, Mei-Shin; Yao, Ching-Che; Lee, Ting-Ying; Chen, Yi-Chun; Cheng, Han-Chih; Lin, Chia-Hao; Yu, Tzung-Han; Lin, Hui-Ju

    2015-05-22

    In Southeast Asia, Miltenberger antigen subtype III (Mi.III; GP.Mur) is considered one of the most important red blood cell antigens in the field of transfusion medicine. Mi.III functions to promote erythrocyte band 3 expression and band 3-related HCO3(-) transport, with implications in blood CO2 metabolism. Could Mi.III affect physiologic CO2 respiration in its carriers? Here, we conducted a human trial to study the impacts of Mi.III expression in respiration. We recruited 188 healthy, adult subjects for blood typing, band 3 measurements, and respiratory tests before and after exercise. The 3-minute step exercise test forced the demand for CO2 dissipation to rise. We found that immediately following exercise, Mi.III + subjects exhaled CO2 at greater rates than Miltenberger-negative subjects. Respiration rates were also higher for Mi.III + subjects immediately after exercise. Blood gas tests further revealed distinct blood CO2 responses post-exercise between Mi.III and non-Mi.III. In contrast, from measurements of heart rates, blood O2 saturation and lactate, Mi.III phenotype was found to be independent of one's aerobic and anaerobic capacities. Thus, Mi.III expression supported physiologic CO2 respiration. Conceivably, Mi.III + people may have advantages in performing physically enduring activities.

  4. Expedited CO2 respiration in people with Miltenberger erythrocyte phenotype GP.Mur.

    PubMed

    Hsu, Kate; Kuo, Mei-Shin; Yao, Ching-Che; Lee, Ting-Ying; Chen, Yi-Chun; Cheng, Han-Chih; Lin, Chia-Hao; Yu, Tzung-Han; Lin, Hui-Ju

    2015-01-01

    In Southeast Asia, Miltenberger antigen subtype III (Mi.III; GP.Mur) is considered one of the most important red blood cell antigens in the field of transfusion medicine. Mi.III functions to promote erythrocyte band 3 expression and band 3-related HCO3(-) transport, with implications in blood CO2 metabolism. Could Mi.III affect physiologic CO2 respiration in its carriers? Here, we conducted a human trial to study the impacts of Mi.III expression in respiration. We recruited 188 healthy, adult subjects for blood typing, band 3 measurements, and respiratory tests before and after exercise. The 3-minute step exercise test forced the demand for CO2 dissipation to rise. We found that immediately following exercise, Mi.III + subjects exhaled CO2 at greater rates than Miltenberger-negative subjects. Respiration rates were also higher for Mi.III + subjects immediately after exercise. Blood gas tests further revealed distinct blood CO2 responses post-exercise between Mi.III and non-Mi.III. In contrast, from measurements of heart rates, blood O2 saturation and lactate, Mi.III phenotype was found to be independent of one's aerobic and anaerobic capacities. Thus, Mi.III expression supported physiologic CO2 respiration. Conceivably, Mi.III + people may have advantages in performing physically enduring activities. PMID:26000803

  5. Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates.

    PubMed

    Goris, Tobias; Schiffmann, Christian L; Gadkari, Jennifer; Schubert, Torsten; Seifert, Jana; Jehmlich, Nico; von Bergen, Martin; Diekert, Gabriele

    2015-09-21

    Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE.

  6. Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates

    PubMed Central

    Goris, Tobias; Schiffmann, Christian L.; Gadkari, Jennifer; Schubert, Torsten; Seifert, Jana; Jehmlich, Nico; von Bergen, Martin; Diekert, Gabriele

    2015-01-01

    Organohalide respiration is an environmentally important but poorly characterized type of anaerobic respiration. We compared the global proteome of the versatile organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans grown with different electron acceptors (fumarate, nitrate, or tetrachloroethene [PCE]). The most significant differences in protein abundance were found for gene products of the organohalide respiration region. This genomic region encodes the corrinoid and FeS cluster containing PCE reductive dehalogenase PceA and other proteins putatively involved in PCE metabolism such as those involved in corrinoid biosynthesis. The latter gene products as well as PceA and a putative quinol dehydrogenase were almost exclusively detected in cells grown with PCE. This finding suggests an electron flow from the electron donor such as formate or pyruvate via the quinone pool and a quinol dehydrogenase to PceA and the terminal electron acceptor PCE. Two putative accessory proteins, an IscU-like protein and a peroxidase-like protein, were detected with PCE only and might be involved in PceA maturation. The proteome of cells grown with pyruvate instead of formate as electron donor indicates a route of electrons from reduced ferredoxin via an Epsilonproteobacterial complex I and the quinone pool to PCE. PMID:26387727

  7. Modelling Soil respiration in agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth

    2013-04-01

    A soil respiration model was developed to simulate soil respiration in crops on a daily time step. The soil heterotrophic respiration component was derived from Century (Parton et al., 1987). Soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition rate coefficient. Carbon flows between these pools are controlled by carbon inputs (crop residues), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To model the soil autotrophic respiration component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence (Ryan et al., 1991). Growth respiration is calculated assuming a dependence on both growth rate and construction cost of the considered organ (MacCree et al., 1982) A database, made of four different soil and climate conditions in mid-latitude was used to study the two components of the soil respiration model in wheat fields. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to

  8. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  9. Sleep and Respiration in Microgravity

    NASA Technical Reports Server (NTRS)

    West, John B.; Elliott, Ann R.; Prisk, G. Kim; Paiva, Manuel

    2003-01-01

    Sleep is often reported to be of poor quality in microgravity, and studies on the ground have shown a strong relationship between sleep-disordered breathing and sleep disruption. During the 16-day Neurolab mission, we studied the influence of possible changes in respiratory function on sleep by performing comprehensive sleep recordings on the payload crew on four nights during the mission. In addition, we measured the changes in the ventilatory response to low oxygen and high carbon dioxide in the same subjects during the day, hypothesizing that changes in ventilatory control might affect respiration during sleep. Microgravity caused a large reduction in the ventilatory response to reduced oxygen. This is likely the result of an increase in blood pressure at the peripheral chemoreceptors in the neck that occurs when the normally present hydrostatic pressure gradient between the heart and upper body is abolished. This reduction was similar to that seen when the subjects were placed acutely in the supine position in one-G. In sharp contrast to low oxygen, the ventilatory response to elevated carbon dioxide was unaltered by microgravity or the supine position. Because of the similarities of the findings in microgravity and the supine position, it is unlikely that changes in ventilatory control alter respiration during sleep in microgravity. During sleep on the ground, there were a small number of apneas (cessation of breathing) and hypopneas (reduced breathing) in these normal subjects. During sleep in microgravity, there was a reduction in the number of apneas and hypopneas per hour compared to preflight. Obstructive apneas virtually disappeared in microgravity, suggesting that the removal of gravity prevents the collapse of upper airways during sleep. Arousals from sleep were reduced in microgravity compared to preflight, and virtually all of this reduction was as a result of a reduction in the number of arousals from apneas and hypopneas. We conclude that any sleep

  10. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and... contamination of respirators which are not removed, and to prevent damage to respirators during transit....

  11. Anaerobic digestion of wood ethanol stillage using upflow anaerobic sludge blanket reactor

    SciTech Connect

    Callander, I.J.; Clark, T.A.; McFarlane, P.N.

    1987-01-01

    The anaerobic digestion of wood ethanol stillage in a UASB reactor was studied. At organic loading rates below 16 kg COD/m/sup 3/ day the reactor performed effectively, achieving soluble COD and BOD removals in excess of 86 and 93%, respectively. Removal of color averaged 40%. At a loading rate of 16 kg COD/m/sup 3/ day the methane yield was 0.302 L CH/sub 4/ (STP)/g COD removed, and the observed cell yield was 0.112 g VSS/g COD removed. Operation of the reactor at higher loading rates was unsuccessful. Nitrogen, phosphorus, and alkalinity were supplemented. No additions of the essential trace elements Fe, Co, and Ni were required.

  12. Anaerobic wastewater treatment using anaerobic baffled bioreactor: a review

    NASA Astrophysics Data System (ADS)

    Hassan, Siti; Dahlan, Irvan

    2013-09-01

    Anaerobic wastewater treatment is receiving renewed interest because it offers a means to treat wastewater with lower energy investment. Because the microorganisms involved grow more slowly, such systems require clever design so that the microbes have sufficient time with the substrate to complete treatment without requiring enormous reactor volumes. The anaerobic baffled reactor has inherent advantages over single compartment reactors due to its circulation pattern that approaches a plug flow reactor. The physical configuration of the anaerobic baffled reactor enables significant modifications to be made; resulting in a reactor which is proficient of treating complex wastewaters which presently require only one unit, ultimately significant reducing capital costs. This paper also concerns about mechanism, kinetic and hydrodynamic studies of anaerobic digestion for future application of the anaerobic baffled reactor for wastewater treatment.

  13. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.

    PubMed

    Işik, Mustafa; Sponza, Delia Teresa

    2004-01-01

    Batch anaerobic and sequential anaerobic upflow anaerobic sludge blanket (UASB)/aerobic continuous stirred tank reactor (CSTR) were used to determine the color and COD removals under anaerobic/aerobic conditions. Two azo dyes namely "Reactive Black 5 (RB 5)," "Congo Red (CR)," and glucose as a carbon source were used for synthetic wastewater. The course of the decolorization process approximates to first order and zero order kinetics with respect to dye concentration for RB 5 and Congo Red azo dyes, respectively, in batch conditions. The decolorization kinetic constant (K0) values increased from 3.6 to 11.8 mg(L h)(-1) as increases in dye concentrations from 200 to 3200 mg L(-1) for CR. Increases in dye concentrations from 0 to 3200 mg L(-1) reduce the decolorization rate constant (k1) values from 0.0141 to 0.0019 h(-1) in batch studies performed with RB 5. Decolorization was achieved effectively under test conditions but ultimate decolorization of azo dyes was not observed at all dye concentrations in batch assay conditions. Dye concentrations of 100 mg L(-1) and 3000 mg L(-1) of glucose-COD containing basal medium were used for continuous studies. The effect of organic loadings and HRT, on the color removal efficiencies and methane gas productions were monitored. 94.1-45.4% COD and 79-73% color removal efficiencies were obtained at an organic system during decolorization of Reactive Black 5. 92.3-77.0% COD and 95.3-92.2% decolorization efficiencies were achieved at a organic loading rate of 1.03-6.65 kg (m3 day)(-1) and a HRT of 3.54-0.49 for Congo Red treatment. The results of this study showed that, although decolorization continued, COD removal efficiencies and methane gas production were depressed at high organic loadings under anaerobic conditions. Furthermore, VFA accumulation, alkalinity consumption, and methane gas percentage were monitored at organic loading as high as 2.49-4.74 kg (m3 day)(-1) and 24.60-30.62 kg (m3 day)(-1), respectively, through the

  14. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    NASA Astrophysics Data System (ADS)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  15. Respirator physiological effects under simulated work conditions.

    PubMed

    Bansal, Siddharth; Harber, Philip; Yun, David; Liu, David; Liu, Yihang; Wu, Samantha; Ng, David; Santiago, Silverio

    2009-04-01

    This study compared the physiological impacts of two respirator types in simulated work conditions. Fifty-six subjects included normal volunteers and persons with mild respiratory impairments (chronic rhinitis, mild COPD, and mild asthma). Respiratory parameters and electrocardiogram were measured using respiratory inductive plethysmography while performing eight work tasks involving low to moderate exertion using two respirators: (1) a dual cartridge half face mask (HFM) respirator, and (2) the N95. Mixed model regression analyses evaluating the effect of task and respirator type showed that task affected tidal volume, minute ventilation, breathing frequency and heart rate; all were greater in heavier tasks. Although respirator type did not affect respiratory volume parameters and flow rates, the HFM led to increase in the inspiratory time, reduction of the expiratory time, and increase in the duty cycle in comparison with the N95. The magnitude of differences was relatively small. The results suggest that most individuals, including persons with mild respiratory impairments, will physiologically tolerate either type of respirator at low to moderate exertion tasks. However, because effective protection depends on proper use, differences in subjective effect may have greater impact than physiological differences. Using respirators may be feasible on a widespread basis if necessary for maintaining essential services in the face of widespread concern about an infectious or terrorist threat. PMID:19180375

  16. Induction and repression of outer membrane proteins by anaerobic growth of Neisseria gonorrhoeae.

    PubMed Central

    Clark, V L; Campbell, L A; Palermo, D A; Evans, T M; Klimpel, K W

    1987-01-01

    Neisseria gonorrhoeae is generally considered to be an obligate aerobe; it can, however, grow in the absence of oxygen by anaerobic respiration by using nitrite as a terminal electron acceptor. The outer membrane protein compositions of aerobically and anaerobically grown N. gonorrhoeae strains were compared by one- and two-dimensional polyacrylamide gel electrophoresis. Anaerobically grown strains expressed at least three proteins (Pan 1 to Pan 3) at much higher levels than did aerobically grown cells. Conversely, at least five other proteins (Pox 1 to Pox 5) were found to be expressed at significantly higher levels in aerobically grown cells. None of the Pan or Pox proteins were heat modifiable, and none of the heat-modifiable protein IIs or other major outer membrane proteins (protein I, protein III, pilin, or H-8 protein) were significantly altered in expression by anaerobic growth. There were also no apparent differences in lipopolysaccharide composition in aerobically and anaerobically grown gonococci. The regulation of protein expression by oxygen availability suggests that anaerobic growth is a physiologically significant state for this organism. Images PMID:3106220

  17. The role of anaerobic bacteria in the neutralization of acid mine drainage. [Desulfovibrio

    SciTech Connect

    Bell, P.E.

    1988-01-01

    In contrast to the acidic water column, the sediments underlying Lake Anna, which receives acid mine drainage, are circumneutral and contain 1-4 meq alkalinity/L. Indirect fluorescent antibody counts of a methanogen (strain CA) and a sulfate reducer (Desulfovibrio strain SM) demonstrated that these organisms were present in the sediments at numbers of approximately 10{sup 6} bacteria/mL sediment. Anaerobic heterotrophs in the sediments underlying the acidified arm of the lake outnumbered anaerobic heterotrophs in a non-acidified arm of the lake. A major storm event resulted in the deposition of 11 cm of oxidized, acidic new sediment material over the older circumneutral sediments. The Eh in the new sediments decreased by 200 mV within one week after the storm event. The pH and alkalinity increased even in the 1-cm layer by two weeks after the storm and products of sulfate reduction (acid volatile sulfide) increased at three weeks after the storm. This suggests that biological processes other than sulfate reduction were responsible for the initial buffering of these sediments. Laboratory experiments using the sulfate reducer and two anaerobes (also isolated from the sediments) suggested that alkalinity production during sulfate reduction decreases with decreasing carbon concentration. Generation of alkalinity was found not to be a simple function of sulfate reduction or of iron reduction. The generation of alkalinity was found to be a function of the carbon source, and concentration, organisms present, and mineral phase formed. Iron reduction rates in the sediments of Contrary Creek ranged from 4.9-27.8 mM/m{sup 2}-sediment-day. Alkalinity was produced in the floc layer in the absence of sulfate reduction. Iron reduction could be responsible for the mineralization of 15-90% of the carbon input to this system.

  18. Methane production and microbial community structure for alkaline pretreated waste activated sludge.

    PubMed

    Sun, Rui; Xing, Defeng; Jia, Jianna; Zhou, Aijuan; Zhang, Lu; Ren, Nanqi

    2014-10-01

    Alkaline pretreatment was studied to analyze the influence on waste activated sludge (WAS) reduction, methane production and microbial community structure during anaerobic digestion. Methane production from alkaline pretreated sludge (A-WAS) (pH = 12) increased from 251.2 mL/Ld to 362.2 mL/Ld with the methane content of 68.7% compared to raw sludge (R-WAS). Sludge reduction had been improved, and volatile suspended solids (VSS) removal rate and protein reduction had increased by ∼ 10% and ∼ 35%, respectively. The bacterial and methanogenic communities were analyzed using 454 pyrosequencing and clone libraries of 16S rRNA gene. Remarkable shifts were observed in microbial community structures after alkaline pretreatment, especially for Archaea. The dominant methanogenic population changed from Methanosaeta for R-WAS to Methanosarcina for A-WAS. In addition to the enhancement of solubilization and hydrolysis of anaerobic digestion of WAS, alkaline pretreatment showed significant impacts on the enrichment and syntrophic interactions between microbial communities.

  19. Economic viability of anaerobic digestion

    SciTech Connect

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  20. Start-up phase of an anaerobic full-scale farm reactor - Appearance of mesophilic anaerobic conditions and establishment of the methanogenic microbial community.

    PubMed

    Goux, Xavier; Calusinska, Magdalena; Fossépré, Marie; Benizri, Emile; Delfosse, Philippe

    2016-07-01

    The goal of this study was to investigate how the microbial community structure establishes during the start-up phase of a full-scale farm anaerobic reactor inoculated with stale and cold cattle slurry. The 16S/18S high-throughput amplicon sequencing results showed an increase of the bacterial, archaeal and eukaryotic diversity, evenness and richness during the settlement of the mesophilic anaerobic conditions. When a steady performing digestion process was reached, the microbial diversity, evenness and richness decreased, indicating the establishment of a few dominant microbial populations, best adapted to biogas production. Interestingly, among the environmental parameters, the temperature, alkalinity, free-NH3, total solids and O2 content were found to be the main drivers of microbial dynamics. Interactions between eukaryotes, characterized by a high number of unknown organisms, and the bacterial and archaeal communities were also evidenced, suggesting that eukaryotes might play important roles in the anaerobic digestion process. PMID:27099947

  1. BOREAS TE-5 Soil Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. Soil respiration data were collected from 26-May-94 to 07-Sep-94 in the BOREAS NSA and SSA to compare the soil respiration rates in different forest sites using a LI-COR 6200 soil respiration chamber (model 6299). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distrobuted Activity Archive Center (DAAC).

  2. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria

    PubMed Central

    Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-01-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  3. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria.

    PubMed

    Cook, Gregory M; Hards, Kiel; Vilchèze, Catherine; Hartman, Travis; Berney, Michael

    2014-06-01

    Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3 -type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis. PMID:25346874

  4. Diversity of anaerobic halophilic microorganisms

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Oremland, Roland S.

    2000-12-01

    Life in the presence of high salt concentrations is compatible with life in the absence of oxygen. Halophilic and halotolerant anaerobic prokaryotes are found both in the archaeal and in the bacterial domain, and they display a great metabolic diversity. Many of the representatives of the Halobacteriales (Archaea), which are generally considered aerobes, have the potential of anaerobic growth. Some can use alternative electron acceptors such as nitrate, fumarate, dimethylsulfoxide or trimethylamine-N-oxide Halobacterium salinarum can also grow fermentatively on L-arginine, and bacteriorhodopsin-containing cells may even grow anaerobically, energized by light. Obligatory anaerobic halophilic methanogenic Archaea also exist. The bacterial domain contains many anaerobic halophiles, including sulfate reducers. There is also a group of specialized obligatory anaerobic Bacteria, phylogenetically clustering in the low G + C branch of the Firmicutes. Most representatives of this group (order Haloanaerobiales, families Haloanaerobiaceae and Halobacteroidaceae) are fermentative, using a variety of carbohydrates and amino acids. One species combines the potential for anaerobic growth at high salt concentrations with a preference for high temperatures. Others are homoacetogens; Acetohalobium arabaticum can grow anaerobically as a chemolithotroph, producing acetate from hydrogen and CO2. The Haloanaerobiales accumulate high concentrations of K+ and Cl- in their cytoplasm, thereby showing a strategy of salt adaptation similar to that used by the Halobacteriales. Recently a new representative of the Haloanaerobiales was isolated from bottom sediments of the Dead Sea (strain DSSe1), which grows anaerobically by oxidation of glycerol to acetate and CO2 while reducing selenate to selenite and elementary selenium. Other electron acceptors supporting anaerobic growth of this strain are nitrate and trimethylamine-N-oxide. The versatility of life at high salt concentrations with respect

  5. The effect of subject characteristics and respirator features on respirator fit.

    PubMed

    Zhuang, Ziqing; Coffey, Christopher C; Ann, Roland Berry

    2005-12-01

    A recent study was conducted to compare five fit test methods for screening out poor-fitting N95 filtering-facepiece respirators. Eighteen models of NIOSH-certified, N95 filtering-facepiece respirators were used to assess the fit test methods by using a simulated workplace protection factor (SWPF) test. The purpose of this companion study was to investigate the effect of subject characteristics (gender and face dimensions) and respirator features on respirator fit. The respirator features studied were design style (folding and cup style) and number of sizes available (one size fits all, two sizes, and three sizes). Thirty-three subjects participated in this study. Each was measured for 12 face dimensions using traditional calipers and tape. From this group, 25 subjects with face size categories 1 to 10 tested each respirator. The SWPF test protocol entailed using the PortaCount Plus to determine a SWPF based on total penetration (face-seal leakage plus filter penetration) while the subject performed six simulated workplace movements. Six tests were conducted for each subject/respirator model combination with redonning between tests. The respirator design style (folding style and cup style) did not have a significant effect on respirator fit in this study. The number of respirator sizes available for a model had significant impact on respirator fit on the panel for cup-style respirators with one and two sizes available. There was no significant difference in the geometric mean fit factor between male and female subjects for 16 of the 18 respirator models. Subsets of one to six face dimensions were found to be significantly correlated with SWPFs (p < 0.05) in 16 of the 33 respirator model/respirator size combinations. Bigonial breadth, face width, face length, and nose protrusion appeared the most in subsets (five or six) of face dimensions and their multiple linear regression coefficients were significantly different from zero (p < 0.05). Lip length was found in

  6. Fly ash hemolysis as related to its alkalinity

    SciTech Connect

    Liu, W.K.; Wong, M.H.; Tam, N.F.; Sun, S.E.

    1987-10-01

    Fly ash particles were collected from the precipitator of a power plant in Hong Kong and the hemolytic activity of the particles of the respirable range (smaller than 10 micron) was studied using a rat red blood cell assay system. It was revealed that coal-fired fly ash had a high hemolytic activity which was dose independent. The hemolysate changed from red to brownish-green. Chemical analyses, including scanning electron microscopy incorporated with energy dispersive X-ray microanalysis, inductively coupled plasma spectrophotometry, and X-ray power diffractometry, showed that a considerable amount of calcium salt coated the surface of the particles. The high alkalinity of the calcium salt initially damaged the red blood cell membrane and then destroyed the hemoglobin molecules released from the damaged cells. This phenomenon only caused a discrepancy if the amount of hemoglobin which remained in the incubation medium was taken into account for the measurement of hemolytic activity of fly ash particles.

  7. Respiration in Neonate Sea Turtles

    PubMed Central

    Paladino, Frank V.; Strohl, Kingman P.; Pilar Santidrián, T.; Klann, Kenneth; Spotila, James R.

    2007-01-01

    The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings’ response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species’ resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults. PMID:17258487

  8. Ofloxacin induces cytoplasmic respiration-deficient mutants in yeast Saccharomyces cerevisiae.

    PubMed

    Obernauerová, M; Subík, J; Ebringer, L

    1992-05-01

    Ofloxacin, a new quinolone with potent antibacterial activity, was also found to be effective against yeast. At relatively high concentrations, and at mild alkaline pH, ofloxacin inhibited the growth of yeast cells in medium containing glucose, and prevented growth on glycerol, as carbon and energy source. The cells growing in the presence of ofloxacin exhibited abberrantly budded forms, lost their viability and many of them converted to cytoplasmic respiration-deficient mutants. Induction of mutants was also observed under non-growing conditions. The petite clones analysed exhibited suppressiveness and contained different fragments of the wild-type mitochondrial genome.

  9. The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway.

    PubMed

    Rutkis, Reinis; Strazdina, Inese; Balodite, Elina; Lasa, Zane; Galinina, Nina; Kalnenieks, Uldis

    2016-01-01

    Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype.

  10. The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway

    PubMed Central

    Rutkis, Reinis; Strazdina, Inese; Balodite, Elina; Lasa, Zane; Galinina, Nina; Kalnenieks, Uldis

    2016-01-01

    Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype. PMID:27100889

  11. The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway.

    PubMed

    Rutkis, Reinis; Strazdina, Inese; Balodite, Elina; Lasa, Zane; Galinina, Nina; Kalnenieks, Uldis

    2016-01-01

    Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in other respiring bacteria and yeast. This effect takes place after air is introduced to glucose-consuming anaerobic cell suspension, and can be simulated using a kinetic model of the Entner-Doudoroff pathway in combination with a simple net reaction of NADH oxidation that does not involve oxidative phosphorylation. Although aeration hampers batch growth of respiring Z. mobilis culture due to accumulation of toxic byproducts, nevertheless under non-growing conditions respiration is shown to confer an adaptive advantage for the wild type over the non-respiring Ndh knock-out mutant. If cells get occasional access to limited amount of glucose for short periods of time, the elevated glucose uptake rate selectively improves survival of the respiring Z. mobilis phenotype. PMID:27100889

  12. [Effects of Tillage on Soil Respiration and Root Respiration Under Rain-Fed Summer Corn Field].

    PubMed

    Lu, Xing-li; Liao, Yun-cheng

    2015-06-01

    To explore the effects of different tillage systems on soil respiration and root respiration under rain-fed condition. Based on a short-term experiment, this paper investigated soil respiration in summer corn growth season under four tillage treatments including subsoiling tillage (ST), no tillage (NT), rotary tillage (RT) and moldboard plow tillage (CT). The contribution of root respiration using root exclusion method was also discussed. The results showed that soil respiration rate presented a single peak trend under four tillage methods during the summer corn growing season, and the maximum value was recorded at the heading stage. The trends of soil respiration were as follows: heading stage > flowering stage > grain filling stage > maturity stage > jointing stage > seedling stage. The trends of soil respiration under different tillage systems were as follows: CT > ST > RT > NT. There was a significant correlation between soil respiration rate and soil temperatures (P < 0.05), which could explain 35%-75% variability of soil respiration using exponential function equation. However, there was no significant correlation between soil respiration rate and soil moisture. Root respiration accounted for 45.13%-56.86% of the proportion of soil respiratio n with the mean value 51.72% during the summer corn growing season under different tillage systems. Therefore, root exclusion method could be used to study the contribution of crop growth to carbon emission, to compare effects of different tillage systems on the contribution of root respiration provides the bases for selecting the measures to slow down the decomposition of soil carbon.

  13. Photosynthesis and Respiration in Leaf Slices.

    ERIC Educational Resources Information Center

    Brown, Simon

    1998-01-01

    Demonstrates how leaf slices provide an inexpensive material for illustrating several fundamental points about the biochemistry of photosynthesis and respiration. Presents experiments that illustrate the effects of photon flux density and herbicides and carbon dioxide concentration. (DDR)

  14. Anaerobic Metabolism of Indoleacetate

    PubMed Central

    Ebenau-Jehle, Christa; Thomas, Markus; Scharf, Gernot; Kockelkorn, Daniel; Knapp, Bettina; Schühle, Karola; Heider, Johann

    2012-01-01

    The anaerobic metabolism of indoleacetate (indole-3-acetic acid [IAA]) in the denitrifying betaproteobacterium Azoarcus evansii was studied. The strain oxidized IAA completely and grew with a generation time of 10 h. Enzyme activities that transformed IAA were present in the soluble cell fraction of IAA-grown cells but were 10-fold downregulated in cells grown on 2-aminobenzoate or benzoate. The transformation of IAA did not require molecular oxygen but required electron acceptors like NAD+ or artificial dyes. The first products identified were the enol and keto forms of 2-oxo-IAA. Later, polar products were observed, which could not yet be identified. The first steps likely consist of the anaerobic hydroxylation of the N-heterocyclic pyrrole ring to the enol form of 2-oxo-IAA, which is catalyzed by a molybdenum cofactor-containing dehydrogenase. This step is probably followed by the hydrolytic ring opening of the keto form, which is catalyzed by a hydantoinase-like enzyme. A comparison of the proteome of IAA- and benzoate-grown cells identified IAA-induced proteins. Owing to the high similarity of A. evansii with strain EbN1, whose genome is known, we identified a cluster of 14 genes that code for IAA-induced proteins involved in the early steps of IAA metabolism. These genes include a molybdenum cofactor-dependent dehydrogenase of the xanthine oxidase/aldehyde dehydrogenase family, a hydantoinase, a coenzyme A (CoA) ligase, a CoA transferase, a coenzyme B12-dependent mutase, an acyl-CoA dehydrogenase, a fusion protein of an enoyl-CoA hydratase and a 3-hydroxyacyl-CoA dehydrogenase, a beta-ketothiolase, and a periplasmic substrate binding protein for ABC transport as well as a transcriptional regulator of the GntR family. Five predicted enzymes form or act on CoA thioesters, indicating that soon after the initial oxidation of IAA and possibly ring opening, CoA thioesters are formed, and the carbon skeleton is rearranged, followed by a CoA-dependent thiolytic

  15. Snorkel tracheotomy tube for respirator use.

    PubMed

    LEBO, C P

    1954-07-01

    The Snorkel tracheotomy tube, a simple modification of the standard tube, overcomes many of the mechanical inconveniences usually encountered in the care of patients with tracheotomy who have to be kept in respirators. With it in place, it is not necessary to use special devices to hold the collar of the respirator away from the site of the tracheal incision. Nursing care of the patient is made easier.

  16. THE TEMPERATURE CHARACTERISTIC OF RESPIRATION OF AZOTOBACTER.

    PubMed

    Lineweaver, H; Burk, D; Horner, C K

    1932-05-20

    The temperature characteristic of respiration of Azotobacter vinelandii possesses a constant value of 19,330 +/- 165 over the temperature range 20-30 degrees C. This value is independent of pH, oxygen tension, age of culture, and other factors within the limits studied. The optimum temperature of respiration is 34-35 degrees C., with limits at about 10 degrees and 50 degrees C.

  17. Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste

    NASA Astrophysics Data System (ADS)

    Hao, W.; Hongtao, W.

    2008-02-01

    The effect of alkaline hydrothermal pre-treatment for anaerobic digestion of mechanically-sorted municipal solid waste (MSW) and source-sorted waste was studied. Waste was hydrothermally pre-treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170 °C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control, and methane conversion ratio on carbon basis was enhanced to 30.6%. The digestion period was less than 6 days when pre-treatment temperature was above 130 °C. The organic part of sorted waste is mainly constituted of kitchen garbage and leaf. Model kitchen garbage was completely liquidized at 130 °C for one hour and the methane yield was 276 ml/g VS. Addition of alkali enhance hydroxylation rate and methane yield slightly. The biogas potential of leaf could be observed by pre-treatment above 150 °C under alkaline condition.

  18. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  19. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  20. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  1. 42 CFR 84.134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.134... Respirators § 84.134 Respirator containers; minimum requirements. Supplied-air respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  2. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except..., durable container bearing markings which show the applicant's name, the type of respirator it...

  3. 42 CFR 84.197 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirator containers; minimum requirements. 84.197... Cartridge Respirators § 84.197 Respirator containers; minimum requirements. Respirators shall be equipped with a substantial, durable container bearing markings which show the applicant's name, the type...

  4. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  5. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  6. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  7. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  8. 42 CFR 84.191 - Chemical cartridge respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Chemical cartridge respirators; required components... Chemical Cartridge Respirators § 84.191 Chemical cartridge respirators; required components. (a) Each chemical cartridge respirator described in § 84.190 shall, where its design requires, contain the...

  9. 42 CFR 84.130 - Supplied-air respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Supplied-air respirators; description. 84.130... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.130 Supplied-air respirators; description. Supplied-air respirators, including all...

  10. 42 CFR 84.174 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84.174... Air-Purifying Particulate Respirators § 84.174 Respirator containers; minimum requirements. (a) Except as provided in paragraph (b) of this section each respirator shall be equipped with a...

  11. 42 CFR 84.1131 - Respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirators; required components. 84.1131 Section..., and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1131 Respirators; required components. (a) Each respirator described in § 84.1130...

  12. 42 CFR 84.1131 - Respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respirators; required components. 84.1131 Section..., and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1131 Respirators; required components. (a) Each respirator described in § 84.1130...

  13. Thermo-chemical pre-treatment to solubilize and improve anaerobic biodegradability of press mud.

    PubMed

    López González, Lisbet Mailin; Vervaeren, Han; Pereda Reyes, Ileana; Dumoulin, Ann; Romero Romero, Osvaldo; Dewulf, Jo

    2013-03-01

    Different pre-treatment severities by thermo-alkaline conditions (100°C, Ca(OH)2) on press mud were evaluated for different pre-treatment time and lime loading. COD solubilization and the methane yield enhancement were assessed. The biochemical methane potential was determined in batch assays under mesophilic conditions (37±1°C). The best pre-treatment resulted in a surplus of 72% of methane yield, adding 10g Ca(OH)2 100g(-1)TS(-1) for 1h. Pre-treatment also increased the COD solubilization, but the optimal severity for COD solubilization as determined by response surface methodology did not ensure the highest methane production. Inhibitory effects on anaerobic digestion were noticed when the severity was increased. These results demonstrate the relevance of thermo-alkaline pre-treatment severity in terms of both lime loading and pre-treatment time to obtain optimal anaerobic biodegradability of lignocellulosic biomass from press mud.

  14. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  15. PCB breakdown by anaerobic microorganisms

    SciTech Connect

    Not Available

    1989-03-01

    Recently, altered PCB cogener distribution patterns observed in anaerobic sediment samples from the upper Hudson River are being attributed to biologically mediated reductive dechlorination. The authors report their successful demonstration of biologically mediated reductive dechlorination of an Aroclor mixture. In their investigation, they assessed the ability of microorganisms from PCB-contaminated Hudson River sediments (60-562 ppm PCBs) to dechlorinate Aroclor 1242 under anaerobic conditions by eluting microorganisms from the PCB- contaminated sediments and transferring them to a slurry of reduced anaerobic mineral medium and PCB-free sediments in tightly stoppered bottles. They observed dechlorination to be the most rapid at the highest PCB concentration tried by them.

  16. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  17. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  18. Control strategy for maximum anaerobic co-digestion performance.

    PubMed

    García-Gen, Santiago; Rodríguez, Jorge; Lema, Juan M

    2015-09-01

    A control strategy for optimising the performance of anaerobic co-digestion in terms of methane productivity, digestate quality and process stability is presented. A linear programming approach is adopted to calculate the feeding of multiple substrates for maximum methane productivity, subjected to restrictions based on experimental and heuristic knowledge. Process stability is quantitatively assessed by an empirical diagnosis function comparing alkalinity ratio measurements against reference values (outputs between (-1,1]). A second empirical diagnosis function is defined to compare methane flow rate measurements against a reference value of maximum capacity (outputs between (0,1]). A variable-gain control function (outputs between (-1,1]), derived from the diagnosis functions, is defined to determine the quantitative change applied to the most active constraint of the substrate blend optimisation problem leading to a new set-point of feeding substrates blend. The control strategy works in a closed-loop architecture under which the process performance for each blend of substrates is continuously assessed. The system was successfully validated in a 1 m(3) hybrid Upflow Anaerobic Sludge Blanket - Anaerobic Filter (UASB-AF) reactor, treating blends of substrates (gelatine, glycerine and pig manure supernatant) at OLR values between 0.71 and 6.33 gCOD/L d over a period of 210 days at mesophilic conditions. PMID:26001824

  19. Dance--Aerobic and Anaerobic.

    ERIC Educational Resources Information Center

    Cohen, Arlette

    1984-01-01

    This article defines and explains aerobic exercise and its effects on the cardiovascular system. Various studies on dancers are cited indicating that dance is an anaerobic activity with some small degree of aerobic benefit. (DF)

  20. Modelling of the mesophilic anaerobic co-digestion of olive mill wastewater with olive mill solid waste using anaerobic digestion model No. 1 (ADM1).

    PubMed

    Boubaker, Fezzani; Ridha, Ben Cheikh

    2008-09-01

    The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations. PMID:18187320

  1. Bioenergy from anaerobically treated wastewater

    SciTech Connect

    Richards, E.A.

    1981-01-01

    Breweries and other processing plants including dairy cooperatives, sugar plants, grain mills, gasohol plants, etc., produce wastewater containing complex organic matter, either in solution or as volatile suspended solids, which can be treated anaerobically to effectively reduce the pollutants by 85-95% and generate a CH4 containing gas. An example anaerobic plant to serve a 10 to the power of 6-bbl brewery is discussed.

  2. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    PubMed

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  3. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay.

  4. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay. PMID:25470994

  5. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    NASA Astrophysics Data System (ADS)

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2011-04-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  6. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii.

    PubMed Central

    Wanner, C; Soppa, J

    1999-01-01

    More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization. PMID:10430572

  7. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  8. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  9. Modeling vertical carbon flux from zooplankton respiration

    NASA Astrophysics Data System (ADS)

    Packard, Theodore T.; Gómez, May

    2013-03-01

    The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m-3 h-1), mesopelagic (112.82 nmol CO2 m-3 h-1), and bathypelagic (27.89 nmol CO2 m-3 h-1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m-2 h-1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z-0.292. Using

  10. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions

    NASA Astrophysics Data System (ADS)

    Kiko, Rainer; Hauss, Helena; Buchholz, Friedrich; Melzner, Frank

    2016-04-01

    Calanoid copepods and euphausiids are key components of marine zooplankton communities worldwide. Most euphausiids and several copepod species perform diel vertical migrations (DVMs) that contribute to the export of particulate and dissolved matter to midwater depths. In vast areas of the global ocean, and in particular in the eastern tropical Atlantic and Pacific, the daytime distribution depth of many migrating organisms corresponds to the core of the oxygen minimum zone (OMZ). At depth, the animals experience reduced temperature and oxygen partial pressure (pO2) and an increased carbon dioxide partial pressure (pCO2) compared to their near-surface nighttime habitat. Although it is well known that low oxygen levels can inhibit respiratory activity, the respiration response of tropical copepods and euphausiids to relevant pCO2, pO2, and temperature conditions remains poorly parameterized. Further, the regulation of ammonium excretion at OMZ conditions is generally not well understood. It was recently estimated that DVM-mediated ammonium supply could fuel bacterial anaerobic ammonium oxidation - a major loss process for fixed nitrogen in the ocean considerably. These estimates were based on the implicit assumption that hypoxia or anoxia in combination with hypercapnia (elevated pCO2) does not result in a down-regulation of ammonium excretion. We exposed calanoid copepods from the Eastern Tropical North Atlantic (ETNA; Undinula vulgaris and Pleuromamma abdominalis) and euphausiids from the Eastern Tropical South Pacific (ETSP; Euphausia mucronata) and the ETNA (Euphausia gibboides) to different temperatures, carbon dioxide and oxygen levels to study their survival, respiration and excretion rates at these conditions. An increase in temperature by 10 °C led to an approximately 2-fold increase of the respiration and excretion rates of U. vulgaris (Q10, respiration = 1.4; Q10, NH4-excretion = 1.6), P. abdominalis (Q10, respiration = 2.0; Q10, NH4-excretion = 2.4) and

  11. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.

    PubMed

    Hinchee, R E; Ong, S K

    1992-10-01

    An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.

  12. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions. PMID:26437107

  13. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions.

  14. Anaerobic treatment of Tequila vinasses in a CSTR-type digester.

    PubMed

    Méndez-Acosta, Hugo Oscar; Snell-Castro, Raúl; Alcaraz-González, Víctor; González-Alvarez, Víctor; Pelayo-Ortiz, Carlos

    2010-06-01

    Tequila industries in general produce great volumes of effluents with high pollutant loads, which are discharged (untreated or partially treated) into natural receivers, thus causing severe environmental problems. In this contribution, we propose an integrated system as a first step to comply with the Mexican ecological norms and stabilize the anaerobic treatment of Tequila vinasses with main design criteria: simple and easy operation, reduce operating time and associated costs (maintenance), integrated and compact design, minimal cost of set-up, start-up, monitoring and control. This system is composed of a fully instrumented and automated lab-scale CSTR-type digester, on-line measuring devices of key variables (pH, temperature, flow rates, etc.), which are used along with off-line readings of chemical oxygen demand (COD), biogas composition, alkalinity and volatile fatty acids to guarantee the operational stability of the anaerobic digestion process. The system performance was evaluated for 200 days and the experimental results show that even under the influence of load disturbances, it is possible to reduce the COD concentration to 85% in the start-up phase and up to 95% during the normal operation phase while producing a biogas with a methane composition greater than 65%. It is also shown that in order to maintain an efficient treatment, the buffering capacity (given by the alkalinity ratio, alpha = intermediate alkalinity/total alkalinity) must be closely monitored.

  15. Soil respiration partition and its components in the total agro-ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Delogu, Emilie; LeDantec, Valerie; Mordelet, Patrick; Buysse, Pauline; Aubinet, Marc; Pattey, Elizabeth; Mary, Bruno

    2013-04-01

    Close to 15% of the Earth's terrestrial surface is used for cropland. In the context of global warming, and acknowledged by the Kyoto Protocol, agricultural soils could be a significant sink for atmospheric CO2. Understanding the factors influencing carbon fluxes of agricultural soils is essential for implementing efficient mitigation practices. Most of the soil respiration modeling studies was carried out in forest ecosystems, but only a few was carried out in agricultural ecosystems. In the study, we evaluated simple formalisms to model soil respiration using wheat data from four contrasting geographical mi-latitude regions. Soil respiration were measured in three winter wheat fields at Lamasquère (43°49'N, 01°23'E, 2007) and Auradé (43°54'N, 01°10'E, 2008), South-West France and Lonzée (50°33'N, 4°44'E, 2007), Belgium, and in a spring wheat field at Ottawa (45°22'N, 75°43'W, 2007, 2011), Ontario, Canada. Manual closed chambers were used in the French sites. The Belgium and Canadian sites were equipped with automated closed chamber systems, which continuously collected 30-min soil respiration exchanges. All the sites were also equipped with eddy flux towers. When eddy flux data were collected over bare soil, the net ecosystem exchange (NEE) was equal to soil respiration exchange. These NEE data were used to validate the model. Different biotic and abiotic descriptors were used to model daily soil respiration and its heterotrophic and autotrophic components: soil temperature, soil relative humidity, Gross Primary Productivity (GPP), shoot biomass, crop height, with different formalisms. It was interesting to conclude that using biotic descriptors did not improve the performances of the model. In fact, a combination of abiotic descriptors (soil humidity and soil temperature) allowed significant model formalism to model soil respiration. The simple soil respiration model was used to calculate the heterotrophic and autotrophic source contributions to

  16. Mixed-valence cytoplasmic iron granules are linked to anaerobic respiration.

    PubMed

    Glasauer, S; Langley, S; Boyanov, M; Lai, B; Kemner, K; Beveridge, T J

    2007-02-01

    Intracellular granules containing ferric and ferrous iron formed in Shewanella putrefaciens CN32 during dissimilatory reduction of solid-phase ferric iron. It is the first in situ detection at high resolution (150 nm) of a mixed-valence metal particle residing within a prokaryotic cell. The relationship of the internal particles to Fe(III) reduction may indicate a respiratory role.

  17. Distribution of microbial biomass and potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment.

    PubMed

    Lin, Xueju; Kennedy, David; Peacock, Aaron; McKinley, James; Resch, Charles T; Fredrickson, James; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling. PMID:22138990

  18. Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol.

    PubMed

    Peterson, Joy Doran; Ingram, Lonnie O

    2008-03-01

    Environmental concerns and unease with U.S. dependence on foreign oil have renewed interest in converting biomass into fuel ethanol. The volume of plant matter available makes lignocellulose conversion to ethanol desirable, although no one isolated organism has been shown to break bonds in lignocellulose and efficiently metabolize resulting sugars into one product. This work reviews directed engineering coupled with metabolic evolution resulting in microbial biocatalysts that produce up to 45 g L(-1) ethanol in 48 hours in a simple mineral salts medium and that convert various compounds of lignocellulosic materials to ethanol. Mutations contributing to ethanologenesis are discussed along with adding enzymatic capabilities to existing biocatalysts in order to decrease the commercial enzymes required to reduce plant matter into fermentable sugars.

  19. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    PubMed

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications.

  20. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    PubMed

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  1. Mesophilic batch anaerobic co-digestion of pulp and paper sludge and monosodium glutamate waste liquor for methane production in a bench-scale digester.

    PubMed

    Lin, Yunqin; Wang, Dehan; Li, Qing; Xiao, Minquan

    2011-02-01

    This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2°C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g(-1) VS(added) and the peak value of methane daily production was 0.5m(3)/(m(3)d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO(3)/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production.

  2. Component analysis of respirator user training.

    PubMed

    Harber, Philip; Boumis, Robert J; Su, Jing; Barrett, Sarah; Alongi, Gabriela

    2013-01-01

    Respirators must be properly used to be effective. In an experimental protocol, 145 subjects were trained and then observed donning and doffing respirators. Filtering facepiece and dual cartridge half face mask types were studied. Subjects were then tested for knowledge and for proper performance using video recording analysis. Knowledge tests showed adequate learning, but performance was often poor. Inspection, strap tension (half mask), seal checking, and avoiding mask contact during doffing were particularly problematic. Mask positioning was generally well done. Correlation between knowledge and performance for specific items was generally poor, although there was a weak correlation between overall knowledge and overall performance (rho = 0.32) for the half mask users. Actual unprompted performance as well as knowledge and fit-testing should be assessed for user certification. Respirator design approval should consider users' ability to learn proper technique. PMID:24011265

  3. Using half-facepiece respirators for H1N1.

    PubMed

    Larson, Scott

    2009-11-01

    A respirator is a device designed to help provide the wearer with respiratory protection against inhalation of airborne contaminants. Increasing the filtration level of a particle respirator does not increase the respirator's ability to reduce a user's exposure to contaminants. The APF of a respirator, which is affected by the respirator style, determines the potential for exposure reduction. Surgical masks that are not approved as filtering facepiece half-mask respirators do not have an APF and should not be used for reducing workers' exposures to particles in the air. PMID:19927872

  4. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. BOREAS TE-2 Continuous Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Ryan, Michael G.; Lavigne, Michael

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration measured continuously (about once per hour) in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. BOREAS TE-2 Wood Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of wood respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  7. BOREAS TE-2 Foliage Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Hall, Forrest G. (Editor); Lavigne, Michael; Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set contains measurements of foliar respiration conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics

    DOE PAGESBeta

    Han, Tianfeng; Liu, Juxiu; Wang, Gangsheng; Huang, Wenjuan; Zhou, Guoyi

    2016-01-16

    1.Understanding how soil respiration components change with forest succession is critical for modelling and predicting soil carbon (C) processes and its sequestration below-ground. The specific respiration (a ratio of respiration to biomass) is increasingly being used as an indicator of forest succession conceptually based on Odum's theory of ecosystem development. However, the hypothesis that specific soil respiration declines with forest succession remains largely untested. 2.We used a trenching method to partition soil respiration into heterotrophic respiration and autotrophic respiration (RH and RA) and then evaluated the specific RH and specific RA in three successional forests in subtropical China. 3.Our resultsmore » showed a clear seasonality in the influence of forest succession on RH, with no significant differences among the three forests in the dry season but a higher value in the old-growth forest than the other two forests in the wet season. RA in the old-growth forest tended to be the highest among the three forests. Both the specific RH and specific RA decreased with the progressive maturity of three forests. 4.Lastly, our results highlight the importance of forest succession in determining the variation of RH in different seasons. With forest succession, soil microbes and plant roots become more efficient to conserve C resources, which would result in a greater proportion of C retained in soils.« less

  9. Staged anaerobic reactor

    SciTech Connect

    Sullivan, R.A.

    1986-02-04

    This patent describes an anaerobic biological reactor for digesting organic substances, particularly high strength industrial and municipal sewage, and producing commercial quality methane. The reactor consists of: a unitary vessel for containing liquid carrying the organic substances to be digested and has a liquid inlet and a liquid outlet; a device for maintaining the liquid in the vessel at a desired level; the capability of dividing the vessel into separate environmentally isolated compartments, adapted to contain a level of liquid having a gas space located above. Each of the compartments is primarily dedicated to the digestion of organic substances by a respectively different microorganism. At least one of the organisms is an acid forming type that digests organic substances and in so doing evolves CO/sub 2/ gas. At least one other of the microorganisms is a type that digests organic substances and in so doing evolves a relatively high quality methane gas; a method for establishing and maintaining the optimum environmental conditions within each of the respective compartments to promote the unique biological activity within that compartment; a way to regulate the pH level; a set of gas operated mixers in each compartment of the vessel for mixing the liquid contained therein to maintain a homogenous mixture; a way for delivering the CO/sub 2/ gas from one compartment to the mixer in the other compartment; a way for flowing and agitating the liquid from the inlet through the environmentally isolated compartments in a predetermined sequence to the outlet; and a method for collecting and removing methane gas evolved in the vessel.

  10. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  11. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%. PMID:22487130

  12. Isolation and Cr(VI) reduction characteristics of quinone respiration in Mangrovibacter plantisponsor strain CR1.

    PubMed

    Lian, Jing; Li, Zifu; Xu, Zhifang; Guo, Jianbo; Hu, Zhenzhen; Guo, Yankai; Li, Min; Yang, Jingliang

    2016-07-01

    A Cr(VI)-reducing Mangrovibacter plantisponsor strain, CR1, was isolated from tannery effluent sludge and had quinone respiration characteristics. Its chromate (CrO4 (2-) ) resistance, quinone respiration characteristics, and Cr(VI) reduction efficiencies were evaluated in detail. Strain CR1 exhibited a high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 32 mM in LB medium, and its quinone respiration could occur when an electron donor and strain CR1 both existed in the reaction system. Cr(VI) reduction by strain CR1 was significantly enhanced by a factor of 0.4-4.3 with five different quinone compounds: anthraquinone-2,7-disulfonate, anthraquinone-1-sulfonate, anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate, and anthraquinone-1,5-disulfonate. AQS was the best electron shuttle among them, and the greatest enhancement to the Cr(VI) bio-reduction was achieved with 0.96 mM AQS. The correlation between the reaction constant k (mg Cr(VI) g(-1) dry cell weight H(-1) ) and thermodynamic temperature T (K) was expressed as an Arrhenius equation lnk=-7662.9/T+27.931(R2=0.9486); the activation energy Ea was 63.71 kJ mol(-1) , and the pre-exponential factor A was 1.35 × 10(12)  mg Cr(VI) g(-1) dry cell weight H(-1) . During the Cr(VI) reduction process, the pH tended to become neutral, and the oxidation-reduction potential decreased to -440 mV. The efficient reduction of Cr(VI) mediated by a quinone respiration strain shows potential for the rapid anaerobic removal of Cr(VI).

  13. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  14. Effect of fire residues (ash and char) on microbial activity, respiration and methanogenesis in three subtropical wetland soils

    NASA Astrophysics Data System (ADS)

    Medvedeff, C.; Hogue, B.; Inglett, P.

    2011-12-01

    Prescribed fire is a common restoration and maintenance technique in the southern United States. Prescribed burns coupled with frequent natural fires in South Florida can have devastating effects on ecosystem function. To determine the effect fire residues have on carbon biogeochemical cycling litter material was obtained from two restored and one native marl wetland in Everglades National Park and manipulated in a laboratory setting to produce ash and vegetation derived char. Based on vegetation biomass removal pre and post fire (insitu) appropriate aliquots of each fire residue was added to experimental microcosms as a soil amendment. Soil enzymes (β-glucosidase, cellobiohydrolase, phosphatase, bis-phosphate and leucine amino peptidase), aerobic and anaerobic respiration (CO2) potentials, extractable C and methanogenesis were measured over a 25 day period. Regardless of site C enzymes responded to both amendments within 5 days of addition. Similarly amended soil contained more extractable carbon in the reference and one of the restored sites. In the restored sites ash and char inhibited methanogenesis, had no effect on anaerobic CO2 potentials, but stimulated aerobic respiration after ten days. In contrast, within the first ten days phosphatase enzyme activity was lower in the ash treatment when compared to the control treatment and stimulation of aerobic respiration was observed in both treatment soils. After ten days ash stimulated methanogenic processing while suppressing anaerobic CO2 production suggesting methanogens in this ecosystem may be dependant on usable carbon substrates derived from aerobic microbial processing. This study illustrates the variable response of C parameters to complete and incomplete combusted materials produced from both prescribed and natural fires with particular importance to fire adapted ecosystems.

  15. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  16. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  17. Facial hair policy in a respirator program

    SciTech Connect

    Steinmeyer, P.R. )

    1989-10-01

    In this paper the prohibition against facial hair for respirator users is explored. Reasons for the prohibition are given, along with suggestions for establishing or reviewing a policy. Recommendations are given for properly wording a facial hair policy, and the issue of facial hair on female workers is also addressed.

  18. Temperature, Pulse, and Respiration. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on temperature, pulse, and respiration is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  19. Estimating Canopy Dark Respiration for Crop Models

    NASA Technical Reports Server (NTRS)

    Monje Mejia, Oscar Alberto

    2014-01-01

    Crop production is obtained from accurate estimates of daily carbon gain.Canopy gross photosynthesis (Pgross) can be estimated from biochemical models of photosynthesis using sun and shaded leaf portions and the amount of intercepted photosyntheticallyactive radiation (PAR).In turn, canopy daily net carbon gain can be estimated from canopy daily gross photosynthesis when canopy dark respiration (Rd) is known.

  20. Respiration patterns of resting wasps (Vespula sp.)

    PubMed Central

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-01-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9–42.4 °C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst–burst type at low ambient temperatures (Ta < 5 °C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31 °C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7 °C to 74 mHz at 39.7 °C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g−1 cycle−1. A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements. PMID:23399474

  1. Development of conformal respirator monitoring technology

    SciTech Connect

    Shonka, J.J.; Weismann, J.J.; Logan, R.J.

    1997-04-01

    This report summarizes the results of a Small Business Innovative Research Phase II project to develop a modular, surface conforming respirator monitor to improve upon the manual survey techniques presently used by the nuclear industry. Research was performed with plastic scintillator and gas proportional modules in an effort to find the most conducive geometry for a surface conformal, position sensitive monitor. The respirator monitor prototype developed is a computer controlled, position-sensitive detection system employing 56 modular proportional counters mounted in molds conforming to the inner and outer surfaces of a commonly used respirator (Scott Model 801450-40). The molds are housed in separate enclosures and hinged to create a {open_quotes}waffle-iron{close_quotes} effect so that the closed monitor will simultaneously survey both surfaces of the respirator. The proportional counter prototype was also designed to incorporate Shonka Research Associates previously developed charge-division electronics. This research provided valuable experience into pixellated position sensitive detection systems. The technology developed can be adapted to other monitoring applications where there is a need for deployment of many traditional radiation detectors.

  2. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  3. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  4. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  5. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  6. 42 CFR 84.1130 - Respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... respective vapors, or from the chemical reaction between their respective vapors and gases. (3) Air-purifying... reaction with sorbent material in the canister. (c) Pesticide respirators, including all completely...) Front-mounted or back-mounted gas masks; (2) Chin-style gas mask; (3) Chemical cartridge; (4)...

  7. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control.

  8. Respiration patterns of resting wasps (Vespula sp.).

    PubMed

    Käfer, Helmut; Kovac, Helmut; Stabentheiner, Anton

    2013-04-01

    We investigated the respiration patterns of wasps (Vespula sp.) in their viable temperature range (2.9-42.4°C) by measuring CO2 production and locomotor and endothermic activity. Wasps showed cycles of an interburst-burst type at low ambient temperatures (Ta<5°C) or typical discontinuous gas exchange patterns with closed, flutter and open phases. At high Ta of >31°C, CO2 emission became cyclic. With rising Ta they enhanced CO2-emission primarily by an exponential increase in respiration frequency, from 2.6 mHz at 4.7°C to 74 mHz at 39.7°C. In the same range of Ta CO2 release per cycle decreased from 38.9 to 26.4 μl g(-1)cycle(-1). A comparison of wasps with other insects showed that they are among the insects with a low respiratory frequency at a given resting metabolic rate (RMR), and a relatively flat increase of respiratory frequency with RMR. CO2 emission was always accompanied by abdominal respiration movements in all open phases and in 71.4% of the flutter phases, often accompanied by body movements. Results suggest that resting wasps gain their highly efficient gas exchange to a considerable extent via the length and type of respiration movements.

  9. How to Properly Put On, Take Off a Disposable Respirator

    MedlinePlus

    ... the nose piece at your fingertips. Checking Your Seal 2 Cup the respirator in your hand allowing ... quick breath in to check whether the respirator seals tightly to the face. Place both hands completely ...

  10. Changes in gene expression of Actinobacillus pleuropneumoniae in response to anaerobic stress reveal induction of central metabolism and biofilm formation.

    PubMed

    Li, Lu; Zhu, Jiawen; Yang, Kui; Xu, Zhuofei; Liu, Ziduo; Zhou, Rui

    2014-06-01

    Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry worldwide. Oxygen deprivation is a stress that A. pleuropneumoniae will encounter during both early infection and the later, persistent stage. To understand modulation of A. pleuropneumoniae gene expression in response to the stress caused by anaerobic conditions, gene expression profiles under anaerobic and aerobic conditions were compared in this study. The microarray results showed that 631 genes (27.7% of the total ORFs) were differentially expressed in anaerobic conditions. Many genes encoding proteins involved in glycolysis, carbon source uptake systems, pyruvate metabolism, fermentation and the electron respiration transport chain were up-regulated. These changes led to an increased amount of pyruvate, lactate, ethanol and acetate in the bacterial cells as confirmed by metabolite detection. Genes encoding proteins involved in cell surface structures, especially biofilm formation, peptidoglycan biosynthesis and lipopolysaccharide biosynthesis were up-regulated as well. Biofilm formation was significantly enhanced under anaerobic conditions. These results indicate that induction of central metabolism is important for basic survival of A. pleuropneumoniae after a shift to an anaerobic environment. Enhanced biofilm formation may contribute to the persistence of this pathogen in the damaged anaerobic host tissue and also in the early colonization stage. These discoveries give new insights into adaptation mechanisms of A. pleuropneumoniae in response to environmental stress.

  11. Obligate anaerobes in clinical veterinary practice.

    PubMed Central

    Hirsh, D C; Biberstein, E L; Jang, S S

    1979-01-01

    Clinical specimens obtained from domestic animals were examined to determine the relative prevalence of obligate anaerobic bacteria and the species represented. Of 3,167 samples cultured anaerobically as well as aerobically, 2,234 were bacteriologically positive. Of these positive samples, 583 (26%) contained species of obligate anaerobic bacteria in a total of 641 isolates. Most positive samples contained anaerobes admixed with aerobic species, although 6% of such samples yielded pure cultures of obligate anaerobes. The most common sites from which anaerobes were isolated were abscesses (32% of abscesses cultured contained species of obligate anaerobes), peritoneal exudates (24%), and pleural effusions (20%). Bacteroides melaninogenicus, Bacteroides spp., Peptostreptococcus anaerobius, and Bacteroides ruminicola accounted in the aggregate for approximately 50% of all anaerobic isolates. Bacteroides fragilis accounted for 1% of all the isolates, and members of the genus Clostridium accounted for 8%. PMID:511987

  12. The Transition from Aerobic to Anaerobic Metabolism.

    ERIC Educational Resources Information Center

    Skinner, James S.; McLellan, Thomas H.

    1980-01-01

    The transition from aerobic to anaerobic metabolism is discussed. More research is needed on different kinds of athletes and athletic activities and how they may affect aerobic and anaerobic metabolisms. (CJ)

  13. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  14. Factors Controlling Respiration Rates and Respired Carbon Dioxide Signatures in Riverine Ecosystems of the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ellis, E. E.; Richey, J. E.; Aufdenkampe, A. K.; Quay, P. D.; Krusche, A. V.; Alin, S. R.

    2006-12-01

    This study examined the processes controlling respiration rates observed in streams and rivers throughout the Amazon basin during the dry season by substituting spatial coverage for experimental manipulation. Throughout the Brazilian states of Amazonas and Acre, respiration rates ranged from 0.066 to 1.45 μM/hr of O2 consumed. In situ respiration was positively correlated with pH (r2=0.60), with pH values ranging from 3.95 to 8.57. Although the concentration of bulk size fractions of organic matter(dissolved organic carbon (DOC), fine particulate organic carbon, and coarse particulate organic carbon) were uncorrelated with both pH and respiration, respiration was positively correlated with the percentage of DOC that was less than 5 kDa as determined by centrifuge ultrafiltration (r2=0.52). No correlation was observed for the less than 100 kDa fraction. Further, pH was also correlated with the percentage of DOC in the <5 kDa fraction (r2=0.86), as the <5 kDa fraction increased from 34% in acidic blackwater streams to 91% in more basic whitewater rivers. These results suggest that low molecular weight organic matter (LMWOM, <5 kDa) is labile and supports higher respiration rates as compared to high molecular weight organic matter, and that pH may control the size distribution of dissolved organic matter. Further, at high pH sites with high respiration rates, net primary production ranged from 3.54 to 13.5 μM/hr of O2 produced. These rates suggest that higher pH sites are dominated by in situ production, resulting in high yields of LMWOM, which is rapidly consumed during the dry season. The 13C of respired CO2 was monitored during bottle incubations to characterize the source of organic matter being respired. Values ranged from -15.2 to -27.0‰, similar to the 13C of DIC at each site, indicating that respiration is a key process controlling the δ13C of the DIC. Furthermore, there is a positive correlation between the δ13C of respired CO2 and respiration rate (r2

  15. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  16. [Regulation of respiration in assisted ventilation].

    PubMed

    Waurick, S; König, F

    1984-02-01

    Based on knowledge of the control of external respiration, the physiological reactions are discussed which should be evoked proprioceptively and chemoreceptively by an assisting respirator's disturbances of spontaneous breathing movements. The following possible states are discriminated: 1. "no adaption": the respiratory motor system does not remain passive during the machine's stroke; 2. "passive adaption": the respiratory motor system remains passive during the respirator's stroke; to changes of the blood gas-status, only the breathing frequency responds, but in just the same manner as during spontaneous ventilation; 3. "active adaption": the ventilatory motor apparatus remains passive during the respirator's operation; changes of the blood gases are responded to by the breathing frequency only, but in a manner different to spontaneous breathing and which compensates for the invariability of the fixed stroke-volume. - Related to these 3 states, consequences concerning the efficiency of chemical respiratory control can be derived which should reveal themselves during experimental manipulation of the blood gas partial pressures. Accordingly, the CO2-response curves of minute ventilation, breathing frequency and tidal-volume generated in 9 healthy, awake and cooperative subjects during spontaneous breathing and assisted (stroke-volume controlled) respiration with gas mixtures of 0, 3 and 6% CO2 were investigated and compared. (In each subject assisted ventilation with 2 or 3 different stroke-volumes was performed. The smallest stroke-volume equalled the medium tidal-volume of spontaneous ventilation. Every stroke-volume produced its particular CO2-response curve). Hence it follows that with assisted ventilation, using a stroke-volume larger than the spontaneous tidal-volume, the subjects maintain a state between "passive" and "active adaption".(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  18. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  19. [Stem respiration of Pinus koraiensis in Changbai Mountains].

    PubMed

    Wang, Miao; Ji, Lanzhu; Li, Qiurong; Xiao, Dongmei; Liu, Hailiang

    2005-01-01

    In this paper, soil respiration chamber, a simple and precise method, was used to measure the stem respiration of trees. LI-6400-09 respiration chamber serving as a system is usually used in soil respiration, but we made polyvinyl chloride (PVC) collar and fixed it on the stem surface to measure the stem respiration. From May to October 2003, the stem respiration of Pinus koraiensis, the dominant tree species in Changbai Mountain, was measured in different time and different places using this technique. Meanwhile, the temperatures in the stems and in the forests were measured. The results showed that the stem respiration rate had a remarkably seasonal tendency with a single peak, the maximum was in August and the minimum was in February. The stem respiration rate had an exponential relationship with stem temperature, and the curve exponential regressions for stem respiration rate and temperature factor of trees with big DBH were better than those with small DBH. The stem respiration in different DBH trees was higher in the south stem face than that in the north stem face, and the variance of respiration rate between south and north decreased with a decrease of DBH trees. During the growing season from May to October, the average maintenance respiration accounted for 63.63% in different DBH trees, and the maintenance respiration contribution to total respiratory consumption increased with increasing DBH, which was 66.76, 73.29% and 50.84%, respectively. The stem respiration Q10 values ranged from 2.56-3.32 in different DBH of trees, and the seasonal tendency for stem R, and Rm in different DBH of trees was obtained by using respiration Q10. Therefore, the differences between different parts of stem and different DBH of trees should be considered in estimating the respiration model in ecosystem. PMID:15852948

  20. The design of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1990-01-01

    Alkaline fuel cells recently developed have yielded satisfactory operation even in the cases of their use of mobile and matrix-type electrolytes; the advantages of realistic operation have been demonstrated by a major West German manufacturer's 100 kW alkaline fuel cell apparatus, which was operated in the role of an air-independent propulsion system. Development has begun for a spacecraft alkaline fuel cell of the matrix-electrolyte configuration.

  1. Evaluation of the 5 and 8 pH point titration methods for monitoring anaerobic digesters treating solid waste.

    PubMed

    Vannecke, T P W; Lampens, D R A; Ekama, G A; Volcke, E I P

    2015-01-01

    Simple titration methods certainly deserve consideration for on-site routine monitoring of volatile fatty acid (VFA) concentration and alkalinity during anaerobic digestion (AD), because of their simplicity, speed and cost-effectiveness. In this study, the 5 and 8 pH point titration methods for measuring the VFA concentration and carbonate system alkalinity (H2CO3*-alkalinity) were assessed and compared. For this purpose, synthetic solutions with known H2CO3*-alkalinity and VFA concentration as well as samples from anaerobic digesters treating three different kind of solid wastes were analysed. The results of these two related titration methods were verified with photometric and high-pressure liquid chromatography measurements. It was shown that photometric measurements lead to overestimations of the VFA concentration in the case of coloured samples. In contrast, the 5 pH point titration method provides an accurate estimation of the VFA concentration, clearly corresponding with the true value. Concerning the H2CO3*-alkalinity, the most accurate and precise estimations, showing very similar results for repeated measurements, were obtained using the 8 pH point titration. Overall, it was concluded that the 5 pH point titration method is the preferred method for the practical monitoring of AD of solid wastes due to its robustness, cost efficiency and user-friendliness.

  2. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit. PMID:27233098

  3. Comparison of liquid hot water and alkaline pretreatments of giant reed for improved enzymatic digestibility and biogas energy production.

    PubMed

    Jiang, Danping; Ge, Xumeng; Zhang, Quanguo; Li, Yebo

    2016-09-01

    Liquid hot water (LHW) and alkaline pretreatments of giant reed biomass were compared in terms of digestibility, methane production, and cost-benefit efficiency for electricity generation via anaerobic digestion with a combined heat and power system. Compared to LHW pretreatment, alkaline pretreatment retained more of the dry matter in giant reed biomass solids due to less severe conditions. Under their optimal conditions, LHW pretreatment (190°C, 15min) and alkaline pretreatment (20g/L of NaOH, 24h) improved glucose yield from giant reed by more than 2-fold, while only the alkaline pretreatment significantly (p<0.05) increased cumulative methane yield (by 63%) over that of untreated biomass (217L/kgVS). LHW pretreatment obtained negative net electrical energy production due to high energy input. Alkaline pretreatment achieved 27% higher net electrical energy production than that of non-pretreatment (3859kJ/kg initial total solids), but alkaline liquor reuse is needed for improved net benefit.

  4. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  5. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  6. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  7. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  8. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  9. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Death from a respirable disease. 718.303... Death from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his...

  10. 20 CFR 410.462 - Presumption relating to respirable disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Presumption relating to respirable disease... Pneumoconiosis § 410.462 Presumption relating to respirable disease. (a) Even though the existence of... was employed for 10 years or more in the Nation's coal mines and died from a respirable disease,...

  11. 20 CFR 718.303 - Death from a respirable disease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Death from a respirable disease. 718.303... from a respirable disease. (a)(1) If a deceased miner was employed for ten or more years in one or more coal mines and died from a respirable disease, there shall be a rebuttable presumption that his or...

  12. 20 CFR 410.462 - Presumption relating to respirable disease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Presumption relating to respirable disease... Pneumoconiosis § 410.462 Presumption relating to respirable disease. (a) Even though the existence of... was employed for 10 years or more in the Nation's coal mines and died from a respirable disease,...

  13. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  14. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  15. 42 CFR 84.1156 - Pesticide respirators; performance requirements; general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Pesticide respirators; performance requirements... DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1156 Pesticide respirators; performance requirements;...

  16. 42 CFR 84.1134 - Respirator containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Respirator containers; minimum requirements. 84..., Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1134 Respirator containers; minimum requirements. (a) Except as provided...

  17. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  18. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  19. Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli.

    PubMed

    Molina-Quiroz, Roberto C; Loyola, David E; Díaz-Vásquez, Waldo A; Arenas, Felipe A; Urzúa, Ulises; Pérez-Donoso, José M; Vásquez, Claudio C

    2014-09-01

    Tellurite (TeO3(2-)) is harmful for most microorganisms, especially Gram-negative bacteria. Even though tellurite toxicity involves a number of individual aspects, including oxidative stress, malfunctioning of metabolic enzymes and a drop in the reduced thiol pool, among others, the general mechanism of toxicity is rather complex and not completely understood to date. This work focused on DNA microarray analysis to evaluate the Escherichia coli global transcriptomic response when exposed to the toxicant. Confirming previous results, the induction of the oxidative stress response regulator soxS was observed. Upregulation of a number of genes involved in the global stress response, protein folding, redox processes and cell wall organization was also detected. In addition, downregulation of aerobic respiration-related genes suggested a metabolic switch to anaerobic respiration. The expression results were validated through oxygen consumption experiments, which corroborated that tellurite-exposed cells effectively consume oxygen at lower rates than untreated controls.

  20. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  1. Electrochemical Corrosion Investigations on Anaerobic Treated Distillery Effluent

    NASA Astrophysics Data System (ADS)

    Ram, Chhotu; Sharma, Chhaya; Singh, A. K.

    2014-09-01

    Present study is focused on the corrosivity of anaerobic treated distillery effluent and corrosion performance of mild steel and stainless steels. Accordingly, electrochemical polarization tests were performed in both treated distillery and synthetic effluents. Polarization tests were also performed in synthetic solutions and it was observed that Cl- and K+ increase whereas SO4 -, PO4 -, NO3 -, and NO2 - decrease the corrosivity of effluent at alkaline pH. Further, comparison in corrosivity of distillery and synthetic effluents shows the former to be less corrosive and this is assigned due to the presence of amino acids and melanoidins. Mild steel experienced to have the highest corrosion rate followed by stainless steels—304L and 316L and lowest in case of SAF 2205. Relative corrosion resistance of stainless steels is observed to depend upon Cr, Mo, and N content.

  2. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the "positive feedback" mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  3. Aeration for plant root respiration in a tidal marsh

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Li, Ling; Lockington, David

    2005-06-01

    This paper investigates the tidal effects on aeration conditions for plant root respiration in a tidal marsh. We extend the work of Ursino et al. (2004) by using a two-phase model for air and water flows in the marsh. Simulations have been conducted to examine directly the link between the airflow dynamics and the aeration condition in the marsh soil. The results show that the effects of entrapped air on water movement in the vadose zone are significant in certain circumstances. Single-phase models based on Richards' equation, which neglect such effects, may not be adequate for quantifying the aeration condition in tidal marsh. The optimal aeration condition, represented by the maximum of the integral magnitude of tidally advected air mass (TAAM) flux, is found to occur near the tidal creek for the four soil textures simulated. This may explain the observation that some salt marsh plant species grow better near tidal creeks than in the inner marsh areas. Our analyses, based on the two-phase model and predicted TAAM flux magnitude, provide further insight into the ``positive feedback'' mechanism proposed by Ursino et al. (2004). That is, pioneer plants may grow successfully near the creek where the root aeration condition is optimal. The roots of the pioneer plants can soften and loosen the rhizosphere soil, which increases the evapotranspiration rate, the soil porosity, and absolute permeability and weakens the capillary effects. These, in turn, improve further the root aeration conditions and may lead to colonization by plants less resistant to anaerobic conditions.

  4. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    PubMed

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation.

  5. The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure

    NASA Astrophysics Data System (ADS)

    Zillig, Wolfram; Schnabel, Ralf; Tu, Jenn; Stetter, Karl Otto

    1982-05-01

    DNA-dependent RNA polymerases of archaebacteria are distinct from those of eubacteria both in structure and in function. They show similarities to those of the eukaryotic cytoplasm. Extremely thermophilic anaerobic sulfur-respiring archaebacteria isolated from solfataric waters represent four different families, the Thermoproteaceae, the “stiff filaments”, the Desulfurococcaceae and the Thermococcaceae, of a novel order, Thermoproteales. Together with the Sulfolobales, they form the second branch of the urkingdom of the archaebacteria besides that of the methanogens and extreme halophiles. Thermoplasma appears isolated.

  6. Sludge exchange process on two serial CSTRs anaerobic digestions: process failure and recovery.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2011-07-01

    The sludge exchange process using two anaerobic digesters (CSTRs) in series was investigated under the mesophilic condition (36-38°C). At first, the digesting sludge of the CSTRs in series with different TVFA/alkalinity ratios was tested in the laboratory by mixing the digesting sludge of two CSTRs from 6.5% to 50% based on volume. The sludge exchange test was then performed using the same CSTRs under batch and continuous processes. The change in the TVFA/alkalinity ratio was found to be linear with the digesting sludge exchange volume. The CSTR of TVFA/alkalinity ratio 1.970 recovered completely failed within 11 days for the batch process and the CSTR of TVFA/alkalinity ratio 1.514 within 3 weeks for the continuous feeding process at a sludge exchange volume of 13%. The reactor operation was stable when the TVFA/alkalinity ratio was less than 1.0 and when the TVFA concentration was lower than 10,000 mg L(-1).

  7. Effects of dietary Acid load on exercise metabolism and anaerobic exercise performance.

    PubMed

    Caciano, Susan L; Inman, Cynthia L; Gockel-Blessing, Elizabeth E; Weiss, Edward P

    2015-06-01

    Dietary acid load, quantified as the potential renal acid load (PRAL) of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet) is associated with higher respiratory exchange ratio (RER) values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization) and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT) to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037). The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044) and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060). Contrary to our expectations, a short-term low-PRAL (alkaline promoting) diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance. Key pointsShort-term (4-9 days) changes in

  8. Effects of Dietary Acid Load on Exercise Metabolism and Anaerobic Exercise Performance

    PubMed Central

    Caciano, Susan L.; Inman, Cynthia L.; Gockel-Blessing, Elizabeth E.; Weiss, Edward P.

    2015-01-01

    Dietary acid load, quantified as the potential renal acid load (PRAL) of the diet, affects systemic pH and acid-base regulation. In a previous cross-sectional study, we reported that a low dietary PRAL (i.e. alkaline promoting diet) is associated with higher respiratory exchange ratio (RER) values during maximal exercise. The purpose of the present study was to confirm the previous findings with a short-term dietary intervention study. Additionally, we sought to determine if changes in PRAL affects submaximal exercise RER (as a reflection of substrate utilization) and anaerobic exercise performance. Subjects underwent a graded treadmill exercise test (GXT) to exhaustion and an anaerobic exercise performance test on two occasions, once after following a low-PRAL diet and on a separate occasion, after a high-PRAL diet. The diets were continued as long as needed to achieve an alkaline or acid fasted morning urine pH, respectively, with all being 4-9 days in duration. RER was measured during the GXT with indirect calorimetry. The anaerobic performance test was a running time-to-exhaustion test lasting 1-4 min. Maximal exercise RER was lower in the low-PRAL trial compared to the high-PRAL trial (1.10 ± 0.02 vs. 1.20 ± 0.05, p = 0.037). The low-PRAL diet also resulted in a 21% greater time to exhaustion during anaerobic exercise (2.56 ± 0.36 vs. 2.11 ± 0.31 sec, p = 0.044) and a strong tendency for lower RER values during submaximal exercise at 70% VO2max (0.88 ± 0.02 vs. 0.96 ± 0.04, p = 0.060). Contrary to our expectations, a short-term low-PRAL (alkaline promoting) diet resulted in lower RER values during maximal-intensity exercise. However, the low-PRAL diet also increased anaerobic exercise time to exhaustion and appears to have shifted submaximal exercise substrate utilization to favor lipid oxidation and spare carbohydrate, both of which would be considered favorable effects in the context of exercise performance. Key points Short-term (4-9 days) changes in

  9. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.

    SciTech Connect

    Beliaev, A. S.; Thompson, D. K.; Khare, T.; Lim, H.; Brandt, C. C.; Li, G.; Murray, A. E.; Heidelberg, J. F.; Giometti, C. S.; Yates, J., III; Nealson, K. H.; Tiedje, J. M.; Zhou, J.; Biosciences Division; ORNL; Scripps Research Inst.; Michigan State Univ.; The Inst. for Genomic Research; Jet Propulsion Laboratory; California Inst. of Tech.

    2002-01-01

    Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c{sub 552}, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data.

  10. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.

    PubMed

    Beliaev, Alex S; Thompson, Dorothea K; Khare, Tripti; Lim, Hanjo; Brandt, Craig C; Li, Guangshan; Murray, Alison E; Heidelberg, John F; Giometti, Carol S; Yates, John; Nealson, Kenneth H; Tiedje, James M; Zhoui, Jizhong

    2002-01-01

    Changes in mRNA and protein expression profiles of Shewanella oneidenesis MR-1 during switch from aerobic to fumarate-, Fe(III)-, or nitrate-reducing conditions were examined using DNA microarrays and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). In response to changes in growth conditions, 121 of the 691 arrayed genes displayed at least a two-fold difference in transcript abundance as determined by microarray analysis. Genes involved in aerobic respiration encoding cytochrome c and d oxidases and TCA cycle enzymes were repressed under anaerobic conditions. Genes induced during anaerobic respiration included those involved in cofactor biosynthesis and assembly (moaACE, ccmHF, nosD, cysG), substrate transport (cysUP, cysTWA, dcuB), and anaerobic energy metabolism (dmsAB, psrC, pshA, hyaABC, hydA). Transcription of genes encoding a periplasmic nitrate reductase (napBHGA), cytochrome c552, and prismane was elevated 8- to 56-fold in response to the presence of nitrate, while cymA, ifcA, and frdA were specifically induced three- to eightfold under fumarate-reducing conditions. The mRNA levels for two oxidoreductase-like genes of unknown function and several cell envelope genes involved in multidrug resistance increased two- to fivefold specifically under Fe(III)-reducing conditions. Analysis of protein expression profiles under aerobic and anaerobic conditions revealed 14 protein spots that showed significant differences in abundance on 2-D gels. Protein identification by mass spectrometry indicated that the expression of prismane, dihydrolipoamide succinyltransferase, and alcaligin siderophore biosynthesis protein correlated with the microarray data. PMID:11881834

  11. Distinct structural features of Rex-family repressors to sense redox levels in anaerobes and aerobes.

    PubMed

    Zheng, Yingying; Ko, Tzu-Ping; Sun, Hong; Huang, Chun-Hsiang; Pei, Jianjun; Qiu, Riyong; Wang, Andrew H-J; Wiegel, Juergen; Shao, Weilan; Guo, Rey-Ting

    2014-12-01

    The Rex-family repressors sense redox levels by alternative binding to NADH or NAD(+). Unlike other Rex proteins that regulate aerobic respiration, RSP controls ethanol fermentation in the obligate anaerobe Thermoanaerobacter ethanolicus JW200(T). It is also found in other anaerobic microorganisms. Here we present the crystal structures of apo-RSP, RSP/NADH and RSP/NAD(+)/DNA, which are the first structures of Rex-family members from an obligate anaerobe. RSP functions as a homodimer. It assumes an open conformation when bound to the operator DNA and a closed conformation when not DNA-bound. The DNA binds to the N-terminal winged-helix domain and the dinucleotide, either reduced or oxidized, binds to the C-terminal Rossmann-fold domain. The two distinct orientations of nicotinamide ring, anti in NADH and syn in NAD(+), give rise to two sets of protein-ligand interactions. Consequently, NADH binding makes RSP into a closed conformation, which does not bind to DNA. Both the conserved residues and the DNA specificity of RSP show a number of variations from those of the aerobic Rex, reflecting different structural bases for redox-sensing by the anaerobic and aerobic Rex-family members. PMID:25463021

  12. Triclosan enriches for Dehalococcoides-like Chloroflexi in anaerobic soil at environmentally relevant concentrations.

    PubMed

    McNamara, Patrick J; Krzmarzick, Mark J

    2013-07-01

    Triclosan is an antimicrobial agent that is discharged to soils with land-applied wastewater biosolids, is persistent under anaerobic conditions, and yet its impact on anaerobic microbial communities in soils is largely unknown. We hypothesized that triclosan enriches for Dehalococcoides-like Chloroflexi because these bacteria respire organochlorides and are likely less sensitive, relative to other bacteria, to the antimicrobial effects of triclosan. Triplicate anaerobic soil microcosms were seeded with agricultural soil, which was not previously exposed to triclosan, and were amended with 1 mg kg(-1) of triclosan. Triplicate control microcosms did not receive triclosan, and the experiment was run for 618 days. The overall bacterial community (assessed by automated ribosomal intergenic spacer analysis and denaturing gradient gel electrophoresis) was not impacted by triclosan; however, the abundance of Dehalococcoides-like Chloroflexi 16S rRNA genes (determined by qPCR) increased 20-fold with triclosan amendment compared with a fivefold increase without triclosan. This work demonstrates that triclosan impacts anaerobic soil communities at environmentally relevant levels.

  13. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration.

    PubMed

    Radad, Khaled; Rausch, Wolf-Dieter; Gille, Gabriele

    2006-09-01

    Although the definite etiology of Parkinson's disease is still unclear, increasing evidence has suggested an important role for environmental factors such as exposure to pesticides in increasing the risk of developing Parkinson's disease. In the present study, primary cultures prepared from embryonic mouse mesencephala were applied to investigate the toxic effects and underlying mechanisms of rotenone-induced neuronal cell death relevant to Parkinson's disease. Results revealed that rotenone destroyed dopaminergic neurons in a dose- and time-dependent manner. Consistent with the cytotoxic effect of rotenone as evidenced by dopaminergic cell loss, it significantly increased the release of lactate dehydrogenase into the culture medium, the number of necrotic cells in the culture and the number of nuclei showing apoptotic features. Rotenone exerted toxicity by decreasing the mitochondrial membrane potential, increasing reactive oxygen species production and shifting respiration to a more anaerobic state.

  14. A model of metabolic changes in respiration-deficient human cells.

    PubMed

    Bollmann, F Mathias

    2007-09-01

    Cells lacking aerobic metabolism because of damaged mtDNA accumulate in many postmitotic tissues in the course aging. Although being only a small fraction of cells, they might play a major role in oxidative stress affecting the whole body. However, it remains unclear how such cells, which are under normal circumstances dependent on aerobic metabolism, are able to survive for decades in vivo. Here a new model is presented that proposes a coexistence of anaerobic glycolysis and a partly reversed TCA cycle. Succinate plays a key role in the changed metabolic pathways because it has to be exported by the cell. This hypothesis supports the view that some respiration-deficient cells are able to survive permanently within the body and contribute to human aging.

  15. Genome sequence of the organohalide-respiring Dehalogenimonas alkenigignens type strain (IP3-3(T)).

    PubMed

    Key, Trent A; Richmond, Dray P; Bowman, Kimberly S; Cho, Yong-Joon; Chun, Jongsik; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2016-01-01

    Dehalogenimonas alkenigignens IP3-3(T) is a strictly anaerobic, mesophilic, Gram negative staining bacterium that grows by organohalide respiration, coupling the oxidation of H2 to the reductive dehalogenation of polychlorinated alkanes. Growth has not been observed with any non-polyhalogenated alkane electron acceptors. Here we describe the features of strain IP3-3(T) together with genome sequence information and its annotation. The 1,849,792 bp high-quality-draft genome contains 1936 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small unit rRNA (16S) locus. The genome contains 29 predicted reductive dehalogenase genes, a large majority of which lack cognate genes encoding membrane anchoring proteins. PMID:27340512

  16. Glycolysis and respiration in yeasts. The Pasteur effect studied by mass spectrometry.

    PubMed

    Lloyd, D; Kristensen, B; Degn, H

    1983-06-15

    Simultaneous and continuous measurements of changes in CO2 and O2 concentrations in glucose-metabolizing yeast suspensions by mass spectrometry enabled a study of the Pasteur effect (aerobic inhibition of glycolysis) in Saccharomyces uvarum and Schizosaccharomyces pombe. A different control mechanism operates in Candida utilis to give a damped oscillation after the anaerobic-aerobic transition. The apparent Km values for respiration of the three yeasts were in the range 1.3-1.8 microM-O2. The apparent Km values for O2 of the Pasteur effect were 5 and 13 microM for catabolite-repressed and derepressed S. uvarum respectively and 7 microM for Sch. pombe. These results are discussed with respect to currently accepted mechanisms for the control of glycolysis.

  17. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  18. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    PubMed Central

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  19. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    PubMed

    Sperling, Or; Earles, J Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm(-3) yr(-1) on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  20. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  1. Paper-Based Electrical Respiration Sensor.

    PubMed

    Güder, Firat; Ainla, Alar; Redston, Julia; Mosadegh, Bobak; Glavan, Ana; Martin, T J; Whitesides, George M

    2016-05-01

    Current methods of monitoring breathing require cumbersome, inconvenient, and often expensive devices; this requirement sets practical limitations on the frequency and duration of measurements. This article describes a paper-based moisture sensor that uses the hygroscopic character of paper (i.e. the ability of paper to adsorb water reversibly from the surrounding environment) to measure patterns and rate of respiration by converting the changes in humidity caused by cycles of inhalation and exhalation to electrical signals. The changing level of humidity that occurs in a cycle causes a corresponding change in the ionic conductivity of the sensor, which can be measured electrically. By combining the paper sensor with conventional electronics, data concerning respiration can be transmitted to a nearby smartphone or tablet computer for post-processing, and subsequently to a cloud server. This means of sensing provides a new, practical method of recording and analyzing patterns of breathing. PMID:27059088

  2. Tumors and mitochondrial respiration: a neglected connection.

    PubMed

    Viale, Andrea; Corti, Denise; Draetta, Giulio F

    2015-09-15

    For decades, tumor cells have been considered defective in mitochondrial respiration due to their dominant glycolytic metabolism. However, a growing body of evidence is now challenging this assumption, and also implying that tumors are metabolically less homogeneous than previously supposed. A small subpopulation of slow-cycling cells endowed with tumorigenic potential and multidrug resistance has been isolated from different tumors. Deep metabolic characterization of these tumorigenic cells revealed their dependency on mitochondrial respiration versus glycolysis, suggesting the existence of a common metabolic program active in slow-cycling cells across different tumors. These findings change our understanding of tumor metabolism and also highlight new vulnerabilities that can be exploited to eradicate cancer cells responsible for tumor relapse.

  3. Transducer for monitoring respiration during imaging procedures.

    PubMed

    Jones, K R

    1988-07-01

    A transducer system for monitoring respiration is described; it uses a 'liquid column' sensor with a remote integrated circuit pressure module. It was designed primarily for non-invasive monitoring and control of respiration during diagnostic imaging procedures, but has also found applications in other areas, e.g. physiotherapy and pulse monitoring. The device is a new version of a system developed several years ago and takes advantage of relatively low cost commercial 'building blocks'. The output is an analogue voltage (from a low impedance source) capable of driving a wide range of recorders, amplifiers and computer interfaces. Reference is also made in the text to a bio-feedback signal processing and display unit (described elsewhere) which, when used with this transducer, provides a versatile respiratory control system.

  4. Physiologic and subjective effects of respirator mask type.

    PubMed

    Harber, P; Beck, J; Brown, C; Luo, J

    1991-09-01

    The effect of alternate airflow path designs on full-face mask air-purifying respirators was assessed in 14 healthy volunteers during submaximal exercise. Respirator designs included no respirator (N), full-face mask, dual-cartridge with no nasal deflector (FN), full-face mask respirator with nasal deflector (FD), and a powered air-purifying respirator (PA). Physiologic effects were measured by using respiratory inductive plethysmography and subjective responses by two visual analog scales. There were significant effects of airflow path design upon the physiologic parameters of ventilation, tidal volume, and mean flow rate. There were no significant physiologic or subjective differences between the full-face mask respirators with and without the nasal deflector in place. The PA had less physiologic impact than the nonpowered models but did not show significant subjective benefit. The study suggests that both subjective and objective physiologic responses must be utilized in assessing respirator design. PMID:1781441

  5. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  6. Determining anaerobic capacity in sporting activities.

    PubMed

    Noordhof, Dionne A; Skiba, Philip F; de Koning, Jos J

    2013-09-01

    Anaerobic capacity/anaerobically attributable power is an important parameter for athletic performance, not only for short high-intensity activities but also for breakaway efforts and end spurts during endurance events. Unlike aerobic capacity, anaerobic capacity cannot be easily quantified. The 3 most commonly used methodologies to quantify anaerobic capacity are the maximal accumulated oxygen deficit method, the critical power concept, and the gross efficiency method. This review describes these methods, evaluates if they result in similar estimates of anaerobic capacity, and highlights how anaerobic capacity is used during sporting activities. All 3 methods have their own strengths and weaknesses and result in more or less similar estimates of anaerobic capacity but cannot be used interchangeably. The method of choice depends on the research question or practical goal.

  7. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  8. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  9. Aerosol penetration through respirator exhalation valves.

    PubMed

    Bellin, P; Hinds, W C

    1990-10-01

    Exhalation valves are a critical component of industrial respirators. They are designed to permit minimal inward leakage of air contaminants during inhalation and provide low resistance during exhalation. Under normal conditions, penetration of aerosol through exhalation valves is minimal. The exhalation valve is, however, a vulnerable component of a respirator and under actual working conditions may become dirty or damaged to the point of causing significant leakage. Aerosol penetration was measured for normal exhalation valves and valves compromised by paint or fine copper wires on the valve seat. Penetration increased with increasing wire diameter. A wire 250 microns in diameter allowed greater than 1% penetration into the mask cavity. Dirt or paint accumulated on the exhalation valve allowed a similar level of penetration. Work rate had little effect on observed penetration. Penetration decreased significantly with increasing aerosol particle size. The amount of material on the valve or valve seat necessary for significant (greater than 0.5%) inward leakage in a half-mask respirator could be readily observed by careful inspection of the exhalation valve and its seat in good lighting conditions.

  10. How Ecosystems Breathe: Measuring Respiration of Soil

    NASA Astrophysics Data System (ADS)

    McTammany, M. E.

    2005-05-01

    Curriculum for general ecology labs often uses in-lab exercises and computer simulations to demonstrate ecological principles rather than experimental field projects. In addition, ecosystem processes can be difficult to incorporate into general ecology labs because the techniques require sophisticated equipment or complex field designs. As an alternative to in-lab projects, I have integrated field measurement of soil respiration into my general ecology lab to teach students aspects of experimental design (sampling, replication, error, etc.) and to demonstrate how organism-level processes operate beyond single organisms in nature and are influenced by environmental conditions. In a program laden with biomedical interests, analogies between organisms and ecosystems are quite appealing to students. Students in my general ecology course complete a 2-week field project in which they measure soil respiration inside a dark microcosm chamber. We use 10% KOH to trap evolved CO2 and titrate unreacted KOH in lab using 1N HCl. The protocol is simple, only requires some chemicals, and can be used in many different habitats (including flower beds on campus) quite easily. Potential experiments could involve varying environmental conditions, such as soil moisture, nutrient availability, gaseous environment, carbon supply, or temperature, to affect soil respiration rate.

  11. Diffusion in biofilms respiring on electrodes

    SciTech Connect

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Beyenal, Haluk

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  12. DIFFUSION IN BIOFILMS RESPIRING ON ELECTRODES

    PubMed Central

    Renslow, RS; Babauta, JT; Majors, PD; Beyenal, H

    2013-01-01

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that 1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; 2) Drs at a given location decreases with G. sulfurreducens biofilm age; 3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and 4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. PMID:23420623

  13. Continuous respirable mine dust monitor development

    SciTech Connect

    Cantrell, B.K.; Williams, K.L.; Stein, S.W.

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  14. Natural Niche for Organohalide-Respiring Chloroflexi

    PubMed Central

    Krzmarzick, Mark J.; Crary, Benjamin B.; Harding, Jevon J.; Oyerinde, Oyenike O.; Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    The phylum Chloroflexi contains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of these Chloroflexi in uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number of Dehalococcoides-like Chloroflexi 16S rRNA genes present. Dehalococcoides-like Chloroflexi populations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number of Dehalococcoides-like Chloroflexi 16S rRNA genes positively correlated with [organochlorine]/TOC while the number of Bacteria 16S rRNA genes did not. Dehalococcoides-like Chloroflexi were also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiring Chloroflexi are widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiring Chloroflexi may play an integral role in the biogeochemical chlorine cycle. PMID:22101035

  15. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule.

  16. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples.

  17. Alkaline pretreatment for enhancement of biogas production from banana stem and swine manure by anaerobic codigestion.

    PubMed

    Zhang, Chengming; Li, Jihong; Liu, Chen; Liu, Xiaoling; Wang, Jianlong; Li, Shizhong; Fan, Guifang; Zhang, Lei

    2013-12-01

    The objective of this research was to propose and investigate the availability of digested banana stem (BS) to produce biogas. Squeezed BS with less moisture content was used for biogas production through a combination of NaOH pretreatment, solid-state fermentation, and codigestion technologies. NaOH doses were optimized according to biogas fermentation performance, and the best dose was 6% (by weight) based on the total solid (TS) of BS. Under this condition, the lignin, cellulose, and hemicellulose contents decreased from 18.36%, 32.36% and 14.6% to 17.10%, 30.07%, and 10.65%, respectively, after pretreatment. After biogas digestion, TS and volatile solid (VS) reductions of the codigestion were 48.5% and 70.4%, respectively, and the biogas and methane yields based on VS loading were 357.9 and 232.4 mL/g, which were 12.1% and 21.4%, respectively, higher than the control. Results indicated that the proposed process could be an effective method for using BS to produce biogas.

  18. Using O2 to study the relationships between soil CO2 efflux and soil respiration

    NASA Astrophysics Data System (ADS)

    Angert, A.; Yakir, D.; Rodeghiero, M.; Preisler, Y.; Davidson, E. A.; Weiner, T.

    2015-04-01

    Soil respiration is the sum of respiration processes in the soil and is a major flux in the global carbon cycle. It is usually assumed that the CO2 efflux is equal to the soil respiration rate. Here we challenge this assumption by combining measurements of CO2 with high-precision measurements of O2. These measurements were conducted on different ecosystems and soil types and included measurements of air samples taken from the soil profile of three Mediterranean sites: a temperate forest and two alpine forests. Root-free soils from the alpine sites were also incubated in the lab. We found that the ratio between the CO2 efflux and the O2 influx (defined as apparent respiratory quotient, ARQ) was in the range of 0.14 to 1.23 and considerably deviated from the value of 0.9 ± 0.1 expected from the elemental composition of average plants and soil organic matter. At the Mediterranean sites, these deviations are explained as a result of CO2 dissolution in the soil water and transformation to bicarbonate ions in these high-pH soils, as well as by carbonate mineral dissolution and precipitation processes. Thus, a correct estimate of the short-term, chamber-based biological respiratory flux in such soils can only be made by dividing the measured soil CO2 efflux by the average (efflux-weighted) soil profile ARQ. Applying this approach to a semiarid pine forest resulted in an estimated short-term biological respiration rate that is 3.8 times higher than the chamber-measured surface CO2. The ARQ values often observed in the more acidic soils were unexpectedly low (< 0.7). These values probably result from the oxidation of reduced iron, which has been formed previously during times of high soil moisture and local anaerobic conditions inside soil aggregates. The results reported here provide direct quantitative evidence of a large temporal decoupling between soil-gas exchange fluxes and biological soil respiration.

  19. Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria.

    PubMed

    Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J

    2014-01-01

    Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.

  20. Environmental and synthetic sulphydryl group inhibitors: effects on bioluminescence and respiration in Vibrio fischeri.

    PubMed

    Kalciene, Virginija; Cetkauskaite, Anolda

    2007-03-01

    Elemental sulphur (as S0 and S8) is abundant in anaerobic sediments and soil, and is highly toxic in the Vibrio fischeri bioluminescence test. This mode of S0 action remains uncertain. The objective of this research was the analysis of the toxic effects of S0 on bioluminescence and respiration in V. fischeri, in joint action with N-ethylmaleimide (NEM) or 2,4-dithio-DL-threitol (DTT), which are -SH group inhibiting and maintaining synthetic agents, respectively. Non-toxic DTT immediately protected cell bioluminescence against S0 inhibition at low (5.5ppb) and high (55ppb) concentrations of S0, whilst restoration of the inhibitory effect of S0 took up to 30 minutes. NEM (62.5ppb) diminished cell bioluminescence by up to 50% after 5 minutes, but after 60 minutes, the inhibition reached 100%. DTT restored the bioluminescence function inhibited in vivo and in vitro by S0 and NEM. Enhancement of cell respiration by up to 20% and 33% was observed at 2.2ppm of S0 and 36.8ppm of 2,4-dinitrophenol (2,4-DNP; an uncoupler of oxidative phosphorylation), respectively; whilst NEM (3.1ppm) caused a reduction of up to 40%. This comparative analysis confirmed that S0 has multiple modes of action--it acts as both an -SH group inhibitor and an uncoupler of oxidative phosphorylation in V. fischeri cells.

  1. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  2. Merging Metabolism and Power: Development of a Novel Photobioelectric Device Driven by Photosynthesis and Respiration

    PubMed Central

    Powell, Ryan J.; White, Ryan; Hill, Russell T.

    2014-01-01

    Generation of renewable energy is one of the grand challenges facing our society. We present a new bio-electric technology driven by chemical gradients generated by photosynthesis and respiration. The system does not require pure cultures nor particular species as it works with the core metabolic principles that define phototrophs and heterotrophs. The biology is interfaced with electrochemistry with an alkaline aluminum oxide cell design. In field trials we show the system is robust and can work with an undefined natural microbial community. Power generated is light and photosynthesis dependent. It achieved a peak power output of 33 watts/m2 electrode. The design is simple, low cost and works with the biological processes driving the system by removing waste products that can impede growth. This system is a new class of bio-electric device and may have practical implications for algal biofuel production and powering remote sensing devices. PMID:24466132

  3. Merging metabolism and power: development of a novel photobioelectric device driven by photosynthesis and respiration.

    PubMed

    Powell, Ryan J; White, Ryan; Hill, Russell T

    2014-01-01

    Generation of renewable energy is one of the grand challenges facing our society. We present a new bio-electric technology driven by chemical gradients generated by photosynthesis and respiration. The system does not require pure cultures nor particular species as it works with the core metabolic principles that define phototrophs and heterotrophs. The biology is interfaced with electrochemistry with an alkaline aluminum oxide cell design. In field trials we show the system is robust and can work with an undefined natural microbial community. Power generated is light and photosynthesis dependent. It achieved a peak power output of 33 watts/m(2) electrode. The design is simple, low cost and works with the biological processes driving the system by removing waste products that can impede growth. This system is a new class of bio-electric device and may have practical implications for algal biofuel production and powering remote sensing devices.

  4. Large scale study on measurement of respiration activity (AT(4)) by Sapromat and OxiTop.

    PubMed

    Binner, Erwin; Böhm, Katharina; Lechner, Peter

    2012-10-01

    In the run-up for amending the Austrian landfill ordinance, parameters were developed to assess the stability/reactivity of mechanically-biologically pretreated residual wastes. The Landfill Ordinance 2008 regulates limit values for Respiration Activity (="Atmungsaktivität") RA(4) (AT(4))<7mgO(2)*(g dry matter (DM))(-1), Gas Generation Sum GS(21)<20Nl*kgDM(-1) and alternatively Gas Evolution (="Gasbildung") GB(21)<20Nl*kgDM(-1). Methods for analysing these parameters were established by the Austrian Standards Institute (2004). As laboratory practice shows, these methods also are used for the assessment of other wastes (sewage sludge, commercial waste, material from abandoned sites, biowaste compost). For measurement of respiration activity in Austria mainly two methods are used: the Sapromat®-method and the OxiTop®-method. Whether respectively to what extent these two methods give same results, is discussed in this paper. Since 2009 at ABF-BOKU 169 respiration activity tests of samples taken from different stages of MBT - as well as biowaste composting processes, materials from landfills as well as abandoned sites and residues from anaerobic treatment plants were analysed parallel by Sapromat® and OxiTop®. The results manifest very strong correlation between the Sapromat® and OxiTop® method. The correlation coefficient is 0.993. As a very clear tendency OxiTop® gives lower amounts than Sapromat®. In average the lower values of OxiTop® are around 88%.

  5. Anaerobic digestion of brewery byproducts

    SciTech Connect

    Keenan, J.D.; Kormi, I.

    1981-01-01

    Energy recovery in the brewery industry by mesophilic anaerobic digesion of process by-products is technically feasible. The maximum achievable loading rate is 6g dry substrate/L-day. CH4 gas production declines as the loading rate increases in the range 2-6 g/L day. CH4 production increases in the range 8-15 days; optimal design criteria are a 10-day detention time with a loading rate of 6 g dry substrate/L day.

  6. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa.

    PubMed

    Su, Shengchang; Panmanee, Warunya; Wilson, Jeffrey J; Mahtani, Harry K; Li, Qian; Vanderwielen, Bradley D; Makris, Thomas M; Rogers, Melanie; McDaniel, Cameron; Lipscomb, John D; Irvin, Randall T; Schurr, Michael J; Lancaster, Jack R; Kovall, Rhett A; Hassett, Daniel J

    2014-01-01

    Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of

  7. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    PubMed

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  8. Combustion, respiration and intermittent exercise: a theoretical perspective on oxygen uptake and energy expenditure.

    PubMed

    Scott, Christopher B

    2014-01-01

    While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first "modern" investigations of biological energy exchanges. From Lavoisier's work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2) uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ) and one that does not (1 L O2 = 19.6 kJ). When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result. PMID:24833508

  9. Combustion, Respiration and Intermittent Exercise: A Theoretical Perspective on Oxygen Uptake and Energy Expenditure

    PubMed Central

    Scott, Christopher B.

    2014-01-01

    While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first “modern” investigations of biological energy exchanges. From Lavoisier’s work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2) uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ) and one that does not (1 L O2 = 19.6 kJ). When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result. PMID:24833508

  10. Combustion, respiration and intermittent exercise: a theoretical perspective on oxygen uptake and energy expenditure.

    PubMed

    Scott, Christopher B

    2014-03-28

    While no doubt thought about for thousands of years, it was Antoine Lavoisier in the late 18th century who is largely credited with the first "modern" investigations of biological energy exchanges. From Lavoisier's work with combustion and respiration a scientific trend emerges that extends to the present day: the world gains a credible working hypothesis but validity goes missing, often for some time, until later confirmed using proper measures. This theme is applied to glucose/glycogen metabolism where energy exchanges are depicted as conversion from one form to another and, transfer from one place to another made by both the anaerobic and aerobic biochemical pathways within working skeletal muscle, and the hypothetical quantification of these components as part of an oxygen (O2) uptake measurement. The anaerobic and aerobic energy exchange components of metabolism are represented by two different interpretations of O2 uptake: one that contains a glycolytic component (1 L O2 = 21.1 kJ) and one that does not (1 L O2 = 19.6 kJ). When energy exchange transfer and oxygen-related expenditures are applied separately to exercise and recovery periods, an increased energy cost for intermittent as compared to continuous exercise is hypothesized to be a direct result.

  11. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  12. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  13. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation.

    PubMed

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E; Gong, Yunchen; Hug, Laura A; Raskin, Lutgarde; Edwards, Elizabeth A

    2014-07-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor.

  14. Metatranscriptome of an Anaerobic Benzene-Degrading, Nitrate-Reducing Enrichment Culture Reveals Involvement of Carboxylation in Benzene Ring Activation

    PubMed Central

    Luo, Fei; Gitiafroz, Roya; Devine, Cheryl E.; Gong, Yunchen; Hug, Laura A.; Raskin, Lutgarde

    2014-01-01

    The enzymes involved in the initial steps of anaerobic benzene catabolism are not known. To try to elucidate this critical step, a metatranscriptomic analysis was conducted to compare the genes transcribed during the metabolism of benzene and benzoate by an anaerobic benzene-degrading, nitrate-reducing enrichment culture. RNA was extracted from the mixed culture and sequenced without prior mRNA enrichment, allowing simultaneous examination of the active community composition and the differential gene expression between the two treatments. Ribosomal and mRNA sequences attributed to a member of the family Peptococcaceae from the order Clostridiales were essentially only detected in the benzene-amended culture samples, implicating this group in the initial catabolism of benzene. Genes similar to each of two subunits of a proposed benzene-carboxylating enzyme were transcribed when the culture was amended with benzene. Anaerobic benzoate degradation genes from strict anaerobes were transcribed only when the culture was amended with benzene. Genes for other benzoate catabolic enzymes and for nitrate respiration were transcribed in both samples, with those attributed to an Azoarcus species being most abundant. These findings indicate that the mineralization of benzene starts with its activation by a strict anaerobe belonging to the Peptococcaceae, involving a carboxylation step to form benzoate. These data confirm the previously hypothesized syntrophic association between a benzene-degrading Peptococcaceae strain and a benzoate-degrading denitrifying Azoarcus strain for the complete catabolism of benzene with nitrate as the terminal electron acceptor. PMID:24795366

  15. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  16. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  17. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  18. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  19. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances.

    PubMed

    Tao, Wendong; Fattah, Kazi P; Huchzermeier, Matthew P

    2016-03-15

    Anaerobically digested dairy manure is rich in ammonium, orthophosphates, and magnesium, indicating a high potential for struvite recovery. Continuous generation of large amounts of dairy manure plus increasing global interest in anaerobic digestion of dairy manure suggest a huge market for struvite production with anaerobically digested dairy manure. However, the complex chemical composition of digested dairy manure presents hindrances to struvite recovery. This review paper assesses the significance and potential of struvite recovery from anaerobically digested dairy manure, identifies the factors hindering struvite recovery, and discusses the methods to overcome hindrances and the measures to improve phosphorus speciation of dairy manure for struvite formation. This paper proposes using "struvite recovery potential" or Pstruvite based on the least molar activity of struvite component ions in addition to "supersaturation ratio" to identify the potential for struvite recovery. The probable hindrances mainly include high Ca(2+) concentration and molar activity ratios of Ca(2+): Mg(2+) and Ca(2+): PO4(3-), high ionic strength, and high alkalinity. Struvite formation and purity is likely a function of all the interfering variables, rather than just a single factor with digested dairy manure. Potential enhancement measures need to be tested for technical and economic feasibility and applicability to various sources of digested dairy manure. This review paper provides guidance to overcoming the hindrances of digested dairy manure to struvite formation.

  20. Distribution of CO(2) fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes.

    PubMed

    Montoya, Lilia; Celis, Lourdes B; Razo-Flores, Elías; Alpuche-Solís, Angel G

    2012-11-01

    Extremophilic anaerobes are widespread in saline, acid, alkaline, and high or low temperature environments. Carbon is essential to living organisms and its fixation, degradation, or mineralization is driven by, up to now, six metabolic pathways. Organisms using these metabolisms are known as autotrophs, acetotrophs or carbon mineralizers, respectively. In anoxic and extreme environments, besides the well-studied Calvin-Benson-Bassham cycle, there are other five carbon fixation pathways responsible of autotrophy. Moreover, regarding carbon mineralization, two pathways perform this key process for carbon cycling. We might imagine that all the pathways can be found evenly distributed in microbial biotopes; however, in extreme environments, this does not occur. This manuscript reviews the most commonly reported anaerobic organisms that fix carbon and mineralize acetate in extreme anoxic habitats. Additionally, an inventory of autotrophic extremophiles by biotope is presented.

  1. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost.

    PubMed

    Carballa, Marta; Duran, Cecilia; Hospido, Almudena

    2011-12-15

    Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage.

  2. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost.

    PubMed

    Carballa, Marta; Duran, Cecilia; Hospido, Almudena

    2011-12-15

    Many studies have shown the effectiveness of pretreatments prior to anaerobic digestion of solid wastes, but to our knowledge, none analyzes their environmental consequences/costs. In this work, seven different pretreatments applied to two types of waste (kitchen waste and sewage sludge) have been environmentally evaluated by using life cycle assessment (LCA) methodology. The results show that the environmental burdens associated to the application of pretreatments prior to anaerobic digestion cannot be excluded. Among the options tested, the pressurize-depressurize and chemical (acid or alkaline) pretreatments could be recommended on the basis of their beneficial net environmental performance, while thermal and ozonation alternatives require energy efficiency optimization to reduce their environmental burdens. Reconciling operational, economic and environmental aspects in a holistic approach for the selection of the most sustainable option, mechanical (e.g., pressurize-depressurize) and chemical methods appear to be the most appropriate alternatives at this stage. PMID:22040018

  3. Respiration and intensity dependence of photosynthesis in Chlorella.

    PubMed

    BRACKETT, F S; OLSON, R A; CRICKARD, R G

    1953-03-01

    1. Respiration changes as a result of illumination. 2. In the absence of glucose or other supply of substrate, respiration decays in the dark showing at least two types-a fast decay in a few minutes and a slow decay lasting hours. 3. Respiratory response to illumination is delayed. 4. Intermittent illumination (in the absence of glucose, etc.) produces a periodic variation in respiration with a delay or phase lag. 5. Periodic variation of respiration may produce a higher average value in the dark than in the light due to the lag and depending upon the period of intermittent illumination. 6. Based upon average respiration values our data confirm the Kok effect. 7. Interpolated values of respiration, however, result in photosynthetic rates which are linearly dependent upon intensity of illumination. 8. Thus the quantum efficiency is found to be independent of intensity, over the wide range of intensities investigated.

  4. RESPIRATION AND INTENSITY DEPENDENCE OF PHOTOSYNTHESIS IN CHLORELLA

    PubMed Central

    Brackett, Frederick S.; Olson, Rodney A.; Crickard, Robert G.

    1953-01-01

    1. Respiration changes as a result of illumination. 2. In the absence of glucose or other supply of substrate, respiration decays in the dark showing at least two types—a fast decay in a few minutes and a slow decay lasting hours. 3. Respiratory response to illumination is delayed. 4. Intermittent illumination (in the absence of glucose, etc.) produces a periodic variation in respiration with a delay or phase lag. 5. Periodic variation of respiration may produce a higher average value in the dark than in the light due to the lag and depending upon the period of intermittent illumination. 6. Based upon average respiration values our data confirm the Kok effect. 7. Interpolated values of respiration, however, result in photosynthetic rates which are linearly dependent upon intensity of illumination. 8. Thus the quantum efficiency is found to be independent of intensity, over the wide range of intensities investigated. PMID:13035068

  5. Predicting the impact of anaerobic microsites on soil organic matter mineralization rates in upland soils

    NASA Astrophysics Data System (ADS)

    Gee, K. E.; Keiluweit, M.; Denney, A.; Fendorf, S. E.

    2015-12-01

    Soils are a crucial component of the global carbon (C) cycle, representing a highly dynamic and large reservoir of C stored as soil organic matter (SOM). An important control on SOM residence time is microbial mineralization. While the impact of climactic and site-specific constraints on SOM mineralization rates are recognized, the role of oxygen limitations remains elusive. If oxygen consumption (via heterotrophic respiration) outpaces supply (via diffusion), anaerobic microsites can occur even within seemingly well-aerated upland soils. Under anaerobic conditions, SOM mineralization rates are expected to be slower due to metabolic constraints on microbial C oxidation. Process-based C cycling models have begun to incorporate the inhibiting effect of oxygen limitations by estimating anaerobic pore volume. However, such model predictions still lack experimental validation and research on environmental controls thus far has largely been focused on soil moisture. Here we aimed to determine the extent of anaerobic microsites within seemingly well-aerated upland soils experimentally and identify whether texture, SOM content, and microbial biomass can act as useful predictors in modeling frameworks. To this end, we monitored oxygen dynamics in soils spanning natural and artificial gradients in texture, SOM content and microbial biomass. Anaerobic microsites was visualized using a planar optode imaging system. Oxygen consumption rates were determined using gas chromatography, while oxygen diffusion rates were estimated based on porosity and pore-size distribution quantified by x-ray microtomography. Our results show that bulk oxygen concentrations ranged from 70% to as low as 20% saturation. However, all soils showed substantial micro-scale variability in oxygen concentrations, leading to the formation of anaerobic microsites even at modest moisture content. The extent of anaerobic microsites correlated with an overall reduction in SOM mineralization rates, and depended

  6. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques

    PubMed Central

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-01-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion. PMID:25737100

  7. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques.

    PubMed

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-09-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion.

  8. Tillage Effects on Soil Properties & Respiration

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Bogdan, Ileana; Moraru, Paula; Pop, Adrian; Duda, Bogdan; Cacovean, Horea; Coste, Camelia

    2015-04-01

    Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and soil structural condition. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1) to assess the effects of tillage systems (Conventional System-CS, Minimum Tillage-MT, No-Tillage-NT) on soil compaction, soil temperature, soil moisture and soil respiration and 2) to establish the relationship that exists in changing soil properties. Three treatments were installed: CS-plough + disc; MT-paraplow + rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15 cm of soil depth and increased the soil temperature by 0.5-2.20C. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the two conservation tillage measures decreased soil respiration, with the best effects of no-tillage. An exceeding amount of CO2 produced in the soil and released into the atmosphere, resulting from aerobic processes of mineralization of organic matter (excessive loosening) is considered to be not only a way of increasing the CO2 in the atmosphere, but also a loss of

  9. Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.

    PubMed

    Blodau, Christian; Siems, Melanie; Beer, Julia

    2011-12-01

    A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions. PMID:21958021

  10. Interannual sedimentary effluxes of alkalinity in the southern North Sea: Model results compared with summer observations.

    NASA Astrophysics Data System (ADS)

    Paetsch, Johannes; Kuehn, Wilfried; Six, Katharina

    2016-04-01

    Alkalinity generation in the sediment of the southern North Sea is the focus of several recent studies. One motivation for these efforts is the potentially enhanced buffering capacity of anthropogenic CO2 invasion into the corresponding pelagic system. An adaptation of a global multilayer sediment model (Heinze et al., 1999) in combination with a pelagic ecosystem model for shelf sea dynamics was used to study the benthic reactions on very different annual cycles (2001 - 2009) including the River Elbe summer flooding in 2002. The focus of this study is the efflux of alkalinity, their different contributors (aerobic respiration, denitrification, net sulfate reduction, calcite dissolution, nitrification) and their seasonal and interannual cycles. Similar to the observations covering the southern North Sea (Brenner et al., 2015) the model results show large horizontal gradients from the near-shore high productive areas with benthic remineralization up to Rmin = 10.6 mol C m-2 yr-1 and TA generation RTA = 2 mol C m-2 yr-1 to off-shore moderate productive areas with mean Rmin = 2.5 mol C m-2 yr-1 and mean TA generation RTA = 0.4 mol C m-2 yr-1. Beside calcite dissolution, aerobic respiration (producing ammonium) and denitrification are the largest contributors to alkalinity generation. Nitrification is reducing alkalinity in the sediment. Due to low regenerated primary production in summer, the year 2001 exhibits the lowest input of particulate organic matter into the sediment (POCexp=2.3 mol C m-2 yr-1), while the year 2003 exhibits the highest export production (POCexp=2.6 mol C m-2 yr-1). The biogeochemical reactions and the effluxes from the sediment follow these pelagic amplitudes with a time lag of about one year with damped amplitudes. References Brenner, H., Braeckman, U., Le Guitton, M., Meysman, F.J.R., 2015. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea. Biogeosiences Discussion, 12(15): 12395-12453. Heinze, C

  11. Interannual sedimentary effluxes of alkalinity in the southern North Sea: Model results compared with summer observations.

    NASA Astrophysics Data System (ADS)

    Paetsch, Johannes; Kuehn, Wilfried; Six, Katharina

    2016-04-01

    Alkalinity generation in the sediment of the southern North Sea is the focus of several recent studies. One motivation for these efforts is the potentially enhanced buffering capacity of anthropogenic CO2 invasion into the corresponding pelagic system. An adaptation of a global multilayer sediment model (Heinze et al., 1999) in combination with a pelagic ecosystem model for shelf sea dynamics was used to study the benthic reactions on very different annual cycles (2001 - 2009) including the River Elbe summer flooding in 2002. The focus of this study is the efflux of alkalinity, their different contributors (aerobic respiration, denitrification, net sulfate reduction, calcite dissolution, nitrification) and their seasonal and interannual cycles. Similar to the observations covering the southern North Sea (Brenner et al., 2015) the model results show large horizontal gradients from the near-shore high productive areas with benthic remineralization up to Rmin = 10.6 mol C m‑2 yr‑1 and TA generation RTA = 2 mol C m‑2 yr‑1 to off-shore moderate productive areas with mean Rmin = 2.5 mol C m‑2 yr‑1 and mean TA generation RTA = 0.4 mol C m‑2 yr‑1. Beside calcite dissolution, aerobic respiration (producing ammonium) and denitrification are the largest contributors to alkalinity generation. Nitrification is reducing alkalinity in the sediment. Due to low regenerated primary production in summer, the year 2001 exhibits the lowest input of particulate organic matter into the sediment (POCexp=2.3 mol C m‑2 yr‑1), while the year 2003 exhibits the highest export production (POCexp=2.6 mol C m‑2 yr‑1). The biogeochemical reactions and the effluxes from the sediment follow these pelagic amplitudes with a time lag of about one year with damped amplitudes. References Brenner, H., Braeckman, U., Le Guitton, M., Meysman, F.J.R., 2015. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea. Biogeosiences Discussion, 12

  12. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California

    USGS Publications Warehouse

    Blum, Jodi Switzer; Kulp, Thomas R.; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad W.; Stolz, John F.; Miller, Laurence G.; Oremland, Ronald S.

    2012-01-01

    A haloalkaliphilic sulfate-respiring bacterium, strain SLSR-1, was isolated from a lactate-fed stable enrichment culture originally obtained from the extreme environment of Searles Lake, California. The isolate proved capable of growth via sulfate-reduction over a broad range of salinities (125–330 g/L), although growth was slowest at salt-saturation. Strain SLSR-1 was also capable of growth via dissimilatory arsenate-reduction and displayed an even broader range of salinity tolerance (50–330 g/L) when grown under these conditions. Strain SLSR-1 could also grow via dissimilatory nitrate reduction to ammonia. Growth experiments in the presence of high borate concentrations indicated a greater sensitivity of sulfate-reduction than arsenate-respiration to this naturally abundant anion in Searles Lake. Strain SLSR-1 contained genes involved in both sulfate-reduction (dsrAB) and arsenate respiration (arrA). Amplicons of 16S rRNA gene sequences obtained from DNA extracted from Searles Lake sediment revealed the presence of close relatives of strain SLSR-1 as part of the flora of this ecosystem despite the fact that sulfate-reduction activity could not be detected in situ. We conclude that strain SLSR-1 can only achieve growth via arsenate-reduction under the current chemical conditions prevalent at Searles Lake. Strain SLSR-1 is a deltaproteobacterium in the family Desulfohalobiacea of anaerobic, haloalkaliphilic bacteria, for which we propose the name Desulfohalophilus alkaliarsenatis gen. nov., sp. nov.

  13. Control by Fur of the nitrate respiration regulators NarP and NarL in Salmonella enterica.

    PubMed

    Teixidó, Laura; Cortés, Pilar; Bigas, Anna; Alvarez, Gerard; Barbé, Jordi; Campoy, Susana

    2010-03-01

    Anaerobic metabolism is controlled by several transcriptional regulators, including ArcA, Fnr, NarP, and NarL, with the Fnr and ArcA proteins sensitive to the cell's redox status. Specifically, the two-component ArcAB system is activated in response to the oxidation state of membrane-bound quinones, which are the central electron carriers of respiration. Fnr, by contrast, directly senses cellular oxidation status through the [4Fe-4S] cluster present in its own structure. In this study, a third additional redox-associated pathway that controls the nitrate respiration regulators NarL and NarP was identified. The results showed that, in Salmonella enterica, the expression of these two transcriptional regulators is under the control of Fur, a metalloregulator that senses the presence of Fe2+ and regulates the homeostasis of this cation inside the cell. Thus, the Fur- Fe2+ complex increases the expression of narL and represses that of narP. Furthermore, studies of S. enteric mutants defective in the Fur-regulated sRNA RfrA and RfrB showed that those sRNA control both narP and narL expression. These results confirm Fur as a global regulator based on its involvement not only in iron uptake and detoxification but also in the control of nitrate/nitrite respiration by sensing cellular redox status.

  14. Exposure to elevated temperature and Pco(2) reduces respiration rate and energy status in the periwinkle Littorina littorea.

    PubMed

    Melatunan, Sedercor; Calosi, Piero; Rundle, Simon D; Moody, A John; Widdicombe, Stephen

    2011-01-01

    In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco(2), such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco(2) and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco(2) and by 15% in response to a combination of increased Pco(2) and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco(2) and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes. PMID:22030851

  15. The prediction of recommended energy expenditure for an 8 h work-day using an air-purifying respirator.

    PubMed

    Sulotto, F; Romano, C; Dori, S; Piolatto, G; Chiesa, A; Ciacco, C; Scansetti, G

    1993-12-01

    Thirty railway workers executed maximal, or near maximal, stress tests with and without the use of a half mask air-purifying respirator (Spasciani 85 A1 P1) fitted with two combined filters for simultaneous protection from organic vapours and particulate matter. The pressure-flow characteristics of inspiratory and expiratory resistance at airflows in the range 0-90 l.min-1 were established by a continuous flow method on one test mask. Significant differences were found by paired t-test between the two exercises (with and without use of mask), showing reduced values with use of the mask, for breath frequency, ventilation rate, oxygen uptake, carbon dioxide production, maximal oxygen uptake, percentage of maximal voluntary ventilation used at the maximal exercise ventilation. No significant differences were found for tidal volume, respiratory quotient, heart rate, systolic blood pressure, oxygen uptake at anaerobic threshold, and duration of exercise. The predicted energy expenditure recommended for an 8 h work shift, corresponding to 40% of maximal oxygen uptake, is found to be reduced working with respirator and is significantly different from that observed during stress test without mask. The average ventilation rate at this workload is below 25 l.min-1, with predicted inspiratory mouth pressure equal to, or less than, 20 mm H2O. This maximal inspiratory mouth pressure is proposed as a safety limit for prolonged work using a respirator, with a recommended energy expenditure close to 40% of maximal oxygen uptake. PMID:8287854

  16. Heat production of pig platelets in relation with glycolysis and respiration.

    PubMed

    Nanri, H; Minakami, S

    1983-01-01

    Heat production of pig platelets was measured on a flow microcalorimeter with simultaneous measurements of the oxygen consumption and metabolite change of the suspension. The heat production associated with the glycolytic reaction was estimated from the decrease in the heat production caused by the addition of sodium fluoride. The glycolytic heat production was about -75 kJ per mol of lactate formed, which is the sum of the enthalpy values for the conversion of glucose to lactic acid and that for the neutralization of the acid. The heat production due to the respiration was estimated from the heat production of the cells at various pH. The respiratory heat production was about -475 kJ per mol oxygen consumed, which agrees with the enthalpy change for the non-phosphorylating respiration of mitochondria or for the complete oxidation of glucose or fatty acids. The heat production of the cells increased by the alkalinization of the medium, and the increase of the heat production was parallel with the increase in the lactate formation.

  17. Soil respiration under different land uses in Eastern China.

    PubMed

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84-98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86-1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  18. Performance evaluation of filtering facepiece respirators using virus aerosols.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2013-01-01

    Physical penetration and infectivity penetration of adenovirus and influenza virus aerosols through respirators were measured to better characterize the effectiveness of filtering facepiece respirators against airborne virus. A physical penetration of 2%-5% was found. However, large sample-to-sample variation made it difficult to quantify the difference in physical penetration caused by the different virus aerosols. Infectivity penetration of adenovirus was much lower than physical penetration, indicating that the latter provides a conservative estimate for respirator performance. PMID:22483237

  19. Soil Respiration under Different Land Uses in Eastern China

    PubMed Central

    Fan, Li-Chao; Yang, Ming-Zhen; Han, Wen-Yan

    2015-01-01

    Land-use change has a crucial influence on soil respiration, which further affects soil nutrient availability and carbon stock. We monitored soil respiration rates under different land-use types (tea gardens with three production levels, adjacent woodland, and a vegetable field) in Eastern China at weekly intervals over a year using the dynamic closed chamber method. The relationship between soil respiration and environmental factors was also evaluated. The soil respiration rate exhibited a remarkable single peak that was highest in July/August and lowest in January. The annual cumulative respiration flux increased by 25.6% and 20.9% in the tea garden with high production (HP) and the vegetable field (VF), respectively, relative to woodland (WL). However, no significant differences were observed between tea gardens with medium production (MP), low production (LP), WL, and VF. Soil respiration rates were significantly and positively correlated with organic carbon, total nitrogen, and available phosphorous content. Each site displayed a significant exponential relationship between soil respiration and soil temperature measured at 5 cm depth, which explained 84–98% of the variation in soil respiration. The model with a combination of soil temperature and moisture was better at predicting the temporal variation of soil respiration rate than the single temperature model for all sites. Q10 was 2.40, 2.00, and 1.86–1.98 for VF, WL, and tea gardens, respectively, indicating that converting WL to VF increased and converting to tea gardens decreased the sensitivity of soil respiration to temperature. The equation of the multiple linear regression showed that identical factors, including soil organic carbon (SOC), soil water content (SWC), pH, and water soluble aluminum (WSAl), drove the changes in soil respiration and Q10 after conversion of land use. Temporal variations of soil respiration were mainly controlled by soil temperature, whereas spatial variations were

  20. Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments.

    PubMed

    Szecsody, Jim E; Jansik, Danielle P; McKinley, James P; Hess, Nancy J

    2014-09-01

    Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmolg(-1)h(-1)), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore water. In contrast, pertechnetate reduction in an anaerobic sediment containing adsorbed ferrous iron as the reductant was rapid (15-600 nmolg(-1)h(-1)), and nearly all (96-98%) was rapidly oxidized/remobilized (2.6-6.8 nmolg(-1)h(-1)) within hours. Tc reduction in an anaerobic sediment containing 0.5-10mM sulfide showed a relatively slow reduction rate (0.01-0.03 nmolg(-1)h(-1)) that was similar to observations in the natural sediment. Pertechnetate infiltration into sediment with a highly alkaline water resulted in rapid reduction (0.07-0.2 nmolg(-1)h(-1)) from ferrous iron released during biotite or magnetite dissolution. Oxidation of NaOH-treated sediments resulted in slow Tc oxidation (∼0.05 nmolg(-1)h(-1)) of a small fraction of the surface Tc (13-23%). The Tc remaining on the surface was Tc(IV) (by XANES), and autoradiography and elemental maps of Tc (by electron microprobe) showed Tc was present associated with specific minerals, rather than being evenly distributed on the surface. Dissolution of quartz, montmorillonite, muscovite, and kaolinite also occurred in the alkaline water, resulting in significant aqueous silica and aluminum. Over time, aluminosilicates, cancrinite, zeolite and sodalite were precipitating. These precipitates may be coating surface Tc(IV) phases, limiting reoxidation.

  1. Influence of Alkaline Co-Contaminants on Technetium Mobility in Vadose Zone Sediments

    SciTech Connect

    Szecsody, James E.; Jansik, Danielle P.; McKinley, James P.; Hess, Nancy J.

    2014-09-01

    Pertechnetate was slowly reduced in a natural, untreated arid sediment under anaerobic conditions (0.02 nmol g-1 h-1), which could occur in low permeability zones in the field, most of which was quickly oxidized. A small portion of the surface Tc may be incorporated into slowly dissolving surface phases, so was not readily oxidized/remobilized into pore water. In contrast, pertechnetate reduction in an anaerobic sediment containing adsorbed ferrous iron as the reductant was rapid (15 to 600 nmol g-1 h-1), and nearly all (96 - 98%) was rapidly oxidized/remobilized (2.6 to 6.8 nmol g-1 h-1) within hours. Tc reduction in an anaerobic sediment containing 0.5 to 10 mM sulfide showed a relatively slow reduction rate (0.01 to 0.03 nmol g-1 h-1) that was similar to observations in the natural sediment. Pertechnetate infiltration into sediment with a highly alkaline water resulted in rapid reduction (0.07 to 0.2 nmol g-1 h-1) from ferrous iron released during biotite or magnetite dissolution. Oxidation of NaOH-treated sediments resulted in slow Tc oxidation (~0.05 nmol g-1 h-1) of a small fraction of the surface Tc (13% to 23%). The Tc remaining on the surface was TcIV (by XANES), and autoradiography and elemental maps of Tc (by electron microprobe) showed Tc was present associated with specific minerals, rather than being evenly distributed on the surface. Dissolution of quartz, montmorillonite, muscovite, and kaolinite also occurred in the alkaline water, resulting in significant aqueous silica and aluminum. Over time, aluminosilicates cancrinite, zeolite and sodalite were precipitating. These precipitates may be coating surface Tc(IV) phases, limiting reoxidation.

  2. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  3. Ratiometric electrochemical detection of alkaline phosphatase.

    PubMed

    Goggins, Sean; Naz, Christophe; Marsh, Barrie J; Frost, Christopher G

    2015-01-11

    A novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).

  4. ESTIMATING ROOT RESPIRATION IN SPRUCE AND BEECH: DECREASES IN SOIL RESPIRATION FOLLOWING GIRDLING

    EPA Science Inventory

    A study was undertaken to follow seasonal fluxes of CO2 from soil and to estimate the contribution of autotrophic (root + mycorrhizal) to total soil respiration (SR) in a mixed stand of European beech (Fagus sylvatica) and Norway spruce (Picea abies) near Freising, Germany. Matu...

  5. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  6. Basic Laboratory Culture Methods for Anaerobic Bacteria

    NASA Astrophysics Data System (ADS)

    Strobel, Herbert J.

    Oxygen is either limiting or absent in many ecosystems. Anaerobic bacteria are often key players in such environments and these organisms have important roles in geo-elemental cycling, agriculture, and medicine. The metabolic versatility of anaerobes is exploited in a variety of industrial processes including fermented food production, biochemical synthesis, and bioremediation. There has been recent considerable interest in developing and enhancing technologies that employ anaerobes as biocatalysts. The study of anaerobic bacteria requires specialized techniques, and specific methods are described for the culture and manipulation of these microbes.

  7. Impact of pretreatment on solid state anaerobic digestion of yard waste for biogas production.

    PubMed

    Zhang, Zhikai; Li, Wangliang; Zhang, Guangyi; Xu, Guangwen

    2014-02-01

    Solid state anaerobic digestion, as a safe and environment-friendly technology to dispose municipal solid wastes, can produce methane and reduce the volume of wastes. In order to raise the digestion efficiency, this study investigated the pretreatment of yard waste by thermal or chemical method to break down the complex lignocellulosic structure. The composition and structure of pretreated yard waste were analyzed and characterized. The results showed that the pretreatment decreased the content of cellulose and hemicelluloses in yard waste and in turn improved the hydrolysis and methanogenic processes. The thermal pretreatment sample (P1) had the highest methane yield, by increasing 88% in comparison with digesting the raw material. The maximum biogas production reached 253 mL/g volatile solids (VS). The largest substrate mass reduction was obtained by the alkaline pretreatment (P5). The VS of the alkaline-treated sample decreased about 60% in comparison with the raw material.

  8. Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater

    PubMed Central

    Ferraz, Fernanda M.; Bruni, Aline T.; Del Bianchi, Vanildo L.

    2009-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L-1 and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days. PMID:24031316

  9. Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater.

    PubMed

    Ferraz, Fernanda M; Bruni, Aline T; Del Bianchi, Vanildo L

    2009-01-01

    The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L(-1) and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days.

  10. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  11. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  12. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  13. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  14. Cyanide-insensitive Respiration in Pea Cotyledons 1

    PubMed Central

    James, Terrance W.; Spencer, Mary S.

    1979-01-01

    Mitochondria isolated by a zonal procedure from the cotyledons of germinating peas possessed a cyanide-resistant respiration. This respiration was virtually absent in mitochondria isolated during the first 24 hours of germination but thereafter increased gradually until the 6th or 7th day of seedling development. At this time between 15 and 20% of the succinate oxidation was not inhibited by cyanide. The activity of the cyanide-resistant respiration was also determined in the absence of cyanide. Relationships among mitochondrial structure, cyanide-resistant respiration, and seedling development are discussed. PMID:16660982

  15. Ecosystem-level controls on root-rhizosphere respiration.

    PubMed

    Hopkins, Francesca; Gonzalez-Meler, Miquel A; Flower, Charles E; Lynch, Douglas J; Czimczik, Claudia; Tang, Jianwu; Subke, Jens-Arne

    2013-07-01

    Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration. PMID:23943914

  16. LINKAGE BETWEEN PRODUCTION AND RESPIRATION ON THE LOUISIANA CONTINENTAL SHELF.

    EPA Science Inventory

    Abstract for presentation. Original title, "PRIMARY PRODUCTION, BACTERIOPLANKTON PRODUCTION, AND COMMUNITY RESPIRATION IN STRATIFIED WATERS OF THE NORTHERN GULF OF MEXICO CONTINENTAL SHELF: LINKAGE TO HYPOXIA."

  17. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    NASA Astrophysics Data System (ADS)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  18. A survey of respirators usage for airborne chemicals in Korea.

    PubMed

    Han, Don-Hee; Kang, Min-Sun

    2009-10-01

    A questionnaire survey was undertaken to identify the current status of respirator usage in manufacturing work environments subject to gas/vapor chemicals exposure in Korea and to suggest improvements to enhance the effectiveness of respirator usage. The number of target companies included 17 big companies, 110 small & mid-size companies, and 5 foreign companies, and the number of respondents included 601 workers and 69 persons in charge of respirators (PCR). The results explained clearly that respirator programs in practice were extremely poor in small & mid-sized companies. The findings indicated that the selection of respirators was not appropriate. Quarter mask including filtering facepiece was the most common facepiece form for respirator and was worn by sixty-four percent. Not a little proportion of respondents (33%) complained about the fit: faceseal leakage between the face and facepiece. A filtering facepiece with carbon fiber filter was used as a substitution for a gas/vapor respirator. Another result was that the PCR respondents' perception of the administration of respirators was very low. The results of this survey suggest that regal enforcement of respiratory protection programs should be established in Korea. On the basis of these findings, respiratory protection programs should include respirator selection, maintenance, training, and fit testing. PMID:19834267

  19. A survey of respirators usage for airborne chemicals in Korea.

    PubMed

    Han, Don-Hee; Kang, Min-Sun

    2009-10-01

    A questionnaire survey was undertaken to identify the current status of respirator usage in manufacturing work environments subject to gas/vapor chemicals exposure in Korea and to suggest improvements to enhance the effectiveness of respirator usage. The number of target companies included 17 big companies, 110 small & mid-size companies, and 5 foreign companies, and the number of respondents included 601 workers and 69 persons in charge of respirators (PCR). The results explained clearly that respirator programs in practice were extremely poor in small & mid-sized companies. The findings indicated that the selection of respirators was not appropriate. Quarter mask including filtering facepiece was the most common facepiece form for respirator and was worn by sixty-four percent. Not a little proportion of respondents (33%) complained about the fit: faceseal leakage between the face and facepiece. A filtering facepiece with carbon fiber filter was used as a substitution for a gas/vapor respirator. Another result was that the PCR respondents' perception of the administration of respirators was very low. The results of this survey suggest that regal enforcement of respiratory protection programs should be established in Korea. On the basis of these findings, respiratory protection programs should include respirator selection, maintenance, training, and fit testing.

  20. Ecosystem-level controls on root-rhizosphere respiration.

    PubMed

    Hopkins, Francesca; Gonzalez-Meler, Miquel A; Flower, Charles E; Lynch, Douglas J; Czimczik, Claudia; Tang, Jianwu; Subke, Jens-Arne

    2013-07-01

    Recent advances in the partitioning of autotrophic from heterotrophic respiration processes in soils in conjunction with new high temporal resolution soil respiration data sets offer insights into biotic and environmental controls of respiration. Besides temperature, many emerging controlling factors have not yet been incorporated into ecosystem-scale models. We synthesize recent research that has partitioned soil respiration into its process components to evaluate effects of nitrogen, temperature and photosynthesis on autotrophic flux from soils at the ecosystem level. Despite the widely used temperature dependence of root respiration, gross primary productivity (GPP) can explain most patterns of ecosystem root respiration (and to some extent heterotrophic respiration) at within-season time-scales. Specifically, heterotrophi crespiration is influenced by a seasonally variable supply of recent photosynthetic products in the rhizosphere. The contribution of stored root carbon (C) to root respiratory fluxes also varied seasonally, partially decoupling the proportion of photosynthetic C driving root respiration. In order to reflect recent insights, new hierarchical models, which incorporate root respiration as a primary function of GPP and which respond to environmental variables by modifying Callocation belowground, are needed for better prediction of future ecosystem C sequestration.