Science.gov

Sample records for alkaline aqueous phase

  1. Aqueous two-phase extraction for the purification of alkaline agarases from culture extracts of Pseudomonas aeruginosa AG LSL-11.

    PubMed

    Koti, Basawaraj A; Lakshmikanth, M; Manohar, S; Lalitha, J

    2012-01-01

    The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases--molecular weight of the PEG, system pH, system temperature, and NaCl concentration--were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth. PMID:22708813

  2. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  3. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-01

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media. PMID:25569300

  4. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. PMID:24735991

  5. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  6. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  7. Simultaneous microemulsion-aqueous phase flooding process

    SciTech Connect

    Reed, R. L.

    1980-12-23

    A method of enhanced oil recovery is disclosed wherein an upper-phase or a middle-phase microemulsion and an immiscible aqueous phase are simultaneously injected into a subterranean formation. The viscosities of the injected phases are adjusted so that the aqueous phase/microemulsion viscosity ratio approximates the reservoir brine/oil viscosity ratio. The injection rates of the injected phases are such that similar oil, microemulsion and aqueous phase velocities are achieved in the reservoir. Oil is displaced to a production well and recovered.

  8. Fabrication of ZnO:Mn nanoparticles with organic shell in a highly alkaline aqueous environment

    NASA Astrophysics Data System (ADS)

    Chawla, Santa; Sharda; Jayanthi, K.

    2011-01-01

    Synthesis of undoped and Mn doped ZnO nanoparticles by an inclusive co precipitation method and in situ capping with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA) in a core shell structure, in highly alkaline aqueous matrix have been accomplished. Near room temperature synthesis resulted in high quality monophasic wurtzite hexagonal structure of rod shaped nanoparticles of bare ZnO:Mn with no signature of dopant as separate phase. MSA capping resulted in nanoball like formation. Thermo gravimetric analysis (TGA) and FTIR confirmed MSA capping. ZnO: Mn particles emit in orange and red when excited by UV and blue light. Surface modification makes the nanoparticles hydrophilic with active organic surface easy for bioconjugation with any ligand and can have applications in drug delivery or as nanoscale fluorescent probe in a biological system.

  9. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg

    NASA Astrophysics Data System (ADS)

    De Visscher, Alex; Vanderdeelen, Jan; Königsberger, Erich; Churagulov, Bulat R.; Ichikuni, Masami; Tsurumi, Makoto

    2012-03-01

    The alkaline earth carbonates are an important class of minerals. This volume compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO3), nesquehonite (MgCO3.3H2O), and lansfordite (MgCO3.5H2O), a critical evaluation is presented based on curve fits to empirical and/or thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO2(aq) and the stability constant of the ion pair MCO30(aq) (M = alkaline earth metal). Thermodynamic data of the alkaline earth carbonates consistent with two thermodynamic model variants are proposed. The model variant that describes the Mg2+-HCO3- ion interaction with Pitzer parameters was more consistent with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.

  10. Aqueous phase processing of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Tritscher, T.; Praplan, A. P.; Decarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.; Monod, A.

    2011-07-01

    The aging of secondary organic aerosol (SOA) by photooxidation in the aqueous phase was experimentally investigated. To simulate multiphase processes, the following experiments were sequentially performed in a smog chamber and in an aqueous phase photoreactor: (1) Gas-phase photooxidation of three different volatile organic compounds (VOC): isoprene, α-pinene, and 1,3,5-trimethylbenzene (TMB) in the presence of NOx, leading to the formation of SOA which was subjected to on-line physical and chemical analysis; (2) particle-to-liquid transfer of water soluble species of SOA using filter sampling and aqueous extraction; (3) aqueous-phase photooxidation of the obtained water extracts; and (4) nebulization of the solutions for a repetition of the on-line characterization. SOA concentrations in the chamber measured with a scanning mobility particle sizer (SMPS) were higher than 200 μg m-3, as the experiments were conducted under high initial concentrations of volatile organic compounds (VOC) and NOx. The aging of SOA through aqueous phase processing was investigated by measuring the physical and chemical properties of the particles online before and after processing using a high resolution time-of-flight aerosol mass spectrometer (AMS) and a hygroscopicity tandem differential mobility analyzer (H-TDMA). It was shown that, after aqueous phase processing, the particles were significantly more hygroscopic, and contained more fragmentation ions at m/z = 44 and less ions at m/z = 43, thus showing a significant impact on SOA aging for the three different precursors. Additionally, the particles were analyzed with a thermal desorption atmospheric pressure ionization aerosol mass spectrometer (TD-API-AMS). Comparing the smog chamber SOA composition and non processed nebulized aqueous extracts with this technique revealed that sampling, extraction and/or nebulization did not significantly impact the chemical composition of SOA formed from isoprene and α-pinene, whereas it

  11. Dual fluorescence of naphthylamines in alkaline aqueous solution

    NASA Astrophysics Data System (ADS)

    Ma, Li-Hua; Wen, Zhen-Chang; Lin, Li-Rong; Jiang, Yun-Bao

    2001-10-01

    Dual fluorescence was observed with N-(1-naphthyl)aminoacetate (1-NAA) in aqueous solution of pH 13.0 in the presence of cationic surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), below and after the critical micelle concentration (CMC). Similar dual fluorescence was also found with 1- and 2-naphthylamine (1-NA, 2-NA), N-(2-naphthyl)aminoacetate (2-NAA) and (1-naphthyl)ethylenediamine (1-NEDA), in the presence and absence of the cationic surfactants, but not with N, N-disubstituted 1- and 2-NAs. We concluded that the dual fluorescence was due to the excited-state deprotonation of the amino group in these NAs. The p Ka*s of the dual fluorescent NAs were estimated to be around 14 from the dual fluorescence pH titrations. No clear correlation was found for p Ka* with the amino substitution and the presence of cationic micelle.

  12. Formation of electroactive colloids via in situ coprecipitation under electric field: erbium chloride alkaline aqueous pseudocapacitor.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2014-09-15

    For the first time, a new ErCl3 alkaline aqueous pseudocapacitor system was demonstrated by designing commercial ErCl3 salt electrode in alkaline aqueous electrolyte, where the materials synthesis and subsequently integrating into practical electrode structures occur at the same spatial and temporal scale. Highly electroactive ErOOH colloids were in-situ crystallized via electric field assisted chemical coprecipitation of ErCl3 in KOH aqueous electrolyte. These electroactive ErOOH colloids absorbed by carbon black and PVDF matrix were highly redox-reactive with higher cation utilization ratio of 86 % and specific capacitance values of 1811F/g, exceeding the one-electron redox theoretical capacitance (Er(3+)↔Er(2+)). We believe that additional two-electron (Er(2+)↔Er) or three-electron (Er(3+)↔Er) reactions can occur in our designed ErCl3 alkaline aqueous pseudocapacitor system. The specific electrode configuration with ErOOH colloids grown among the carbon black/PVDF matrix can create short ion diffusion and electron transfer length to enable the fast and reversible Faradaic reactions. This work shows promising for finding high-performance electrical energy storage systems via designing the colloidal state of electroactive cations with the utilization of in-situ crystallization route. PMID:24973700

  13. Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface

    SciTech Connect

    Qafoku, Nikolla; Dresel, P. Evan; McKinley, James P.; Liu, Chongxuan; Heald, Steve M.; Ainsworth, Calvin C.; Phillips, Jerry L.; Fruchter, Jonathan S.

    2009-01-21

    Column experiments combined with geochemical modeling, microscopic inspections and spectroscopic interrogations were conducted with four freshly or naturally aged contaminated sediments with concentrated Cr(VI) waste fluids. The objective was to determine sediment-dependent Cr(VI) desorption extent and rates, Cr(VI) physical location and soil mineral associations, and mechanism(s) of Cr(VI) attenuation under mild alkaline conditions. Results showed that majority of Cr(VI) mass was easily removed from all sediments. Equilibrium site Kd varied from 0 to 0.33 ml g-1 and equilibrium site fraction was greater than 95 %. In addition, long tailings of time-dependent Cr(VI) concentrations above Environmental Protection Agency maximum concentration limit (MCL) of 1.9 µmol L-1, were also observed (kinetic site Kd and desorption reaction half-life varied from 0 to 45 ml g-1, and 76.1 to 126 h, respectively). Aqueous phase pH, particle size distribution and pore water composition contributed to the variability observed among sediments. Microscopic and spectroscopic studies confirmed that Cr was concentrated within fine-grained coatings in small areas rich in phyllosilicates that contained mixed valence [Cr(III)/Cr(VI)]. However, Cr(VI) reduction was neither significant nor complete. The kinetically controlled Cr(VI) desorption may have resulted from the transport (diffusion) of Cr(VI) out of these areas. In summary, at least four pools of Cr(VI) with different leaching behavior might be present in sediments exposed to concentrated waste fluids: i.) The pool of highly mobile and easily removed Cr(VI) (over 95% of total Cr); ii.) The pool of Cr(VI) held in remote sites that provided a long-term continuing source of contaminant Cr; iii.) The pool of reduced immobile Cr(III) which was formed, most likely, by redox reactions of aqueous Cr(VI) and aqueous, sorbed, or structural Fe(II); vi.) The pool of sparingly soluble Cr(VI) phases (e.g., BaCrO4) or solid solutions which did not

  14. Method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    2000-01-01

    A method for converting liquid organic material in a mixture into a product utilizing a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  15. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    NASA Astrophysics Data System (ADS)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  16. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  17. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules

    SciTech Connect

    Rajbanshi, Arbin; Moyer, Bruce A; Custelcean, Radu

    2011-01-01

    Self-assembly of a tris(urea) anion receptor with Na{sub 2}SO{sub 4} or K{sub 2}SO{sub 4} yields crystalline capsules held together by coordinating Na{sup +} or K{sup +} cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions ({approx}6 M Na{sup +}, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes.

  18. Gas phase salt clusters from electrosprayed alkaline earth colloids

    NASA Astrophysics Data System (ADS)

    Pope, R. Marshall; Shen, Nanzhu; Nicoll, Jeremy; Tarnawiecki, Boris; Dejsupa, Chadin; Dearden, David V.

    1997-03-01

    Several distributions of small polynuclear ions of general form [nM + mA + pS]q+ (where M represents an alkaline earth cation (Mg, Ca, Sr or Ba), n = 2-10, A represents a halide, acetate or nitrate counterion originating in the divalent salt, and S represents an acetic acid or methanol adduct) are detected by FTICR when water/methanol solutions of alkaline earth salts are electrosprayed. For example, the largest cluster ion derived from 6.3 mM solutions of calcium acetate acidified with 2%x acetic acid have n= 10, m = 18, p = 5 and q = 2. Characteristics of these solutions suggest the presence of colloidal dispersions. These characteristics include stability upon aging, light scattering response and the requisite pre-etching of the glass containers. Aqueous mixtures of two group II salts produce mixed-salt cluster ions. For instance, from a mixture of calcium and magnesium acetate we trap mixed-cation clusters characterized by a complete set of binary partitions of n, for n = 2-6. Specifically, the manifold of clusters with four cations contains 4:0, 3:1, 2:2, 1:3 and 0:4 ratios of magnesium to calcium. Isolated alkaline earth clusters react with a low-pressure background of 18-crown-6 (C6) by salt abstraction exclusively. In general, the more facile abstraction from a mixed cluster produces a pair of products in which the neutral conforms to the hard-soft acid-base principle. The reactions of C6 with [MgSr(OAc)3]+ provide evidence for the existence of isomeric clusters at m/z 289. This is supported by bimodal kinetics and preliminary results of ab initio calculations.

  19. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  20. The anaerobic corrosion of carbon steel in alkaline media - Phase 2 results

    NASA Astrophysics Data System (ADS)

    Smart, N. R.; Rance, A. P.; Fennell, P. A. H.; Kursten, B.

    2013-07-01

    In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  1. Non-Aqueous Phase Liquid Calculator

    2004-02-19

    Non-Aqueous Phase Liquid or "NPAL" is a term that most environmental professionals are familiar with because NAPL has been recognized in the literature as a significant source of groundwater contamination. There are two types of NAPL: DNAPL and LNAPL. DNAPL is a ‘dense’ non-aqueous phase liquid. In this context, dense means having a density greater than water (1.0 kg/L). Trichloroethylene (TCE) and tetrachioroethylene (PCE) are examples of DNAPL compounds. A compound that is heaver thanmore » water means this type of NAPL will sink in an aquifer. Conversely, LNAPL is a ‘light’ non-aqueous phase liquid with a density less than water, and will float on top of the aquifer. Examples of LNAPL’s are benzene and toluene. LNAPL or DNAPL often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media. Complex multi-component mixtures distributed in soil pore-air, pore-water, soil particles and in free phase complicate residual saturation of single and multi component NAPL compounds in soil samples. The model output also includes estimates of the NAPL mass and volume and other physical and chemical properties that may be useful for characterization, modeling, and remedial system design and operation. The discovery of NAPL in the aquifer usually leads to a focused characterization for possible sources of NAPL in the vadose zone using a variety of innovative technologies and characterization methods. Often, the analytical data will indicated the presence of NAPL, yet, the NAPL will go unrecognized. Failure to recognize the NAPL can be attributed to the complicated processes of inter-media transfer or a general lack of knowledge about the physical characteristics of complex organic mixtures in environmental samples.« less

  2. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  3. Oxidation of Glyoxal in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Schaefer, Thomas; Herrmann, Hartmut

    2014-05-01

    Large amounts of volatile organic compounds (VOCs) are emitted into the atmosphere from biogenic and anthropogenic sources. The emitted VOCs can be further oxidized in the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) to form semivolatile carbonyl compounds. For example, the carbonyl compound glyoxal can be produced by the oxidation process of isoprene. Additionally, these semivolatile carbonyl compounds might be important for the formation of secondary organic aerosol (SOA) by partitioning between gas- and liquid phase of pre-existing particles. In the gas phase as well as in the aqueous phase (cloud droplets, fog, rain and deliquescent particles) these compounds can be further oxidized, e.g., by radicals (OH and NO3) leading to peroxy radicals and then to substituted organics. Two concepts exist in the literature to describe the glyoxal oxidation pathway via alkyl radicals to the peroxy radicals by the addition of molecular oxygen. The first one[1] states that peroxy radical formation occurs with a rate constant of k = 1 × 109 M-1 s-1. The second concept[2] assumes that this is a minor reaction pathway because of the lower rate constant of k = 1 × 106 M-1 s-1. The difference in the rate constants of the oxygen addition is of about three orders of magnitude which might lead to different oxidation products and yields in aqueous solution. In the present work, the formation and the decay of the formed glyoxyl radicals and glyoxyl peroxy radicals were studied in low and high concentrated oxygen solutions using a laser photolysis long path absorption setup (LP-LPA). To clarify the difference a method introduced by Adams et al., 1969[3] to measure the rate constant of the oxygen addition on alkyl radical was modified for laser flash photolysis conditions and successfully applied. In this study a rate constant for the addition reaction of molecular oxygen of k = 8 × 108 M-1 s-1 was measured. This clearly indicates

  4. Speciation and the structure of lead(II) in hyper-alkaline aqueous solution.

    PubMed

    Bajnóczi, Eva G; Pálinkó, István; Körtvélyesi, Tamás; Bálint, Szabolcs; Bakó, Imre; Sipos, Pál; Persson, Ingmar

    2014-12-14

    The identity of the predominating lead(ii) species in hyper-alkaline aqueous solution has been determined by Raman spectroscopy, and ab initio quantum chemical calculations and its structure has been determined by EXAFS. The observed and calculated Raman spectra for the [Pb(OH)3](-) complex are in agreement while they are different for two-coordinated complexes and complexes containing Pb[double bond, length as m-dash]O double bonds. Predicted bond lengths are also consistent with the presence of [Pb(OH)3](-) and exclude the formation of Pb[double bond, length as m-dash]O double bond(s). These observations together with experimentally established analogies between lead(ii) and tin(ii) in hyper-alkaline aqueous solutions suggest that the last stepwise hydroxido complex of lead(ii) is [Pb(OH)3](-). The Pb-O bond distance in the [Pb(OH)3](-) complex as determined is remarkably short, 2.216 Å, and has low symmetry as no multiple back-scattering is observed. The [Pb(OH)3](-) complex has most likely trigonal pyramidal geometry as all reported three-coordinated lead(ii) complexes in the solid state. From single crystal X-ray data, the bond lengths for O-coordinated lead(ii) complexes with low coordination numbers are spread over an unusually wide interval, 2.216-2.464 Å for N = 3. The Pb-O bond distance is at the short side and within the range of three coordinated complexes, as also observed for the trihydroxidostannate(ii) complex indicating that the hydroxide ion forms short bonds with d(10)s(2) metal ions with occupied anti-bonding orbitals. PMID:25347136

  5. Phase behavior of DODAB aqueous solution

    SciTech Connect

    Voronov, V. P.; Kuryakov, V. N.; Muratov, A. R.

    2012-12-15

    Phase behavior of DODAB aqueous solution, prepared without sonication, was studied by adiabatic scanning calorimetry. Measurements revealed four phase transitions with the temperatures 35.2, 39.6, 44.6, and 52.4 Degree-Sign C at heating and one transition at the temperature 40.4 Degree-Sign C at cooling. The first three transitions at heating occur in unilamellar vesicles. The first and third transitions correspond to the subgel-gel and gelliquid phase transitions, corresponding enthalpy jumps are equal to 33 and 49 kJ/mol. The second transition appears after some aging and is similar to gel-ripple phase transition in a DPPC solution, with the enthalpy jump under the transition exceeding 7.4 kJ/mol. The transition occurs in unilamellar vesicles. The transition at the temperature 52.4 Degree-Sign C occurs in another subsystem of the solution, which we believe to be multilamellar vesicles. The enthalpy jump at this transition is equal to 97 kJ/mol, and data analysis suggests that this is a subgel-liquid transition. The phase transition at cooling is the liquid-gel transition in unilamellar vesicles. During the measurements, a slow evolution of the solution occurs, consisting in a change of concentrations of unilamellar and multilamellar vesicles. This transformation mainly occurs at low temperatures.

  6. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    PubMed

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage. PMID:26593375

  7. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application

    PubMed Central

    2013-01-01

    Background Too many different protein and enzyme purification techniques have been reported, especially, chromatographic techniques. Apart from low recovery, these multi-step methods are complicated, time consuming, high operating cost. So, alternative beneficially methods are still required. Since, the outstanding advantages of aqueous two phase system (ATPS) such as simple, low cost, high recovery and scalable, ATPS have been used to purify various enzymes. To improve purification efficiency, parameters affected to enzyme recovery or purity was investigated. The objectives of the present study were to optimize of alkaline protease recovery from giant catfish fish viscera by using ATPS and to study of hydrolytic patterns against gelatin. Results Using 70% (w/w) crude enzyme extract (CE) in system (15% PEG2000-15% sodium citrate) provided the highest recovery, PF and KE. At unmodified pH (8.5) gave the best recovery and PF with compare to other pHs of the system. The addition of 1% (w/w) NaCl showed the recovery (64.18%), 3.33-fold and 15.09 of KE compared to the system without NaCl. After addition of 10% (w/w) sodium citrate in the second ATPS cycle, the highest protease recovery (365.53%) and PF (11.60-fold) were obtained. Thus, the top phase from the system was subjected to further studied. The protein bands with molecular weights (MWs) of 20, 24, 27, 36, 94 and 130 kDa appeared on the protein stained gel and also exhibited clear zone on casein-substrate gel electrophoresis. The β, α1, α2 of skin gelatin extensively degraded into small molecules when treated with 10 units of the extracted alkaline protease compared to those of the level of 0.21 units of Flavourzyme. Conclusions Repetitive ATPS is the alternative strategy to increase both recovery and purity of the alkaline protease from farmed giant catfish viscera. Extracted alkaline protease exposed very high effectiveness in gelatin hydrolysis. It is suggested that the alkaline protease from this fish

  8. Occurrence and behavior of system peaks in RP HPLC with solely aqueous mobile phases.

    PubMed

    Kalíková, Kveta; Hruska, Vlastimil; Svobodová, Jana; Chudoba, Richard; Gas, Bohuslav; Tesarová, Eva

    2009-09-01

    System peaks are important but often also disturbing phenomena occurring in separation systems. Behavior of system peaks was studied in reversed phase high performance liquid chromatography (RP HPLC) systems consisting of an RP Amide C16 column and aqueous solutions of organic acids with alkaline metal hydroxides as mobile phases. Binary mobile phases, composed of benzoic acid and lithium hydroxide (LiOH) or cesium hydroxide (CsOH), yielded two system peaks. The first peak was stationary and the second one moved with dilution of the mobile phase or with changes of the alkaline metal hydroxide concentration. The latter changes affected dissociation of the benzoic acid present in the mobile phase and thereby its retention. The presumption that the first system peak is not influenced by the type of alkaline metal cation and that it is related to the non-adsorbed component of the mobile phase was confirmed by a cyclic procedure. Three-component mobile phases composed of benzoic acid, tropic acid, and a hydroxide gave rise to three system peaks as expected. The first peak was again stationary and the two others shifted depending on the concentration variation of both acids. Resonance causing a zigzag peak, well described in capillary zone electrophoresis (CZE), was observed if 1-pentanol was injected into a chromatographic system with one-component mobile phase. PMID:19639550

  9. Aqueous phase processing of secondary organic aerosol from isoprene photooxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Monod, A.; Tritscher, T.; Praplan, A. P.; DeCarlo, P. F.; Temime-Roussel, B.; Quivet, E.; Marchand, N.; Dommen, J.; Baltensperger, U.

    2012-07-01

    Transport of reactive air masses into humid and wet areas is highly frequent in the atmosphere, making the study of aqueous phase processing of secondary organic aerosol (SOA) very relevant. We have investigated the aqueous phase processing of SOA generated from gas-phase photooxidation of isoprene using a smog chamber. The SOA collected on filters was extracted by water and subsequently oxidized in the aqueous phase either by H2O2 under dark conditions or by OH radicals in the presence of light, using a photochemical reactor. Online and offline analytical techniques including SMPS, HR-AMS, H-TDMA, TD-API-AMS, were employed for physical and chemical characterization of the chamber SOA and nebulized filter extracts. After aqueous phase processing, the particles were significantly more hygroscopic, and HR-AMS data showed higher signal intensity at m/z 44 and a lower signal intensity at m/z 43, thus showing the impact of aqueous phase processing on SOA aging, in good agreement with a few previous studies. Additional offline measurement techniques (IC-MS, APCI-MS2 and HPLC-APCI-MS) permitted the identification and quantification of sixteen individual chemical compounds before and after aqueous phase processing. Among these compounds, small organic acids (including formic, glyoxylic, glycolic, butyric, oxalic and 2,3-dihydroxymethacrylic acid (i.e. 2-methylglyceric acid)) were detected, and their concentrations significantly increased after aqueous phase processing. In particular, the aqueous phase formation of 2-methylglyceric acid and trihydroxy-3-methylbutanal was correlated with the consumption of 2,3-dihydroxy-2-methyl-propanal, and 2-methylbutane-1,2,3,4-tetrol, respectively, and an aqueous phase mechanism was proposed accordingly. Overall, the aging effect observed here was rather small compared to previous studies, and this limited effect could possibly be explained by the lower liquid phase OH concentrations employed here, and/or the development of oligomers

  10. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  11. Tunable aqueous polymer-phase impregnated resins-technology-a novel approach to aqueous two-phase extraction.

    PubMed

    van Winssen, F A; Merz, J; Schembecker, G

    2014-02-14

    Aqueous Two-Phase Extraction (ATPE) represents a promising unit operation for downstream processing of biotechnological products. The technique provides several advantages such as a biocompatible environment for the extraction of sensitive and biologically active compounds. However, the tendency of some aqueous two-phase systems to form intensive and stable emulsions can lead to long phase separation times causing an increased footprint for the required mixer-settler devices or the need for additional equipment such as centrifuges. In this work, a novel approach to improve ATPE for downstream processing applications called 'Tunable Aqueous Polymer-Phase Impregnated Resins' (TAPPIR(®))-Technology is presented. The technology is based on the immobilization of one aqueous phase inside the pores of a solid support. The second aqueous phase forms the bulk liquid around the impregnated solids. Due to the immobilization of one phase, phase emulsification and phase separation of ATPE are realized in a single step. In this study, a biodegradable and sustainable aqueous two-phase system consisting of aqueous polyethylene glycol/sodiumcitrate solutions was chosen. The impregnation of different macroporous glass and ceramic solids was investigated and could be proven to be stable. Additionally, the separation of the dye Patent blue V was successfully performed with the TAPPIR(®)-Technology. Thus, the "proof of principle" of this technology is presented. PMID:24462465

  12. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-10-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  13. Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2014-05-01

    Oxidation in the atmospheric aqueous phase (cloud droplets and deliquesced particles) has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. Most laboratory studies of aqueous-phase oxidation, however, are carried out in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation of polyols (water-soluble species with chemical formula CnH2n+2On) is carried out within submicron particles in an environmental chamber, allowing for significant gas-particle partitioning of reactants, intermediates, and products. Dark Fenton chemistry is used as a source of hydroxyl radicals, and oxidation is monitored using a high-resolution aerosol mass spectrometer (AMS). Aqueous oxidation is rapid, and results in the formation of particulate oxalate; this is accompanied by substantial loss of carbon to the gas phase, indicating the formation of volatile products. Results are compared to those from analogous oxidation reactions carried out in bulk solution. The bulk-phase chemistry is similar to that in the particles, but with substantially less carbon loss. This is likely due to differences in partitioning of early-generation products, which evaporate out of the aqueous phase under chamber conditions (in which liquid water content is low), but remain in solution for further aqueous processing in the bulk phase. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different from those in bulk oxidation experiments. This highlights the need for aqueous oxidation studies to be carried out under atmospherically relevant partitioning conditions, with liquid water contents mimicking those of cloud droplets or aqueous aerosol.

  14. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  15. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  16. Catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.

    1999-01-01

    The present invention is a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional metal deposited onto the support in a second dispersed phase. The additional metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase without substantially affecting the catalytic activity, thereby increasing the life time of the catalyst.

  17. Effects of solvent structure on the distribution of silicate anions in mixed aqueous/organic solutions of alkaline tetramethylammonium silicate

    SciTech Connect

    Hendricks, W.M.; Bell, A.T.; Radke, C.J. )

    1991-11-14

    Interest in the physical-chemical processes occurring during zeolite synthesis has stimulated the study of dissolved silicate oligomers in aqueous alkaline solution and their possible link to zeolite nucleation and crystal growth. Effects of solvent structure on the equilibrium distribution of silicate oligomers in mixed organic/aqueous solutions of tetramethylammonium hydroxide (TMAOH) have been investigated by using {sup 29}Si NMR spectroscopy. The results indicate that the presence of organic molecules leads to condensation of the silicates, particularly to double-ring structures. Equilibrium calculations indicate that the observed extent of silicate condensation exceeds what would be expected from mass action. The variety of organic solvents used allowed elucidation of structure effects due to the following: carbon chain length, carbon chain morphology, functional group, and placement of the functional group. The structural effects of organic solvents can be attributed to the ordering of water around the solvent molecules.

  18. Electrostatic interactions and aqueous two-phase separation modes of aqueous mixed oppositely charged surfactants system.

    PubMed

    Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan

    2012-08-30

    Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow. PMID:22856887

  19. Kinetics of the alkaline hydrolysis of 2,4,6-trinitrotoluene in aqueous solution and highly contaminated soils

    SciTech Connect

    Emmrich, M.

    1999-11-01

    During the two World Wars, large amounts of TNT were released into the environment. Until today, high concentrations of TNT can be found in the soil of former ammunition plants. To obtain basic data for a novel treatment process for highly contaminated soils, the homogeneous aqueous hydrolysis of TNT in the pH range from 10 to 12 and the alkaline treatment of two contaminated soils at pH 11 and pH 12 were investigated. The experimental data were described for their respective pH values using a pseudo-first-order model. In the homogeneous experiments, 95--97% of the TNT was hydrolyzed. During alkaline hydrolysis, up to two nitrogroups per TNT molecule were released, indicating the irreversible destruction of TNT. Except for the formation of small traces of amino dinitrotoluenes and trinitrobenzenes, no nitroaromatic benzenes or toluenes were detected during GC analysis. For the less contaminated soil, ELBP2, with an initial TNT concentration of 116 mg/kg, a destruction of 99% was achieved. The highly contaminated soil, HTNT2 (16.1 g of TNT/kg), showed a hydrolyzation level of 90-94%. The results show that the alkaline treatment of highly contaminated soils may prove to be effective as an alternative treatment technology.

  20. Charged hydrophobic colloids at an oil-aqueous phase interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Wang, Anna; Guerrero-García, Guillermo Iván; Hollingsworth, Andrew D.; Guerra, Rodrigo E.; Krishnatreya, Bhaskar Jyoti; Grier, David G.; Manoharan, Vinothan N.; Chaikin, Paul M.

    2015-12-01

    Hydrophobic poly(methyl methacrylate) (PMMA) colloidal particles, when dispersed in oil with a relatively high dielectric constant, can become highly charged. In the presence of an interface with a conducting aqueous phase, image-charge effects lead to strong binding of colloidal particles to the interface, even though the particles are wetted very little by the aqueous phase. We study both the behavior of individual colloidal particles as they approach the interface and the interactions between particles that are already interfacially bound. We demonstrate that using particles which are minimally wetted by the aqueous phase allows us to isolate and study those interactions which are due solely to charging of the particle surface in oil. Finally, we show that these interactions can be understood by a simple image-charge model in which the particle charge q is the sole fitting parameter.

  1. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  2. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.

    PubMed

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350°C and Residence Times (RT) ranging between 5 and 60min The effect of reaction conditions on the NO3(-),PO4(3-),SO4(2-),Cl(-),Na(+),andK(+) ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275°C/30min and 350°C/10min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. PMID:27318079

  3. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1985-01-01

    In a reduced gravity environment the two polymer phases will not separate via density driven settling in an acceptably short length of time. It is to be expected that a certain amount of phase separation will take place, however, driven by the reduction in free energy gained when the interfacial area is reduced. This stage of separation process will therefore depend directly on the magnitude of the interfacial tension between the phases. In order to induce complete phase separation in a short time, electric field-induced separation which occurs because the droplets of one phase in the other have high electrophoretic mobilities which increase with droplet size was investigated. These mobilities are significant only in the presence of certain salts, particularly phosphates. The presence of such salts, in turn has a strong effect on the cell partition behavior in dextran-poly (ethylene glycol) (PEG) systems. The addition of the salts necessary to produce phase drop mobilities has a large effect on the interfacial tensions in the systems.

  4. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  5. Theoretical studies of fundamental pathways for alkaline hydrolysis of carboxylic acid esters in gas phase

    SciTech Connect

    Zhan, C.G.; Landry, D.W.; Ornstein, R.L.

    2000-02-23

    Fundamental reaction pathways for the alkaline hydrolysis of carboxylic acid esters, RCOOR{prime}, were examined through a series of first-principle calculations. The reactions of six representative esters with hydroxide ion were studied in the gas phase. A total of three competing reaction pathways were found and theoretically confirmed for each of the esters examined: bimolecular base-catalyzed acyl-oxygen cleavage (B{sub AC}2), bimolecular base-catalyzed alkyl-oxygen cleavage (B{sub AL}2), and carbonyl oxygen exchange with hydroxide. For the two-step B{sub AC}2 process, this is the first theoretical study to consider the individual sub-steps of the reaction process and to consider substituent effects. For the carbonyl oxygen exchange with hydroxide and for the one-step B{sub AL}2 process, the authors report here the first quantitative theoretical results for the reaction pathways and for the energy barriers. The energy barrier calculated for the second step of the B{sub AC}2 process, that is, the decomposition of the tetrahedral intermediate, is larger in the gas phase than that of the first step, that is, the formation of the tetrahedral intermediate, for all but one of the esters examined. The exception, CH{sub 3}COOC(CH{sub 3}){sub 3}, does not have an {alpha} hydrogen in the leaving group. The highest energy barrier calculated for the B{sub AC}2 process is always lower than the barriers for the oxygen exchange and for the B{sub AL}2 process. The difference between the barrier for the B{sub AL}2 process and the highest barrier for the B{sub AC}2 process is only {approximately}1--3 kcal/mol for the methyl esters, but becomes much larger for the others. Substitution of an {alpha} hydrogen in R{prime} with a methyl group considerably increases the energy barrier for the B{sub AL}2 process, and significantly decreases the energy barrier for the second step of the B{sub AC}2 process. The calculated substituent shifts of the energy barrier for the first step of the

  6. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    NASA Astrophysics Data System (ADS)

    Collier, Charles

    2013-03-01

    Aqueous two-phase systems contained within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  7. On-demand generation of aqueous two-phase microdroplets with reversible phase transitions

    SciTech Connect

    Boreyko, Jonathan B; Mruetusatorn, Prachya; Retterer, Scott T; Collier, Pat

    2013-01-01

    Aqueous two-phase systems contained entirely within microdroplets enable a bottom-up approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Here, we demonstrate the on-demand generation of femtolitre aqueous two-phase droplets within a microfluidic oil channel. Gated pressure pulses were used to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microgel states were obtained via evaporation-induced dehydration and on-demand water rehydration. In contrast to other microfluidic aqueous two-phase droplets, which require continuous flows and high-frequency droplet formation, our system enables the controlled isolation and reversible transformation of a single microdroplet and is expected to be useful for future studies in dynamic microcompartmentation and affinity partitioning.

  8. Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases

    NASA Astrophysics Data System (ADS)

    Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.

    2016-03-01

    Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.

  9. Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

    PubMed

    Wedege, Kristina; Azevedo, João; Khataee, Amirreza; Bentien, Anders; Mendes, Adélio

    2016-06-13

    The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination. PMID:27151516

  10. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    SciTech Connect

    Wang, Y.Y.; Cai, K.F.; Yao, X.

    2009-12-15

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is {approx}25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value ({approx}147 muV K{sup -1}) and low electrical conductivity ({approx}0.017 S cm{sup -1}). The formation mechanism of the PbTe nanoparticles and films is proposed. - PbTe nanoparticles and films were fabricated at room temperature and ambient pressure in an alkaline aqueous solution by a chemical bath method.

  11. On the decay of the ozonide radical in aqueous alkaline solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P. K.; Saini, R. D.

    1982-11-01

    In flash photolysis of an oxygenated aqueous potassium persulphate solution at pH 12.5 the decay of the ozonide radical has been found to follow 3/2 order kinetics which has been explained by reactions O -3 + O - ⇌ 2 O -2 and O -3 + HO 2 → 2 O 2 + OH -

  12. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  13. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    SciTech Connect

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquid state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.

  14. The Role of Oxygen in the Copper-Catalyzed Decomposition of Phenylborates in Aqueous Alkaline Solutions

    SciTech Connect

    Hyder, M.L.

    1997-03-17

    The effect of oxygen on the copper-catalyzed hydrolysis of phenyl borates containing from one to four phenyl groups was studied in 1 M aqueous sodium hydroxide solution at 59 degrees C. The results are tentatively explained if the effective catalyst for each of the reactions is either cupric or cuprous ion, with the latter being present in significant concentration only in the absence of air.

  15. Counter-ion specificity explored in abnormal expansion of supra-molecular aggregates in aqueous solution of alkaline metal salts.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Li, Liangbin

    2015-09-21

    Ionic effects in aqueous solution of macro-ions showing specificity and unconventional characters, respectively, receive a lot of interests recently; however, the complexity of specific ion effects in unconventional phenomena remains ambiguous. In this study, the effects of univalent ions on aggregation of supra-molecular nano-fibrils with charged carboxylate groups on the surface as a prototype of macro-ions are investigated by Small Angle X-ray Scattering (SAXS) in aqueous solutions of alkaline metal chlorides. It is found that the columnar bundles of charged fibrils are expanded in certain salt concentration range contradicting the conventional screening effects of salts. The degree of expansion is dominated by cations as Na(+) induces drastic effects in comparison to rather gentle changes from K(+) and Cs(+). The specific cations effects observed by SAXS correlate with the pH behavior of the solutions, an indicator of surface charge, or number of carboxylate groups along the supra-molecular fibrils. It is postulated that while Na(+) with stronger affinity to carboxylates apparently reduces the surface charge, K(+) and Cs(+) only weakly interact with carboxylates and induce minor changes, accounting for the cation-sensitive aggregation behavior of fibrils observed by SAXS. By probing the bundling aggregation of charged supra-molecular nano-fibrils in salty water, we provide direct evidence of specific counter-ion effects in unusual expansion caused by univalent salts. PMID:26395732

  16. A new source of methylglyoxal in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Rodigast, Maria; Mutzel, Anke; Schindelka, Janine; Herrmann, Hartmut

    2016-03-01

    Carbonyl compounds are ubiquitous in atmospheric multiphase system participating in gas, particle, and aqueous-phase chemistry. One important compound is methyl ethyl ketone (MEK), as it is detected in significant amounts in the gas phase as well as in cloud water, ice, and rain. Consequently, it can be expected that MEK influences the liquid-phase chemistry. Therefore, the oxidation of MEK and the formation of corresponding oxidation products were investigated in the aqueous phase. Several oxidation products were identified from the oxidation with OH radicals, including 2,3-butanedione, hydroxyacetone, and methylglyoxal. The molar yields were 29.5 % for 2,3-butanedione, 3.0 % for hydroxyacetone, and 9.5 % for methylglyoxal. Since methylglyoxal is often related to the formation of organics in the aqueous phase, MEK should be considered for the formation of aqueous secondary organic aerosol (aqSOA). Based on the experimentally obtained data, a reaction mechanism for the formation of methylglyoxal has been developed and evaluated with a model study. Besides known rate constants, the model contains measured photolysis rate constants for MEK (kp = 5 × 10-5 s-1), 2,3-butanedione (kp = 9 × 10-6 s-1), methylglyoxal (kp = 3 × 10-5 s-1), and hydroxyacetone (kp = 2 × 10-5 s-1). From the model predictions, a branching ratio of 60 /40 for primary/secondary H-atom abstraction at the MEK skeleton was found. This branching ratio reproduces the experiment results very well, especially the methylglyoxal formation, which showed excellent agreement. Overall, this study demonstrates MEK as a methylglyoxal precursor compound for the first time.

  17. A new source of methyl glyoxal in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Schindelka, J.; Herrmann, H.

    2015-11-01

    Carbonyl compounds are ubiquitous in atmospheric multiphase system participating in gas, particle, and aqueous-phase chemistry. One important compound is methyl ethyl ketone (MEK), as it is detected in significant amounts in the gas phase as well as in cloud water, ice, and rain. Consequently, it can be expected that MEK influences the liquid phase chemistry. Therefore, the oxidation of MEK and the formation of corresponding oxidation products were investigated in the aqueous phase. Several oxidation products were identified from the oxidation with OH radicals, including 2,3-butanedione, hydroxyacetone, and methyl glyoxal. The molar yields were 29.5 % for 2,3-butanedione, 3.0 % for hydroxyacetone, and 9.5 % for methyl glyoxal. Since methyl glyoxal is often related to the formation of organics in the aqueous phase, MEK should be considered for the formation of aqueous secondary organic aerosol (aqSOA). Based on the experimentally obtained data, a reaction mechanism for the formation of methyl glyoxal has been developed and evaluated with a model study. Besides known rate constants, the model contains measured photolysis rate constants for MEK (kp = 5 × 10-5 s-1), 2,3-butanedione (kp = 9 × 10-6 s-1), methyl glyoxal (kp = 3 × 10-5 s-1), and hydroxyacetone (kp = 2 × 10-5 s-1). From the model predictions, a branching ratio of 60/40 for primary/secondary H-atom abstraction at the MEK skeleton was found. This branching ratio reproduces the experiment results very well, especially the methyl glyoxal formation, which showed excellent agreement. Overall, this study demonstrates MEK as a methyl glyoxal precursor compound for the first time.

  18. Effects of organic solvents on the partitioning of enzymes in aqueous two-phase systems.

    PubMed

    Johansson, G; Kopperschläger, G

    1987-02-13

    Organic solvents (ethylene glycol, glycerol, dimethyl sulphoxide, dimethylformamide, dioxane, methanol and propanol-2, as well as sucrose and urea) have been included in aqueous two-phase (liquid-liquid) systems comprised of water, dextran and poly(ethylene glycol). The concentration of the organic solvent was in most cases 20% (w/w). The influence of these solvents on the phase-forming properties, the volume ratio, the freezing point and the partitioning of a polymer-bound ligand, Procion Red HE-3B poly(ethylene glycol), has been studied. The partition coefficients for alkaline phosphatase decrease with ethylene glycol, glycerol, sucrose and urea (factors of 0.25-0.5), but increase with the other substances (factors of 1.2-1.6). The temperature effects on the partitioning of alkaline phosphatase from calf intestine as well as of phosphofructokinase from yeast in systems containing ethylene glycol have been studied and compared with partitioning in standard systems, not containing solvents. The possible uses of the above systems for partitioning studies of enzymes are discussed. PMID:2951391

  19. Reduction of phenanthroline complexes of copper (II) by alcohols in alkaline aqueous media

    SciTech Connect

    Chudaev, V.V.; Rudakov, E.S.; Tret'ya, V.P.

    1986-09-01

    The method of electron spectrophotometry has been used to investigate the kinetics of reducing phenanthroline complexes of copper (II) by alcohols in aqeous alkaline solutions in the absence of oxygen at 365/sup 0/K. The reaction is first order with respect to Cu(II) and second order with respect to alcohol. The rate of reduction of Cu(II) by alcohols increases sharply in the presence of the /ETA/ atom acceptor 2,2,6,6-tetramethylpiperidene-nitroxyl radical. The kinetic isotropic effect (k /SUB H/ /k /SUB D/ approx. = 2) indicates rupture of the C - H bond at the ..cap alpha..-carbon atom. The formation of a copper complex with the alkoxyl radical as an intermediate particle detaching an /ETA/ atom from the alcohol molecule has been investigated.

  20. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    PubMed

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled. PMID:27219852

  1. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOEpatents

    Elliott, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  2. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems.

    PubMed

    Padzil, Farah Nadia Mohammad; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Kaco, Hatika; Gan, Sinyee; Ng, Peivun

    2015-06-25

    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system. PMID:25839807

  3. Copper Catalyzed Sodium Tetraphenylborate, Triphenylborane, Diphenylborinic Acid and Phenylboronic Acid Decomposition Kinetic Studies in Aqueous Alkaline Solutions

    SciTech Connect

    Crawford, C.L.

    1999-03-15

    This work studied the kinetics of copper-catalyzed decomposition of tetraphenylborate, triphenylborane, diphenylborinic acid and phenylboronic acid (NaTPB, 3PB, 2PB and 1PB, respectively) in aqueous alkaline solution over the temperature range of 25 to 70 degrees C. The statistically designed test matrices added copper sulfate to maximum concentrations of 10 mg/L. The relative rates of decomposition increase in the order of NaTPB < 1PB {tilde} 3PB < 2PB. Dependence of decomposition on the amount of added copper increases in the order of 3PB {tilde} 2PB < 1PB {tilde} NaTPB. Activation energies ranged from 82 to 143 kJ/mole over the temperature range studied. Final decomposition products predominately involved benzene and phenol. All 3PB, 2PB and 1PB intermediate phenylborate species proved relatively stable (< 8 percent decomposition over {tilde} 500 h) towards thermal hydrolysis in 1.5 M NaOH when contained in carbon-steel vessels sealed under air at ambient temperature (23 - 25 degrees C) with no added copper. Measurable (> 10-7 Mh-1) thermal hydrolysis of the phenylborate species occurs at 55 to 70 degrees C in alkaline (0.6-2.3 M OH-, 2-4.7 M Na+) solution with no added copper. The experiments suggest an important role for oxygen in copper-catalyzed phenylborate decomposition. NaTPB decomposes promptly under anoxic conditions while 3PB, 2PB and 1PB decompose faster in aerobic solutions. Benzene and phenol form as the predominant end-products from alkaline copper catalysis in static systems sealed under air. Both 2PB and 1PB decompose with near equal rates and quantitatively produce phenol under flowing air-purge conditions at 25 to 60 degrees C. Mechanisms for copper-catalyzed phenylborate decomposition likely involve a redox process giving loss of a phenyl group from the phenylborate with reduction of cupric ion, or dephenylation by reduced cuprous ion involving a phenylated copper intermediate.

  4. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought

  5. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  6. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE PAGESBeta

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over themore » equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  7. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    SciTech Connect

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; Wan, Shun; Moyer, Bruce A.

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na235SO4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na2SO4(L1)2(H2O)4 capsules. We found that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.

  8. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  9. Dual affinity method for plasmid DNA purification in aqueous two-phase systems.

    PubMed

    Barbosa, H S C; Hine, A V; Brocchini, S; Slater, N K H; Marcos, J C

    2010-02-26

    The DNA binding fusion protein, LacI-His6-GFP, together with the conjugate PEG-IDA-Cu(II) (10 kDa) was evaluated as a dual affinity system for the pUC19 plasmid extraction from an alkaline bacterial cell lysate in poly(ethylene glycol) (PEG)/dextran (DEX) aqueous two-phase systems (ATPS). In a PEG 600-DEX 40 ATPS containing 0.273 nmol of LacI fusion protein and 0.14% (w/w) of the functionalised PEG-IDA-Cu(II), more than 72% of the plasmid DNA partitioned to the PEG phase, without RNA or genomic DNA contamination as evaluated by agarose gel electrophoresis. In a second extraction stage, the elution of pDNA from the LacI binding complex proved difficult using either dextran or phosphate buffer as second phase, though more than 75% of the overall protein was removed in both systems. A maximum recovery of approximately 27% of the pCU19 plasmid was achieved using the PEG-dextran system as a second extraction system, with 80-90% of pDNA partitioning to the bottom phase. This represents about 7.4 microg of pDNA extracted per 1 mL of pUC19 desalted lysate. PMID:20083249

  10. Fibril Formation and Phase Separation in Aqueous Cellulose Ethers

    NASA Astrophysics Data System (ADS)

    Maxwell, Amanda; Schmidt, Peter; McAllister, John; Lott, Joseph; Bates, Frank; Lodge, Timothy

    Aqueous solutions of many cellulose ethers are known to undergo thermoreversible gelation and phase separation upon heating to form turbid hydrogels, but the mechanism and resulting structures have not been well understood. Turbidity, light scattering and small-angle neutron scattering (SANS) are used to show that hydroxypropyl methylcellulose (HPMC) chains are dissolved in water below 50 °C and undergo phase separation at higher temperatures. At 70 °C, at sufficiently high concentrations in water, HPMC orders into fibrillar structures with a well-defined radius of 18 +/- 2 nm, as characterized by cryogenic transmission electron microscopy and SANS. The HPMC fibril structure is independent of concentration and heating rate. However, HPMC fibrils do not form a percolating network as readily as is seen in methylcellulose, resulting in a lower hot-gel modulus, as demonstrated by rheology.

  11. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. PMID:25313468

  12. The partitioning of ketones between the gas and aqueous phases

    NASA Astrophysics Data System (ADS)

    Betterton, Eric A.

    Most ketones are not significantly hydrated; they therefore retain their chromophore and they could be photolytically degraded in solution yielding a variety of products including carboxylic acids, aldehydes and radicals. It is difficult to accurately model the partitioning of ketones between the gas phase and aqueous phase because of the lack suitable estimates of the Henry's Law constants; consequently the fate and environmental effects of ketones cannot be confidently predicted. Here we report the experimental determination of the Henry's Law constants of a series of ketones that has yielded a simple straight line equation to predict the Henry's Law constants of simple aliphatic ketones: log H ∗ =0.23Σσ ∗ + 1.51; where H ∗ is the effective Henry's Law constant (M atm -1, and Σσ ∗ is the Taft polar substituents constants. The results for 25°C are (M atm -1) CH 3COCH 3, 32; C 6H 5COCH 3, 110; CH 2ClCOCH 3, 59; CH 3COCOCH 3, 74; CF 3COCH 3, 138. Acetophenone appears to have an abnormally high H ∗. Most low molecular weight aliphatic ketones are predicted to characterized by H ∗⩾30 M atm -1 and therefore they are expected to be found in the aqueous phase at concentrations of ⩾5 - 0.5 μM (given a typical gas-phase concentration range of 1-10 ppbv). The expected rate of decomposition of ketones due to photolysis in hydrometers is briefly discussed.

  13. Electrospun polystyrene nanofibers as a novel adsorbent to transfer an organic phase from an aqueous phase.

    PubMed

    Liu, Feilong; Song, Dandan; Huang, Xueying; Xu, Hui

    2016-04-01

    The aim of this work is to develop a simple phase-transfer method for dispersive liquid-liquid microextraction. For this purpose, a polystyrene nanofiber was prepared by a facile electrospinning strategy and used for the first time as an adsorbent to transfer the organic phase in dispersive liquid-liquid microextraction procedure. The fiber was characterized and its chemical stability and excellent hydrophobicity enable it to selectively adsorb the organic solvent in an aqueous sample. High porosity and specific surface area provide a large adsorption capacity. Under the optimal conditions, the developed dispersive liquid-liquid microextraction with high-performance liquid chromatography method was successfully applied to the analysis of aldehydes in environmental water samples. The merits of this approach are that it is easy-to-operate, low-cost, time-saving, and has satisfactory sensitivity. It provides an alternative way for fast and convenient phase transfer of the hydrophobic organic solvent from the aqueous phase. PMID:26841974

  14. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. PMID:25544246

  15. Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-11-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is considered a potentially important atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq; products include organic acids, organic sulfates, and high-molecular-weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra-high-resolution Fourier transform ion cyclotron resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals and epoxides (i.e., IEPOX), and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  16. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Lu, Mei; Liu, Yong; Helmy, Roy; Martin, Gary E; Dewald, Howard D; Chen, Hao

    2015-10-01

    Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies. PMID:26242804

  17. Online Investigation of Aqueous-Phase Electrochemical Reactions by Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lu, Mei; Liu, Yong; Helmy, Roy; Martin, Gary E.; Dewald, Howard D.; Chen, Hao

    2015-08-01

    Electrochemistry (EC) combined with mass spectrometry (MS) is a powerful tool for elucidation of electrochemical reaction mechanisms. However, direct online analysis of electrochemical reaction in aqueous phase was rarely explored. This paper presents the online investigation of several electrochemical reactions with biological relevance in the aqueous phase, such as nitrosothiol reduction, carbohydrate oxidation, and carbamazepine oxidation using desorption electrospray ionization mass spectrometry (DESI-MS). It was found that electroreduction of nitrosothiols [e.g., nitrosylated insulin B (13-23)] leads to free thiols by loss of NO, as confirmed by online MS analysis for the first time. The characteristic mass shift of 29 Da and the reduced intensity provide a quick way to identify nitrosylated species. Equally importantly, upon collision-induced dissociation (CID), the reduced peptide ion produces more fragment ions than its nitrosylated precursor ion (presumably the backbone fragmentation cannot compete with the facile NO loss for the precursor ion), thus facilitating peptide sequencing. In the case of saccharide oxidation, it was found that glucose undergoes electro-oxidation to produce gluconic acid at alkaline pH, but not at neutral and acidic pHs. Such a pH-dependent electrochemical behavior was also observed for disaccharides such as maltose and cellobiose. Upon electrochemical oxidation, carbamazepine was found to undergo ring contraction and amide bond cleavage, which parallels the oxidative metabolism observed for this drug in leucocytes. The mechanistic information of these redox reactions revealed by EC/DESI-MS would be of value in nitroso-proteome research and carbohydrate/drug metabolic studies.

  18. Aqueous two-phase system based on natural quaternary ammonium compounds for the extraction of proteins.

    PubMed

    Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua

    2016-02-01

    Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells. PMID:26447826

  19. Thermoseparating aqueous two-phase systems: Recent trends and mechanisms.

    PubMed

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2016-02-01

    Having the benefits of being environmentally friendly, providing a mild environment for bioseparation, and scalability, aqueous two-phase systems (ATPSs) have increasingly caught the attention of industry and researchers for their application in the isolation and recovery of bioproducts. The limitations of conventional ATPSs give rise to the development of temperature-induced ATPSs that have distinctive thermoseparating properties and easy recyclability. This review starts with a brief introduction to thermoseparating ATPSs, including its history, unique characteristics and advantages, and lastly, key factors that influence partitioning. The underlying mechanism of temperature-induced ATPSs is covered together with a summary of recent applications. Thermoseparating ATPSs have been proven as a solution to the demand for economically favorable and environmentally friendly industrial-scale bioextraction and purification techniques. PMID:26447739

  20. Bioproduction of 4-vinylphenol from corn cob alkaline hydrolyzate in two-phase extractive fermentation using free or immobilized recombinant E. coli expressing pad gene.

    PubMed

    Salgado, José Manuel; Rodríguez-Solana, Raquel; Curiel, José Antonio; de Las Rivas, Blanca; Muñoz, Rosario; Domínguez, José Manuel

    2014-05-10

    In situ extractive fermentation was used to produce 4-vinyl derivatives from hydroxycinnamic acids extracted from corn cobs by recombinant Escherichia coli cells expressing Lactobacillus plantarum phenolic acid descarboxylase (PAD) gene. This microorganism mainly produced 4-vinylphenol (4VP) from p-coumaric acid (p-CA). In the first study , we observed that the concentrations of 4VP are higher than 1g/L which had a negative impact on decarboxylation of p-CA to 4VP by recombinant E. coli cells. Because of this, and in order to improve the downstream process, a two-phase aqueous-organic solvent system was developed. The results of the extractive fermentation indicated that it was possible to use hydrolyzates as aqueous phase to bioproduce 4VP, and recover simultaneously the product in the organic phase containing hexane. The detoxification of pre-treated corn cob alkaline hydrolyzate improved 4VP production up to 1003.5mg/L after 24h fermentation (QP=41.813mg/Lh). Additionally, preliminary experiments using cells immobilized in calcium alginate showed to be a good system for the biotransform of p-CA to 4VP in extractive fermentation, although the process hindered partially the recovery of 4VP in the organic phase. PMID:24731821

  1. Kinetic study on the degradation of meclophenoxate hydrochloride in alkaline aqueous solutions by high performance liquid chromatography.

    PubMed

    El-Bardicy, Mohammad Galal; Lotfy, Hayam Mahmoud; El-Sayed, Mohammad Abdalla; El-Tarras, Mohammad Fayez

    2007-01-01

    A high performance liquid chromatographic method was developed and validated for determination of meclophenoxate hydrochloride (I) in the presence of its degradation product (p-chlorophenoxy acetic acid) (II). Separation of (I) from (II) was performed using a ZORBAX ODS column with a mobile phase consisting of 0.2% triethylamine in 0.01 M ammonium carbonate: acetonitrile (70:30 v/v). The method showed high sensitivity with good linearity over the concentration range of 50 to 400 mug/ml. The method was successfully applied to the analysis of a pharmaceutical formulation containing (I) with excellent recovery. A kinetics investigation of the alkaline hydrolysis of (I) was carried out in sodium hydroxide solutions of 1, 1.5 and 2 N by monitoring the parent compound itself. The reaction order of (I) followed pseudo-first order kinetics. The activation energy could be estimated from the Arrhenius plot and it was found to be 12.331 kcal/mole. PMID:17202800

  2. Dynamic equilibrium dissolution of complex nonaqueous phase liquid mixtures into the aqueous phase.

    PubMed

    Schluep, Mathias; Gälli, René; Imboden, Dieter M; Zeyer, Josef

    2002-07-01

    Human health risks posed by hazardous substances seeping from a pool of nonaqueous phase liquids (NAPLs) into groundwater change over time because the more soluble compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) dissolve faster into the aqueous phase than less soluble compounds such as polycyclic aromatic hydrocarbons (PAH). Long-term dissolution from diesel fuel into the aqueous phase was determined experimentally in a continuous flow-through system using the slow-stirring method. The data obtained are interpreted using a dynamic equilibrium dissolution model based on Raoult's law. The predicted temporal development of aqueous concentrations are in good agreement with the experimental results. When a compound in the NAPL approaches complete depletion, a tailing behavior is observed, which is assigned to nonequilibrium effects, such as mass transfer limitations in the NAPL phase. The model predicted an increase of the mean molar mass of the diesel fuel of 1.5% over the entire experimental period. It should be noted that, if the dissolution process were to proceed further, the change in the mean molar mass could become significant and render the simple model inaccurate. Yet the simple model supports the assessment of initial action after a contamination event as well as the planning of long-term remedial strategies. PMID:12109733

  3. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  4. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles.

    PubMed

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  5. Structure and phase behavior of aqueous methylcellulose solutions

    NASA Astrophysics Data System (ADS)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  6. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  7. Stabilization of water/oil/water multiple emulsions by polymerization of the aqueous phases.

    PubMed

    Florence, A T; Whitehill, D

    1982-11-01

    In order to improve the stability of w/o/w multiple emulsions which have isopropyl myristate as the non-aqueous 'oil' phase, either the internal aqueous phase of the multiple system or the secondary (outer or continuous) aqueous phase can be gelled. Production, by gamma-irradiation, or cross-linked polyacrylamide or poloxamer gels in the aqueous phases of the emulsions leads to systems which have a greater intrinsic stability than untreated multiple emulsions. If the internal aqueous phase is gelled this prevents coalescence. When the continuous outer phase is gelled an opaque emulsion is produced in which the disperse w/o droplets are held in a hydrophilic polymer network from which the droplets are released on contact with water. PMID:6129296

  8. Aqueous-phase behavior of natural glycolipid biosurfactant mannosylerythritol lipid A: sponge, cubic, and lamellar phases.

    PubMed

    Imura, Tomohiro; Hikosaka, Yusuke; Worakitkanchanakul, Wannasiri; Sakai, Hideki; Abe, Masahiko; Konishi, Masaaki; Minamikawa, Hiroyuki; Kitamoto, Dai

    2007-02-13

    The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials. PMID:17279642

  9. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. PMID:27485150

  10. Non-aqueous phase liquid spreading during soil vapor extraction

    NASA Astrophysics Data System (ADS)

    Kneafsey, Timothy J.; Hunt, James R.

    2004-02-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  11. Heteroaggregation of graphene oxide with minerals in aqueous phase.

    PubMed

    Zhao, Jian; Liu, Feifei; Wang, Zhenyu; Cao, Xuesong; Xing, Baoshan

    2015-03-01

    Upon release into waters, sediments, and soils, graphene oxide (GO) may interact with fine mineral particles. We investigated the heteroaggregation of GO with different minerals, including montmorillonite, kaolinite, and goethite, in aqueous phase. GO significantly enhanced the dispersion of positively charged goethite (>50%) via heteroaggregation, while there was no interaction between GO and negatively charged montmorillonite or kaolinite. Electrostatic attraction was the dominant force in the GO-goethite heteroaggregation (pH 4.0-8.5), and the dissolved Fe ions (<0.16 mg/L) from goethite were unable to destabilize GO suspension. The GO-goethite heteroaggregation was further quantitatively investigated through GO adsorption study. All adsorption isotherms of GO at different solution pH (4.0 and 6.5) followed the Linear model. The apparent intercept (1.0-6.9 mg/g) was observed for all the adsorption isotherms, indicating that this fraction of adsorbed GO was difficult to desorb from goethite (defined here as irreversible adsorption) under the tested conditions. Desorption hysteresis was observed, which could be explained by the formation of multilayered GO-goethite complex with high configurational stability. These findings are useful for understanding the interaction of GO with mineral surfaces, and potential fate and toxicity of GO under natural conditions in aquatic environments, as well as in soils and sediments. PMID:25614925

  12. Non-aqueous-phase fluids in heterogeneous aquifers -- experimental study

    SciTech Connect

    Illangasekare, T.H.; Yates, D.N.; Armbruster, E.J. III.

    1995-08-01

    Understanding of flow and entrapment of non-aqueous-phase liquids (NAPLs) in aquifers contaminated with organic chemicals is important in the effective design of recovery and remediation schemes. Soil heterogeneities play a significant role in the physical behavior of these chemicals. An experimental facility consisting of a large soil tank (lysimeter) and a dual-gamma spectroscopy system for fluid saturation measurements was developed to simulate and monitor plume migration in water-table aquifers after chemical spills. Experimental techniques and results form a preliminary set of experiments conducted in unsaturated and saturated soils under homogeneous and heterogeneous conditions are presented. the effects of the layered homogeneities were pronounced in modifying the migration pattern and velocity of the plume. Pockets of coarse sand placed across the path of the plume resulted in the soil acting as a light NAPL trap. A fine-sand pocket acted as a barrier. Qualitative and quantitative data generated in the type of experiments presented in this paper can be used to validate multiphase flow models.

  13. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  14. Purification of hyperthermophilic archaeal amylolytic enzyme (MJA1) using thermoseparating aqueous two-phase systems.

    PubMed

    Li, Mian; Peeples, Tonya L

    2004-07-25

    Purification of a recombinant, thermostable alpha-amylase (MJA1) from the hyperthermophile, Methanococcus jannaschii, was investigated in the ethylene oxide-propylene oxide random copolymer (PEO-PPO)/(NH(4))(2)SO(4), and poly(ethylene glycol) (PEG)/(NH(4))(2)SO(4) aqueous two-phase systems. MJA1 partitioned in the top polymer-rich phase, while the remainder of proteins partitioned in the bottom salt-rich phase. It was found that enzyme recovery of up to 90% with a purification factor of 3.31 was achieved using a single aqueous two-phase extraction step. In addition, the partition behavior of pure amyloglucosidase in polymer/salt aqueous two-phase systems was also evaluated. All of the studied enzymes partitioned unevenly in these polymer/salt systems. This work is the first reported application of thermoseparating polymer aqueous two-phase systems for the purification of extremophile enzymes. PMID:15177162

  15. Magnetite solubility and phase stability in alkaline media at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1994-05-01

    Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior at low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.

  16. The effect of spontaneous gas expansion and mobilization on the aqueous-phase concentrations above a dense non-aqueous phase liquid pool

    NASA Astrophysics Data System (ADS)

    Mumford, Kevin G.; Smith, James E.; Dickson, Sarah E.

    2010-04-01

    The spontaneous expansion and mobilization of discontinuous gas above dense non-aqueous-phase liquid (DNAPL) pools can affect the aqueous-phase concentrations of the DNAPL constituents above the pool. The results of an intermediate-scale, two-dimensional flow cell experiment showed that the discontinuous gas flow produced by spontaneous expansion, driven by the partitioning of 1,1,1-TCA from the surface of a DNAPL pool, resulted in detectable aqueous-phase concentrations of 1,1,1-TCA well above the pool surface. In comparison to a conventional model for DNAPL pool dissolution in the absence of a discontinuous gas phase, these concentrations were greater than expected, and were present at greater than expected elevations. Additionally, this study showed that the discontinuous gas flow produced transient behavior in the aqueous-phase concentrations, where the elevated concentrations occurred as short-term, pulse-like events. These results suggest that the spontaneous expansion and mobilization of discontinuous gas in DNAPL source zones could lead to the misdiagnosis of source zone architecture using aqueous concentration data, and that the transient nature of the elevated concentrations could further complicate the difficult task of source zone characterization.

  17. The Relative Importance of Aqueous-Phase and Gas-Phase Phenol Oxidation as Sources of SOA (Invited)

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Smith, J.

    2010-12-01

    The oxidation of phenols is a source of secondary organic aerosol (SOA) in the gas phase as well as in aqueous phases (e.g., cloud and fog drops and water-containing aerosol particles). The relative importance of the gas- and aqueous-phase pathways depends largely on three factors: (1) the partitioning of phenols between the gaseous and condensed phases, (2) the rates of reaction in each phase, and (3) the yields of SOA in each phase. Our goal in this work is to determine the relative importance of these two pathways as sources of SOA. Using previously published rate constants, as well as newly determined kinetics and SOA yield data in the aqueous phase, we find that in a cloudy atmosphere both aqueous- and gas-phase sinks are significant for phenols with high vapor pressures (e.g., phenol itself), but that aqueous-phase sinks can dominate for phenols with lower vapor pressures (e.g., phenols with multiple hydroxy or methoxy substituents). In regions with wood combustion (a major source of phenols), our calculations indicate that destruction of phenols within wood smoke particles is very important and that reaction with particulate triplet excited states is a major sink.

  18. Prostaglandin H synthase kinetics in the two-phase aqueous-micellar system.

    PubMed

    Ponomareva, Olga A; Trushkin, Nikita A; Filimonov, Ivan S; Krivoshey, Alexandr V; Barkhatov, Vladimir I; Mitrofanov, Sergey I; Vrzheshch, Petr V

    2016-09-01

    Reaction mixture for PGHS (prostaglandin-H-synthase) is a two-phase system including micellar hydrophobic phase and hydrophilic aqueous phase. Reagents added to the mixture are distributed between phases, thus concentrations of reagents dissolved in phases can differ significantly from their overall contents. Using dynamic light scattering we found that the hydrophobic phase produced by tween-20 consists of micelles, which radius (4-5nm) does not depend on either tween-20 overall content (0.1%-1% v/v) or arachidonic acid (AA) addition (10-1000μM) or PGHS addition (1μM). Tween-20 overall content changing from 0.1% to 2% v/v dramatically affected COX kinetic, but accounting AA distribution between phases allowed us to estimate "true" parameters, independent of the tween-20 overall content and the concentration of another substrate: KM(Ox) equals 9.8μM O2 in the aqueous phase or 0.0074bar in the gaseous phase, KM(AA) equals 5400μM AA in the phase of tween-20 micelles and 5400/PμM AA in the aqueous phase (P is the distribution ratio for the AA between the aqueous phase and the hydrophobic phase (P≫1000)). This approach allowed to evaluate PS, the distribution ratio for the AA between the hydrophobic phase and the PGHS active center (PS ~310). This coefficient indicates the AA selectivity toward the cyclooxygenase active center. PMID:27342373

  19. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  20. Influence of aqueous phase emulsifiers on lipid oxidation in water-in-walnut oil emulsions.

    PubMed

    Yi, Jianhua; Zhu, Zhenbao; McClements, D Julian; Decker, Eric A

    2014-03-01

    Effects of selected aqueous phase emulsifiers on lipid oxidative stability of water-in-walnut oil (W/O) emulsions stabilized by polyglycerol polyricinoleate (PGPR) were evaluated. The formation of primary oxidation products (lipid hydroperoxides) and secondary oxidation products (headspace hexanal) increased with increasing dodecyltrimethylammonium bromide (DTAB) concentration (0.1-0.2 wt % of emulsions). In contrast, the addition of sodium dodecyl sulfate (SDS) in the aqueous phase reduced lipid hydroperoxide and hexanal formation. In addition, the presence of Tween 20 in the aqueous phase did not significantly influence lipid oxidation rates in W/O emulsions compared to the control (without Tween 20). Whey protein isolate (WPI) was observed to inhibit lipid oxidation in the W/O emulsions (0.05-0.2 wt % of emulsions). Aqueous phase pH had an important impact on the antioxidant capability of WPI, with higher pH improving its ability to inhibit lipid oxidation. The combination of WPI and DTAB in the aqueous phase suppressed the prooxidant effect of DTAB. The combination of WPI and SDS resulted in improved antioxidant activity, with inhibition being greater at pH 7.0 than at pH 3.0. These results suggest that the oxidative stability of W/O emulsions could be improved by the use of suitable emulsifiers in the aqueous phase. PMID:24446832

  1. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  2. Iron oxide functionalized graphene nano-composite for dispersive solid phase extraction of chemical warfare agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak

    2015-05-15

    Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. PMID:25828545

  3. Renewable hydrogen by aqueous-phase reforming of glucose.

    PubMed

    Davda, Rupali R; Dumesic, James A

    2004-01-01

    Hydrogen can be produced from aqueous solutions containing 10 wt% glucose with high selectivities through the combined use of a hydrogenation reactor for conversion of glucose to sorbitol, followed by a reforming reactor for conversion of sorbitol to H(2) and CO(2) and then a gas-liquid separator for the removal of high-pressure H(2)-rich reformate gas, ready for use in a fuel cell. PMID:14737320

  4. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  5. A microfluidic-based method for the transfer of biopolymer particles from an oil phase to an aqueous phase.

    PubMed

    Wong, Edeline Huei-mei; Rondeau, Elisabeth; Schuetz, Peter; Cooper-White, Justin

    2009-09-01

    Biopolymer microgels produced in microfluidic devices via the formation of a water-in-oil emulsion are usually collected at the outlet of the device and thoroughly washed from the oil phase in an additional, lengthy processing step. This paper reports a microfluidic-based method which allows for continuous on-chip manufacture of aqueous-based biopolymer microparticles in an oily continuous phase and thereafter the transfer of these particles from the oily carrier phase to a second aqueous continuous phase. This was achieved by surface patterning the PDMS channel walls using UV polymerization of poly(acrylic acid) (PAA) in order to obtain a hybrid device with distinct hydrophilic and hydrophobic sections. The surface patterning was stable for at least 4 months. This selective surface patterning of the channel was shown to initiate and assist the transfer of the biopolymer particles from the oil phase into the aqueous phase. The flow conditions required for a stable biphasic flow in the transfer section of the device were evaluated based on the theoretical shear stress at the interface of the two fluids. Experimental outcomes were found to be in good agreement with the prediction. After the particles cross the liquid-liquid interface and are transferred into the aqueous phase, they are collected and characterized. The resulting suspension was found to be stable for several weeks and no aggregation was observed. PMID:19680582

  6. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  7. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  8. Reaction Kinetics of Ethylene Glycol Reforming over Platinum in the Vapor versus Aqueous Phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeffrey P.; Simonetti, Dante A.; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C-H/O-H and C-C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C2H6O2) over Pt/Al2O3 at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C-C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C2HxO2. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  9. Reaction kinetics of ethylene glycol reforming over platinum in the vapor versus aqueous phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeff; Simonetti, Dante; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C–H/O–H and C–C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C₂H₆O₂) over Pt/Al₂O₃ at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C–C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C₂HxO₂. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  10. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol; Minim, Luis Antonio; Coimbra, Jane Sélia dos Reis

    2010-01-15

    A greener and more sensitive spectrophotometric procedure has been developed for the determination of phenol and o-cresol that exploits an aqueous two-phase system (ATPS) using a liquid-liquid extraction technique. An ATPS is formed mostly by water and does not require organic solvent. Other ATPS components used in this study were the polymer, polyethylene oxide, and some salts (i.e., Li(2)SO(4), Na(2)SO(4) or K(2)HPO(4)+KOH). The method is based on the reaction between phenol, sodium nitroprusside (NPS) and hydroxylamine hydrochloride (HL) in an alkaline medium (pH 12.0), producing the complex anion [Fe(2)(CN)(10)](10-) that spontaneously concentrates in the top phase of the system. The linear range was 1.50-500microgkg(-1) (R>or=0.9997; n=8) with coefficients of variation equal to 0.38% for phenol and 0.30% for o-cresol (n=5). The method yielded limits of detection (LODs) of 1.27 and 1.88microgkg(-1) and limits of quantification (LOQs) of 4.22 and 6.28microgkg(-1) for phenol and o-cresol, respectively. Recoveries between 95.7% and 107% were obtained for the determination of phenol in natural water and wastewater samples. In addition, excellent agreement was observed between this new ATPS method and the standard 4-aminoantipyrine (4-AAP) method. PMID:20006065

  11. Enhanced removal of trace Cr(VI) from neutral and alkaline aqueous solution by FeCo bimetallic nanoparticles.

    PubMed

    Qin, Nannan; Zhang, Ya; Zhou, Hongjian; Geng, Zhigang; Liu, Gang; Zhang, Yunxia; Zhao, Huijun; Wang, Guozhong

    2016-06-15

    The reactivity of zero valent iron (Fe(0)) for removing Cr(VI) is self-inhibiting under neutral and alkaline conditions, due to the precipitation of ferrous hydroxide on the surface of Fe(0). To overcome this difficulty, we incorporated a second metal (Co) into Fe(0) to form FeCo bimetallic nanoparticles (FeCo BNPs), which can achieve higher activity and significant improvement in the reaction kinetics for the removal of Cr(VI) compared with Fe(0). The FeCo BNPs were synthesized by a hydrothermal reduction method without using any templates. The characterization analysis indicated that the products were highly uniform in large scale with 120-140 nm size in diameter. The obtained FeCo BNPs exhibited a remarkable removal ability for Cr(VI) in the pH range of 5.3-10.0. Especially, FeCo BNPs were able to reduce trace Cr(VI) (1.0 mg L(-1), pH=7.5) down to about 0.025 mg L(-1) within 1h. XPS analysis confirmed that Cr(VI) was reduced to Cr(III) by FeCo BNPs, while Fe and Co was oxidized, implying a chemical reduction process. The enhanced removal of trace Cr(VI) could be originated from the introduction of Co, which not only served as a protecting agent against surface corrosion by galvanic cell effect, but also enhanced the efficient flow of electron transfer between iron and Cr(VI). All the results primarily imply that FeCo BNPs can be employed as high efficient material for wastewater treatment. PMID:26998785

  12. A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Nizkorodov, S. A.

    2012-09-01

    Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. For example, we find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.

  13. A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Epstein, S. A.; Nizkorodov, S. A.

    2012-04-01

    Photochemical reactions represent the main pathway for the removal of non-methane volatile organic compounds (VOCs) in the atmosphere. VOCs may react with hydroxyl radical (OH), the most important atmospheric oxidant, or they can be photolyzed by actinic radiation. In the presence of clouds and fog, VOCs may partition into the aqueous phase where they can undergo aqueous photolysis and/or reaction with dissolved OH. The significance of direct aqueous photolysis is largely uncertain due to the lack of published absorption cross sections and photolysis quantum yields. In light of this, we strive to identify atmospherically relevant VOCs where removal by aqueous photolysis may be a significant sink. The relative importance of different photochemical sinks is assessed by calculating the ratios of the removal rates inside air parcels containing cloud and fog droplets. This relative approach provides useful information in spite of the limited aqueous photolysis data. Results of this work should help guide researchers in identifying molecules that are the most likely to undergo aqueous OH oxidation and photolysis. We find that out of the 27 atmospherically relevant species investigated, the removal of glyceraldehyde and pyruvic acid by aqueous photolysis is potentially an important sink. We also determine the relative magnitudes of these four chemical sinks for the set of relevant organic compounds.

  14. IMPROVING LIQUID CRYSTAL-BASED BIOSENSING IN AQUEOUS PHASES

    PubMed Central

    Iglesias, Wilder; Abbott, Nicholas L.; Mann, Elizabeth K.; Jákli, Antal

    2012-01-01

    Liquid crystal (LC)-based biological sensors permit the study of aqueous biological samples without the need for the labeling of biological species with fluorescent dyes (which can be laborious and change the properties of the biological sample under study). To date, studies of LC-based biosensors have explored only a narrow range of the liquid crystal/alignment layer combinations essential to their operation. Here we report a study of the role of LC elastic constants and the surface anchoring energy in determining the sensitivity of LC-based biosensors. By investigating a mixture of rod-shape and bent-shape mesogens, and three different alignment layers, we were able to widen the useful detection range of a LC-based sensor by providing an almost linear mapping of effective birefringence with concentration between 0.05 and 1mM of an anionic surfactant (model target analyte). These studies pave the way for optimization of LC-based biosensors and reveal the importance of the choice of both the LC material and the alignment layer in determining sensor properties. PMID:23157269

  15. Improving liquid-crystal-based biosensing in aqueous phases.

    PubMed

    Iglesias, Wilder; Abbott, Nicholas L; Mann, Elizabeth K; Jákli, Antal

    2012-12-01

    Liquid crystal (LC)-based biological sensors permit the study of aqueous biological samples without the need for the labeling of biological species with fluorescent dyes (which can be laborious and change the properties of the biological sample under study). To date, studies of LC-based biosensors have explored only a narrow range of the liquid crystal/alignment layer combinations essential to their operation. Here, we report a study of the role of LC elastic constants and the surface anchoring energy in determining the sensitivity of LC-based biosensors. By investigating a mixture of rod-shape and bent-shape mesogens, and three different alignment layers, we were able to widen the useful detection range of a LC-based sensor by providing an almost-linear mapping of effective birefringence with anionic surfactant concentrations between 0.05 mM and 1 mM (model target analyte). These studies pave the way for optimization of LC-based biosensors and reveal the importance of the choice of both the LC material and the alignment layer in determining sensor properties. PMID:23157269

  16. The kinetics and mechanism of an aqueous phase isoprene reaction with hydroxy radical

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhang, X.; Chen, Z. M.; Zhao, Y.; Shen, X. L.

    2011-03-01

    Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous oxidation of isoprene in clouds and its reaction products, including carbonyl compounds and organic acids. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrolein (MACR), methyl vinyl ketone (MVK), methyl glyoxal (MG), and glyoxal (GL). We used a novel chemical titration method to monitor the concentration of isoprene in the aqueous phase. We used a box model to interpret the mechanistic differences between aqueous- and gas-phase OH radical-initiated isoprene oxidations. Our results were the first demonstration of the rate constant for the reaction between isoprene and OH radical in water, 3.50 (± 0.98) × 109 M-1 s-1 at 283 K. Molar yields were determined based on consumed isoprene. Of note, the ratio of the yields of MVK (18.9 ± 0.8%) to MACR (9.0 ± 1.1%) in the aqueous phase isoprene oxidation was approximately double that observed for the corresponding gas phase reaction. We hypothesized that this might be explained by a water-induced enhancement in the self-reaction of a hydroxy isoprene peroxyl radical (HOCH2C(CH3)(O2)CH = CH2) produced in the aqueous reaction. The observed yields for MG and GL were 11.4 ± 0.3% and 3.8 ± 0.1%, respectively. Model simulations indicated that several potential pathways may contribute to the formation of MG and GL. Finally, oxalic acid increased steadily throughout the course of the study, even after isoprene was consumed completely. The observed yield of oxalic acid was 26.2 ± 0.8% at 6 h. The observed carbon balance accounted for ~50% of the consumed isoprene. The presence of high-molecular-weight compounds may have accounted for a

  17. PHASE BEHAVIOR OF LIGHT GASES IN HYDROCARBON AND AQUEOUS SOLVENTS

    SciTech Connect

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1998-08-31

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present period, the Park-Gasem-Robinson (PGR) equation of state (EOS) has been modified to improve its volumetric and equilibrium predictions. Specifically, the attractive term of the PGR equation was modified to enhance the flexibility of the model, and a new expression was developed for the temperature dependence of the attractive term in this segment-segment interaction model. The predictive capability of the modified PGR EOS for vapor pressure, and saturated liquid and

  18. On-chip aqueous two-phase system (ATPS) formation, consequential self-mixing, and their influence on drop-to-drop aqueous two-phase extraction kinetics

    NASA Astrophysics Data System (ADS)

    Wijethunga, Pavithra A. L.; Moon, Hyejin

    2015-09-01

    Aqueous two-phase systems (ATPSs) allow an advantageous aqueous two-phase extraction process (ATPE), a special type of liquid-liquid extraction. Compared with conventional liquid-liquid extraction using aqueous/organic extraction media, ATPE is known to provide relatively easy mass transfer and a gentle environment for biological separation applications. Considering the recent interest in microscale ATPE, we aimed to study (i) the potential of preparing ATPS droplets on a digital microfluidic device, and (ii) the influence of the fluidic dynamics created during the formation of ATPS, with the goal of enhancing on-chip ATPE process. On-chip ATPS formation was evaluated by preparing a series of ATPSs on electrowetting on dielectric digital microfluidic chips and comparing their characteristics with the same ATPSs prepared at macroscale using conventional procedures. An enhanced on-chip drop-to-drop ATPE process was achieved by incorporating a self-mixing condition created during ATPSformation. Results indicate a successful on-chip ATPS preparation as well as enhanced extraction performance by self-mixing in the absence of forced mixing. Findings of this research suggest an alternative, simple, yet adequate technique to provide mixing for on-chip applications, such as sample preparation in portable microfluidics, for which it is unfavorable to implement complicated mixing sequences or complex device geometries.

  19. Carbonate Complexation of Mn2+ in Aqueous Phase

    PubMed Central

    Dasgupta, Jyotishman; Tyryshkin, Alexei M.; Kozlov, Yuri N.; Klimov, Vyacheslav V.; Dismukes, G. Charles

    2008-01-01

    The chemical speciation of Mn2+ within cells is critical for its transport, availability and redox properties. Herein we investigate the redox behavior and complexation equilibria of Mn2+ in aqueous solutions of bicarbonate by voltametry and electron paramagnetic resonance (EPR) spectroscopy, and discuss the implications for the uptake of Mn2+ by mangano-cluster enzymes like photosystem II (PSII). Both the electrochemical reduction of Mn2+ to Mn0 at an Hg electrode and EPR (in the absence of a polarizing electrode), revealed formation of 1:1 and 1:2 Mn-(bi)carbonate complexes as a function of Mn2+ and bicarbonate concentrations. Pulsed EPR spectroscopy, including ENDOR, ESEEM and 2D-HYSCORE, were used to probe the hyperfine couplings to 1H and 13C nuclei of the ligand(s) bound to Mn2+. For the 1:2 complex the complete 13C hyperfine tensor for one of the (bi)carbonate ligands was determined and it was established that this ligand coordinates to Mn2+ in bidentate mode with 13C-Mn distance of 2.85 ± 0.1 Å. The second (bi)carbonate ligand in the 1:2 complex coordinates possibly in monodentate mode, which is structurally less defined, and its 13C signal is broad and unobservable. 1H ENDOR reveals that 1-2 water ligands are lost upon binding of one bicarbonate ion in the 1:1 complex while 3-4 water ligands are lost upon forming the 1:2 complex. Thus, we deduce that the dominant species above 0.1 M bicarbonate concentration is the 1:2 complex, [Mn(CO3)(HCO3)(OH2)3]-. PMID:16526753

  20. Nanosecond transient processes in the triethylamine quenching of benzophenone triplets in aqueous alkaline media. Substituent effect, ketyl radical deprotonation, and secondary photoreduction kinetics

    SciTech Connect

    Bhattacharyya, K.; Das, P.K.

    1986-08-14

    In the course of benzophenone triplet quenching by triethylamine (TEA) at high concentrations in alkaline aqueous acetonitrile, two temporally distinct processes are observed for ketyl radical anion formation. The fast component occurs on a nanosecond time scale, has kinetics sensitive to basicity and water content of the medium, and is ascribed to the deprotonation of the diphenylhydroxymethyl radical initially produced as a result of subnanosecond intra-ion-pair proton transfer. The slow process occurs on a microsecond time scale and is characterized by pseudo-first-order rate constants linearly dependent on ketone ground-state concentration; this is assigned to the one-electron reduction of the ketone by the methyl(diethylamino)methyl radical (derived from TEA). Substituent effects on the kinetics of the two processes follow trends expected from those of the acidity of diarylhydroxymethyl radicals and of the behavior of diaryl ketones as oxidants. Neither of the two processes is observed with N,N-dimethylaniline (DMA) and 1,4-diazabicyclo(2.2.2)octane (DABCO) as quenchers. The electron or hydrogen transfer yields in the course of diaryl ketone triplet quenching by the three amines are all close to unity, suggesting that the back electron transfer in the triplet ion pairs is relatively unimportant.

  1. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  2. Phase Behavior of Light Gases in Hydrocarbon and Aqueous Solvents

    SciTech Connect

    Gasem, K.A.M.; Robinson, R.L., Jr.; Trvedi, N.J., Gao, W.

    1997-09-01

    Under previous support from the Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, our solubility apparatus was refurbished and restored to full service. To test the experimental apparatus and procedures used, measurements were obtained for the solubility Of C0{sub 2} in benzene at 160{degrees}F. Having confirmed the accuracy of the newly acquired data in comparison with our previous measurements and data reported in the literature for this test system, we have begun to measure the solubility of hydrogen in hexane. The measurements

  3. A Chain of Modeling Tools For Gas and Aqueous Phase Chemstry

    NASA Astrophysics Data System (ADS)

    Audiffren, N.; Djouad, R.; Sportisse, B.

    Atmospheric chemistry is characterized by the use of large set of chemical species and reactions. Handling with the set of data required for the definition of the model is a quite difficult task. We prsent in this short article a preprocessor for diphasic models (gas phase and aqueous phase in cloud droplets) named SPACK. The main interest of SPACK is the automatic generation of lumped species related to fast equilibria. We also developped a linear tangent model using the automatic differentiation tool named ODYSSEE in order to perform a sensitivity analysis of an atmospheric multi- phase mechanism based on RADM2 kinetic scheme.Local sensitivity coefficients are computed for two different scenarii. We focus in this study on the sensitivity of the ozone,NOx,HOx, system with respect to some aqueous phase reactions and we inves- tigate the influence of the reduction in the photolysis rates in the area below the cloud region.

  4. Chirality Separation of Single-Wall Carbon Nanotubes using Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Fagan, Jeffrey

    2014-03-01

    Aqueous two-phase extraction (ATPE) was recently demonstrated to enable the separation of individual species of single-wall carbon nanotubes (SWCNTs) across the separated phases. In this presentation I will describe the use of a dextran - polyethylene glycol aqueous two-phase system along with a separation scheme of varying surfactant concentrations to enable isolation at high purity of specific small diameter SWCNT species. Separation by ATPE is rapid and robust, with a remarkable tunability that allows isolation of most single nanotube chiralities at high purity. Choice of surfactant(s), temperature, polymer concentrations, and the addition of small molecule salts can all be used to tune the exact partitioning of single SWCNT species between the two phases.

  5. CHEMICAL TRANSFORMATION MODULES FOR EULERIAN ACID DEPOSITION MODELS. VOLUME 2. THE AQUEOUS-PHASE CHEMISTRY

    EPA Science Inventory

    This study focuses on the review and evaluation of mechanistic and kinetic data for aqueous-phase reactions that lead to the production of acidic substances in the environment. The intent of this research is to provide a framework that can be used to develop a state-of-the-art aq...

  6. Aqueous phase nitric oxide detection by an amine-decorated metal-organic framework.

    PubMed

    Desai, Aamod V; Samanta, Partha; Manna, Biplab; Ghosh, Sujit K

    2015-04-11

    Selective and sensitive aqueous phase nitric oxide (NO) detection has been demonstrated by implementing an unsophisticated approach of ligand modulation in a porous, robust metal-organic framework (MOF). The detection is achieved through deamination by NO in an amine-decorated luminescent MOF. This is the first report of employing a physiologically stable, functionalized MOF as a NO sensor. PMID:25744379

  7. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    EPA Science Inventory

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  8. IMPROVED ANALYTICAL TECHNIQUE FOR THE DETERMINATION OF GAS AND AQUEOUS PHASE HYDROGEN PEROXIDE: INSTRUMENT MANUAL

    EPA Science Inventory

    The document describes the construction and operation of an automated instrument package designed to measure gaseous and aqueous phase hydrogen peroxide. The chemical determination relies on the peroxidase-mediated conversion of p-hydroxyphenylacetic acid to 6,6'-dihydroxy-3,3'-b...

  9. PHASE BEHAVIOR OF LIGHT GASES IN HYDROGEN AND AQUEOUS SOLVENTS

    SciTech Connect

    KHALED A.M. GASEM; ROBERT L. ROBINSON, JR.

    1999-03-31

    Under previous support from the US Department of Energy, an experimental facility has been established and operated to measure valuable vapor-liquid equilibrium data for systems of interest in the production and processing of coal fluids. To facilitate the development and testing of models for prediction of the phase behavior for such systems, we have acquired substantial amounts of data on the equilibrium phase compositions for binary mixtures of heavy hydrocarbon solvents with a variety of supercritical solutes, including hydrogen, methane, ethane, carbon monoxide, and carbon dioxide. The present project focuses on measuring the phase behavior of light gases and water in Fischer-Tropsch (F-T) type solvents at conditions encountered in indirect liquefaction processes and evaluating and developing theoretically-based correlating frameworks to predict the phase behavior of such systems. Specific goals of the proposed work include (a) developing a state-of-the-art experimental facility to permit highly accurate measurements of equilibrium phase compositions (solubilities) of challenging F-T systems, (b) measuring these properties for systematically-selected binary, ternary and molten F-T wax mixtures to provide critically needed input data for correlation development, (c) developing and testing models suitable for describing the phase behavior of such mixtures, and (d) presenting the modeling results in generalized, practical formats suitable for use in process engineering calculations. During the present reporting period, the solubilities of hydrogen in n-hexane, carbon monoxide in cyclohexane, and nitrogen in phenanthrene and pyrene were measured using a static equilibrium cell over the temperature range from 344.3 to 433.2 K and pressures to 22.8 MPa. The uncertainty in these new solubility measurements is estimated to be less than 0.001 in mole fraction. The data were analyzed using the Peng-Robinson (PR) equation of state (EOS). In general, the PR EOS represents

  10. Conformational preferences of flavone and isoflavone in the gas phase, aqueous solution and organic solution

    NASA Astrophysics Data System (ADS)

    Ishiki, Hamilton Mitsugu; Alemán, Carlos; Galembeck, Sérgio Emanuel

    1998-05-01

    Flavone and isoflavone are an important class of secondary metabolites that are widely distributed in nature. In this Letter we have determined the conformational preferences of each compound in the gas phase, aqueous solution and organic solution. Gas-phase calculations were performed using AM1, MNDO, HF/3-21G, HF/6-31G(d) and B3-LYP/6-31G(d) calculations. Besides solution calculations were performed using the MST solvation model.

  11. CHEMICAL TRANSFORMATIONS IN ACID RAIN. VOLUME 2. INVESTIGATION OF KINETICS AND MECHANISM OF AQUEOUS-PHASE PEROXIDE FORMATION

    EPA Science Inventory

    The aqueous-phase reactions of O3 with a number of species have been studied in an effort to identify pathways leading to the production of hydrogen peroxide in solution. The aqueous-phase systems studied included the decomposition of O3 in pure water and the interaction of O3 wi...

  12. Aqueous-phase story of isoprene - A mini-review and reaction with HONO

    NASA Astrophysics Data System (ADS)

    Rudziński, Krzysztof J.; Szmigielski, Rafał; Kuznietsova, Inna; Wach, Paulina; Staszek, Dorota

    2016-04-01

    Isoprene is a major biogenic hydrocarbon emitted to the atmosphere and a well-recognized player in atmospheric chemistry, formation of secondary organic aerosol and air quality. Most of the scientific work on isoprene has focused on the gas-phase and smog chamber processing while direct aqueous chemistry has escaped the major attention because physical solubility of isoprene in water is low. Therefore, this work recollects the results of genuine research carried on atmospherically relevant aqueous-phase transformations of isoprene. It clearly shows that isoprene dissolves in water and reacts in aqueous solutions with common atmospheric oxidants such as hydrogen peroxide, ozone, hydroxyl radicals, sulfate radicals and sulfite radicals. The reactions take place in the bulk of solutions or on the gas-liquid interfaces and often are acid-catalyzed and/or enhanced by light. The review is appended by an experimental study of the aqueous-phase reaction of isoprene with nitrous acid (HONO). The decay of isoprene and formation of new products are demonstrated. The tentative chemical mechanism of the reaction is suggested, which starts with slow decomposition of HONO to NO2 and NO. The aqueous chemistry of isoprene explains the formation of a few tropospheric components identified by scientists yet considered of unknown origin. The reaction of isoprene with sulfate radicals explains formation of the MW 182 organosulfate found in ambient aerosol and rainwater while the reaction of isoprene with HONO explains formation of the MW 129 and MW 229 nitroorganic compounds identified in rainwater. Thus, aqueous transformations of isoprene should not be neglected without evidence but rather considered and evaluated in modeling of atmospheric chemical processes even if alternative and apparently dominant heterogeneous pathways of isoprene transformation, dry or wet, are demonstrated.

  13. Global modeling of SOA: the use of different mechanisms for aqueous-phase formation

    NASA Astrophysics Data System (ADS)

    Lin, G.; Sillman, S.; Penner, J. E.; Ito, A.

    2014-06-01

    There is growing interest in the formation of secondary organic aerosol (SOA) through condensed aqueous-phase reactions. In this study, we use a global model (IMPACT) to investigate the potential formation of SOA in the aqueous phase. We compare results from several multiphase process schemes with detailed aqueous-phase reactions to schemes that use a first-order gas-to-particle formation rate based on uptake coefficients. The predicted net global SOA production rate in cloud water ranges from 13.1 Tg yr-1 to 46.8 Tg yr-1 while that in aerosol water ranges from -0.4 Tg yr-1 to 12.6 Tg yr-1. The predicted global burden of SOA formed in the aqueous phase ranges from 0.09 Tg to 0.51 Tg. A sensitivity test to investigate two representations of cloud water content from two global models shows that increasing cloud water by an average factor of 2.7 can increase the net SOA production rate in cloud water by a factor of 4 at low altitudes (below approximately 900 hPa). We also investigated the importance of including dissolved Fe chemistry in cloud water aqueous reactions. Adding these reactions increases the formation rate of aqueous-phase OH by a factor of 2.6 and decreases the amount of global aqueous SOA formed by 31%. None of the mechanisms discussed here is able to provide a best fit for all observations. Rather, the use of an uptake coefficient method for aerosol water and a multi-phase scheme for cloud water provides the best fit in the Northern Hemisphere and the use of multiphase process scheme for aerosol and cloud water provides the best fit in the tropics. The model with Fe chemistry underpredicts oxalate measurements in all regions. Finally, the comparison of oxygen-to-carbon (O / C) ratios estimated in the model with those estimated from measurements shows that the modeled SOA has a slightly higher O / C ratio than the observed SOA for all cases.

  14. Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems.

    PubMed

    Ventura, Sónia P M; Santos-Ebinuma, Valéria C; Pereira, Jorge F B; Teixeira, Maria F S; Pessoa, Adalberto; Coutinho, João A P

    2013-05-01

    There is a growing demand for natural colorants. This is prompting the search for new alternative and "benign" separation systems allowing higher recoveries, extraction yields, and selectivities. This work investigates the use of aqueous two-phase systems (ATPS) based on ionic liquids as extraction processes for the recovery of red colorants from the fermented broth of Penicillium purpurogenum DPUA 1275. Several ATPS based on quaternary ammonium and imidazolium were studied in this work aiming at separating the red colorants produced from the remaining colorants and contaminant proteins present in the fermented broth. The results suggest that the red colorants can be isolated by an appropriate manipulation of some of the process conditions, such as the use of quaternary ammonium with short alkyl chains, alkaline media, and short tie-line lengths (extraction point systems with lower concentrations of ionic liquid). These conditions allow large partition coefficients for the red colorants (K red = 24.4 ± 2.3), high protein removal (60.7 ± 2.8 %) and selectivity parameters (S red/prot = 10.05). PMID:23455697

  15. Oxidation of Organic Compoundsin the Atmospheric Aqueous Phase: Development of a New Explicit Oxidation Mechanism

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bregonzio-Rozier, L.; Monod, A.; Leriche, M.; Doussin, J. F.; Chaumerliac, N. M.; Deguillaume, L.

    2014-12-01

    Current 3D models tend to underestimate the production of secondary organic aerosol (SOA) in the atmosphere (Volkamer et al., 2006). Recent studies argue that aqueous chemistry in clouds could be responsible for a significant production of SOA (Ervens et al., 2011; Carlton and Turpin, 2013) through oxidative and non-oxidative processes. Aqueous phase reactivity of organic compounds needs to be thoroughly described in models to identify organic molecules available to contribute to SOA mass. Recently, new empirical methods have been developed to allow the estimate of HO·reaction rates in the aqueous phase (Doussin and Monod, 2013, Minakata et al., 2009). These methods provide global rate constants together with branching ratios for HO·abstraction and addition on organic compounds of atmospheric interests. Current cloud chemistry mechanisms do not take the different possible pathways into account. Based on these structure-activity relationships, a new detailed aqueous phase mechanism describing the oxidation of hydrosoluble organic compounds resulting from isoprene oxidation is proposed. This new aqueous phase mechanism is coupled with the detailed gas phase mechanism MCM v3.2 (Jenkin et al., 1997; Saunders et al., 2003) through a kinetic of mass transfer parameterization for the exchange between gas phase and aqueous phase. The GROMHE SAR (Raventos-Duran et al., 2010) allows the evaluation of Henry's law constants for organic compounds. Variable photolysis in both phases using the TUV 4.5 radiative transfer model (Madronich and Flocke, 1997) is also calculated. The resulting multiphase mechanism has been implemented in a cloud chemistry model. Focusing on oxygenated compounds produced from the isoprene oxidation, sensitivity tests and comparisons with multiphase experiments performed in the framework of the CUMULUS project in the CESAM atmospheric simulation chamber (Wang et al., 2011) will be presented. Volkamer et al., GRL, 33, L17811, 2006. Carlton and Turpin

  16. Microevaporators with accumulators for the screening of phase diagrams of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Dehmoune, J.; Salmon, J.-B.; Leng, J.

    2009-07-01

    We design near-autonomous microfluidic devices for concentrating aqueous solutions steadily over days in a very controlled manner. We combine suction pumps that drive the solution and concentrate it steadily, with a nanoliter-sized storage pool where the solute accumulates. The fine balance between advection and diffusion in the pump and diffusion alone in the accumulation pool yields several filling regimes. One of them is universal as being steady and independent of the solute itself. It results a specific equivalence between time and concentration, which we use to build the phase quantitative diagram of a ternary aqueous solution on nanoliter scale.

  17. Aqueous Two-Phase Systems formed by Biocompatible and Biodegradable Polysaccharides and Acetonitrile

    PubMed Central

    de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M.; Freire, Mara G.; Soares, Cleide Mara Faria; Lima, Álvaro Silva

    2015-01-01

    In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol−1) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant – vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase. PMID:25729320

  18. Making non-aqueous high internal phase pickering emulsions: influence of added polymer and selective drying.

    PubMed

    Cai, Dongyu; Thijssen, Job H T; Clegg, Paul S

    2014-06-25

    We report the first example of a non-aqueous (oil-in-oil) Pickering high internal phase emulsion (HIPE) stabilized by chemically modified fumed silica. In this case, a 75 vol % ethylene carbonate (EC)-rich internal phase is emulsified in 25 vol % p-xylene (xylene)-rich continuous phase using interfacial nanoparticles. It is revealed that no phase inversion takes place during the HIPE formation process when using the appropriate wettability of solid particles. Incorporating polystyrene (PS) into xylene enables one-step formation of PS-filled HIPEs in place of a multi-step polymerization of the continuous phase. We observe that the size of droplets changes with the addition of PS, and we associate this with the change in the viscosity of the continuous xylene-rich phase. Drying the pure HIPE results in the selective removal of xylene and coalescence of EC-rich droplets. With the PS in the xylene-rich continuous phase, we show that EC-rich droplets can be retained even though the xylene is evaporated off, and a new semi-solid composite containing both liquid phase and solid phase is formed via this non-aqueous Pickering-HIPE template. PMID:24865657

  19. Reforming and decomposition of glucose in an aqueous phase

    NASA Technical Reports Server (NTRS)

    Amin, S.; Reid, R. C.; Modell, M.

    1975-01-01

    Exploratory experiments have been carried out to study the decomposition of glucose, a typical carbohydrate, in a high temperature-high pressure water reactor. The objective of the study was to examine the feasibility of such a process to decompose cellulosic waste materials in long-term space missions. At temperatures below the critical point of water, glucose decomposed to form liquid products and char. Little gas was noted with or without reforming catalysts present. The rate of the primary glucose reaction increased significantly with temperature. Partial identification of the liquid phase was made and the C:H:O ratios determined for both the liquid and solid products. One of the more interesting results from this study was the finding that when glucose was injected into a reactor held at the critical temperature (and pressure) of water, no solid products formed. Gas production increased, but the majority of the carbon was found in soluble furans (and furan derivatives). This significant result is now being investigated further.

  20. Influence of interface stabilisers and surrounding aqueous phases on nematic liquid crystal shells.

    PubMed

    Noh, JungHyun; Reguengo De Sousa, Kevin; Lagerwall, Jan P F

    2016-01-14

    We investigate the nematic-isotropic (N-I) transition in shells of the liquid crystal 5CB, surrounded by aqueous phases that conventionally are considered to be immiscible with 5CB. The aqueous phases contain either sodium dodecyl sulfate (SDS) or polyvinyl alcohol (PVA) as stabiliser, the former additionally promoting homeotropic director alignment. For all shell configurations we find a depression of the clearing point compared to pure 5CB, indicating that a non-negligible fraction of the constituents of the surrounding phases enter the shell, predominantly water. In hybrid-aligned shells, with planar outer and homeotropic inner boundary (or vice versa), the N-I transition splits into two steps, with a consequent three-step textural transformation. We explain this as a result of the order-enhancing effect of a monolayer of radially aligned SDS molecules adsorbed at the homeotropic interface. PMID:26512764

  1. Characterization of a water-in-oil microemulsion containing a concentrated ammonium ferric sulfate aqueous phase

    SciTech Connect

    Darab, J.G.; Pfund, D.M.; Fulton, J.L.; Linehan, J.C. ); Capel, M. ); Ma, Y. )

    1994-01-01

    A water-in-oil (w/o) microemulsion containing high concentrations of ammonium ferric sulfate in solution was characterized by SAXS, EXAFS, electrical conductivity, and viscosity measurements and by its phase behavior. The nanometer-sized aqueous droplets are microemulsified by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in an isooctane continuous phase. Addition of small amounts of sodium dodecyl sulfate (SDS) as a cosurfactant greatly aids in the solubilization of the inorganic electrolyte-laden aqueous phase. For this five-component system there is a large region of the composition phase space that exists as a clear, stable w/o microemulsion. A portion of this w/o microemulsion phase space can be characterized as spherically shaped aqueous nanometer-sized droplets. A simple relationship between the total surfactant concentration and the amount of water on the droplet size was established. This relationship has the same form as the well-known relationship for the ternary system, AOT/water/isooctane. True thermodynamic equilibrium was not established in this microemulsion study because the reaction times for the various ferric oxyhydroxide species are prohibitively long. As a result, pseudoequilibria for this ammonium ferric sulfate microemulsion are reported. 31 refs., 7 figs., 1 tab.

  2. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2013-01-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  3. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2012-09-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2%) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  4. The kinetics and mechanism of an aqueous phase isoprene reaction with hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Huang, D.; Zhang, X.; Chen, Z. M.; Zhao, Y.; Shen, X. L.

    2011-08-01

    Aqueous phase chemical processes of organic compounds in the atmosphere have received increasing attention, partly due to their potential contribution to the formation of secondary organic aerosol (SOA). Here, we analyzed the aqueous OH-initiated oxidation of isoprene and its reaction products including carbonyl compounds and organic acids, regarding the acidity and temperature as in-cloudy conditions. We also performed a laboratory simulation to improve our understanding of the kinetics and mechanisms for the products of aqueous isoprene oxidation that are significant precursors of SOA; these included methacrolein (MACR), methyl vinyl ketone (MVK), methyl glyoxal (MG), and glyoxal (GL). We used a novel chemical titration method to monitor the concentration of isoprene in the aqueous phase. We used a box model to interpret the mechanistic differences between aqueous and gas phase OH radical-initiated isoprene oxidations. Our results were the first demonstration of the rate constant for the reaction between isoprene and OH radical in water, 1.2 ± 0.4) × 1010 M-1 s-1 at 283 K. Molar yields were determined based on consumed isoprene. Of note, the ratio of the yields of MVK (24.1 ± 0.8 %) to MACR (10.9 ± 1.1%) in the aqueous phase isoprene oxidation was approximately double that observed for the corresponding gas phase reaction. We hypothesized that this might be explained by a water-induced enhancement in the self-reaction of a hydroxy isoprene peroxyl radical (HOCH2C(CH3)(O2)CH = CH2) produced in the aqueous reaction. The observed yields for MG and GL were 11.4 ± 0.3 % and 3.8 ± 0.1 %, respectively. Model simulations indicated that several potential pathways may contribute to the formation of MG and GL. Finally, oxalic acid increased steadily throughout the course of the study, even after isoprene was consumed completely. The observed yield of oxalic acid was 26.2 ± 0.8 % at 6 h. The observed carbon balance accounted for ~50 % of the consumed isoprene. The

  5. Continuous aqueous two-phase extraction of human antibodies using a packed column.

    PubMed

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2012-01-01

    The performance of a pilot scale packed differential contactor was evaluated for the continuous counter-current aqueous two-phase extraction (ATPE) of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant (CS) enriched with pure protein. Preliminary studies have been firstly performed in order to select the dispersed phase (phosphate-rich or polyethylene glycol 3350 Da (PEG)-rich phase) and the column packing material. The PEG-rich phase has been selected as the dispersed phase and the stainless steel as the preferred material for the column packing bed since it was not wetted preferentially by the selected dispersed phase. Hydrodynamic studies have been also performed, and the experimental results were successfully adjusted to the Richardson-Zaki and Mísek equations, typically used for the conventional organic-aqueous two-phase systems. An experimental set-up combining the packed column with a pump mixer-settler stage showed to have the best performance and to be advantageous when compared to the IgG batch extraction. An IgG recovery yield of 85% could be obtained with about 50% of total contaminants and more than 85% of contaminant proteins removal. Mass transfer studies have revealed that the mass transfer was controlled by the PEG-rich phase. A higher efficiency could be obtained when using an extra pump mixer-settler stage and higher flow rates. PMID:22173005

  6. Photo-Fenton oxidation of phenol and organochlorides (2,4-DCP and 2,4-D) in aqueous alkaline medium with high chloride concentration.

    PubMed

    Luna, Airton J; Chiavone-Filho, Osvaldo; Machulek, Amilcar; de Moraes, José Ermírio F; Nascimento, Cláudio A O

    2012-11-30

    A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe(2+) ([Fe(2+)](0)) from 1.0 up to 2.5 mM, the rate in mmol of H(2)O(2) fed into the system (FH(2)O(2);in) from 3.67 up to 7.33 mmol of H(2)O(2)/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. PMID:22809483

  7. Orientation- and concentration-dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications

    NASA Astrophysics Data System (ADS)

    Gosálvez, M. A.; Tang, B.; Pal, P.; Sato, K.; Kimura, Y.; Ishibashi, K.

    2009-12-01

    We combine spectroscopic ellipsometry (SE), Fourier transform infrared spectroscopy (FT-IR), kinetic Monte Carlo simulations (KMC) and convex corner undercutting analysis in order to characterize and explain the effect of the addition of small amounts of surfactant in alkaline aqueous solutions, such as Triton X-100 in tetra methyl ammonium hydroxide (TMAH). We propose that the surfactant is adsorbed at the silicon-etchant interface as a thin layer, acting as a filter that moderates the surface reactivity by reducing the amount of reactant molecules that reach the surface. According to the SE and FT-IR measurements, the thickness of the adsorbed layer is an orientation- and concentration-dependent quantity, mostly due to the orientation dependence of the surface density of H-terminations and the concentration dependence of the relative rates of the underlying oxidation and etching reactions, which have a direct impact on the number of OH terminations. For partial OH coverage of the surface, the hydration of the OH group effectively acts as an anchoring location for the hydration shell of a surfactant molecule, thus enabling the formation of hydration bridges that amplify the adsorption density of the surfactant. At high concentration, the model explains the large reduction in the etch rate of the exact and vicinal Si{1 1 0} surfaces, and the small changes in the etch rates for the exact and vicinal Si{1 0 0} surfaces. At low concentration, it explains how the etch rate for both families is significantly reduced. The orientation and concentration dependence of the surfactant adsorption explains the dramatic differences in the micron-scale wet-etched patterns obtained using TMAH and TMAH+Triton for microelectromechanical systems applications.

  8. Membrane biotechnology, co-immobilization, and aqueous two-phase systems: alternatives in bioconversion of cellulose

    SciTech Connect

    Hahn-Haegerdal, B.; Andersson, E.; Lopez-Leiva, M.; Mattiasson, B.

    1981-01-01

    Three different techniques having complementary features have been applied to the bioconversion of cellulose to ethanol: (1) membrane biotechnology involving ultrafiltration and reverse osmosis allows conversion of particulate substrates with soluble biocatalysts, continuous removal of inhibitory products, and low-energy upgrading of dilute product streams; (2) co-immobilization of enzymes and microorganisms results in new metabolic combinations, allowing microbial conversion of nondigestible substrates, removal of inhibitory intermediates, and continuous operation; (3) aqueous two-phase systems are biocompatible and allow extractive bioconversions in that soluble biocatalysts and particulate substrates can be partitioned to one phase while products can be partitioned and upgraded in the other phase.

  9. Phase behavior and oil recovery investigations using mixed and alkaline-enhanced surfactant systems

    SciTech Connect

    Llave, F.M.; Gall, B.L.; French, T.R.; Noll, L.A.; Munden, S.A.

    1992-03-01

    The results of an evaluation of different mixed surfactant and alkaline-enhanced surfactant systems for enhanced oil recovery are described. Several mixed surfactant systems have been studies to evaluate their oil recovery potential as well as improved adaptability to different ranges of salinity, divalent ion concentrations, and temperature. Several combinations of screening methods were used to help identify potential chemical formulations and determine conditions where particular chemical systems can be applied. The effects of different parameters on the behavior of the overall surfactant system were also studied. Several commercially available surfactants were tested as primary components in the mixtures used in the study. These surfactants were formulated with different secondary as well as tertiary components, including ethoxylated and non-ethoxylated sulfonates and sulfates. Improved salinity and hardness tolerance was achieved for some of these chemical systems. The salinity tolerance of these systems were found to be dependent on the molecular weight, surfactant type, and concentration of the surfactant components.

  10. Understanding the aqueous phase ozonolysis of isoprene: distinct product distribution and mechanism from the gas phase reaction

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-08-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures, those were (1) carbonyls: 56.7 ± 3.7 % formaldehyde, 42.8 ± 2.5 % methacrolein (MAC), and 57.7 ± 3.4 % methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1 % hydrogen peroxide (H2O2) and 15.1 ± 3.1 % hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (<1 % estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 94.8 ± 4.1 %. This implied that most of the products in the reaction system were detected. The combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggest that these unexpected high yields of carbonyls and peroxides are related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of aqueous phase

  11. Determination of selenium in dietary supplements by optical emission spectrometry after alkaline dissolution and subsequent headspace solid phase microextraction.

    PubMed

    Tyburska, Anna; Jankowski, Krzysztof

    2013-02-23

    Headspace solid phase microextraction (HSSPME) of chemically generated selenium hydride from alkaline solution followed by thermal desorption (TD) coupled directly to a microwave plasma (MWP) source has been examined for the optical emission spectrometric (OES) determination of Se. Various chemical and operating parameters including the NaBH(4) and HCl concentrations as well as the fiber exposure time and desorption temperature have been optimized. Alternatively, continuous hydride generation (HG) from alkaline medium and inductively coupled plasma (ICP) may be used for Se determination by OES. With the procedure developed, the determination of Se in dietary supplements at the tens of μgg(-1) level and an accuracy of 3-6% could be performed even in the presence of the 1000-fold excess of Fe and Cu. Additionally, Se was determined in the NIST 8418 material (Wheat gluten) with a certified concentration of Se of 2.58 ± 0.19 μgg(-1), and a value of 2.45 ± 0.25 μgg(-1) was found using HG-HSSPME-MWP-OES. The detection limit for Se (3.2 ng ml(-1)) with the proposed procedure was comparable to those obtained with HG-ICP-OES and the calibration curve was linear of about 2 orders of magnitude. PMID:23245260

  12. Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems.

    PubMed

    Santos, Inês C; Mesquita, Raquel B R; Bordalo, Adriano A; Rangel, António O S S

    2012-08-30

    In this work, a solid phase extraction sequential injection methodology for the determination of alkaline phosphatase activity in dynamic water systems was developed. The determination of the enzymatic activity was based on the spectrophotometric detection of a coloured product, p-nitrophenol, at 405 nm. The p-nitrophenol is the product of the catalytic decomposition of p-nitrophenyl phosphate, a non-coloured substrate. Considering the low levels expected in natural waters and exploiting the fact of alkaline phosphatase being a metalloprotein, the enzyme was pre-concentrated in-line using a NTA Superflow resin charged with Zn(2+) ions. The developed sequential injection method enabled a quantification range of 0.044-0.441 unit mL(-1) of enzyme activity with a detection limit of 0.0082 unit mL(-1) enzyme activity (1.9 μmol L(-1) of pNP) and a determination rate of 17 h(-1). Recovery tests confirmed the accuracy of the developed sequential injection method and it was effectively applied to different natural waters and to plant root extracts. PMID:22939148

  13. Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones

    NASA Astrophysics Data System (ADS)

    Christ, John A.; Abriola, Linda M.

    2007-06-01

    Recent laboratory experimental evidence has suggested that bioremediation may be an attractive management strategy for dense non-aqueous phase liquid (DNAPL) source-zones. In particular, metabolic reductive dechlorination has been shown to reduce aqueous phase chlorinated ethene contaminant concentrations and enhance DNAPL dissolution, reducing source longevity. Transitioning this technology from the laboratory to the field will be facilitated by tools capable of simulating bioenhanced dissolution. This work presents a mathematical model for metabolic reductive dechlorination in a macroscale two-phase (aqueous-organic) environment. The model is implemented through adaptation of an existing multi-phase compositional simulator, which has been modified to incorporate eight chemical components and four microbial populations: a fermentative population, two dechlorinating populations, and a competitor population (e.g., methanogens). Monod kinetics, modified to incorporate electron donor thresholds, electron acceptor competition, and competitor inhibition, are used to simulate microbial growth and component degradation. The developed model is numerically verified and demonstrated through comparisons with published column-scale dechlorination data. Dechlorination kinetics, electron donor concentrations, and DNAPL saturation and distribution are all found to affect the extent of dissolution enhancement, with enhancements ranging from 1.0 to ˜1.9. Comparison of simulation results with those from a simplified analytic modeling approach suggest that the analytical model may tend to over-predict dissolution enhancement and fail to account for the transient nature of dissolution enhancement, leading to significant (70%) under-prediction of source longevity.

  14. In-situ sampling of aqueous-phase contamination of chlorinated solvents

    SciTech Connect

    Buttner, W.; Wagner, P.; Husain, A.

    1997-12-31

    An In-Situ Sampler (ISS) has been designed, built, and field tested which can be directly deployed in groundwater wells to passively sample aqueous volatile organic compound (VOC) contamination, including the chlorinated volatile organic compounds (CVOC). Several of these samplers can be lowered into a well by hand to selected depths and allowed to remain in the wells until the sampler is in equilibrium with the dissolved analyte. During deployment, the ISS will passively adsorb CVOC (and VOC) contamination; no moving parts or power sources are required during incubation. Upon removal from water, the adsorbed CVOC (or VOC) will slowly desorb. However, with the design of the ISS this desorption is a controlled process and vapor phase samples can be conveniently collected. The vapor phase concentration of CVOC (and VOC) is directly proportional to the aqueous phase contamination level. To collect vapors for analysis, the ISS is connected to a vapor collection apparatus. Individual aqueous phase CVOC contaminants can be detected to 5 ppb-wt (5 {mu}g/L), limited in part by the detection limits of the analyzer. The ISS approach has advantages over the conventional methods for ground water analyses in that both spatial and vertical profiles of VOCs without direct sampling of water. With field analyzers, results can be obtained within minutes.

  15. Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0

    NASA Astrophysics Data System (ADS)

    Herrmann, H.; Tilgner, A.; Barzaghi, P.; Majdik, Z.; Gligorovski, S.; Poulain, L.; Monod, A.

    CAPRAM 3.0 is the latest development of the chemical aqueous phase radical mechanism (CAPRAM) series which is incorporating CAPRAM 2.4 (Ervens et al., 2003a, Journal of Geophysical Research—Atmospheres 108) and a new extended reaction mechanism for atmospherically relevant hydrocarbons containing more than two and up to six carbon atoms. The chemistry of organics containing three and four carbon atoms is now described in detail. Almost 400 new reactions are now implemented considering the chemistry of organic compounds containing different functional groups, i.e. alcohols, carbonyl compounds, mono- and dicarboxylic acids, polyfunctional compounds as well as some esters and one heterocyclic compound. The aqueous chemistry has been coupled to the gas phase mechanism RACM (regional atmospheric chemistry modeling) (Stockwell et al., 1997, Journal of Geophysical Research—Atmpspheres 102, 25847-25879), and phase exchange is treated using the resistance model of Schwartz (1986. In: Jaeschke, W. (Ed.), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Springer, Berlin, pp. 415-471). The CAPRAM remote scenario which was chosen as the standard scenario showed that the introduction of the higher organic chemistry has a relevant influence on the standard subsystems. The diurnal peak concentration of OH radical in the droplets decreases with about 40% and the reactions of OH with hydrocarbons containing 3 or 4 carbon atoms account for about 10% out of the total sinks of OH in the droplets. A slightly stronger acidification of the aqueous phase in comparison to CAPRAM 2.4 is observed. The simulations for the standard scenario showed that there is an increase of organic mass within the droplets where the organic compounds containing 4 carbon atoms represent the 67.5% of the total mass, whereas in the urban and in the marine scenario the contribution of two carbon atom compounds is dominating. The formation and accumulation of substituted mono- and dicarboxylic

  16. Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry.

    PubMed

    Sorenson, Gregory P; Schmitt, Adam K; Mahanthappa, Mahesh K

    2014-11-01

    Network phase aqueous lyotropic liquid crystals (LLCs) are technologically useful materials with myriad applications in chemistry, biology, and materials science, which stem from their structurally periodic aqueous and hydrophobic nanodomains (∼0.7-5.0 nm in diameter) that are lined with well-defined chemical functionalities. The exclusive observation of bicontinuous cubic network phase LLCs (e.g., double gyroid, double diamond, and primitive phases) has fueled speculations that all stable LLC network phases must exhibit cubic symmetry. Herein, we describe the self-assembly behavior of a simple aliphatic gemini surfactant that forms the first example of a triply periodic network phase LLC with the 3D-hexagonal symmetry P63/mcm (space group #193). This normal, tetracontinuous 3D-hexagonal network LLC phase HI(193) partitions space into four continuous and interpenetrating, yet non-intersecting volumes. This discovery directly demonstrates that the gemini amphiphile platform furnishes a rational strategy for discovering and stabilizing new, three-dimensionally periodic multiply continuous network phase LLCs with variable symmetries and potentially new applications. PMID:25182008

  17. Aqueous polymer two-phase systems formed by new thermoseparating polymers.

    PubMed

    Persson, J; Johansson, H O; Galaev, I; Mattiasson, B; Tjerneld, F

    2000-01-01

    A set of new polymers that can be used as phase forming components in aqueous two-phase systems is presented. All polymers studied have thermoseparating properties i.e. form one separate polymer enriched phase and one aqueous solution when heated above the critical temperature. This property makes the polymers attractive alternatives to the polymers used in traditional aqueous two-phase systems such as poly(ethylene glycol) (PEG) and dextran. The thermal phase separation simplifies recycling of the polymers, thus making the aqueous two-phase systems more cost efficient and suitable for use in large scale. Thermoseparating polymers studied have been copolymers of ethylene oxide and propylene oxide (EO-PO), poly (N-isopropylacrylamide) (poly-NIPAM), poly vinyl caprolactam (poly-VCL) and copolymers of N-isopropylacrylamide and vinyl caprolactam with vinyl imidazole (poly(NIPAM-VI) and poly(VCL-VI), respectively). In addition, the copolymer poly(NIPAM-VI) has the property to be uncharged at pH above 7.0 and positively charged at lower pH. This allows the partitioning of protein to be directed by changing the pH in the system instead of the traditional addition of salt to direct the partitioning. Hydrophobically modified EO-PO copolymer (HM-(EO-PO)) with alkyl groups (C14) at both ends forms two-phase system with for example poly(NIPAM-VI). The phase diagram for poly(NIPAM-VI)/HM-(EO-PO) was determined and the model proteins lysozyme and BSA were partitioned in this system. For BSA in poly(NIPAM-VI)/HM-(EO-PO) system a change in pH from 8.0 to 5.4 results in a change of partition coefficient from K = 0.8 to K = 5.1, i.e. BSA could be transferred from the HM-(EO-PO) phase to the poly(NIPAM-VI) phase. BSA partitioning in poly(NIPAM-VI)/HM-(EO-PO) system allows quantitative BSA recovery, and recoveries of poly(NIPAM-VI) and HM-(EO-PO) were 53% and 92%, respectively, after the thermoseparation step. PMID:10892544

  18. First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase

    SciTech Connect

    Yoon, Yeohoon; Rousseau, Roger J.; Weber, Robert S.; Mei, Donghai; Lercher, Johannes A.

    2014-07-23

    The effects of aqueous phase on the reactivity of phenol hydrogenation over Pt and Ni catalysts were investigated using density functional theory based ab initio molecular dynamics (AIMD) calculations. The adsorption of phenol and the first hydrogenation steps via three carbon positions (ortho, meta and para) with respect to the phenolic OH group were studied in both vacuum and liquid phase conditions. To gain insight into how the aqueous phase affects the metal catalyst surface, increasing water environments including singly adsorbed water molecule, mono- (9 water molecules), double layers (24 water molecules), and the bulk liquid water which (52 water molecules) on the Pt(111) and the Ni(111) surfaces were modeled. Compared to the vacuum/metal interfaces, AIMD simulation results suggest that the aqueous Pt(111) and Ni(111) interfaces have a lower metal work function in the order of 0.8 - 0.9 eV, thus, making the metals in aqueous phase stronger reducing agents and poorer oxidizing agents. Phenol adsorption from the aqueous phase is found to be slightly weaker that from the vapor phase. The first hydrogenation step of phenol at the ortho position of the phenolic ring is slightly favored over the other two positions. The polarization induced by the surrounding water molecules and the solvation effect play important roles in stabilizing the transition states associated with phenol hydrogenation by lowering the barriers of 0.1 - 0.4 eV. The detailed discussion on the basis of the interfacial electrostatics from the current study is very useful to understand the nature of a broader class of metal catalyzed reactions in liquid solution phase. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing

  19. Estimation of DNAPL dissolution stage from aqueous phase concentrations in rough-walled fractures

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jung; Yeo, In Wook

    2013-04-01

    Contamination of dense non-aqueous phase liquids (DNAPLs) poses a serious environmental problem. Because of higher density of DNAPLs than water, they migrate downward through water table, finally entering the fractures where they tend to be trapped as residual phases by capillary resistance of smaller apertures. It has been reported that many industrial complexes in Korea, placed on the fractured bedrock, have been contaminated by DNAPLs. Due to the way DNAPLs are discontinuously in small quantity at unfixed spots even within the site in Korea, DNAPL sources tend to exist scattered in the subsurface environment and are almost impossible to locate, especially in fractured bedrocks. Furthermore, DNAPL contamination is often found after a long period of time has passed since the contamination started. These characteristics of DNAPL contamination make it very difficult to infer DNAPL source configuration, which consequently leads to considerable uncertainties about the effective management and remediation of DNAPL contaminated site. This study aims to figure out DNAPL source zone configuration in rough-walled fractures, in particular dissolution stage of DNAPL, from downgradient aqueous phase concentrations. Interpretation and estimation of the dissolution stage are very important for the design and required time of site remediation. Numerical works have been systematically conducted with a single rough-walled fracture to investigate the interrelationship between DNAPL architecture and downgradient aqueous-phase contaminant concentrations. The finite element code was programmed for fluid flow and solute transport through a rough-walled fracture, which was incorporated with the dissolution kinetics. DNAPL is emplaced as residual phase in a rough-walled fracture with variable apertures measured from a real rock fracture, and the mass transfer is allowed to take place at the interface between DNAPL and flowing groundwater. The aqueous phase contaminant transports with

  20. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau

    2016-08-01

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

  1. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    PubMed

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  2. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production.

    PubMed

    Lian, Jieni; Garcia-Perez, Manuel; Coates, Ralph; Wu, Hongwei; Chen, Shulin

    2012-08-01

    The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid. PMID:22705522

  3. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOEpatents

    Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  4. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: a review.

    PubMed

    Tang, Malcolm S Y; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Show, Pau Loke

    2016-08-19

    It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology. PMID:27396920

  5. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  6. Ultradry Carbon Dioxide-in-Water Foams with Viscoelastic Aqueous Phases.

    PubMed

    Xue, Zheng; Worthen, Andrew J; Da, Chang; Qajar, Ali; Ketchum, Isaiah Robert; Alzobaidi, Shehab; Huh, Chun; Prodanović, Maša; Johnston, Keith P

    2016-01-12

    For foams with ultra low water contents, the capillary pressure is very large and induces rapid drainage that destabilizes the aqueous lamellae between the gas bubbles. However, we show that high-pressure CO2-in-water foams can be stabilized with a viscoelastic aqueous phase composed of entangled wormlike micelles, even for extremely high CO2 volume fractions ϕ of 0.95 to 0.98; the viscosity of these ultradry foams increased by up to 3-4-fold, reaching more than 100 cP relative to foams formed with conventional low viscosity aqueous phases. The foam morphology consisted of fine ∼20 μm polyhedral-shaped CO2 bubbles that were stable for hours. The wormlike micelles were formed by mixing anionic sodium lauryl ether sulfate (SLES) with salt and a protonated cationic surfactant, as shown by cryogenic transmission electron microscopy (cryo-TEM) and large values of the zero-shear viscosity and the dynamic storage and loss moduli. With the highly viscous continuous aqueous phases, the foam lamella drainage rates were low, as corroborated by confocal microscopy. The preservation of viscous thick lamellae resulted in lower rates of Ostwald ripening relative to conventional foams as shown by high-pressure optical microscopy. The ability to stabilize viscous ultra high internal phase foams is expected to find utility in various practical applications, including nearly "waterless" fracturing fluids for recovery of oil and gas in shale, offering the possibility of a massive reduction in the amount of wastewater. PMID:26666311

  7. Phase Stability of Chromium(III) Oxide Hydroxide in Alkaline Sodium Phosphate Solutions

    SciTech Connect

    S.E. Ziemniak; E.P. Opalka

    2003-07-08

    Grimaldiite ({alpha}-CrOOH) is shown to transform to a sodium-chromium(III)-hydroxyphosphate compound (SCHP) in alkaline sodium phosphate solutions at elevated temperatures via CrOOH(s) + 4Na{sup +} + 2HPO{sub 4}{sup 2-} = Na{sub 4}Cr(OH)(PO{sub 4}){sub 2}(s) + H{sub 2}O. X-ray diffraction analyses indicate that SCHP possesses an orthorhombic lattice having the same space group symmetry (Ibam, No.72) as sodium ferric hydroxyphosphate. A structurally-consistent designation for SCHP is Na{sub 3}Cr(PO{sub 4}){sub 2} {center_dot} NaOH; the molar volume of SCHP is estimated to be 1552 cm{sup 3}. The thermodynamic equilibrium for the above reaction was defined in the system Na{sub 2}O-P{sub 2}O{sub 5}-Cr{sub 2}O{sub 3}-H{sub 2}O for Na/P molar ratios between 2.0 and 2.4. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard molar entropy (S{sup o}), heat capacity (C{sub p}{sup o}) and free energy of formation ({Delta}G{sub f}{sup o}) for SCHP were calculated to be 690 J/(mol-K), 622 J/(mol-K) and -3509.97 kJ/mol, respectively.

  8. Representing effects of aqueous phase reactions in shallow cumuli in global models

    NASA Astrophysics Data System (ADS)

    Nie, Ji; Kuang, Zhiming; Jacob, Daniel J.; Guo, Jiahua

    2016-05-01

    Aqueous phase reactions are important, sometimes dominant (e.g., for SO2), pathways for the oxidation of air pollutants at the local and/or global scale. In many current chemical transport models (CTMs), the transport and aqueous reactions of chemical species are treated as split processes, and the subgrid-scale heterogeneity between cloudy and environmental air is not considered. Here using large eddy simulation (LES) with idealized aqueous reactions mimicking the oxidation of surface-originated SO2 by H2O2 in shallow cumuli, we show that the eddy diffusivity mass flux (EDMF) approach with a bulk plume can represent those processes quite well when entrainment/detrainment rates and eddy diffusivity are diagnosed using a conservative thermodynamic variable such as total water content. The reason is that a typical aqueous reaction such as SO2 aqueous oxidation is relatively slow compared to the in-cloud residence time of air parcels in shallow cumuli. As a result, the surface-originated SO2 is well correlated with and behaves like conservative thermodynamic variables that also have sources at the surface. Experiments with various reaction rate constants and relative abundances of SO2 and H2O2 indicate that when the reaction timescale approaches the in-cloud residence time of air parcels, the errors of the bulk plume approach start to increase. Treating chemical tracer transport and aqueous reaction as split processes leads to significant errors, especially when the reaction is fast compared to the in-cloud residence time. Overall, the EDMF approach shows large improvement over the CTM-like treatments in matching the LES results.

  9. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. PMID:21246746

  10. Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.

    PubMed

    Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein

    2015-09-30

    Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in

  11. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-08-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  12. Comparison of colorimetric methods for the quantification of model proteins in aqueous two-phase systems.

    PubMed

    Glyk, Anna; Heinisch, Sandra L; Scheper, Thomas; Beutel, Sascha

    2015-05-15

    In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore, a convenient dilution of both components (up to 1 and 5 wt%) before protein quantification is recommended in both assays, respectively, where the BCA assay is favored in comparison with the Bradford assay. PMID:25684109

  13. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation.

    PubMed

    Abulateefeh, Samer R; Alkilany, Alaaldin M

    2016-08-01

    The preparation of microcapsules consisting of poly(D,L-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.1 ± 0.39 μm (PDI = 0.35) with spherical surface morphology and internal poly-nuclear core morphology as indicated by scanning electron microscopy (SEM). The incorporation of water molecules into PLGA microcapsules was confirmed by differential scanning calorimetry (DSC). Aqueous core-PLGA shell microcapsules and the corresponding conventional PLGA microspheres were prepared and loaded with risedronate sodium as a model drug. Interestingly, aqueous core-PLGA shell microcapsules illustrated 2.5-fold increase in drug encapsulation in comparison to the classical PLGA microspheres (i.e., 31.6 vs. 12.7%), while exhibiting sustained release behavior following diffusion-controlled Higuchi model. The reported method could be extrapolated to encapsulate other water soluble drugs and hydrophilic macromolecules into PLGA microcapsules, which should overcome various drawbacks correlated with conventional PLGA microspheres in terms of drug loading and release. PMID:26416284

  14. Sponge Phases and Nanoparticle Dispersions in Aqueous Mixtures of Mono- and Diglycerides.

    PubMed

    Valldeperas, Maria; Wiśniewska, Małgorzata; Ram-On, Maor; Kesselman, Ellina; Danino, Dganit; Nylander, Tommy; Barauskas, Justas

    2016-08-30

    The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase. PMID:27482838

  15. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    PubMed Central

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  16. Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: Impact of electron donor and aqueous geochemistry

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Palladium catalysts offer the potential for the effective treatment of a variety of priority reducible pollutants in natural waters. In this study, microbially synthesized magnetite nanoparticles were functionalized with Pd(0), creating a highly reactive, magnetically recoverable, nano-scale catalyst (Pd-BnM). This was then investigated for the treatment of model Cr(VI) contaminated solutions at a range of pH values, and also alkaline Cr(VI) contaminated leachates from chromite ore processing residue (COPR); a contaminant issue of global concern. The sample of COPR used in this study was obtained from a site in Glasgow, UK, where extensive Cr(VI) contamination has been reported. In initial experiments Pd-BnM was supplied with H2 gas or formate as electron donors, and Cr(VI) removal from model synthetic solutions was quantified at various pH values (2–12). Effective removal was noted at neutral to environmentally relevant alkaline (pH 12) pH values, while the use of formate as an electron donor resulted in loss of performance under acidic conditions (pH 2). Reaction kinetics were then assessed with increasing Pd-BnM loading in both model pH 12 Cr(VI) solutions and the COPR leachate. When formate was used as the electron donor for Pd-BnM, to treat COPR leachate, there was significant inhibition of Cr(VI) removal. In contrast, a promotion of reaction rate, was observed when H2 was employed. Upon sustained reaction with model Cr(VI) solutions, in the presence of excess electron donor (formate or H2), appreciable quantities of Cr(VI) were removed before eventual inactivation of the catalyst. Faster onset of inactivation was reported in the COPR leachates, removing 4% and 64% of Cr(VI) observed from model Cr(VI) solutions, when formate and H2 were used as electron donors, respectively. XAS, TEM-EDX and XPS analysis of the catalysts that had been inactivated in the model solution, showed that the surface had an extensive covering of reduced Cr(III), most likely as a Cr

  17. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    SciTech Connect

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  18. Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms

    NASA Astrophysics Data System (ADS)

    Hassanizadeh, S.; Qin, C.

    2013-12-01

    In the presence of water and necessary nutrients, biofilms can grow on soil grain surfaces. They occupy void pore spaces blocking water flow. As a result, some hydrodynamic properties of porous media like porosity and permeability will be reduced. This ultimately leads to a condition known as bioclogging. Also, biofilms can degrade certain compounds. So, the features of bioclogging and biodegradation in porous media with biofilms have given rise to a broad range of environmental and engineering applications, such as bioremediation, biobarriers, microbial enhanced oil recovery, and protection of steel corrosion. To date, a number of macroscale and pore-scale models for describing biodegradation in porous media with biofilms are available in the literature. At the macro scale, to simplify numerical implementation, a ';one-equation' model is normally preferred. In this approach, only the solute concentration in aqueous phase is modeled associated with the consumption of solute in biofilms. Because the solute concentration in biofilms is different from that in aqueous phase, an effectiveness factor may be used in Monod kinetics for relating reaction rate within biofilms to the solute concentration in aqueous phase. Notice that this approach has its validity domains like local equilibrium and reaction-rate limited consumption. Another approach to modeling biodegradation is referred to as a ';two-equation' model, in which one needs to simultaneously track the solute concentrations in both aqueous phase and biofilms. In addition, the two concentrations may be related by a first-order kinetic mass exchange model. This first-rate exchange model is normally represented by a constant mas exchange coefficient multiplied by the concentration difference in the two domains. Here, one may question if complex advection-diffusion-reaction processes can be represented just by a constant mass exchange coefficient. In addition, the kinetic model of mass exchange between aqueous phase

  19. Distribution of selected halogenated organic compounds among suspended particulate, colloid, and aqueous phases in the Mississippi River and major tributaries

    USGS Publications Warehouse

    Rostad, C.E.; Daniel, S.R.

    2007-01-01

    Suspended particulate, colloid, and aqueous phases were separated and analyzed to determine spatial variation of specific organic compound transport associated with each phase in a dynamic river system. Sixteen sites along the Mississippi River and its major tributaries were sampled at low-flow conditions to maximize the possibility of equilibrium. Across the solubility range studied, the proportion transported by each phase depended on the compound solubility, with more water-soluble compounds (dacthal, trifluralin) transported predominantly in the aqueous phase and less-water soluble compounds (polychlorinated biphenyls, chlordane-related compounds) transported predominantly in the particulate and colloid phases. ?? 2007 Springer Science+Business Media, LLC.

  20. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D.; Baltensperger, U.

    2015-12-01

    The growth of aerosol due to the aqueous phase oxidation of SO2 by O3 was measured in laboratory generated clouds created in the CLOUD chamber at CERN. Experiments were performed at 10 and -10 °C, on acidic (sulphuric acid) and on partially to fully neutralised (ammonium sulphate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted by oxidation rates previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system are well represented by accepted rates, based on bulk measurements. To the best of our knowledge, these are the first laboratory based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rates to temperatures below 0 °C is correct.

  1. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D. R.; Baltensperger, U.

    2016-02-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and -10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  2. Purification of pea nodule symbiosomes using an aqueous polymer two-phase system.

    PubMed

    Hernández, L E; Rojas-Ojeda, P; Cooke, D T; Carpena-Ruiz, R

    1996-05-17

    Symbiosomes were obtained from mature pea (Pisum sativum cv. Argona) root nodules infected with Rhizobium leguminosarum strain (biov. viciae 3841) and purified using an aqueous polymer two-phase system (APS). The APS consists of a mixture of polymers, usually dextran T500 and poly(ethylene glycol) 3350, prepared as aqueous solutions on a weight per weight basis, where each fraction distributes according to their surface characteristics. Results of ATPase activity, cytochrome c oxidase activity, glucan synthase II activity, NAD(P)H-cytochrome c reductase activity, NO3(-)-sensitive ATPase activity, transport of [14C]malate vs. [14C]glutamate and MAC 57 antigen analysis showed that the APS method provided intact symbiosomes with low bacteroid, plasma membrane, endoplasmic reticulum and/or mitochondria contamination. No complicated equipment is needed and the method was simple and fast, compared with other purification techniques. PMID:8798895

  3. Remediation of Former Manufactured Gas Plant Tars Using Alkaline Flushing

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Rylander, S.; Birak, P. S.; Miller, C. T.

    2010-12-01

    The remediation of former manufactured gas plant (FMGP) tars in the subsurface is particularly difficult due to the wetting behavior and high viscosities of these dense non-aqueous liquids (DNAPLs). Alkaline flooding is a technique which has proven effective in improving the recovery of crude oils, which share some characteristics with FMGP tars. For this study, we measured the effect of NaOH solutions on interfacial tension and conducted column experiments to investigate the feasibility of applying this technique to FMGP tars. The pendant drop technique was used to measure interfacial tensions for solutions ranging from 0-1% NaOH. Column experiments were conducted by contaminating sands with tars recovered from a FMGP then flushing the columns with NaOH solutions. A final, 70% v/v ethanol cosolvent flush was conducted to investigate the effectiveness of a two-stage remediation approach. The mass removal of tar, as well as 26 individual PAHs, was measured, along with the aqueous phase mass flux of PAHs after each flushing stage. The interfacial tension was reduced from about 20 mN/m with pure water to a minimum of 0.05 mN/m at a concentration of 0.1% NaOH. In the column experiments, alkaline flushing resulted in a 50% reduction of the residual saturation. Aqueous phase PAH concentrations, however, were similar before and after the alkaline flushing stage. The combination of alkaline and cosolvent flushing resulted in an overall reduction of 95% of the total mass of the 16 EPA PAHs. Final aqueous phase concentrations were reduced significantly for lower molecular weight PAHs, but increased slightly for the higher molecular weight compounds, likely due to their increased mole fraction within the remaining tar. Additional work is being conducted to improve the effectiveness of the alkaline flushing through the use of surfactants and polymers.

  4. Ionic liquids for aqueous two-phase extraction and stabilization of enzymes.

    PubMed

    Dreyer, Susanne; Kragl, Udo

    2008-04-15

    The ionic liquid (IL) Ammoeng110 contains cations with oligoethyleneglycol units and was found to be highly effective for the formation of aqueous two-phase systems (ATPS) that can be used for the biocompatible purification of active enzymes. Above critical concentrations of the IL and an inorganic salt in aqueous solution, phase separation takes place resulting in the formation of an IL-enriched upper and a salt-enriched lower phase. For the optimization of the composition of IL-based ATPS with regard to the extraction of catalytically active enzymes, the Box-Wilson method of experimental design was successfully applied; IL-based ATPS proved to be suitable for the purification and stabilization of two different alcohol dehydrogenases (from Lactobacillus brevis and a thermophilic bacterium). Both enzymes were enriched in the IL-containing upper phase resulting in an increase of specific activity by a factor of 2 and 4 respectively. Furthermore, the presence of IL within the system provided the opportunity to combine the extraction process with the performance of enzyme-catalyzed reactions. The IL was found to exhibit a stability improving effect on both enzymes and a solubility enhancing effect on hydrophobic substrates. Thus the conversion and volumetric productivity of ADH catalyzed reduction of acetophenone could be increased significantly. PMID:18023057

  5. Magnetic aqueous two phase fishing: a hybrid process technology for antibody purification.

    PubMed

    Dhadge, Vijaykumar L; Rosa, Sara A S L; Azevedo, Ana; Aires-Barros, Raquel; Roque, Ana C A

    2014-04-25

    The potential to combine aqueous two-phase extraction (ATPE) with magnetic separation was here investigated with the aim of developing a selective non-chromatographic method for the purification of antibodies from cell culture supernatants. Aqueous two-phase systems (ATPS) composed of polyethylene glycol (PEG) and dextran were supplemented with several surface modified magnetic particles (MPs) at distinct salt concentrations. The partition of pure human IgG in the upper and lower phases as well as the amount adsorbed at the MPs surface was investigated, indicating that MPs coated with dextran and gum Arabic established the lowest amount of non-specific interactions. The binding capacity of gum arabic coated particles modified with aminophenyl boronic acid (GA-APBA-MP) was were found to be excellent in combination with the ATPS system, yielding high yields of antibody recovery (92%) and purity (98%) from cell culture supernatants. The presence of MPs in the ATPS was found to speed up phase separation (from 40 to 25min), to consume a lower amount of MPs (half of the amount needed in magnetic fishing) and to increase the yield and purity of a mAb purified from a cell culture supernatant, when compared with ATPE or magnetic fishing processes alone. PMID:24657147

  6. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. PMID:24491441

  7. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. PMID:24976128

  8. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres.

    PubMed

    Stenekes, R J; Franssen, O; van Bommel, E M; Crommelin, D J; Hennink, W E

    1999-06-10

    A novel procedure to prepare dextran microspheres, without the use of organic solvents was developed. The method is based on phase separation which occurs in aqueous solutions of PEG and methacrylated dextran (dexMA). After stirring this two phase system a water-in-water emulsion is formed. When dexMA forms the discontinuous phase, dextran microspheres can be obtained by polymerization of the methacryloyl groups attached to dextran. The aim of this study was to gain insight into the formulation parameters that affect the particle characteristics. Therefore, it was necessary to establish dexMA/PEG/water phase diagrams. Lower polymer molecular weights and higher degrees of MA substitution resulted in less pronounced phase separation (binodal shifts to higher concentrations). The volume weight mean microsphere diameter varied between 2.5 and 20 microm, depending on the viscosities of both phases and the PEG/dexMA volume ratio. A more viscous continuous phase and/or a less viscous discontinuous phase resulted in smaller microspheres. Furthermore, the particle size increased with decreasing PEG/dexMA volume ratios. The particle characteristics, like cross-link density, initial water content and size can be tailored by adjusting the formulation parameters. PMID:10361149

  9. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes.

    PubMed

    Le Grand, F; Cambert, M; Mariette, F

    2007-12-26

    Proton mobility was studied in molecular fractions of some model systems and of cake using a 1H nuclear magnetic resonance (NMR) relaxation technique. For cake, five spin-spin relaxation times (T2) were obtained from transverse relaxation curves: T2 (1) approximately 20 micros, T2 (2) approximately 0.2 ms, T2 (3) approximately 3 ms, T2 (4) approximately 50 ms, and T2 (2) approximately 165 ms. The faster component was attributed to the solid phase, components 2 and 3 were associated with the aqueous phase, and the two slowest components were linked to the lipid phase. After cooking, the crust contained more fat but less water than the center part of the cake. The amount of gelatinized starch was lower in the crust, and water was more mobile due to less interaction with macromolecules. This preliminary study revealed different effects of storage on the center and crust. PMID:18044835

  10. Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets

    NASA Astrophysics Data System (ADS)

    Jia, Tony Z.; Hentrich, Christian; Szostak, Jack W.

    2014-02-01

    Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.

  11. Rapid RNA exchange in aqueous two-phase system and coacervate droplets.

    PubMed

    Jia, Tony Z; Hentrich, Christian; Szostak, Jack W

    2014-02-01

    Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells. PMID:24577897

  12. Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Magaldi, Flavio Musa; Feitosa, Eloi; Pessoa, Adalberto

    2008-01-18

    The partition of hemoglobin, lysozyme and glucose-6-phosphate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na(2)SO(4), pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. PMID:18078945

  13. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    SciTech Connect

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  14. Development of gold electrocatalysts for alkaline media. Final report on phase 2

    SciTech Connect

    Taylor, E.J.

    1992-04-01

    A research program for the development of carbon-based gold electrode technologies for oxygen reduction in alkali media was conducted. A Phase I feasibility study established very favorable oxygen reduction kinetics on the Au(100) surface and developed a fabrication technique for producing small (less than 20A), highly dispersed gold electrocatalysts. The Phase II program consisted of two parts: (1) development of small, highly dispersed supported gold electrocatalysts and development of corrosion resistant support material for chlor-alkali applications, and (2) development of low-cost, high performance gold electrodes for a commercial oxygen gas sensor. For the oxygen sensor application, thirty electrodes, demonstrated for a period of six months, passed all performance criteria. The chlor-alkali applications included three fuel cell derived technologies: (1) fuel cell, (2) electrochemical concentrator, and (3) air-depolarized cell. Researchers investigated the effect of carbon support, gold catalyst content, and catalyst heat treatment temperature on electrode performance. An economic analysis of each of these technologies incorporated at a chlor-alkali facility was conducted.

  15. Demixing of aqueous polymer two-phase systems in low gravity

    NASA Technical Reports Server (NTRS)

    Bamberger, S.; Harris, J. M.; Baird, J. K.; Boyce, J.; Vanalstine, J. M.; Snyder, R. S.; Brooks, D. E.

    1986-01-01

    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered.

  16. Mapping the Complex Phase Behaviors of Aqueous Mixtures of κ-Carrageenan and Type B Gelatin.

    PubMed

    Cao, Yiping; Wang, Lu; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2015-07-30

    We report a detailed and complete phase diagram for an aqueous mixture of oppositely charged gelling biopolymers, type B gelatin and κ-carrageenan (KC) at pH 7.0. The phase diagram is studied in the ionic strength-temperature coordinate by means of turbidity, rheological and differential scanning calorimetric measurements, and macroscopic phase compositional analysis. Seven phase regions are identified, including (I) compatible region, (II) electrostatically induced associative phase separation (EIAPS) region, (III) hydrogen bonding induced associative phase separation (HBIAPS) region, (IV) coexistence of EIAPS and HBIAPS, (V) segregative phase separation (SPS) region, (VI) coexistence of HBIAPS and SPS, and (VII) SPS trapped by gelation. The HBIAPS reported for the first time here is attributed to the extensive hydrogen bonding formation between gelatin and KC above their conformational transition temperatures, as probed by addition of urea and methylene blue as well as by 2D (1)H-(1)H NOESY NMR. NaCl is found to have dual effects on HBIAPS. The electrostatic complexation at lower ionic strength facilitates the formation of hydrogen bonds between gelatin and KC and hence the HBIAPS. It is believed that the local structural arrangement of gelatin molecules or the change in local solvent environment prior to triple helix formation during cooling enables the formation of hydrogen bonds with KC. PMID:26147592

  17. ''Pulling'' Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of alpha-Cyclodextrin

    SciTech Connect

    Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H.

    2003-10-18

    (B204)This paper describes a general method to drastically improve the disparity of oleic acid stabilized nanoparticles in aqueous solutions. We use oleic acid stabilized monodisperse nanoparticles of iron oxides and silver as model systems, and have modified the surface properties of these nanoparticles through the formation of an inclusion complex between surface-bound surfactant molecules and alpha-cyclodextrin (alpha-CD). After the modification, the nanoparticles of both iron oxide and Ag can transfer from hydrophobic solvents, such as hexane, to alpha-CD aqueous phase. The efficiency of the phase transfer to the aqueous solutions depend son the initial alpha-CD concentration. The alpha-CD/oleic acid complex stabilized nanoparticles can be stable for long periods of time in aqueous phase under ambient atmospheric conditions. Transmission electron microscopy (TME), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, and colorimetric methods have been used in the characterization of these nanoparticles.

  18. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  19. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D.

    2013-06-01

    The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs) via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR) spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS). Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW), where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  20. Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles

    PubMed Central

    Oliveira, Rafael G.; Schneck, Emanuel; Funari, Sergio S.; Tanaka, Motomu; Maggio, Bruno

    2010-01-01

    Purified myelin can be spread as monomolecular films at the air/aqueous interface. These films were visualized by fluorescence and Brewster angle microscopy, showing phase coexistence at low and medium surface pressures (<20–30 mN/m). Beyond this threshold, the film becomes homogeneous or not, depending on the aqueous subphase composition. Pure water as well as sucrose, glycerol, dimethylsulfoxide, and dimethylformamide solutions (20% in water) produced monolayers that become homogeneous at high surface pressures; on the other hand, the presence of salts (NaCl, CaCl2) in Ringer's and physiological solution leads to phase domain microheterogeneity over the whole compression isotherm. These results show that surface heterogeneity is favored by the ionic milieu. The modulation of the phase-mixing behavior in monolayers is paralleled by the behavior of multilamellar vesicles as determined by small-angle and wide-angle x-ray scattering. The correspondence of the behavior of monolayers and multilayers is achieved only at high surface pressures near the equilibrium adsorption surface pressure; at lower surface pressures, the correspondence breaks down. The equilibrium surface tension on all subphases corresponds to that of the air/alkane interface (27 mN/m), independently on the surface tension of the clean subphase. PMID:20816062

  1. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP): potential atmospheric impacts

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Soong, R.; Simpson, A. J.; Abbatt, J. P. D.

    2013-02-01

    The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs) via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear resonance (1H NMR) spectroscopy and proton transfer reaction mass spectrometry (PTR-MS). Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water but may be present in the mM level in aerosol liquid water (ALW), where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  2. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    SciTech Connect

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  3. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  4. High-yield isolation of extracellular vesicles using aqueous two-phase system

    PubMed Central

    Shin, Hyunwoo; Han, Chungmin; Labuz, Joseph M.; Kim, Jiyoon; Kim, Jongmin; Cho, Siwoo; Gho, Yong Song; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Extracellular vesicles (EVs) such as exosomes and microvesicles released from cells are potential biomarkers for blood-based diagnostic applications. To exploit EVs as diagnostic biomarkers, an effective pre-analytical process is necessary. However, recent studies performed with blood-borne EVs have been hindered by the lack of effective purification strategies. In this study, an efficient EV isolation method was developed by using polyethylene glycol/dextran aqueous two phase system (ATPS). This method provides high EV recovery efficiency (~70%) in a short time (~15 min). Consequently, it can significantly increase the diagnostic applicability of EVs. PMID:26271727

  5. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System

    PubMed Central

    Kim, Jongmin; Shin, Hyunwoo; Kim, Jiyoon; Kim, Junho; Park, Jaesung

    2015-01-01

    We present a simple and rapid method to isolate extracellular vesicles (EVs) by using a polyethylene glycol/dextran aqueous two-phase system (ATPS). This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs. PMID:26090684

  6. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Williams, Thomas J.; Candela, Philip A.; Piccoli, Philip M.

    Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The Kaqm/meltH,Na and Kaqm/meltH,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of Kaqm/meltH,Na and Kaqm/meltH,K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: Kaqv/meltH,Na(vapor/melt)=26(+/-1.3) at 100 MPa (800 °C), and 19( +/- 7.0) at 50 MPa (850 °C) Kaqv/meltH,K=14(+/-1.1) at 100 MPa (800 °C), and 24(+/-12) at 50 MPa (850 °C) Kaqb/meltH,b(brine/melt)= 1.6(+/-0.7) at 100 MPa (800 °C), and 3.9(+/-2.3) at 50 MPa (850 °C) and Kaqb/meltH,K=2.7(+/-1.2) at 100 MPa (800 °C) and 3.8(+/-2.3) at 50 MPa (850 °C). Values for Kaqv/meltH,K and Kaqb/meltH,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point.

  7. Protein Phase Behavior in Aqueous Solutions: Crystallization, Liquid-Liquid Phase Separation, Gels, and Aggregates

    PubMed Central

    Dumetz, André C.; Chockla, Aaron M.; Kaler, Eric W.; Lenhoff, Abraham M.

    2008-01-01

    The aggregates and gels commonly observed during protein crystallization have generally been considered disordered phases without further characterization. Here their physical nature is addressed by investigating protein salting-out in ammonium sulfate and sodium chloride for six proteins (ovalbumin, ribonuclease A, soybean trypsin inhibitor, lysozyme, and β-lactoglobulin A and B) at 4°C, 23°C, and 37°C. When interpreted within the framework of a theoretical phase diagram obtained for colloidal particles displaying short-range attractive interactions, the results show that the formation of aggregates can be interpreted theoretically in terms of a gas-liquid phase separation for aggregates that are amorphous or gel-like. A notable additional feature is the existence of a second aggregation line observed for both ovalbumin and ribonuclease A in ammonium sulfate, interpreted theoretically as the spinodal. Further investigation of ovalbumin and lysozyme reveals that the formation of aggregates can be interpreted, in light of theoretical results from mode-coupling theory, as a kinetically trapped state or a gel phase that occurs through the intermediate of a gas-liquid phase separation. Despite the limitations of simple theoretical models of short-range attractive interactions, such as their inability to reproduce the effect of temperature, they provide a framework useful to describe the main features of protein phase behavior. PMID:18160663

  8. Partition of volatile compounds in pea globulin-maltodextrin aqueous two-phase system.

    PubMed

    Nguyen, Thanh Dat; Lafarge, Céline; Murat, Chloé; Mession, Jean-Luc; Cayot, Nathalie; Saurel, Rémi

    2014-12-01

    This study is based on the assumption that the off-flavour of pea proteins might be decreased using the retention of volatile compounds by a mixture with another biopolymer. The partition of volatile compounds in an aqueous system containing pea protein and maltodextrins was followed under thermodynamic incompatibility conditions. Firstly, the phase diagram of the system was established. Then, the partition of aroma compounds between the phase rich in protein and the phase rich in maltodextrin was measured by SPME-GC-MS. There was a transfer of volatile compounds during phase separation. Variations of pH were also used to vary the retention of volatile compounds by proteins. The concentration of volatile compounds in protein solution at pH 2.4 was higher than at pH 7.2. It was possible to increase the transfer of volatile compounds from the phase rich in protein to the phase rich in maltodextrin using the effect of pH on protein denaturation. PMID:24996351

  9. Studies on aqueous two phase polymer systems useful for partitioning of biological materials

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S.

    1982-01-01

    The two phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) (PEG) are mixed above a critical concentration of a few percent provide a useful medium for the separation of biological cell subpopulations via partition between the top, PEG-rich phase and the liquid-liquid phase boundary. Interfacial tensions of such systems have been measured by the rotating drop technique and found to range between 0.1-100 micro-N/m. The tension was found to depend on the length of the tie line describing the system on a phase diagram, via a power law relationship which differed depending on the concentration of Na phosphate buffer present. The electrokinetic properties of drops of one phase suspended in the other were studied for a variety of systems. It was found that the droplet electrophoretic mobility increased monotonically with phosphate concentration and drop diameter but exhibited the opposite sign from that anticipated from phosphate partition measurements. It was possible to take advantage of these electrokinetic properties and dramatically enhance the speed of phase separation through application of relatively small electric fields.

  10. A theory of electrophoresis of emulsion drops in aqueous two-phase polymer systems

    NASA Technical Reports Server (NTRS)

    Levine, S.

    1982-01-01

    An electrophoresis study has been carried out in an emulsion formed from an electrically neutral aqueous mixture of dextran and polyethylene glycol equilibrated at sufficient concentrations in the presence of electrolytes. Electrophoresis of a drop of one phase suspended in the other is observed, and the direction of the drop's motion is reversed when the disperse phase and the continuous phase are interchanged. In the presence of sulfate, phosphate, or citrate ions, an electrostatic potential difference of the order of a few mV exists between the two phases. The potential implied by the direction of the electrophoretic motion is opposite to the Donnan potential observed between the two phases. The mobility of an emulsion drop increases with the drop radius and depends on ion concentration. These results are explained in terms of a model postulating an electric dipole layer associated with a mixture of oriented polymer molecules at the surface of a drop, with a potential difference between the interiors of the two phases resulting from the unequal ion distribution.

  11. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  12. Laboratory studies of humidity-driven phase transitions of perchlorate/chloride mixtures: Relevance to aqueous phases on Mars

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Tolbert, M. A.

    2012-12-01

    Perchlorate salts, known to exist on Mars, can readily absorb water vapor and deliquesce into aqueous solution. We have previously studied pure perchlorate and found that the deliquescence relative humidity (DRH) is <60% regardless of cation, hydration state or temperature (223 to 273 K). We have also shown that efflorescence (recrystallization) of perchlorate solutions is kinetically hindered, allowing supersaturation to occur at RH values below the DRH. In addition to perchlorate, Phoenix instruments found chloride, sulfate, carbonate, magnesium, sodium, potassium and calcium in the Martian regolith. The vertical and spatial distributions of these ions are unknown, but all were present in a single 1 g sample. It is therefore likely that these ions coexist with perchlorate. Many salts likely present in the regolith are less deliquescent than perchlorates, and it is important to understand how these additional species will affect perchlorate deliquescence. Here we study deliquescence (solid to aqueous transition) and efflorescence (aqueous to solid transition) of 3 perchlorate/chloride systems: KClO4/KCl at 253 K and NaClO4/NaCl and Mg(ClO4)2/MgCl2 at 243 and 253 K. A Raman microscope and environmental cell were used to monitor phase transitions of internally mixed perchlorate/chloride particles. The eutonic RH, where an aqueous phase first forms, is 30% RH for Mg(ClO4)2/MgCl2, 38% RH for NaClO4/NaCl and 82% RH for KClO4/KCl mixtures regardless of initial composition. We observed complete deliquescence of all salt mixtures at RH values below the DRH of the least deliquescent pure salt. When humidity is lowered, efflorescence of all solutions occurred below the DRH suggesting supersaturated solutions can exist. The low eutonic RH values of the sodium and magnesium perchlorate/chloride mixtures are significant for Mars, as these humidities can be reached at the Martian surface. It is likely that some salts in the regolith may exist as stable or metastable solutions

  13. The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol.

    PubMed Central

    López-García, F; Villalaín, J; Gómez-Fernández, J C; Quinn, P J

    1994-01-01

    The phases and transition sequences for aqueous dispersions of mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycerol (1,2-DPG) have been studied by differential scanning calorimetry, dynamic x-ray diffraction, freeze-fracture electron microscopy, 31P-nuclear magnetic resonance spectroscopy, and Fourier-transform infrared spectroscopy. The results have been used to construct a dynamic phase diagram of the binary mixture as a function of temperature over the range 20 degrees-90 degrees C. It is concluded that DPPC and 1,2-DPG form two complexes in the gel phase, the first one with a DPPC/1,2-DPG molar ratio of 55:45 and the second one at a molar ratio of approximately 1:2, defining three different regions in the phase diagram. Two eutectic points are postulated to occur: one at a very low 1,2-DPG concentration and the other at a 1,2-DPG concentration slightly higher than 66 mol%. At temperatures higher than the transition temperature, lamellar phases were predominant at low 1,2-DPG concentrations, but nonlamellar phases were found to be predominant at high proportions of 1,2-DPG. A very important aspect of these DPPC/1,2-DPG mixtures was that, in the gel phase, they showed a ripple structure, as seen by freeze-fracture electron microscopy and consistent with the high lamellar repeat spacings seen by x-ray diffraction. Ripple phase characteristics were also found in the fluid lamellar phases occurring at concentrations up to 35.6 mol% of 1,2-DPG. Evidence was obtained by Fourier transform infrared spectroscopy of the dehydration of the lipid-water interface induced by the presence of 1,2-DPG. The biological significance of the presence of diacylglycerol in membrane lipid domains is discussed. Images FIGURE 5 PMID:8075333

  14. Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model

    USGS Publications Warehouse

    Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.

    2015-01-01

    Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.

  15. Equilibrium phase diagrams and water absorption properties of aqueous mixtures of malonic acid and inorganic salts.

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Salgado-Olea, G.

    2006-12-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. Solubility in water, water activity of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid with ammonium sulfate, ammonium bisulfate, and ammonium nitrate at 25oC over the full range of composition (from 0 wt% to the solubility limit of the mixture components). The data was used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity. Measured water activity of liquid solutions was compared with an extended Zdanovskii-Stokes-Robinson (ZSR) expression, which then was used to predict water absorption of the mixtures.

  16. Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system.

    PubMed

    de Lemos, Leandro Rodrigues; Santos, Igor José Boggione; Rodrigues, Guilherme Dias; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2012-10-30

    We investigated the extraction behavior of Cu(II) in the aqueous two-phase system (ATPS) formed by (L35+MgSO(4)+H(2)O) or (L35+(NH(4))(2)SO(4)+H(2)O) in the presence of the extracting agent 1-(2-pyridylazo)-2-naphthol (PAN). At pH=3 and a PAN concentration of 0.285 mmol kg(-1), both ATPS lead to the effective separation of Cu(II) from other metallic ions (Zn(II), Co(II), Ni(II) and Fe(III)). High separation factors range between 1000 and 10,000 were obtained for the extraction of Cu(II) and concomitant metallic ions. This ATPS was used for the extraction of Cu(II) from a leached ore concentrate with a extraction percentage of 90.4 ± 1.1%; other metals were mainly located in the bottom phase. PMID:22959476

  17. Partition features and renaturation enhancement of chymosin in aqueous two-phase systems.

    PubMed

    Reh, Georgina; Spelzini, Dario; Tubío, Gisela; Picó, Guillermo; Farruggia, Beatriz

    2007-12-01

    Aqueous two-phase systems of polyethylene glycol (molecular mass 1450, 3350 and 6000)-phosphate and polyethylene-polypropylene oxide (molecular mass 8400)-maltodextrin systems were used in order to study the partition features of recombinant chymosin from inclusion bodies. These systems in the presence of 8M urea were used for the solubilization of inclusion bodies containing recombinant chymosin and for the oxidative renaturation of this protein. Recombinant chymosin showed to be partitioned in favour of the top phase in all studied systems with a partition coefficient between 4 and 6. The recovery of the chymosin biological activity was 32% in the polyethylene-polypropylene oxide, while in the polyethylene glycol-phosphate the recovery was 50-59%. The results indicate that the liquid-liquid extraction would be an adequate tool able to isolate and concentrate chymosin from inclusion bodies with a yield of biological activity higher than that obtained from the standard method (43%). PMID:17988962

  18. Nickel (II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions

    SciTech Connect

    SE Ziemniak; MA Goyette

    2004-06-17

    A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of nickel(II) oxide (NiO) in deoxygenated ammonium and sodium hydroxide solutions between 21 and 315 C. Solubilities were found to vary between 0.4 and 400 nmol kg{sup -1}. The measured nickel ion solubilities were interpreted via a Ni(II) ion hydroxo-and amino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. Two solid phase transformations were observed: at temperatures below 149 C, the activity of Ni(II) ions in aqueous solution was controlled by a hydrous Ni(II) oxide (theophrastite) solid phase rather than anhydrous NiO (bunsenite); above 247 C, Ni(II) activities were controlled by cubic rather than rhombohedral bunsenite.

  19. Nickel(II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions

    SciTech Connect

    S.E. Ziemniak; M.A. Goyette

    2003-03-17

    A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of nickel(II) oxide (NiO) in deoxygenated ammonium and sodium hydroxide solutions between 21 and 315 C. Solubilities were found to vary between 0.4 and 400 nanomolal (nm). The measured nickel ion solubilities were interpreted via a Ni(II) ion hydroxo- and amino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. Two solid phase transformations were observed: at temperatures below 149 C, the activity of Ni(II) ions in aqueous solution was controlled by a hydrous Ni(II) oxide (theophrastite) solid phase rather than anhydrous NiO (bunsenite); above 247 C, Ni(II) activities were controlled by cubic rather than rhombohedral bunsenite.

  20. Molecular dynamics simulations on aqueous two-phase systems - Single PEG-molecules in solution

    PubMed Central

    2012-01-01

    Background Molecular Dynamics (MD) simulations are a promising tool to generate molecular understanding of processes related to the purification of proteins. Polyethylene glycols (PEG) of various length are commonly used in the production and purification of proteins. The molecular mechanisms behind PEG driven precipitation, aqueous two-phase formation or the effects of PEGylation are however still poorly understood. Results In this paper, we ran MD simulations of single PEG molecules of variable length in explicitly simulated water. The resulting structures are in good agreement with experimentally determined 3D structures of PEG. The increase in surface hydrophobicity of PEG of longer chain length could be explained on an atomic scale. PEG-water interactions as well as aqueous two-phase formation in the presence of PO4 were found to be correlated to PEG surface hydrophobicity. Conclusions We were able to show that the taken MD simulation approach is capable of generating both structural data as well as molecule descriptors in agreement with experimental data. Thus, we are confident of having a good in silico representation of PEG. PMID:22873343

  1. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 1: Aging processes of oligomers

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Salque, G.; Demelas, C.; Coulomb, B.; Vassalo, L.; Ravier, S.; Temime-Roussel, B.; Voisin, D.; Monod, A.

    2015-01-01

    It has recently been established that unsaturated water-soluble organic compounds (UWSOCs) might efficiently form oligomers in polluted fogs and wet aerosol particles, even for weakly soluble ones like methyl vinyl ketone (MVK). The atmospheric relevance of these processes is explored by means of multiphase process model studies in a companion paper. In the present study, we investigate the aging of these aqueous-phase MVK oligomers formed via •OH oxidation, as well as their ability to form secondary organic aerosol (SOA) upon water evaporation. The comparison between aqueous-phase composition and aerosol composition after nebulization of the corresponding solutions shows similar trends for oligomer formation and aging. The measurements reveal that oligomer aging leads to the formation of organic diacids. Quantification of the SOA mass formed after nebulization is performed, and the obtained SOA mass yields seem to depend on the spectral irradiance of the light used to initiate the photochemistry. Investigating a large range of initial MVK concentrations (0.2-20 mM), the results show that their •OH oxidation undergoes competition between functionalization and oligomerization that is dependent on the precursor concentration. At high initial MVK concentrations (≥ 2 mM), oligomerization prevails over functionalization, while at lower initial concentrations, oligomerization is not the major process, and functionalization dominates, resulting in small carbonyls, dicarbonyls and monoacids. The atmospheric implications of these processes are discussed.

  2. Ionic liquid-based aqueous two-phase system extraction of sulfonamides in milk.

    PubMed

    Shao, Mingyuan; Zhang, Xuli; Li, Na; Shi, Jiayuan; Zhang, Huijie; Wang, Zhibing; Zhang, Hanqi; Yu, Aimin; Yu, Yong

    2014-06-15

    A simple method for the determination of six sulfonamides (SAs) in milk samples was developed. 1-Butyl-3-methylimidazolium tetrafluoroborate and trisodium citrate dihydrate were used to form aqueous two-phase system. The aqueous two phase system was applied to the extraction of the SAs and the determination of the analytes was performed by high-performance liquid chromatography. To achieve optimum extraction performance, several experimental parameters, including the type and the amount of salt, the type and amount of ionic liquid, ultrasonic time and pH of sample solution, were investigated and optimized. Under the optimal experimental conditions, good linearity was observed in the range of 8.55-1036.36ngmL(-1). The limits of detection and quantification were in the range of 2.04-2.84 and 6.73-9.37ngmL(-1), respectively. The present method was successfully applied to the determination of SAs in milk samples, and the recoveries of analytes were in the range of 72.32-108.96% with relative standard deviations ranging from 0.56 to 12.20%. The results showed that the present method was rapid, feasible and environmentally friendly. PMID:24854709

  3. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.

    PubMed

    D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. PMID:23592593

  4. AqueousPhase Synthesis of PAA in PVDF Membrane Pores for Nanoparticle Synthesis and Dichlorobiphenyl Degradation

    PubMed Central

    Smuleac, V.; Bachas, L.; Bhattacharyya, D.

    2009-01-01

    This paper deals with bimetallic (Fe/Pd) nanoparticle synthesis inside the membrane pores and application for catalytic dechlorination of toxic organic compounds form aqueous streams. Membranes have been used as platforms for nanoparticle synthesis in order to reduce the agglomeration, encountered in solution phase synthesis which leads to a dramatic loss of reactivity. The membrane support, polyvinylidene fluoride (PVDF) was modified by in situ polymerization of acrylic acid in aqueous phase. Subsequent steps included ion exchange with Fe2+, reduction to Fe0 with sodium borohydride and Pd deposition. Various techniques, such as STEM, EDX, FTIR and permeability measurements, were used for membrane characterization and showed that bimetallic (Fe/Pd) nanoparticles with an average size of 20-30 nm have been incorporated inside of the PAA-coated membrane pores. The Fe/Pd–modified membranes showed a high reactivity toward a model compound, 2, 2′-dichlorobyphenyl and a strong dependence of degradation on Pd (hydrogenation catalyst) content. The use of convective flow substantially reduces the degradation time: 43% conversion of dichlorobiphenyl to biphenyl can be achieved in less than 40 s residence time. Another important aspect is the ability to regenerate and reuse the Fe/Pd bimetallic systems by washing with a solution of sodium borohydride, because the iron becomes inactivated (corroded) as the dechlorination reaction proceeds. PMID:20161475

  5. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    DOE PAGESBeta

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage.more » Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.« less

  6. Effect of high pressure homogenization on aqueous phase solvent extraction of lipids from Nannochloris Oculata microalgae

    SciTech Connect

    Samarasinghe, Nalin; Fernando, Sandun; Faulkner, William B.

    2012-12-01

    The ability to extract lipids from high-moisture Nannochloris Oculata algal biomass disrupted with high pressure homogenization was investigated. During the first phase, the effect of high pressure homogenization (system pressure and number of passes) on disrupting aqueous algae (of different concentrations and degree of stress) was investigated. Secondly, the effect of degree of cell wall disruption on the amount of lipids extracted with three solvents, namely: hexane, dichloromethane and chloroform, were compared. Studies reveled that high pressure homogenization is effective on cell disruption while the amount of system pressure being the most significant factor affecting the degree of cell breakage. Although the number of passes had some impact, the level of disruption seemed to level-off after a certain number of passes. The study revealed that slightly polar solvents (such as chloroform and dichloromethane) performed better in aqueous-phase lipid extractions as compared to hexane. Also, it was revealed that it was not necessary to disrupt the algal cells completely to achieve appreciable levels of lipid yields. In fact, conditions that exerted only 20% of the cells to completely disrupt, allowed sufficient damage to liberate most of the lipids contained in the remainder of the cells.

  7. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.

    PubMed

    Torri, Cristian; Fabbri, Daniele

    2014-11-01

    Intermediate pyrolysis produces a two-phase liquid whose aqueous phase is characterized by low heating value and high water content (aqueous pyrolysis liquid, APL). Anaerobic digestion can be the straightest way to produce a fuel (methane) from this material. Batch tests showed poor performance in anaerobic digestion of APL, which underlined the inhibition of biological process. Nutrient supplementation was ineffective, whereas biochar addition increased yield of methane (60±15% of theoretical) with respect to pure APL (34±6% of theoretical) and improved the reaction rate. On the basis of batch results, a semi-continuous biomethanation test was set up, by adding an increasingly amount of APL in a 30ml reactor preloaded with biochar (0.8gml(-1)). With a daily input of 5gd(-1)l(-1) of APL (corresponding to overall amount of 0.1kgl(-1) added before the end of the study) the yield of methane was 65±5% of the theoretical. PMID:25277261

  8. Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties.

    PubMed

    Prajapati, Yogendra N; Bhaduri, Bhaskar; Joshi, Harish C; Srivastava, Anurag; Verma, Nishith

    2016-07-01

    The effect that the textural properties of rayon-based activated carbon fibers (ACFs), such as the BET surface area and pore size distribution (PSD), have on the adsorption of differently sized molecules, namely, brilliant yellow (BY), methyl orange (MO) and phenol (PH), was investigated in the aqueous phase. ACF samples with different BET areas and PSDs were produced by steam-activating carbonized fibers for different activation times (0.25, 0.5, and 1 h). The samples activated for 0.25 h were predominantly microporous, whereas those activated for relatively longer times contained hierarchical micro-mesopores. The adsorption capacities of the ACFs for the adsorbate increased with increasing BET surface area and pore volume, and ranged from 51 to 1306 mg/g depending on the textural properties of the ACFs and adsorbate size. The adsorption capacities of the hierarchical ACF samples followed the order BY > MO > PH. Interestingly, the number of molecules adsorbed by the ACFs followed the reverse order: PH > MO > BY. This anomaly was attributed to the increasing molecular weight of the PH, MO and BY molecules. The equilibrium adsorption data were described using the Langmuir isotherm. This study shows that suitable textural modifications to ACFs are required for the efficient aqueous phase removal of an adsorbate. PMID:27107386

  9. Phase separation in aqueous solutions of lens gamma-crystallins: special role of gamma s.

    PubMed Central

    Liu, C; Asherie, N; Lomakin, A; Pande, J; Ogun, O; Benedek, G B

    1996-01-01

    We have studied liquid-liquid phase separation in aqueous ternary solutions of calf lens gamma-crystallin proteins. Specifically, we have examined two ternary systems containing gamma s--namely, gamma IVa with gamma s in water and gamma II with gamma s in water. For each system, the phase-separation temperatures (Tph (phi)) alpha as a function of the overall protein volume fraction phi at various fixed compositions alpha (the "cloud-point curves") were measured. For the gamma IVa, gamma s, and water ternary solution, a binodal curve composed of pairs of coexisting points, (phi I, alpha 1) and (phi II, alpha II), at a fixed temperature (20 degrees C) was also determined. We observe that on the cloud-point curve the critical point is at a higher volume fraction than the maximum phase-separation temperature point. We also find that typically the difference in composition between the coexisting phases is at least as significant as the difference in volume fraction. We show that the asymmetric shape of the cloud-point curve is a consequence of this significant composition difference. Our observation that the phase-separation temperature of the mixtures in the high volume fraction region is strongly suppressed suggests that gamma s-crystallin may play an important role in maintaining the transparency of the lens. PMID:8552642

  10. Alkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases

    SciTech Connect

    Robertson, LA; Schenkel, MR; Wiesenauer, BR; Gin, DL

    2013-01-01

    New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br-, BF4-, or Tf2N- anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.

  11. Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B.

    PubMed

    Worakitkanchanakul, Wannasiri; Imura, Tomohiro; Fukuoka, Tokuma; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Rujiravanit, Ratana; Chavadej, Sumaeth; Minamikawa, Hiroyuki; Kitamoto, Dai

    2008-08-01

    Mannosylerythritol lipids (MELs) are one of the most promising glycolipid biosurfactants produced by yeast strains of the genus Pseudozyma. In this study, the aqueous-phase behavior of a new monoacetyl MEL derivative, 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-d-mannopyranosyl)-d-erythritol (MEL-B), was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), confocal laser scanning microscopy (CLSM), and differential scanning calorimetry (DSC). The present MEL-B was found to self-assemble into a lamellar (L(alpha)) phase over remarkably wide concentration and temperature ranges. According to SAXS measurement, the interlayer spacing (d) was estimated to be almost constant (about 4.7 nm) at the low MEL-B concentration (phase is in equilibrium with the excess water phase (L(alpha)+W). On the other hand, at high MEL-B concentration (>60 wt.%) region, the d-spacing gradually decreased to 3.1 nm with an increase in the MEL-B concentration. The thermal stability of the liquid crystalline phase was investigated by DSC measurement. The obtained L(alpha) phase was found to be stable up to 95 degrees C below a MEL-B concentration of 85 wt.%; then, the melting temperature of the liquid crystalline phase dramatically decreased with an increase in MEL-B concentration (above 85 wt.%). Furthermore, we found relatively large vesicles (1-5 microm) at the low MEL-B concentration using CLSM observation. The trapped volume of the obtained MEL-B vesicle was estimated to be about 0.42 microL/mumol by glucose dialysis method. These results suggest that the natural glycolipid biosurfactant, the newly found MEL-B, would be useful in various fields of applications as an L(alpha) phase- and/or vesicle-forming lipid. PMID:18456469

  12. Process for extracting technetium from alkaline solutions

    SciTech Connect

    Moyer, B.A.; Sachleben, R.A.; Bonnesen, P.V.

    1994-12-31

    This invention relates generally to a process for extracting technetium from nuclear wastes and more particularly to a process for extracting technetium from alkaline waste solutions containing technetium and high concentrations of alkali metal nitrates. A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate comprises the steps of: contacting the aqueous alkaline solution with a solvent consisting of a crown ether in a diluent, the diluent being a water-immiscible organic liquid in which the crown ether is soluble, for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution into the solvent; separating the solvent containing the technetium values from the aqueous alkaline solution; and stripping the technetium values from the solvent by contacting the solvent with water.

  13. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  14. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  15. Aqueous Two-Phase System (ATPS) Containing Gemini (12-3-12,2Br-)and SDS 1: Phase Diagram and Properties of ATPS

    SciTech Connect

    Shang, Yazhuo; Liu, Honglai; Hu, Ying; Prausnitz, John M.

    2005-07-21

    Two phases coexist in an aqueous system that contains the two surfactants cationic gemini 12-3-12,2Br- and anionic SDS. An aqueous two-phase system (ATPS) is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In that region, the molar ratio of gemini to SDS varies with the total concentration of surfactants. ATPS not only has higher stability but also has longer phase separation time for the new systems than that of the traditional system. Furthermore, the optical properties of ATPS are different at different total concentrations. All of these experimental observations can be attributed to the unique properties of gemini surfactant and the synergy between the cationic gemini surfactant and the anionic surfactant SDS.

  16. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    NASA Technical Reports Server (NTRS)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  17. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (±0.5) × 10(9) and 3.1 (±0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation. PMID:26299576

  18. Physical and rheological characterisation of polyethylene glycol-cashew-nut tree gum aqueous two-phase systems.

    PubMed

    Oliveira, L A; Sarubbo, L A; Porto, A L F; Lima-Filho, J L; Campos-Takaki, G M; Tambourgi, E B

    2002-01-01

    The characterisation of the polyethylene glycol-cashew-nut tree gum aqueous two-phase system is described. Factors which affect the phase diagram including polymer molecular mass, pH and temperature were analysed. The physico-chemical properties of the system such as density, viscosity, volume ratio and phase separation times were also described. The characteristics of the system studied indicate it to be very attractive as a separation technique. PMID:11824395

  19. Sonochemical preparation of copper sulfides with different phases in aqueous solutions

    SciTech Connect

    Kristl, Matjaž; Hojnik, Nuša; Gyergyek, Sašo; Drofenik, Miha

    2013-03-15

    Highlights: ► Sonochemical preparation of copper sulfides in aqueous solutions is reported. ► CuS and Cu{sub 2}S nanoparticles with crystallite sizes between 7 and 18 nm were obtained. ► Crystallite size can be changed using different complexing agents. ► Thermal behavior was studied by TG and XRD measurements. - Abstract: There is a growing interest in the synthesis of nanostructured copper sulfides due to their ability to form compounds with various stoichiometries. We report a sonochemical route for the preparation of copper sulfides with different compositions in aqueous solutions, using different, general and convenient copper sources such as copper acetate, copper hydroxide or basic copper carbonate and thiourea or thioacetamide as sulfur precursors under ambient air. Phase analysis, purity and morphology of the products were studied by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results revealed that nanoparticles of covellite, CuS, with crystallite sizes between 7 and 18 nm can be obtained by using different precursors and complexing agents and that chalcocite, Cu{sub 2}S, can also be prepared sonochemically.

  20. A theory of the chain melting phase transition of aqueous phospholipid dispersions.

    PubMed Central

    Jacobs, R E; Hudson, B; Andersen, H C

    1975-01-01

    A model for the chain melting phase transition in dilute aqueous phospholipid bilayer dispersions is presented. This model includes interactions between head groups, between hydrocarbon chains, and within the chains. The head groups are modeled as hard disks which are constrained to lie on a two-dimensional surface separating the aqueous and hydrocarbon regions. The chain statistics problem is treated in an approximate manner using an approach motivated by scaled particle theory to describe the inter-chain steric repulsions in a mathematically tractable way. In this approach the whole system interacts with any given chain through an average lateral pressure which is proportional to the hard disk pressure. Following Nagle, we assume that the steric repulsions between chains and between head groups and the trans-gauche rotation energies are the dominant interactions in determining the transition and we describe the effect of the other interactions with a mean field approximation. Using the known transition temperature of a series of 1,2-diacyl phosphatidyl cholines to adjust two parameters in the theory, the model gives enthalpy and area changes that are in quite reasonable agreement with experiment. Moreover, the curvature observed in the plot of the transition temperature against acyl chain length is reproduced. PMID:1060080

  1. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon. PMID:24351110

  2. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2014-03-01

    We report Resonance Raman Spectroscopy (RRS) measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from 457 nm to 850 nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer with a liquid-nitrogen-cooled detector. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from the Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  3. Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes Separated via Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Simpson, J. R.; Fagan, J. A.; Hight Walker, A. R.

    2015-03-01

    We report resonance Raman Spectroscopy measurements of single-wall carbon nanotube (SWCNT) samples dispersed in aqueous solutions via surfactant wrapping and separated using aqueous two-phase extraction (ATPE) into chirality-enriched semiconducting and metallic SWCNT species. ATPE provides a rapid, robust, and remarkably tunable separation technique that allows isolation of high-purity, individual SWCNT chiralities via modification of the surfactant environment. We report RRS measurements of individual SWCNT species of various chiral index including, semiconductors, armchair and zigzag metals. Raman provides a powerful technique to quantify the metallic SWCNTs in ATPE fractions separated for metallicity. We measure Raman spectra over a wide range of excitation wavelengths from (457 to 850) nm using a series of discrete and continuously tunable laser sources coupled to a triple-grating spectrometer. The spectra reveal Raman-active vibrational modes, including the low-frequency radial breathing mode (RBM) and higher-order modes. SWCNT chiral vectors are determined from Raman spectra, specifically the RBM frequencies and corresponding energy excitation profiles, together with input from theoretical models.

  4. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  5. Unusual liquid-liquid phase transition in aqueous mixtures of a well-known dendrimer.

    PubMed

    da Costa, Viviana C P; Annunziata, Onofrio

    2015-11-21

    Liquid-liquid phase separation (LLPS) has been extensively investigated for polymer and protein solutions due to its importance in mixture thermodynamics, separation science and self-assembly processes. However, to date, no experimental studies have been reported on LLPS of dendrimer solutions. Here, it is shown that LLPS of aqueous solutions containing a hydroxyl-functionalized poly(amido amine) dendrimer of fourth generation is induced in the presence of sodium sulfate. Both the LLPS temperature and salt-dendrimer partitioning between the two coexisting phases at constant temperature were measured. Interestingly, our experiments show that LLPS switches from being induced by cooling to being induced by heating as the salt concentration increases. The two coexisting phases also show opposite temperature response. Thus, this phase transition exhibits a simultaneous lower and upper critical solution temperature-type behavior. Dynamic light-scattering and dye-binding experiments indicate that no appreciable conformational change occurs as the salt concentration increases. To explain the observed phase behavior, a thermodynamic model based on two parameters was developed. The first parameter, which describes dendrimer-dendrimer interaction energy, was determined by isothermal titration calorimetry. The second parameter describes the salt salting-out strength. By varying the salting-out parameter, it is shown that the model achieves agreement not only with the location of the experimental binodal at 25 °C but also with the slope of this curve around the critical point. The proposed model also predicts that the unusual temperature behavior of this phase transition can be described as the net result of two thermodynamic factors with opposite temperature responses: salt thermodynamic non-ideality and salting-out strength. PMID:26451401

  6. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  7. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Ravier, S.; Clément, J.-L.; Monod, A.

    2014-08-01

    We developed a chemical mechanism based on laboratory experiments that have shown efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. The mechanism is then implemented into a multiphase box model that simulates (i) oligomer formation upon uptake of MVK from the gas phase, and (ii) SOA formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. Model results show that under atmospheric conditions, the oligomer formation rate strongly depends on the availability of dissolved oxygen. If oxygen is consumed too quickly or its solubility is kinetically or thermodynamically limited, oligomerization is accelerated, in agreement with the laboratory studies. The comparison of predicted oligomer formation shows that for most model assumptions (e.g. depending on the assumed partitioning of MVK and MACR), SOA formation from isoprene in the gas phase exceeds aqueous SOA formation by a factor 3-4. However, at high aerosol liquid water content and potentially high partitioning of oligomer precursors into the aqueous phase, SOA formation in both phases might be equally efficient.

  8. Interference of salts used on aqueous two-phase systems on the quantification of total proteins.

    PubMed

    Golunski, Simone Maria; Sala, Luisa; Silva, Marceli Fernandes; Dallago, Rogério Marcos; Mulinari, Jéssica; Mossi, Altemir José; Brandelli, Adriano; Kalil, Susana Juliano; Di Luccio, Marco; Treichel, Helen

    2016-02-01

    In this study the interference of potassium phosphate, sodium citrate, sodium chloride and sodium nitrate salts on protein quantification by Bradford's method was assessed. Potassium phosphate and sodium citrate salts are commonly used in aqueous two-phase systems for enzyme purification. Results showed that the presence of potassium phosphate and sodium citrate salts increase the absorbance of the samples, when compared with the samples without any salt. The increase in absorptivity of the solution induces errors on protein quantification, which are propagated to the calculations of specific enzyme activity and consequently on purification factor. The presence of sodium chloride and sodium nitrate practically did not affect the absorbance of inulinase, probably the metals present in the enzyme extract did not interact with the added salts. PMID:26616454

  9. Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis

    SciTech Connect

    Wang, Hang; Zhou, Wu; Liu, JinXun; Si, Rui; Sun, Geng; Zhong, Mengqi; Su, Haiyan; Zhao, Huabo; Rodrigues, Jose; Pennycook, Stephen J; Idrobo Tapia, Juan C; Li, Weixue; Kou, Yuan; Ma, Ding

    2013-01-01

    Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.

  10. Microfluidic study on CNT dispersion during breakup of aqueous alginic acid drop in continuous PDMS phase

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hong; Nam, Young Woo; Hong, Joung Sook

    2013-02-01

    Microfluidic study is performed to investigate how multi-walled carbon nanotube (CNTs) aggregates disperse in blend system during morphology evolution. As the dispersed phase, a drop containing CNT is generated at the flow focusing and it deforms through a contraction channel (gap and width of contraction ˜ 100 μm). When an aqueous polymeric drop (2 wt% alginic acid) with CNT (0.05 wt% or 0.5 wt%) is stretched through a 4:1 contraction channel, CNT aggregates enhances breakup of the stretched drop. Also, small droplets including CNTs are pinched off during relaxation of the stretched drop. Based on these observations, it is found that CNTs disperse in a multiphase system by repetitive breakup process during mixing rather than migration driven by chemical affinity.

  11. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa.

    PubMed

    Gai, Chao; Zhang, Yuanhui; Chen, Wan-Ting; Zhou, Yan; Schideman, Lance; Zhang, Peng; Tommaso, Giovana; Kuo, Chih-Ting; Dong, Yuping

    2015-05-01

    This study investigated the characteristics of aqueous phase from hydrothermal liquefaction of low-lipid microalgae Chlorella pyrenoidosa. The interactions of operating conditions, including reaction temperature, retention time and total solid ratio were evaluated by response surface methodology. The chemical oxygen demand, total nitrogen and total phosphorus were selected as indicators of the property of AP. Results indicated that total solid ratio was found to be the dominant factor affecting the nutrient recovery efficiencies of AP. Based on energy recovery, GC-MS indicated that the AP at two optimized operating conditions (280 °C, 60 min, 35 wt.% and 300 °C, 60 min, 25 wt.%) were observed to have a higher concentration of organic acids (10.35% and 8.34%) while the sample (260 °C, 30 min, 35 wt.%) was observed to have the highest concentration of N&O-heterocyclic compounds (36.16%). PMID:25466993

  12. Oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite under phase transfer conditions

    SciTech Connect

    Grigoryan, G.S.; Karoyan, I.L.; Malkhasyan, A.Ts.; Martirosyan, G.T.; Artamkina, G.A.; Beletskaya, I.P.

    1987-11-10

    In the industrial process for the production of chloroprene from butadiene, the problem of reducing the organic impurities in the waste water to 2000 mg/liter has not yet been solved. A method has been patented for the oxidation of organic compounds by sodium hypochlorite at high temperatures and high pressure but this method is limited by the oxidation of soluble organic compounds. The oxidation of 1,4-dichloro-2-butene by aqueous sodium hypochlorite was studied. A sharp increase in the reaction rate was found in the presence of phase transfer catalysts and surfactants. The involvement of oxygen as a cooxiant and the effect of surfactants on the absorption of atmospheric oxygen by the reaction system were demonstrated.

  13. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates

    NASA Astrophysics Data System (ADS)

    Huber, George W.; Chheda, Juben N.; Barrett, Christopher J.; Dumesic, James A.

    2005-06-01

    Liquid alkanes with the number of carbon atoms ranging from C7 to C15 were selectively produced from biomass-derived carbohydrates by acid-catalyzed dehydration, which was followed by aldol condensation over solid base catalysts to form large organic compounds. These molecules were then converted into alkanes by dehydration/hydrogenation over bifunctional catalysts that contained acid and metal sites in a four-phase reactor, in which the aqueous organic reactant becomes more hydrophobic and a hexadecane alkane stream removes hydrophobic species from the catalyst before they go on further to form coke. These liquid alkanes are of the appropriate molecular weight to be used as transportation fuel components, and they contain 90% of the energy of the carbohydrate and H2 feeds.

  14. Volumetric monitoring of aqueous two phase system droplets using time-lapse optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, J.; Bathany, C.; Ahn, Y.; Takayama, S.; Jung, W.

    2016-02-01

    We present a volumetric monitoring method to observe the morphological changes of aqueous two phase system (ATPS) droplets in a microfluidic system. Our method is based on time-lapse optical coherence tomography (OCT) which allows the study of the dynamics of ATPS droplets while visualizing their 3D structures and providing quantitative information on the droplets. In this study, we monitored the process of rehydration and deformation of an ATPS droplet in a microfluidic system and quantified the changes of its volume and velocity under both static and dynamic fluid conditions. Our results indicate that time-lapse OCT is a very promising tool to evaluate the unprecedented features of droplet-based microfluidics.

  15. Adaptation of the perfluorocarbon tracer technology for aqueous-phase studies in subsurface applications

    SciTech Connect

    Senum, G.I.; Goodrich, R.W.; Wilson, R.; Dietz, R.N.

    1990-01-01

    The perfluorocarbon tracer (PFT) technology as developed by the Tracer Technology Center at Brookhaven National Laboratory can be easily adapted for use as in aqueous-phase tracer studies in subsurface hydrological applications. The advantages of the PFT technology in this application is that it is a multi-tracer technology, up to 5 or 6 PFTs may be used in an experiment, the PFTs are completely non-toxic and inert, the PFTs can be detected to 4 orders greater sensitivity than fluorescent dyes. The disadvantages are that the PFTs are only sparingly soluble in water and are also volatile. They are minimized by the PFT deployment and sampling methodologies which are given in this report. 15 refs., 3 tabs.

  16. Direct recovery of cyclodextringlycosyltransferase from Bacillus cereus using aqueous two-phase flotation.

    PubMed

    Lin, Yu Kiat; Show, Pau Loke; Yap, Yee Jiun; Tan, Chin Ping; Ng, Eng-Poh; Ariff, Arbakariya B; Mohamad Annuar, Mohamad Suffian B; Ling, Tau Chuan

    2015-12-01

    Purification of cyclodextrin glycosyl transferase (CGTase) from Bacillus cereus using polyethylene glycol (PEG)-potassium phosphates aqueous two-phase flotation (ATPF) system was studied in this paper. The effects of varying PEG molecular weight, tie-line length (TLL) value, volume ratio (VR), pH value, crude concentration and gas nitrogen flotation time were investigated. The optimal condition for purification of CGTase was attained at 18.0% (w/w) PEG 8000, 7.0% (w/w) potassium phosphates, VR of 3.0, 20% (w/w) crude load at pH 7, and 80 min nitrogen flotation time at a flow rate of 5 L/min. With this optimal condition, purification factor (PFT) of 21.8 and a yield (YT) of 97.1% were attained. CGTase was successfully purified in a single downstream processing step using the ATPF. PMID:26111602

  17. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  18. Softness and non-spherical shape define the phase behavior and the structural properties of lysozyme in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Baumketner, A.; Melnyk, R.; Holovko, M. F.; Cai, W.; Costa, D.; Caccamo, C.

    2016-01-01

    In this study, Boltzmann inversion is applied in conjunction with molecular dynamics simulations to derive inter-molecular potential for protein lysozyme in aqueous solution directly from experimental static structure factor. The potential has a soft repulsion at short distances and an attraction well at intermediate distances that give rise to the liquid-liquid phase separation. Moreover, Gibbs ensemble Monte Carlo simulations demonstrate that a non-spherical description of lysozyme is better suited to correctly reproduce the experimentally observed properties of such a phase separation. Our findings shed new light on the common problem in molecular and cell biology: "How to model proteins in their natural aqueous environments?"

  19. Softness and non-spherical shape define the phase behavior and the structural properties of lysozyme in aqueous solutions.

    PubMed

    Baumketner, A; Melnyk, R; Holovko, M F; Cai, W; Costa, D; Caccamo, C

    2016-01-01

    In this study, Boltzmann inversion is applied in conjunction with molecular dynamics simulations to derive inter-molecular potential for protein lysozyme in aqueous solution directly from experimental static structure factor. The potential has a soft repulsion at short distances and an attraction well at intermediate distances that give rise to the liquid-liquid phase separation. Moreover, Gibbs ensemble Monte Carlo simulations demonstrate that a non-spherical description of lysozyme is better suited to correctly reproduce the experimentally observed properties of such a phase separation. Our findings shed new light on the common problem in molecular and cell biology: "How to model proteins in their natural aqueous environments?" PMID:26747821

  20. Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase

    PubMed Central

    2014-01-01

    Background In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. Results The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. Conclusion In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase. PMID:24955242

  1. The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour

    PubMed Central

    Neves, Catarina M. S. S.; Kurnia, Kiki A.; Shimizu, Karina; Marrucho, Isabel M.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Lopes, José N. Canongia

    2014-01-01

    In this work, we demonstrate that the presence of fluorinated alkyl chains in Ionic Liquids (ILs) is highly relevant in terms of their thermophysical properties and aqueous phase behaviour. We have measured and compared the density and viscosity of pure 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1im][FAP], with that of pure 1-ethyl-3-methylimidazolium hexafluorophosphate, [C2C1im][PF6], at atmospheric pressure and in the (288.15 to 363.15) K temperature range. The results show that the density of [C2C1im][PF6] is lower than that of [C2C1im][FAP], while the viscosity data reveal the opposite trend. The fluid phase behaviour of aqueous solutions of the two ILs was also evaluated under the same conditions and it was found that the mutual solubilities of [C2C1im][FAP] and water are substantially lower than those verified with [C2C1im][PF6]. The experimental data were lastly interpreted at a molecular level using Molecular Dynamics (MD) simulation results revealing that the interactions between the IL ions and the water molecules are mainly achieved via the six fluorine atoms of [PF6]− and the three analogues in [FAP]−. The loss of three interaction centres when replacing [PF6]− by [FAP]−, coupled with the bulkiness and relative inertness of the three perfluoroethyl groups, reduces its mutual solubility with water and also contributes to a lower viscosity displayed by the pure [FAP]-based IL as compared to that of the [PF6]-based compound. PMID:25179181

  2. Hydration State and Aqueous Phase Connectivity Shape Microbial Dispersal Rates in Unsaturated Angular Pore Networks

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2014-12-01

    The limited dispersal of self-propelled microorganisms and constrained nutrient transport in unsaturated soils are considered key factors in the promotion and maintenance of soil microbial diversity. Despite the importance of microbial dispersal to biogeochemical and ecological functioning of soil, little is known about how pore spaces and hydration conditions affect dispersal ranges and rates of motile bacteria. To address these questions quantitatively, we developed a novel 3-D pore network model (PNM) composed of triangular bonds connected to cubic (volumeless) bonds to mimic the salient geometrical and physical properties of natural pore spaces. Within this abstracted physical domain we employed individual based models for motile microorganisms that are capable of motion, nutrient consumption, growth and cell division. We focused on dispersal rates through the network as a function of hydration conditions through its impact on aqueous phase fragmentation that suppress nutrient diffusion (hence growth rates) and dispersal rates in good agreement with limited experimental data. Chemotactically-biased mean travel rates of microbial cells across the saturated PNM was ~3 mm/hr and decreased exponentially to 0.45 mm/hr for matric potential of (at dispersal practically ceases and cells are pinned by capillary forces). Individual-based results were upscaled to describe population scale dispersal rates, and PNM predictions considering different microbial cell sizes were in good agreement with experimental results for unsaturated soils. The role of convection for most unsaturated conditions was negligible relative to self-motility highlighting the need to constrain continuum models with respect to cell size and motility to imporve predictions of transport of motile microorganisms. The modeling platform confirms universal predictions based on percolation theory for the onset of aqueous phase fragmentation that limit dispersal and provide niches essential for species

  3. A HRMS study of oligomer formation through aqueous phase photooxidation of methylvinyl-ketone and methacrolein

    NASA Astrophysics Data System (ADS)

    Salque-moreton, G.; Liu, Y.; Voisin, D.; Siekmann, F.; Renard, P.; Monod, A.; Thissen, R.

    2012-04-01

    Global estimates of secondary organic aerosol (SOA) formation flux show that the current descriptions miss a large fraction of the sources. Aqueous phase photochemistry in cloud droplets and deliquescent aerosol may provide some of this missing flux. Organic reactions in those media, particularly leading to higher molecular weight products thus need better understanding. Here, we investigated the aqueous phase photooxidation of methacrolein (MACR) and methylvinyl-ketone (MVK), which are the two main oxidation products of isoprene, the volatile organic compound (VOC) that is mostly emitted on the global scale. In our experiments, photolysis of H2O2 provided OH radicals whose reaction with MACR or MVK produced oligomers. Firstly, oligomers were analyzed using electrospray ionization coupled with high-resolution linear ion trap Orbitrap™ (Thermo Corp.) mass spectrometer (HRMS). This technique enabled to propose the unambiguous elemental composition of the produced compounds as data were collected for a mass range of m/z 50-2000 amu. The mass of oligomers increased strongly in positive and negative ionization modes when initial concentrations of MACR and MVK were increased from 2 to 20 mM. Typical regular patterns of oligomer formation were observed for both precursors, and extended up to 1400 amu. These patterns were very different from each other for the two precursors although both showed regular mass differences of 70 amu. In addition, we used a Kendrick analysis and identified more than 20 distinct chemical oligomer series produced by photooxidation of both MACR and MVK, some of which reaching more than 1400 amu. The HRMS investigations allowed us to propose a mechanism of production of oligomers. Upon nebulization, both oligomer systems produce SOA with a mass yield of 2-12%. This mass yield increases with reaction time and precursor concentration. Moreover, time evolution of the oligomer systems observed with the Orbitrap will be compared to HR

  4. Confounding effects of aqueous-phase impinger chemistry on apparent oxidation of mercury in flue gases

    SciTech Connect

    Brydger Cauch; Geoffrey D. Silcox; Joann S. Lighty; Jost O.L. Wendt; Andrew Fry; Constance L. Senior

    2008-04-01

    Gas-phase reactions between elemental mercury and chlorine are a possible pathway to producing oxidized mercury species such as mercuric chloride in combustion systems. This study examines the effect of the chemistry of a commonly used sample conditioning system on apparent and actual levels of mercury oxidation in a methane-fired, 0.3 kW, quartz-lined reactor in which gas composition (HCl, Cl{sub 2}, NOx, SO{sub 2}) and quench rate were varied. The sample conditioning system included two impingers in parallel: one containing an aqueous solution of KCl to trap HgCl{sub 2}, and one containing an aqueous solution of SnCl{sub 2} to reduce HgCl{sub 2} to elemental mercury (Hg{sup 0}). Gas-phase concentrations of Cl{sub 2} as low as 1.5 ppmv were sufficient to oxidize a significant fraction of the elemental mercury in the KCl impinger via the hypochlorite ion. Furthermore, these low, but interfering levels of Cl{sub 2} appeared to persist in flue gases from several doped rapidly mixed flames with varied post flame temperature quench rates. The addition of 0.5 wt% sodium thiosulfate to the KCl solution completely prevented the oxidation from occurring in the impinger. The addition of thiosulfate did not inhibit the KCl impinger's ability to capture HgCl{sub 2}. The effectiveness of the thiosulfate was unchanged by NO or SO{sub 2}. These results bring into question laboratory scale experimental data on mercury oxidation where wet chemistry was used to partition metallic and oxidized mercury without the presence of sufficient levels of SO{sub 2}. 23 refs., 5 figs., 1 tab.

  5. Variation of penicillin acylase partition coefficient with phase volume ratio in poly(ethylene glycol)-sodium citrate aqueous two-phase systems.

    PubMed

    Marcos, J C; Fonseca, L P; Ramalho, M T; Cabral, J M

    1998-06-26

    The influence of phase volume ratio on partition and purification of penicillin acylase from Escherichia coli on poly(ethylene glycol)-sodium citrate aqueous two-phase systems was studied. In PEG 1000 systems both partition coefficients of the enzyme and total protein increased with decreasing phase volume ratio. However, in PEG 3350 containing NaCl, penicillin acylase follows a reverse trend, while total protein behaves in the same way. Implications for protein purification designs are discussed. PMID:9699998

  6. Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking.

    PubMed

    Gao, Lili; Yin, Huayi; Mao, Xuhui; Zhu, Hua; Xiao, Wei; Wang, Dihua

    2015-09-01

    Separation and reuse of dispersed nanoparticles are major obstacles to the extensive application of nano-sized absorbents in wastewater treatment. Herein, we demonstrate the capability of directing acid-oxidized carbon nanotubes (CNTs) as the transfer vehicles of heavy metal ions from simulated wastewater. The heavy metal-loaded CNTs can be readily separated from the aqueous phase via the aggregation process at an oil/water (o/w) interface. The minimum surfactant amount to achieve 99 % transfer ratio (Tr) of 100 mg/L CNTs from water phase to o/w interface was ∼0.01 mM. The adsorption experiments showed that the removal efficiency of the divalent lead ions increased with an increase in CNT mass, and the subsequent addition of cetyltrimethylammonium bromide (CTAB) surfactant did not negatively impact the removal of soluble divalent lead species (Pb(II)). In a wide region of pH and ionic strength, both the decontamination of Pb(II) and the transfer of CNTs from water phase to o/w interface can be accomplished successively. The method presented in this study may be developed as a generic one for collecting or recycling the pollutant-loaded nano-sized absorbents. PMID:25966885

  7. Huaier Aqueous Extract Induces Hepatocellular Carcinoma Cells Arrest in S Phase via JNK Signaling Pathway

    PubMed Central

    Zhang, Chengshuo; Zhang, Jialin; Li, Xin; Sun, Ning; Yu, Rui; Zhao, Bochao; Yu, Dongyang; Cheng, Ying; Liu, Yongfeng

    2015-01-01

    Huaier aqueous extract, the main active constituent of Huaier proteoglycan, has antihepatocarcinoma activity in experimental and clinical settings. However, the potential and associated antihepatoma mechanisms of Huaier extract are not yet fully understood. Therefore, in this study, we aimed to elucidate the inhibitory proliferation effect of Huaier extract on apoptosis and cycle of HepG2 and Bel-7402 cells. Our data demonstrated that incubation with Huaier extract resulted in a marked decrease in cell viability dose-dependently. Flow cytometric analysis showed that a 48 h treatment of Huaier extract caused cell apoptosis. Typical apoptotic nucleus alterations were observed with fluorescence microscope after Hoechst staining. Immunoblot analysis further demonstrated that Huaier extract activated caspase 3 and PARP. Additionally, Huaier extract inhibited the activity of p-ERK, p-p38, and p-JNK in terms of MAPK. Furthermore, Huaier extract induced HCC cells arrest in S phase and decreased the cycle related protein expression of β-catenin and cyclin D1. Studies with JNK specific inhibitor, SP600125, showed that Huaier extract induced S phase arrest and decreased β-catenin and cyclin D1 expression via JNK signaling pathway. In conclusion, we verify that Huaier extract causes cell apoptosis and induces hepatocellular carcinoma cells arrest in S phase via JNK pathway, which advances our understanding on the molecular mechanisms of Huaier extract in hepatocarcinoma management. PMID:26229542

  8. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    NASA Astrophysics Data System (ADS)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  9. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures.

    PubMed

    Kanno, H; Kajiwara, K; Miyata, K

    2010-05-21

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (Rphase-separated components in the DMSO solution of R=10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa. PMID:20499975

  10. How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.

    2014-12-01

    The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the

  11. A novel procedure for phase separation in dispersive liquid-liquid microextraction based on solidification of the aqueous phase.

    PubMed

    March, J G; Cerdà, V

    2016-08-15

    In this paper, an alternative for handling the organic phase after a dispersive liquid-liquid microextraction using organic solvents lighter than water is presented. It is based on solidification (at -18°C) of the aqueous phase obtained after centrifugation, and the decantation, collection and analysis of the liquid organic layer. The extraction of nicotine in toluene, and its determination in eggplant samples was conducted as a proof of concept. The study has been carried out using standards prepared in water and the formation of the dispersion was assisted by sonication. The organic extract was analysed using gas chromatography coupled to mass spectrometry. Satisfactory analytical figures of merit as: limit of detection (0.4µgL(-1), 2ngg(-1) wet sample), limit of quantification (1.2µgL(-1), 6.5ngg(-1) wet sample), within-day precision (RSD=7%), and linearity interval (up to 384µgL(-1) nicotine) were achieved. It constituted a contribution to the handling of organic extracts after microextraction processes. PMID:27260454

  12. FT-IR investigation of the partitioning of sodium bis(2-ethylhexyl) sulfosuccinate between an aqueous and a propane phase

    SciTech Connect

    Yee, G.G.; Fulton, J.L.; Blitz, J.P.; Smith, R.D. )

    1991-02-07

    The partitioning of the surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) from a buffered aqueous phase into a near-critical propane phase was investigated by using Fourier transform infrared spectroscopy. The partitioning of AOT is shown to be dependent upon the fluid pressure as well as upon the molar water-to-surfactant ratio, W. The uptake of water into the propane microemulsion phase coincides with the partitioning of AOT. The phase behavior of this system appears to be controlled by the attractive interactions between droplets in the microemulsion phase, as well as from limitations upon the curvature of the interfacial surfactant layer. Potential application of these systems for separations are discussed.

  13. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  14. Push pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination

    NASA Astrophysics Data System (ADS)

    Davis, B. M.; Istok, J. D.; Semprini, L.

    2002-09-01

    Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment

  15. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    NASA Astrophysics Data System (ADS)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  16. Phase behavior of ABC-type triple-hydrophilic block copolymers in aqueous solutions.

    PubMed

    Zheng, Lingfei; Wu, Jianqi; Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui

    2016-07-01

    The phase behavior of symmetric ABC triple-hydrophilic triblock copolymers in concentrated aqueous solutions is investigated using a simulated annealing technique. Two typical cases, in which the hydrophilicity of the middle B-block is either stronger or weaker than that of the end A- and C-blocks, are studied. In these two cases, a variety of phase diagrams are constructed as a function of the volume fraction of the B-block and the copolymer concentration ([Formula: see text] for both non-frustrated and frustrated copolymers. Structures, such as two-color alternatingly packed cylinders or gyroid, and lamellae-in-lamellae etc. that do not occur in the melt system, are obtained in solutions. Rich phase transition sequences, especially re-entrant phase transitions involving complex continuous networks of alternating gyroid and alternating diamond are observed for a given copolymer with decreasing [Formula: see text] . The difference in hydrophilicity among different blocks can result in inhomogeneous distribution of solvent molecules in the morphology, and with the decrease of [Formula: see text] , the distribution of solvent molecules presents a non-monotonic variation. This results in a non-monotonic variation of the effective volume fraction of each domain with the decrease of [Formula: see text] , which induces the re-entrant phase transitions. The presence of a good solvent for all the blocks can cause changes in the effective segregation strengths between different blocks and also in chain conformations, hence can alter the bulk phases and results in the occurrence of new structures and phase transitions. Especially, structures having A-C interfaces or A-C mixed domains can be obtained even in the non-frustrated copolymer systems, and structures obtained in the frustrated systems may be similar to those obtained in the non-frustrated systems. The window of the alternating gyroid structures may occupy a large part of the phase diagram for non

  17. Recovery of crocins from saffron stigmas (Crocus sativus) in aqueous two-phase systems.

    PubMed

    Montalvo-Hernández, Bertha; Rito-Palomares, Marco; Benavides, Jorge

    2012-05-01

    Crocins are carotenoid derivates that have recently attracted the interest of the scientific community due to their nutraceutical properties. Saffron (dry Crocus sativus stigmas) is one of the main known sources of crocins. In this study the potential use of aqueous two-phase system (ATPS) for the extraction of crocins from C. sativus stigmas was evaluated. The partitioning behavior of crocins in different types of ATPS (polymer-polymer, polymer-salt, alcohol-salt and ionic liquid-salt) was evaluated. Ethanol-potassium phosphate ATPS were selected based on their high top phase recovery yield and low cost of system constituents. The evaluation and optimization of system parameters rendered conditions (V(R)=3.2, ethanol 19.8% (w/w), potassium phosphate 16.5% (w/w), TLL of 25% (w/w), 0.1M NaCl and 2% (w/w) of sample load) under which more than 75% of total crocins were recovered in the top (ethanol rich) phase, whereas the wasted stigmas accumulated in the bottom phase. Lastly, a comparison between an optimized solid-liquid extraction using ethanol:water as solvent and ATPS was conducted demonstrating that similar yields are achieved with both strategies (76.89 ± 18% and 79.27 ± 1.6%, respectively). However, ATPS rendered a higher extraction selectivity of 1.3 ± 0.04 mg of crocins for each mg of phenolic compound, whereas ethanolic extraction showed a selectivity of 0.87 ± 0.01. The results reported herein demonstrate the potential application of ATPS, particularly ethanol-potassium phosphate systems, for the recovery of crocins from C. sativus stigmas. PMID:22463999

  18. Aqueous two-phase systems: a new approach for the determination of p-aminophenol.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; Patrício, Pamela da Rocha; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol

    2011-08-15

    A new method has been developed for the spectrophotometric determination of p-aminophenol (PAP) in water, paracetamol formulations and human urine samples with a recovery rate between 94.9 and 101%. This method exploits an aqueous two-phase system (ATPS) liquid-liquid extraction technique with the reaction of PAP, sodium nitroprusside and hydroxylamine hydrochloride in pH 12.0, which produces the [Fe(2)(CN)(10)](10-) anion complex that spontaneously concentrates in the top phase of the ATPS ([Formula in text]). The ATPS does not require an organic solvent, which is a safer and cleaner liquid-liquid extraction technique for the determination of PAP. The linear range of detection was from 5.00 to 500 μg kg(-1) (R ≥ 0.9990; n=8) with a coefficient of variation of 2.11% (n=5). The method exhibited a detection limit of 2.40 μg kg(-1) and a quantification limit of 8.00 μg kg(-1). The ATPS method showed a recovery that ranged between 96.4 and 103% for the determination of PAP in natural water and wastewater samples, which was in excellent agreement with the results of the standard 4-aminoantipyrine method that was performed on the same samples. PMID:21632175

  19. Monosegmented flow analysis exploiting aqueous two-phase systems for the determination of cobalt.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2012-01-01

    An environmentally safe procedure has been developed for the extraction, separation and determination of metal ions using a monosegmented flow analysis technique that exploits an aqueous two-phase system (ATPS-MSFA). The ATPS-MSFA method was applied for the determination of cobalt, based on the reaction between Co(II) and KSCN, which produces a metallic complex that spontaneously partitions to the top phase of the ATPS composed of poly(ethylene oxide), ammonium sulfate and water. The linear range was 5.00 to 500 μmol kg(-1) (R = 0.9998; n = 13) with a coefficient of variation equal to 1.14% (n = 7). The method yielded a limit of detection and a limit of quantification of 2.17 and 7.24 μmol kg(-1), respectively. The ATPS-MSFA method was applied to the determination of cobalt in a nickel-cadmium battery sample and the results were validity with flame atomic absorption spectrometry using addition standard. PMID:23232244

  20. Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample.

    PubMed

    Flieger, J; Czajkowska-Żelazko, A

    2015-01-01

    Aqueous two phase system was applied for selective extraction of quinine from human plasma. Bi-phase was constructed from ionic liquid: butyl-methyl-imidazolium chloride after addition kosmotropic salts K₃PO₄ or KH₂PO₄. Quinine was determined in plasma samples after drinking of tonic containing quinine. Determination was performed by HPLC on 5-μm Zorbax SB-CN column and eluent containing 40% acetonitrile (v/v), 20 mM phosphate buffer at pH 3 and 40 mM NaPF₆ using external standard method. The spectrophotometric detection was set λ=214 nm. Selective fluorescence detection was performed at excitation of 325 nm and emission of 375 nm. Proposed strategy provides suitable sample purification and gives extraction yields in the range of 89-106%. The determination coefficient (R(2)) has a value ≥0.997 in the range of 50-800 ng/ml quinine concentration. The limit of quantification was set at 27.9 ng/ml and the detection limit was found to be 8.4 ng/ml under fluorescence detection. PMID:25053040

  1. Evolution of phase and morphology of titanium dioxide induced from peroxo titanate complex aqueous solution.

    PubMed

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2010-01-01

    We demonstrate the growth of anatase TiO2 in nanospheres and rutile TiO2 in nanorods, by the hydrolysis of titanium tetraisopropoxide (TTIP) in the presence of hydrogen peroxide at 100 degrees C using sol-gel method. X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and surface area measurement techniques are used to characterize the phase and shape developments of TiO2 obtained from peroxo titanate complex in an aqueous solution at 100 degrees C. Peroxo titanate complexes were prepared by a reaction of titanium hydroxide, formed by hydrolysis of titanium tetraisopropoxide (TTIP), and different amounts of hydrogen peroxide (H2O2). TEM and XRD investigations reveal that the size of spheres (anatase) and rods (rutile) are about 8 nm (diameter) and about 13 x 29 nm approximately 20 x 75 nm (width x length) respectively. The influence of molar ratio of H2O2/TTIP on the phase and morphology of TiO2 is presented. A mixture of anatase spheres and short rutile rods are formed at low H2O2/TTIP ratio while predominantly rutile a quit long rods are formed at higher H2O2/TTIP ratio. PMID:20352827

  2. Containment and recovery of a light non-aqueous phase liquid plume at a woodtreating facility

    SciTech Connect

    Crouse, D.; Powell, G.; Hawthorn, S.; Weinstock, S.

    1997-12-31

    A woodtreating site in Montana used a formulation (product) of 5 percent pentachlorophenol and 95 percent diesel fuel as a carrier liquid to pressure treat lumber. Through years of operations approximately 378,500 liters of this light non-aqueous phase liquid (LNAPL) product spilled onto the ground and soaked into the groundwater. A plume of this LNAPL product flowed in a northerly direction toward a stream located approximately 410 meters from the pressure treatment building. A 271-meter long high density polyethylene (HDPE) containment cutoff barrier wall was installed 15 meters from the stream to capture, contain, and prevent the product from migrating off site. This barrier was extended to a depth of 3.7 meters below ground surface and allowed the groundwater to flow beneath it. Ten product recovery wells, each with a dual-phase pumping system, were installed within the plume, and a groundwater model was completed to indicate how the plume would be contained by generating a cone of influence at each recovery well. The model indicated that the recovery wells and cutoff barrier wall would contain the plume and prevent further migration. To date, nearly 3{1/2} year`s later, approximately 106,000 liters of product have been recovered.

  3. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen.

    PubMed

    Koichumanova, Kamila; Vikla, Anna Kaisa K; de Vlieger, Dennis J M; Seshan, K; Mojet, Barbara L; Lefferts, Leon

    2013-09-01

    Aqueous-phase reforming of ethylene glycol over alumina-supported Pt-based catalysts is reported. Performance of the catalysts is investigated by conducting kinetics and in situ attenuated total reflectance (ATR)-IR spectroscopic analysis. Pt/γ-Al2 O3 is unstable under APR conditions (270 °C, 90 bar) and undergoes phase transformation to boehmite [AlO(OH)]. This conversion of alumina is studied in situ by using ATR-IR spectroscopy; transition into boehmite proceeds even at milder conditions (210 °C, 40 bar). Pt/γ-Al2 O3 deactivates irreversibly because the Pt surface area decreases owing to an increasing metal particle size and coverage with boehmite. However, Pt supported on boehmite itself shows stable activity. Surprisingly, the rate of formation of hydrogen per Pt surface atom is significantly higher on boehmite compared to an alumina-supported catalyst. This observation seems correlated to both increased concentration of surface OH groups as well as to enhanced oxidation of Pt when comparing Pt/γ-Al2 O3 with Pt/AlO(OH). PMID:24023052

  4. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  5. Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids

    EPA Science Inventory

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...

  6. Reactions of important OVOCs with hydrogen peroxide and ozone in the tropospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Schöne, Luisa; Weller, Christian; Herrmann, Hartmut

    2013-04-01

    Besides research on the microphysics of cloud droplets and similar aqueous systems in the troposphere, the chemistry of volatile organic compounds (VOCs) from anthropogenic and biogenic sources cannot be neglected for the understanding of tropospheric processes such as the organic particle mass formation. Emissions of biogenic volatile organic compounds (BVOCs) can exceed those of VOCs from anthropogenic sources by a factor of 10[1]. Oxidation products of BVOCs like glyoxal, methylglyoxal, glycolate, glyoxylate and pyruvate, glycolaldehyde, and the unsaturated compounds methacrolein and methyl vinyl ketone are known precursors for less volatile organic substances found in secondary organic aerosols[2,3]. Yet, the main decomposition of these substances is believed to occur via radical reactions. However, Tilgner and Herrmann[2] showed evidence that the turnovers by non-radical reactions with H2O2 or ozone and some non-oxidative organic accretion reactions may even exceed those from the most reactive species in the lower troposphere, the hydroxyl radical OH. This work investigated the reactivities of the atmospheric relevant oxidation products including pyruvic acid and glyoxylic acid towards O3 and H2O2 in the aqueous phase. Furthermore, pH effects were studied by measuring the kinetics of both the protonated and deprotonated forms. The measurements were performed using a UV/VIS-spectrometer (conventional and in addition a Stopped Flow technique) and capillary electrophoresis. In some cases the results indicate higher turnovers of H2O2 and ozone reactions compared to interactions with atmospheric radicals. The experimental data obtained will be presented and their implications for atmospheric multiphase chemistry are discussed. [1] Guenther et al., 1995, Journal of Geophysical Research - Atmosphere, 100(D5), 8873-8892. [2] Tilgner and Herrmann, 2010, Atmospheric Environment, 44, 5415-5422. [3] van Pinxteren et al., 2005, Atmospheric Environment, 39, 4305-4320.

  7. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-01-01

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase. PMID:26091076

  8. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample. PMID:19576415

  9. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et

  10. Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems

    NASA Astrophysics Data System (ADS)

    Ramanathan, Rajesh; Field, Matthew R.; O'Mullane, Anthony P.; Smooker, Peter M.; Bhargava, Suresh K.; Bansal, Vipul

    2013-02-01

    We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms.We demonstrate aqueous phase biosynthesis of phase-pure metallic copper nanoparticles (CuNPs) using a silver resistant bacterium Morganella morganii. This is particularly important considering that there has been no report that demonstrates biosynthesis and stabilization of pure copper nanoparticles in the aqueous phase. Electrochemical analysis of bacterial cells exposed to Cu2+ ions provides new insights into the mechanistic aspect of Cu2+ ion reduction within the bacterial cell and indicates a strong link between the silver and copper resistance machinery of bacteria in the context of metal ion reduction. The outcomes of this study take us a step closer towards designing rational strategies for biosynthesis of different metal nanoparticles using microorganisms. Electronic supplementary information (ESI) available: Sequence similarity analysis of proteins involved in the silver and copper resistance machinery of bacteria. See DOI: 10.1039/c2nr32887a

  11. Basalt Reactivity Variability with Reservoir Depth in Supercritical CO2 and Aqueous Phases

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2011-04-01

    Long term storage of CO{sub 2} in geologic formations is currently considered the most attractive option to reduce greenhouse gas emissions while continuing to utilize fossil fuels for energy production. Injected CO{sub 2} is expected to reside as a buoyant water-saturated supercritical fluid in contact with reservoir rock, the caprock system, and related formation waters. As was reported for the first time at the GHGT-9 conference, experiments with basalts demonstrated surprisingly rapid carbonate mineral formation occurring with samples suspended in the scCO{sub 2} phase. Those experiments were limited to a few temperatures and CO{sub 2} pressures representing relatively shallow (1 km) reservoir depths. Because continental flood basalts can extend to depths of 5 km or more, in this paper we extend the earlier results across a pressure-temperature range representative of these greater depths. Different basalt samples, including well cuttings from the borehole used in a pilot-scale basalt sequestration project (Eastern Washington, U.S.) and core samples from the Central Atlantic Magmatic Province (CAMP), were exposed to aqueous solutions in equilibrium with scCO{sub 2} and water-rich scCO{sub 2} at six different pressures and temperatures for select periods of time (30 to 180 days). Conditions corresponding to a shallow injection of CO{sub 2} (7.4 MPa, 34 C) indicate limited reactivity with basalt; surface carbonate precipitates were not easily identified on post-reacted basalt grains. Basalts exposed under identical times appeared increasingly more reacted with simulated depths. Tests, conducted at higher pressures (12.0 MPa) and temperatures (55 C), reveal a wide variety of surface precipitates forming in both fluid phases. Under shallow conditions tiny clusters of aragonite needles began forming in the wet scCO{sub 2} fluid, whereas in the CO{sub 2} saturated water, cation substituted calcite developed thin radiating coatings. Although these types of coatings

  12. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.

    PubMed

    Wang, Yunqiang; Shao, Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils. PMID:19999998

  13. Ozonation of chlortetracycline in the aqueous phase: Degradation intermediates and pathway confirmed by NMR.

    PubMed

    Khan, M Hammad; Jung, Jin-Young

    2016-06-01

    Chlortetracycline (CTC) degradation mechanism in aqueous phase ozonation was evaluated for degradation mechanism and its correlation with the biodegradability and mineralization. CTC was removed within 8 and 4 min of ozonation at pH 2.2 and 7.0, respectively. At pH 2.2, HPLC-triple quadrupole mass spectrometry (MS) detected 30 products. The structures for some of these products were proposed on the basis of ozonation chemistry, CTC structure and MS data; these structures were then confirmed by nuclear magnetic resonance (NMR) spectra. Double bond cleavages, dimethyl amino group oxidation, opening and removal of the aromatic ring and dechlorination, mostly direct ozonation reactions, gave products with molecular weights (m.w.) 494, 510, 524, 495 and 413, respectively. Subsequent degradations gave products with m.w. 449, 465, 463 and 415. These products were arranged into a degradation pathway. At pH 7.0, the rate of reaction was increased, though the detected products were similar. Direct ozonation at pH 2.2 increased the biodegradability by altering the structures of CTC and its products. Nevertheless, direct ozonation alone remained insufficient for the mineralization, which was efficient at pH 7.0 due to the production of free radicals. PMID:26963235

  14. Optical detection of aqueous phase analytes via host-guest interactions on a lipid membrane surface

    NASA Astrophysics Data System (ADS)

    Sasaki, Darryl Y.; Waggoner, Tina Y.

    1999-06-01

    The organization and assembly of molecules in cellular membranes is orchestrated through the recognition and binding of specific chemical signals. A simplified version of the cellular membrane system has been developed using a synthetically prepared membrane receptor incorporated into a biologically derived lipid bilayer. Through an interplay of electrostatic and van der Waals interactions, aggregation or dispersion of molecular components could be executed on command using a specific chemical signal. A pyrene fluorophore was used as an optical probe to monitor the aggregational state of the membrane receptors in the bilayer matrix. The pyrene excimer emission to monomer emission (E/M) intensity ratio gave a relative assessment of the local concentration of receptors in the membrane. Bilayers were prepared with receptors selective for the divalent metal ions of copper, mercury, and lead. Addition of the metal ions produced a rapid dispersion of aggregated receptor components at nano- to micro-molar concentrations. The process was reversible by sequestering the metal ions with EDTA. Receptors for proteins and polyhistidine were also prepared and incorporated into phosphatidylcholine lipid bilayers. In this case, the guest molecules bound to the membrane through multiple points of interaction causing aggregation of initially dispersed receptor molecules. The rapid, selective, and sensitive fluorescence optical response of these lipid assemblies make them attractive in sensor applications for aqueous phase metal ions and polypeptides.

  15. Purification and characterization of polyphenol oxidase from waste potato peel by aqueous two-phase extraction.

    PubMed

    Niphadkar, Sonali S; Vetal, Mangesh D; Rathod, Virendra K

    2015-01-01

    Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel. PMID:25036474

  16. Line tension of alkane lenses on aqueous surfactant solutions at phase transitions of coexisting interfaces.

    PubMed

    Matsubara, Hiroki; Ushijima, Baku; Law, Bruce M; Takiue, Takanori; Aratono, Makoto

    2014-04-01

    Alkane droplets on aqueous solutions of surfactants exhibit a first-order wetting transition as the concentration of surfactant is increased. The low-concentration or "partial wetting" state corresponds to an oil lens in equilibrium with a two-dimensional dilute gas of oil and surfactant molecules. The high-concentration or "pseudo-partial wetting" state consists of an oil lens in equilibrium with a mixed monolayer of surfactant and oil. Depending on the combination of surfactant and oil, these mixed monolayers undergo a thermal phase transition upon cooling, either to a frozen mixed monolayer or to an unusual bilayer structure in which the upper leaflet is a solid layer of pure alkane with hexagonal packing and upright chains while the lower leaflet remains a disordered liquid-like mixed monolayer. Additionally, certain long-chain alkanes exhibit a surface freezing transition at the air-oil interface where the top monolayer of oil freezes above its melting point. In this review, we summarize our previous studies and discuss how these wetting and surface freezing transitions influence the line tension of oil lenses from both an experimental and theoretical perspective. PMID:24007861

  17. Ultrasonically induced ZnO-biosilica nanocomposite for degradation of a textile dye in aqueous phase.

    PubMed

    Soltani, Reza Darvishi Cheshmeh; Jorfi, Sahand; Ramezani, Hojjatallah; Purfadakari, Sudabeh

    2016-01-01

    In the present study, a porous clay-like support with unique characteristics was used for the synthesis and immobilization of ZnO nanostructures to be used as sonocatalyst for the sonocatalytic decolorization of methylene blue (MB) dye in the aqueous phase. As a result, the sonocatalytic activity of ZnO-biosilica nanocomposite (77.8%) was higher than that of pure ZnO nanostructures (53.6%). Increasing the initial pH from 3 to 10 led to increasing the color removal from 41.8% to 88.2%, respectively. Increasing the sonocatalyst dosage from 0.5 to 2.5 g/L resulted in increasing the color removal, while further increase up to 3g/L caused an obvious drop in the color removal. The sonocatalysis of MB dye over ZnO-biosilica nanocomposite was temperature-dependent. The presence of methanol produced the most adverse effect on the sonocatalysis of MB dye. The addition of chloride and carbonate ions had a negligible effect on the sonocatalysis, while the addition of persulfate ion led to increasing the color removal from 77.8% to 99.4% during 90 min. The reusability test exhibited a 15% drop in the color removal (%) within three consecutive experimental runs. A mineralization efficiency of 63.2% was obtained within 4h. PMID:26384885

  18. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.

    PubMed

    Wang, Hang; Zhou, Wu; Liu, Jin-Xun; Si, Rui; Sun, Geng; Zhong, Meng-Qi; Su, Hai-Yan; Zhao, Hua-Bo; Rodriguez, Jose A; Pennycook, Stephen J; Idrobo, Juan-Carlos; Li, Wei-Xue; Kou, Yuan; Ma, Ding

    2013-03-13

    Fischer-Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation-reduction route for the synthesis of Pt-Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalized by the formation of Co overlayer structures on Pt NPs or Pt-Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance. PMID:23428163

  19. Aqueous phase oxidation of SO2 by O3 measured at the CERN CLOUD chamber

    NASA Astrophysics Data System (ADS)

    Hoyle, Christopher; Fuchs, Claudia; Gysel, Martin; Troestl, Jasmin; El Haddad, Imad; Frege, Carla; Dommen, Josef; Dias, Antonio; Jaervinen, Emma; Moehler, Ottmar; Baltensperger, Urs

    2015-04-01

    Measurements of aerosol growth due to the oxidation of SO2 by O3 in cloud droplets at temperatures of 10° C and -10° C are presented. Although this reaction has been well studied in bulk solutions at temperatures above 0° C, this is, to the best of our knowledge, the first time the reaction rate has been studied in laboratory formed, super-cooled cloud droplets. These experiments were made possible by utilising the adiabatic expansion system in the 27 m3 CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN. Experiments were performed on both acidic (sulphuric acid) and neutral (ammonium sulphate) seed aerosol. During 6 minute cloud cycles, droplets of approximately 10μm diameter were formed, and the growth of the aerosol due to the uptake and oxidation of SO2 was measured with a scanning mobility particle sizer (SMPS). A microphysical model was developed to simulate the cloud droplet activation and growth as well as the aqueous phase chemistry. The ability of the model to accurately represent the observed aerosol growth is assessed, and the implications for the extrapolation of the SO2+O3oxidation rates to sub-zero temperatures are discussed.

  20. ROLE OF TUNGSTEN IN THE AQUEOUS PHASE HYDRODEOXYGENATION OF ETHYLENE GLYCOL ON TUNGSTATED ZIRCONIA SUPPORTED PALLADIUM

    SciTech Connect

    Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong

    2014-11-15

    The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.

  1. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    PubMed

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. PMID:21782189

  2. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions.

    PubMed

    Hildebrand, Heike; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2009-05-01

    Nanoscale catalyst particles are already in focus as excellent tools in catalytic processes and intensive research is currently optimizing their performance. As known from nanosized metal particles, nanocatalysts have the potential of very high reaction rates due to their high specific surface areas and low mass transfer restrictions. In this study, we generated extremely active palladium catalysts on the basis of colloidal magnetic carriers. The most active catalyst contains only traces of Pd (0.15 wt %) on nanomagnetite as carrier. Pd-on-magnetite was successfully tested in batch experiments for the hydrodechlorination (HDC) of the chlorohydrocarbons trichloroethene (TCE) and chlorobenzene. For the HDC of TCE, second-order rate coefficients of approximately 1.6 x 10(4) L g(-1) min(-1) were measured. Such high activities have never been described before for Pd-containing catalysts in aqueous phase HDC reactions. The ferrimagnetism of the carrier enables a separation of the nanocatalyst from the treated water by means of magnetic separation. This allows the catalyst to be reused several times, which is an important advantage compared to other nanoscale catalytic systems such as pure Pd or Pd-on-Au colloids. PMID:19534143

  3. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  4. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    PubMed Central

    Larsson, Niklas; Otrembska, Paulina; Villar, Mercedes; Jönsson, Jan Åke

    2011-01-01

    Hollow fiber liquid phase micro-extraction (LPME) of linear alkylbenzene sulfonates (LAS) from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM). Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 μg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ∼15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume). Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ∼150 μg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds. PMID:24957870

  5. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats.

    PubMed

    Soares, Ruben R G; Azevedo, Ana M; Van Alstine, James M; Aires-Barros, M Raquel

    2015-08-01

    For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes. PMID:26213222

  6. Optical Detection of Aqueous Phase Analytes via Host-Guest Interactions on a Lipid Membrane Surface

    SciTech Connect

    Sasaki, D.Y.; Waggoner, T.A.

    1999-01-11

    The organization and assembly of molecules in cellular membranes is orchestrated through the recognition and binding of specific chemical signals. A simplified version of the cellular membrane system has been developed using a synthetically prepared membrane receptor incorporated into a biologically derived lipid bilayer. Through an interplay of electrostatic and van der Wards interactions, aggregation or dispersion of molecular components could be executed on command using a specific chemical signal. A pyrene fluorophore was used as an optical probe to monitor the aggregational state of the membrane receptors in the bilayer matrix. The pyrene excimer emission to monomer emission (E/M) intensity ratio gave a relative assessment of the local concentration of receptors in the membrane. Bilayers were prepared with receptors selective for the divalent metal ions of copper, mercury, and lead. Addition of the metal ions produced a rapid dispersion of aggregated receptor components at nano- to micro-molar concentrations. The process was reversible by sequestering the metal ions with EDTA. Receptors for proteins and polyhistidine were also prepared and incorporated into phosphatidylcholine lipid bilayers. In this case, the guest molecules bound to the membrane through multiple points of interaction causing aggregation of initially dispersed receptor molecules. The rapid, selective, and sensitive fluorescence optical response of these lipid assemblies make them attractive in sensor applications for aqueous phase metal ions and polypeptides.

  7. Photooxidation of methylhydroperoxide and ethylhydroperoxide in the aqueous phase under simulated cloud droplet conditions

    NASA Astrophysics Data System (ADS)

    Monod, A.; Chevallier, E.; Durand Jolibois, R.; Doussin, J. F.; Picquet-Varrault, B.; Carlier, P.

    The photooxidation of methylhydroperoxide (MHP) and ethylhydroperoxide (EHP) was studied in the aqueous phase under simulated cloud droplet conditions. The kinetics and the reaction products of direct photolysis and OH-oxidation were studied for both compounds. The photolysis frequencies obtained were JMHP=4.5 (±1.0)×10 -5 s -1 and JEHP=3.8 (±1.0)×10 -5 s -1 for MHP and EHP respectively at 6 °C. The rate constants of OH-oxidation of MHP at 6 °C were 6.3 (±2.6)×10 8 M -1 s -1 and 5.8 (±1.9)×10 8 M -1 s -1 relative to ethanol and 2-propanol respectively, and the rate constant of OH-oxidation of EHP was 2.1 (±0.6)×10 9 M -1 s -1 relative to 2-propanol at 6 °C. The reaction products obtained were not only the corresponding aldehydes, but also the corresponding acids, and hydroxyhydroperoxides as primary reaction products. The yields for these products were sensitive to the pH value. The carbon balance was higher than 85% for all experiments, showing that most reaction products were detected. A chemical mechanism was proposed for each reaction, and the atmospheric implications were discussed.

  8. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins. PMID:24148423

  9. First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase.

    PubMed

    Yoon, Yeohoon; Rousseau, Roger; Weber, Robert S; Mei, Donghai; Lercher, Johannes A

    2014-07-23

    The effect of an aqueous phase on phenol hydrogenation over Pt and Ni catalysts was investigated using density functional theory-based ab initio molecular dynamics calculations. The adsorption of phenol and the addition of the first and second hydrogen adatoms to three, ring carbon positions (ortho, meta, and para with respect to the phenolic OH group) were explored in both vacuum and liquid water. The major change in the electronic structure of both Pt(111) and Ni(111) surfaces, between a gaseous and liquid phase environment, results from a repulsion between the electrons of the liquid water and the diffuse tail of electron density emanating from the metal surface. The redistribution of the metal's electrons toward the subsurface layer lowers the metal work function by about 1 eV. The lower work function gives the liquid-covered metal a higher chemical reduction strength and, in consequence, a lower oxidation strength, which, in turn lowers the phenol adsorption energy, despite the stabilizing influence of the solvation of the partly positively charged adsorbate. At both the solid/vapor and the solid/water interface, H adatom addition involves neutral H atom transfer hence the reaction barriers for adding H adatoms to phenol are lowered by only 10-20 kJ/mol, due to a small stabilizing at the transition state. More importantly, the liquid environment significantly influences the relative energetics of charged, surface-bound intermediates and of proton-transfer reactions like keto/enol isomerization. For phenol hydrogenation, solvation in water results in an energetic preference to form ketones as a result of tautomerization of surface-bound enol intermediates. PMID:24987925

  10. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    PubMed

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. PMID:25553974

  11. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    PubMed

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. PMID:25732422

  12. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    SciTech Connect

    Bunkin, N F; Shkirin, A V; Burkhanov, I S; Chaikov, L L; Lomkova, A K

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  13. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Bunkin, N. F.; Shkirin, A. V.; Burkhanov, I. S.; Chaikov, L. L.; Lomkova, A. K.

    2014-11-01

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ~10 - 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions.

  14. Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system.

    PubMed

    Lu, Yanmin; Lu, Wenjuan; Wang, Wei; Guo, Qingwei; Yang, Yanzhao

    2011-09-15

    The ionic liquid/aqueous two-phase extraction systems (ATPSs) based on imidazolium ionic liquids were used to extract cytochrome c. Effects of the alkyl chain length of the ionic liquid cations, concentration of potassium citrate, temperature and pH on the extraction efficiency have been investigated. The thermodynamic parameters (ΔG(T)°, ΔH(T)° and ΔS(T)°) associated with Cyt-c partitioning in aqueous two phase systems were determined. Thermodynamic studies indicated that the partitioning of Cyt-c was driven by both hydrophobic and electrostatic interactions in the extraction process. Under the optimum conditions, experiment results showed that 94% of the cytochrome c could be extracted into the ionic liquid-rich phase in a one-step extraction. The structural characterization of Cyt-c in the IL ATPS was investigated by UV-vis and circular dichroism (CD) spectra. The results demonstrated that no direct bonding interaction observed between ionic liquid and cytochrome c, while the native properties of the cytochrome c were not altered. Compared with traditional liquid-liquid extractions based on toxic organic solvents, ionic liquid/aqueous two phase extraction offers clear advantages due to no use of volatile organic solvent and low consumption of imidazolium ionic liquids. PMID:21807231

  15. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. PMID:26519629

  16. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    PubMed Central

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  17. Microbial side-chain cleavage of phytosterols by mycobacteria in vegetable oil/aqueous two-phase system.

    PubMed

    Xu, Yang-Guang; Guan, Yi-Xin; Wang, Hai-Qing; Yao, Shan-Jing

    2014-09-01

    Microbial side-chain cleavage of natural sterols to 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) by Mycobacteria has received much attention in pharmaceutical industry, while low yield of the reaction owing to the strong hydrophobicity of sterols is a tough problem to be solved urgently. Eight kinds of vegetable oils, i.e., sunflower, peanut, corn, olive, linseed, walnut, grape seed, and rice oil, were used to construct oil/aqueous biphasic systems in the biotransformation of phytosterols by Mycobacterium sp. MB 3683 cells. The results indicated that vegetable oils are suitable for phytosterol biotransformation. Specially, the yield of AD carried out in sunflower biphasic system (phase ratio of 1:9, oil to aqueous) was greatly increased to 84.8 % with 10 g/L feeding concentration after 120-h transformation at 30 °C and 200 rpm. Distribution coefficients of AD in different oil/aqueous systems were also determined. Because vegetable oils are of low cost and because of their eco-friendly characters, there is a great potential for the application of oil/aqueous two-phase systems in bacteria whole cell biocatalysis. PMID:25082765

  18. Extraction and separation of proteins by ionic liquid aqueous two-phase system.

    PubMed

    Lin, Xiao; Wang, Yuzhi; Zeng, Qun; Ding, Xueqin; Chen, Jing

    2013-11-01

    A satisfactory protocol of protein extraction and separation has been established based on the ionic liquid aqueous two-phase system (IL-ATPS) for the purification of bioactive substances. Compared with the effects of eight different ionic liquids, 1-octyl-3-methylimidazolium bromide ([omim][Br]) was selected as the suitable ionic liquid. Based on the single-factor experiment, an initial serial investigative test was used to identify the optimal conditions of the extraction. Owing to their different isoelectric points, bovine serum albumin (BSA), hemoglobin (Hb) and lysozyme (Lys) were used to determine the effect of pH value on the protein extraction. Trypsin (Try) was used to confirm the protein activity. The linearity for analyzing BSA, Hb, Try and Lys was in the concentration range of 0.05-1.00 mg ml(-1), 0.025-1 mg ml(-1), 0.01-1.00 mg ml(-1) and 0.01-1.00 mg ml(-1), respectively, with a correlation coefficient of between 0.9985 and 0.9999. Limits of detection (LODs) were 16.47-7.02 μg ml(-1) and RSDs of inter-day stability were less than 2.9%. Repeatability and precision were respectively lower than 5.3% and 1.1%. Under the optimum conditions, the average recoveries of BSA, Hb, Try and Lys were 90.5%, 94.5%, 92.7% and 93.8% and the obtained RSDs were 1.19%, 1.23%, 1.34% and 1.04%, respectively. According to UV spectra, conductivity, dynamic light scattering (DLS), and transmission electron microscope (TEM) images, the cluster phenomenon originating from IL itself or combined with protein was evaluated. As the driving forces which are involved in the partitioning of protein between the IL-rich phase and the phosphate phase, the cluster phenomenon could, in principle, be applied to a variety of different samples and exhibited potential value. PMID:24013164

  19. Rapid aqueous phase SO2 oxidation in winter fog in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sachan, Himanshu; Sarkar, Chinmoy; Sinha, Baerbel

    2013-04-01

    Sulphate and sulphur dioxide play an important role in environmental chemistry and climate. The majority of anthropogenic sulphur is released directly as SO2, and a significant fraction of biogenic and natural sulphur emissions are also either directly released as SO2 or oxidised to SO2 in the atmosphere (e.g. H2S, OCS, DMS). Around 50% of global atmospheric sulphur dioxide is then oxidised to sulphate, while the rest is lost through dry and wet deposition. The pathway by which SO2 is oxidised to sulphate is critical in determining the climate forcing and environmental effects of sulphate. Gas-phase oxidation of SO2 by OH radicals or criegee intermediates produces H2SO4 (g), which plays an important role in controlling new particle formation in the troposphere and also modifies the surface properties of hydrophobic particles such as soot and mineral dust. Heterogeneous oxidation of SO2 is considered to occur primarily in cloud droplets, although oxidation on sea salt aerosols and mineral dust surfaces are considered to be regionally important. Heterogeneous oxidation leads to the formation of fewer and larger particles with shorter atmospheric lifetime. The major oxidation pathways which are considered to contribute to sulphate formation in the aqueous phase are oxidation by H2O2 and oxidation by O3 and the lifetime of SO2 with respect to all known loss processes combined is considered to be 1-2 days. Here we report measurements of SO2 measurements from IISER Mohali - Ambient Air Quality Station (30.67°N, 76.73°E), a station located at a suburban site in the Indo Gangetic Basin (IGB) during wintertime (10th Dec. 2011 to 29th Feb. 2012). We use a strong point source of SO2 with known SO2/CO emission ratio (brick kiln) located 6.5 km east of our measurement site to estimate the loss rate of SO2 in wintertime fog in the IGB. We consider the transport from the source to the receptor site to be Lagrangian and use the measured CO concentration at the receptors site to

  20. Developing a stronger understanding of aerosol sources and the impact of aqueous phase processing on coastal air quality

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2014-12-01

    Atmospheric aerosols are produced by a variety of sources including emissions from cars and trucks, wildfires, ships, dust, and sea spray and play a significant role in impacting air pollution and regional climate. The ability of an aerosol to uptake water and undergo aqueous phase processing strongly depends on composition. On-line single particle mass spectrometry can provide insight into how particle composition impacts the degree of photochemical and aging processes atmospheric aerosols undergo. In particular, specific sulfur species including sulfate, hydroxymethanesulfate (HMS), and methanesulfonic acid (MSA) can serve as indicators of when an air mass has undergone aqueous phase processing. This presentation will describe recent field studies conducted at coastal sites to demonstrate how different aerosol sources and secondary processing impact coastal air quality.

  1. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase

    NASA Astrophysics Data System (ADS)

    Gu, Zhenyu; Zou, Lei; Fang, Zheng; Zhu, Weihong; Zhong, Xinhua

    2008-04-01

    Surface passivation of nanocrystals with suitable organic or inorganic materials is key to improving the photoluminescence (PL) efficiency and stability of nanocrystals. Although the hot-injection organometallic approach is a powerful tool to achieve different kinds of core/shell structures, direct synthesis of such structures in aqueous phase, which bears many advantages such as biocompatibility, water-solubility, environment-friendliness, and cheapness, is less often reported. Herein we present a facile approach for the one-pot preparation of a water-soluble core/shell structure with CdTe cores packed in a CdS shell in aqueous phase. In comparison with plain CdTe nanocrystals, the PL efficiency of the obtained CdTe/CdS core/shell structure can approach about 75%. The stability of the core/shell structure to UV irradiation and oxidation is also improved.

  2. Production of biohydrogen by aqueous phase reforming of polyols over platinum catalysts supported on three-dimensionally bimodal mesoporous carbon.

    PubMed

    Park, Hyun Ju; Kim, Ho-Dong; Kim, Tae-Wan; Jeong, Kwang-Eun; Chae, Ho-Jeong; Jeong, Soon-Yong; Chung, Young-Min; Park, Young-Kwon; Kim, Chul-Ung

    2012-04-01

    Now in 3D! Three-dimensionally bimodal carbons (3D-BMC) with mesopores of tunable size (controlled through the polymerization of the carbon precursor) are synthesized. After loading with platinum, the catalysts are used in aqueous phase reforming of polyols, and show superior performance in terms of carbon conversion, hydrogen yield, selectivity, and hydrogen production rate compared to platinum catalysts supported on activated carbon or two-dimensional CMK-3. PMID:22415941

  3. Effects of urea on the microstructure and phase behavior of aqueous solutions of polyoxyethylene surfactants

    PubMed Central

    Bianco, Carolina L.; Schneider, Craig S.; Santonicola, Mariagabriella; Lenhoff, Abraham M.; Kaler, Eric W.

    2010-01-01

    Membrane proteins are made soluble in aqueous buffers by the addition of various surfactants (detergents) to form so-called protein-detergent complexes (PDCs). Properties of membrane proteins are commonly assessed by unfolding the protein in the presence of surfactant in a buffer solution by adding urea. The stability of the protein under these conditions is then monitored by biophysical methods such as fluorescence or circular dichroism spectroscopy. Often overlooked in these experiments is the effect of urea on the phase behavior and micellar microstructure of the different surfactants used to form the PDCs. Here the effect of urea on five polyoxyethylene surfactants – n-octylytetraoxyethylene (C8E4), n-octylpentaoxyethylene (C8E5), n-decylhexaoxyethylene (C10E6), n-dodecylhexaoxyethylene (C12E6) and n-dodecyloctaoxylethylene (C12E8) – is explored. The presence of urea increases the critical micelle concentration (CMC) of all surfactants studied, indicating that the concentration of both the surfactant and urea should be considered in membrane protein folding studies. The cloud point temperature of all surfactants studied also increases with increasing urea concentration. Small-angle neutron scattering shows a urea-induced transition from an elongated to a globular shape for micelles of C8E4 and C12E6. In contrast, C8E5 and C12E8 form more globular micelles at room temperature and the micelles remain globular as the urea concentration is increased. The effects of increasing urea concentration on micelle structure are analogous to those of decreasing the temperature. The large changes in micelle structure observed here could also affect membrane protein unfolding studies by changing the structure of the PDC. PMID:21359094

  4. DETERMINATION AND QUANTIFICATION OF NON-AQUEOUS PHASE LIQUID MIXTURES IN ENVIRONMENTAL MEDIA

    SciTech Connect

    Rucker, G

    2006-09-22

    It is important to recognize the presence of Non-Aqueous Phase Liquids (NAPLs) in soils at a waste site in order to design and construct a successful remediation system. NAPLs often manifest as a complex, multi-component mixture of organic compounds that can occur in environmental media, such as vadose zone soil, where the mixture will partition and equilibrate with soil particles, pore vapor, and pore water. Complex organic mixtures can greatly complicate the determination and quantification of NAPL in soil due to inter-media transfer. NAPL thresholds can also change because of mixture physical properties and can disguise the presence of NAPL. A unique analytical method and copyrighted software have been developed at the Department of Energy's Savannah River Site that facilitates solution of this problem. The analytical method uses a classic chemistry approach and applies the principals of solubility limit theory, Raoult's Law, and equilibrium chemistry to derive an accurate estimation of NAPL presence and quantity. The method is unique because it calculates an exact result that is mass balanced for each physical state, chemical mixture component, and mixture characteristics. The method is also unique because the solution can be calculated on both a wet weight and dry weight basis--a factor which is often overlooked. The software includes physical parameters for 300 chemicals in a database that self-loads into the model to save time. The method accommodates up to 20 different chemicals in a multi-component mixture analysis. A robust data display is generated including important parameters of the components and mixture including: NAPL thresholds for individual chemical components within the mixture, mass distribution in soil for each physical state, molar fractions, density, vapor pressure, solubility, mass balance, media concentrations, residual saturation, and modest graphing capabilities. This method and software are power tools to simplify otherwise tedious

  5. Evidence for 13-carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka

    2012-02-01

    To investigate the effect of photochemical aging on the stable carbon isotopic ratio (δ13C) of oxalic acid (OxA), a dominant organic species in atmospheric aerosols, we conducted a laboratory photolysis of OxA under H2O2-Fe3+(Fe2+)-UV system in aqueous phase and measured δ13C of remaining OxA. Our results showed that a significant photolysis of OxA occurred with OH radical but the isotopic fractionation of OxA was insignificant. In contrast, in the presence of Fe3+ (Fe2+), we found a significant enrichment of 13C in remaining OxA. We also found that kinetic isotope effect (KIE) of OxA largely depends on photochemical age (irradiation time) and concentration ratios of OxA to iron; 3.20 ± 0.49‰ (2.18 ± 1.18‰) and 21.62 ± 5.41‰ in 90 min and 180 min irradiation, in which OxA and Fe3+ (Fe2+) ratios were 50:1 and 200:1, respectively. The enrichment of 13C in remaining OxA was more significant during the photolysis catalyzed by Fe3+ (7‰) than by Fe2+ (3‰) in 90 min irradiation when OxA and iron ratios are the same (50:1). This study provides a laboratory evidence for the isotopic enrichment of 13C in OxA with photochemical aging. This approach is useful for better interpretation of atmospheric isotopic measurements in terms of the extent of atmospheric processing of aerosols.

  6. Recovery of light, non-aqueous phase liquid from porous media: laboratory experiments and model validation

    NASA Astrophysics Data System (ADS)

    Waddill, Dan W.; Parker, Jack C.

    1997-07-01

    Laboratory experiments were conducted to measure flow of a light, non-aqueous phase liquid (LNAPL or simply "oil") in porous media. The objective of these experiments was to measure oil recovery as influenced by hysteresis, the oil-water capillary fringe, and an oil seepage face. Oil was infiltrated and allowed to redistribute across the horizontal length of a two-dimensional tank filled with medium sand. The first experiment involved oil recovery without water pumping, while the second experiment involved oil recovery with water pumping to increase the gradient toward the recovery well. Observed oil recovery compared favorably with the predictions of a numerical model (ARMOS). A dual-energy gamma radiation attenuation system monitored oil and water saturations throughout the experiments, while hydrophobic tensiometers measured the location of the air-oil table (Z ao). The experimental distribution of oil saturations suggested the need to incorporate an oil-water capillary fringe in the calculation of oil trapping in the saturated zone. Measurements of Z ao indicated that hysteresis influenced the liquid saturation-pressure relationships. When the effects of hysteresis were incorporated into the model, predicted and measured values of Z ao came into agreement, especially at early times during the recovery process. Experimental data also suggested the presence of an oil seepage face at the pumping well, but model results were not sensitive to this factor. Oil saturation measurements at later times suggested that the oil may have experienced delayed yield, an effect that was not modeled explicitly. A sensitivity analysis revealed that oil recovery predictions were most affected by horizontal hydraulic conductivity, fluid scaling parameters βao and βow, and van Genuchten α, n, and Sm. Overall, the numerical model appeared to match measured data for oil saturation, pressure, and recovery under two sets of boundary conditions.

  7. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. PMID:27155914

  8. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Accorsi, F.; Dingens, M.; Wilson, J.T.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.

  9. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  10. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution.

    PubMed

    Stewart, Christopher D; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T

    2015-08-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV-Vis and (13)C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI-MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1(-) and 2(-). Complexes 1(-) and 2(-) showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pK(app), between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pK(app) and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  11. Equilibrium phase diagrams of aqueous mixtures of malonic acid and sulfate/ammonium salts.

    PubMed

    Salcedo, Dara

    2006-11-01

    Tropospheric aerosols are usually complex mixtures of inorganic and organic components. Although the thermodynamic properties of inorganic aerosols have been widely studied, the effect of organics on such properties is still under discussion. In this study, solubility in water, water activity (a(w)) of aqueous solutions, deliquescence relative humidity (DRH), eutonic composition, and eutonic DRH were determined for bulk mixtures of malonic acid (MA) with ammonium sulfate (AS) and ammonium bisulfate (ABS) at 25 degrees C over the full range of composition (from 0 wt % to the solubility limit of the mixture components). The data were used to construct equilibrium phase diagrams, which show the phase of the mixtures as a function of total composition, dry mixture composition, water content, and ambient relative humidity (RH). This work complements previous reports on the thermodynamic properties of AS/MA mixtures because the range of concentrations investigated is larger than in any other published single study. On the other hand, this is the first report on the a(w), deliquescence, and water absorption of ABS/MA mixtures. The eutonic composition for AS/MA mixtures was found to be 66.8 MA dry wt % (MA dry wt % = MA mass x 100/(AS mass + MA mass) with a DRH of 0.437. The eutonic composition for the ABS/MA mixtures was lower than for the AS/MA mixtures: 20.9 MA dry wt % with a DRH of 0.327. Measured a(w) of liquid AS/MA and ABS/MA solutions is compared with an extended Zdanovskii-Stokes-Robinson expression, obtaining a good agreement (error < 5-6%). The expression was used to predict water uptake of mixtures and might be useful to interpret particle hygroscopic growth experiments. Comparison of the AS/MA and ABS/MA systems indicates that ABS reduces the DRH and enhances water uptake, relative to mixtures with AS. The results confirm that ambient particles containing sulfate and water-soluble organic compounds can remain liquid or partially liquid at very low ambient RH

  12. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  13. Improved stability of w/o/w multiple emulsions by addition of hydrophilic colloid components in the aqueous phases.

    PubMed

    Vaziri, A; Warburton, B

    1995-01-01

    To improve the stability of w/o/w multiple emulsions of arachis and olive oil the stabilizing effect of cherry gum, in combination with acacia and gelatin, was examined. The outstanding film-forming properties of this gum having already been noted; the effect of its addition to the aqueous phases was measured by the coalescence of emulsion globules. The enhanced stability, as compared to controls, was achieved at a minimum concentration which liquid crystal-bearing interfacial films seem to appear. Creation of more coherent interfaces, inhibiting transfer of phases, could be the basis of the improved stability of the emulsion. PMID:7730952

  14. Revealing microheterogeneities and second order phase transitions in aqueous mixtures of 1-propoxypropan-2-ol at 298 K.

    PubMed

    Lampreia, Isabel M S; Santos, Ângela F S; Borges, Carlos M; Santos, M Soledade C S; Moita, Maria-Luísa C J; Reis, João Carlos R

    2016-06-29

    Second order phase transitions corresponding to discontinuities in the plots of Kirkwood-Buff integrals as a function of composition were observed in aqueous mixtures of the amphiphilic molecule, 1-propoxypropan-2-ol, revealing the formation of hydrophobic aggregates and generating microheterogeneities over a limited range of compositions. Electrospray mass spectra, surface tension measurements and solvatochromic parameters confirmed the onsets of different aggregation patterns over the entire composition range, and allowed us to scrutinize the prevailing types of aggregate species. This is seemingly the first time that such discontinuities are clearly assumed as second order phase transitions in a system macroscopically homogeneous and corroborated by other independent tools. PMID:27301581

  15. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  16. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples.

    PubMed

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W; Krogh, Erik T; Gill, Chris G

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated ‘proof of concept’ use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%–90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%–104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples. PMID:26471041

  17. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.

  18. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    PubMed

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %). PMID:25355002

  19. Catalytic activity of ruthenium(III) on the oxidation of an anticholinergic drug-atropine sulfate monohydrate by copper(III) periodate complex in aqueous alkaline medium - decarboxylation and free radical mechanism.

    PubMed

    Byadagi, Kirthi S; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2013-01-01

    Atropine sulfate monohydrate (ASM) is an anticholinergic drug, having a wide spectrum of activity. Hence, the kinetics of oxidation of ASM by diperiodatocuperate (DPC) in the presence of micro (10-6) amounts of Ru(III) catalyst has been investigated spectrophotometrically in aqueous alkaline medium at I = 0.50 mol dm-3. The reaction between DPC and ASM exhibits 1:2 stoichiometry (ASM:DPC) i. e., one mole of ASM require two moles of DPC to give products. The main oxidation products were confirmed by spectral studies. The reaction is first order with respect to [DPC] and [Ru(III)], while the order with respect to [ASM] and [OH-] was less than unity. The rates decreased with increase in periodate concentration. The reaction rates revealed that Ru(III) catalyzed reaction was about seven-fold faster than the uncatalyzed reaction. The catalytic constant (KC) was also determined at different temperatures. A plausible mechanism is proposed. The activation parameters with respect to slow step of the mechanism were calculated and the thermodynamic quantities were also determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive Cu(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species. PMID:24169716

  20. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  1. Aspect-ratio-dependent phase transitions and concentration fluctuations in aqueous colloidal dispersions of charged platelike particles

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daisuke; Miyamoto, Nobuyoshi; Fujita, Takako; Nakato, Teruyuki; Koizumi, Satoshi; Ohta, Noboru; Yagi, Naoto; Hashimoto, Takeji

    2012-01-01

    Phase transitions of aqueous colloidal dispersions of charged platelike particles of niobate nanosheets were investigated as a function of the aspect ratio (rasp) and particle volume concentration (φp) by means of small-angle neutron scattering and small-angle x-ray scattering. The results elucidated the following three pieces of evidence: (1) the macroscopic phase separation of the dispersions into an isotropic phase and a liquid crystalline (LC) phase under the conditions of (a) varying rasp (1.3×10-4 ≤ rasp ≤ 2.5×10-3) at a constant φp = 0.01 and (b) varying φp (0.01 ≤ φp ≤ 0.025) at a constant rasp = 2.5×10-3, a mechanism of which is proposed in the text, where rasp ≡ d/L¯, with d and L¯ being thickness and the average lateral size of the plates, respectively; (2) the rasp-induced phase transition of the LC phase from a nematic phase to a highly periodic layered phase, the line shapes of the scattering peaks of which were examined by Caillé's analysis, upon increasing rasp under the condition (a); (3) the LC phase having remarkable concentration fluctuations of the particles which are totally unexpected for the conventional lyotropic molecular LC but which are anticipated to be general for the platelike colloidal particles.

  2. Aqueous two-phase systems: A simple methodology to obtain mixtures enriched in main toxins of Bothrops alternatus venom.

    PubMed

    Gomez, Gabriela; Leiva, Laura; Nerli, Bibiana Beatriz

    2016-08-01

    Phospholipase A2 (PLA2) and protease (P) are enzymes responsible of myotoxic, edematogenic and hemostasis disorder effects observed in the envenomation by Bothrops alternatus pitviper. Their partitioning coefficient (Kp) in different polyethyleneglycol/potassium phosphate aqueous two-phase systems (ATPSs) was determined in order to both achieve a better understanding of the partitioning mechanism and define optimal conditions for toxin isolation. Polyethyleneglycols (PEGs) of molecular weights 1000; 3350; 6000 and 8000; different temperatures (5, 20 and 37 °C) and phase volume ratios of 0.5; 1 and 2 were assayed. PLA2 partitioned preferentially to the top phase while P mainly distributed to the bottom phase. Either entropically- or enthalpically-driven mechanisms were involved in each case (PLA2 and P). The aqueous two-phase system formed by PEG of MW 3350 (12.20% wt/wt) and KPi pH 7.0 (11.82% wt/wt) with a volume ratio of one and a load of 1.25 mg of venom/g of system showed to be the most efficient to recover both enzymes. It allowed obtaining the 72% of PLA2 in the top phase with a purification factor of 2 and the 82% of P at the bottom phase simultaneously. A further adsorption batch step with DEAE-cellulose was used to remove satisfactorily the PEG from the top phase and recover the active PLA2. The proposed methodology is simple, inexpensive, and only requires professionals trained in handling basic laboratory equipment. It could be easily adoptable by developing countries in which the snakebite accidents cause considerable morbidity and mortality. PMID:26374988

  3. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    SciTech Connect

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-09-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH{sub 4} within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles.

  4. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  5. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  6. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression.

    PubMed

    Takihara, Hayato; Ogihara, Jun; Yoshida, Takao; Okuda, Shujiro; Nakajima, Mutsuyasu; Iwabuchi, Noriyuki; Sunairi, Michio

    2014-01-01

    We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures. PMID:25311591

  7. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  8. Extraction of americium in different oxidation states in a two-phase aqueous system based on poly(ethylene glycol)

    SciTech Connect

    Molochnikova, N.P.; Frenkel', B.F.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-09-01

    The extraction of americium in different states of oxidation was studied in a two-phase aqueous system based on poly(ethylene glycol). Conditions were found for the quantitative extraction of americium (III) and americium (V) from solutions of ammonium sulfate in the pH range of 3-5 and in the presence of arsenazo III. The composition of the complexes of americium with the reagent was determined; americium (III) reacts with arsenazo III in solutions of ammonium sulfate to form complexes with the composition of MeR and Me/sub 2/R. Characteristics of the absorption spectra of complexes of americium (III) and (V) with arsenazo III in ammonium sulfate solutions and in extracts based on aqueous solutions of poly(ethylene glycol) were found. The molar extinction coefficients of complexes of americium with arsenazo III were determined in these solutions.

  9. [Determination of aqueous potassium and sodium ions with liquid-phase diaphragm glow discharge-atomic emission spectrometry].

    PubMed

    Liu, Yong-jun; Wang, Lei

    2013-09-01

    The present paper described the determination of potassium and sodium ions with a liquid-phase diaphragm glow discharge emission spectroscopy (LDGD-AES) in aqueous solution. The discharge was formed in a pin hole on a dielectric diaphragm interposed between two submerged graphite electrodes. Effects of applied voltage and the addition of organic additive methanol on the determination were examined. It was found that increasing the applied voltage and adding of methanol can increase the detection sensitivity and decrease the detection limit. Limits of detection for K and Na were 0. 007 and 0. 001 mg x L(-1) under the applied voltage of 850 V and addition of 0.6%-0.8% methanol, respectively. It was demonstrated that the LDGD-AES is a promising technique in measurements of metal ions in aqueous solution, because no optical interferences from the electrodes and the background molecular bands from air were found. PMID:24369674

  10. Evidence of primary migration of condensate by molecular solution in aqueous phase in Yacheng Field, offshore South China

    NASA Astrophysics Data System (ADS)

    Quanxing, Zhang; Qiming, Zhang

    The composition of Yacheng condensate provides possible evidences of primary migration of petroleum by molecular solution in the aqueous phase. Aromatic hydrocarbons (HCs), especially benzene and toluene, make up a high percentage of the condensate. The abundance of each hydrocarbon (HC) in the condensate is mainly controlled by compound type and carbon number. The distribution of normal alkanes is discontinuous at C 16. Aromatic hydrocarbons are 3.8‰ isotopically heavier than the saturated hydrocarbons. The isoprenoid hydrocarbons are very abundant, especially pristane. The specific gravity of the Yacheng condensate is 0.85530 g cm -3, which is much higher than the average for condensates. These features are in good agreement with the HC solubilities in aqueous solution.

  11. Molecular Aggregates in Stable Aqueous Three-Phase Surfactant Systems and Their use in Producing CdS Nanowires

    PubMed Central

    Dong, Renhao; Zhou, Liang; Wang, Dong; Hao, Jingcheng

    2013-01-01

    Aqueous three-phase surfactant systems (A3PS) are important, multicomponent, stable three-phase equilibria with coexisting forms in a common colloid solution, but have been largely ignored regarding further characterization and application. Mixing simple, commercially available, single-tailed anionic/nonionic or anionic/cationic surfactants in water can spontaneously produce stable A3PS with coexisting multiscale self-assembled structures including discs, lamellas, micelles and vesicles. As with conventional aqueous two-phase systems (A2PS), A3PS can be applied in partition and extraction processes. Here, the A3PS was also used as a mild media for one-step synthesis of multiscale CdS nanowires. Particularly, the A3PS does not change and simultaneously separates the CdS nanowires with the comparable size in one phase, which provides a facile strategy for collection of monodisperse nanomaterials. We expect that this present work can expand recognition of A3PS for use in theoretical and applied studies. PMID:23588712

  12. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive. PMID:26615710

  13. Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics

    NASA Astrophysics Data System (ADS)

    KANG, S.; Jeong, H. Y.

    2013-12-01

    Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE < TCE < CF. Notably, the partitioning of all Tween surfactants into the NAPLs consisting of the least hydrophilic PCE was minimal. The partitioning behavior among different surfactants was somewhat complicated. The partitioning extent into CF-NAPLs increased in the order of Tween 20 < Tween 40 < Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation

  14. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    PubMed Central

    Lewis, Scott; Lynch, Andrew; Bachas, Leonidas; Hampson, Steve; Ormsbee, Lindell; Bhattacharyya, Dibakar

    2009-01-01

    Abstract The primary objective of this research was to model and understand the chelate-modified Fenton reaction for the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. The addition of a nontoxic chelate (L), such as citrate or gluconic acid, allows for operation at near-neutral pH and controlled release of Fe(II)/Fe(III). For the standard Fenton reaction at low pH in two-phase systems, an optimum H2O2:Fe(II) molar ratio was found to be between 1:1 and 2:1. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinated TCE in both the aqueous and organic phases at pH 6–7 using low H2O2:Fe(II) molar ratios (4:1 to 8:1). Increasing the L:Fe ratio was found to decrease the rate of H2O2 degradation in both Fe(II) and Fe(III) systems at near-neutral pH. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using literature-reported hydroxyl radical reaction kinetics and mass transfer relationships. Additional aspects of this work include the reusability of the Fe–citrate complex under repeated H2O2 injections in real water systems as well as packed column studies for simulated groundwater injection. PMID:20418966

  15. Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine.

    PubMed

    Mageste, Aparecida Barbosa; de Lemos, Leandro Rodrigues; Ferreira, Guilherme Max Dias; da Silva, Maria do Carmo Hespanhol; da Silva, Luis Henrique Mendes; Bonomo, Renata Cristina Ferreira; Minim, Luis Antonio

    2009-11-01

    Partition of the natural dye carmine has been studied in aqueous two-phase systems prepared by mixing aqueous solutions of polymer or copolymer with aqueous salt solutions (Na(2)SO(4) and Li(2)SO(4)). The carmine dye partition coefficient was investigated as a function of system pH, polymer molar mass, hydrophobicity, system tie-line length and nature of the electrolyte. It has been observed that the carmine partition coefficient is highly dependent on the electrolyte nature and pH of the system, reaching values as high as 300, indicating the high potential of the two-phase extraction with ATPS in the purification of carmine dye. The partition relative order was Li(2)SO(4)"Na(2)SO(4). Carmine molecules were concentrated in the polymer-rich phase, indicating an enthalpic specific interaction between carmine and the pseudopolycation, which is formed by cation adsorption along the macromolecule chain. When the enthalpic carmine-pseudopolycation interaction decreases, entropic forces dominate the natural dye-transfer process, and the carmine partitioning coefficient decreases. The optimization of the extraction process was obtained by a central composite face-centered (CCF) design. The CCF design was used to evaluate the influence of Li(2)SO(4) and PEO 1500 concentration and of the pH on the partition coefficient of carmine. The conditions that maximize the partition of carmine into the top phase were determined to be high concentrations of PEO and Li(2)SO(4) and low pH values within the ranges studied. PMID:19800067

  16. Phase behavior and physicochemical properties of sodium octyl sulfate/n-decane/1-hexanol/aqueous AlCl[sub 3] middle-phase microemulsion

    SciTech Connect

    Abe, Masahiko; Yamazaki, Tadao; Ogino, Keizo )

    1992-03-01

    The phase behavior and physicochemical properties of sodium octyl sulfate/n-decane/1-hexanol/aqueous AlCl[sub 3] middle-phase microemulsion have been studied as a function of salinity to develop an experimental investigation for better understanding of the microstructure of a middle-phase microemulsion. The system exhibits a Winsor-type phase transition (Winsor I [leftrightarrow] Winsor III [leftrightarrow] Winsor II) with increasing salinity. Over an appreciable salinity (from 0.50% to 9.2%), the formation of Winsor III, composed of a middle-phase microemulsion in equilibrium with the excess water and oil phases, was observed. It has been observed that as the salinity is increased, the phase volume of the middle-phase microemulsion undergoes a drastic decrease at a specific brine concentration (3.8%). Furthermore, the physicochemical properties such as water content, electrical conductivity, diffusion coefficient, and solubilization of 1-hexanol in the AlCl[sub 3] middle-phase microemulsion all show abrupt changes at this salinity. The drastic change in the phase volume and physicochemical properties at the specific salinity of 3.8% may be attributed to a phase inversion of the AlCl[sub 3] middle-phase microemulsion from oil-rich to water-rich continuous phase with increasing AlCl[sub 3] concentration, which is quite a different behavior from that observed for monovalent and divalent salt systems. Specifically, it may be assumed that a fluctuating structure of bicontinuous type and a liquid crystal structure overcome the droplet structure in the phase equilibrium at a certain salinity during the increase in the trivalent salt concentration. 25 refs., 10 figs.

  17. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system.

    PubMed

    Du, Zhuo; Yu, Yong-Liang; Wang, Jian-Hua

    2007-01-01

    An ionic liquid/aqueous two-phase system based on the hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and K(2)HPO(4) has been employed for direct extraction of proteins from human body fluids for the first time. Proteins present at low levels were quantitatively extracted into the BmimCl-rich upper phase with a distribution ratio of about 10 between the upper and lower phase and an enrichment factor of 5. Addition of an appropriate amount of K(2)HPO(4) to the separated upper phase results in a further phase separation, giving rise to an improved enrichment factor of 20. FTIR and UV spectroscopy demonstrated that no chemical (bonding) interactions between the ionic liquid and the protein functional groups were identifiable, while no alterations of the natural properties of the proteins were observed. The partitioning of proteins in the two-phase system was assumed to have been facilitated by the electrostatic potential difference between the coexisting phases, as well as by salting out effects. The system could be applied successfully for the quantification of proteins in human urine after on-line phase separation in a flow system. The use of an ionic liquid, as a green solvent, offers clear advantages over traditional liquid-liquid extractions, in which the use of toxic organic solvents is unavoidable. PMID:17136782

  18. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. PMID:22391492

  19. Aqueous phase deposition of dense tin oxide films with nano-structured surfaces

    SciTech Connect

    Masuda, Yoshitake Ohji, Tatsuki; Kato, Kazumi

    2014-06-01

    Dense tin oxide films were successfully fabricated in an aqueous solution. The pH of the solutions was controlled to pH 1.3 by addition of HCl. Precise control of solution condition and crystal growth allowed us to obtain dense tin oxide films. Concave–convex surface of fluorine-doped tin oxide (FTO) substrates was entirely-covered with the continuous films. The films were about 65 nm in thickness and had nano-structured surfaces. Morphology of the films was strikingly different from our previous reported nano-sheet assembled structures. The films were not removed from the substrates by strong water flow or air blow to show strong adhesion strength. The aqueous solution process can be applied to surface coating of various materials such as nano/micro-structured surfaces, particles, fibers, polymers, metals or biomaterials. - Graphical abstract: Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. They had nano-structured surfaces. Concave-convex substrates were entirely-covered with the continuous films. - Highlights: • Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. • They had nano-structured surfaces. • Concave–convex substrates were entirely-covered with the continuous films.

  20. Features of the acid protease partition in aqueous two-phase systems of polyethylene glycol-phosphate: chymosin and pepsin.

    PubMed

    Spelzini, Darío; Farruggia, Beatriz; Picó, Guillermo

    2005-07-01

    The partitioning of chymosin (from Aspergilus niger) and pepsin (from bovine stomach) was carried out in aqueous-two phase systems formed by polyethyleneglycol-potassium phosphate. The effects of polymer concentration, molecular mass and temperature were analysed. The partition was assayed at pH 7.0 in systems of polyethyleneglycol of molecular mass: 1450, 3350, 6000 and 8000. Both proteins showed high affinity for the polyethyleneglycol rich phase. The increase of polyethyleneglycol concentration favoured the protein transfer to the top phase, suggesting an important protein-polymer interaction. Polyethyleneglycol proved to have a stabilizing effect on the chymosin and pepsin, increasing its protein secondary structure. This finding agreed with the enhancement of the milk clotting activity by the polyethyleneglycol. The method appears to be suitable as a first step for the purification of these proteins from their natural sources. PMID:15894519

  1. Multiscale approach to CO2 hydrate formation in aqueous solution: phase field theory and molecular dynamics. Nucleation and growth.

    PubMed

    Tegze, György; Pusztai, Tamás; Tóth, Gyula; Gránásy, László; Svandal, Atle; Buanes, Trygve; Kuznetsova, Tatyana; Kvamme, Bjorn

    2006-06-21

    A phase field theory with model parameters evaluated from atomistic simulations/experiments is applied to predict the nucleation and growth rates of solid CO(2) hydrate in aqueous solutions under conditions typical to underwater natural gas hydrate reservoirs. It is shown that under practical conditions a homogeneous nucleation of the hydrate phase can be ruled out. The growth rate of CO(2) hydrate dendrites has been determined from phase field simulations as a function of composition while using a physical interface thickness (0.85+/-0.07 nm) evaluated from molecular dynamics simulations. The growth rate extrapolated to realistic supersaturations is about three orders of magnitude larger than the respective experimental observation. A possible origin of the discrepancy is discussed. It is suggested that a kinetic barrier reflecting the difficulties in building the complex crystal structure is the most probable source of the deviations. PMID:16821944

  2. Partition of synaptic membranes in aqueous two-phase systems at subzero temperatures by using anti-freeze solvent.

    PubMed

    Johansson, G; Joelsson, M; Olde, B

    1990-11-16

    The freezing point of aqueous two-phase (liquid-liquid) systems containing water, dextran and poly(ethylene glycol) has been lowered by including glycerol. Biological membranes, obtained by fragmentation of a crude synaptosomal preparation from calf brain cortex, have been included in the two-phase systems. The effects of temperature and the concentration of glycerol on the partition of the membranes within the systems have been investigated. Considerable stabilisation of the membranes was noticed when they were partitioned at -10 degrees C compared with 0 degrees C. The influences of glycerol, ethylene glycol, N,N-dimethylformamide and tetrahydrofuran on the phase-forming properties of the systems and on enzyme activities are also presented. Possible use of the above systems for studies and separation of biological membranes are discussed. PMID:2245213

  3. 27 CFR 21.96 - Ammonia, aqueous.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ammonia, aqueous. 21.96 Section 21.96 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Ammonia, aqueous. (a) Alkalinity. Strongly alkaline to litmus. (b) Ammonia content. 27 to 30 percent...

  4. Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid.

    PubMed

    Ruiz-Angel, Maria Jose; Pino, Veronica; Carda-Broch, Samuel; Berthod, Alain

    2007-06-01

    A new aqueous two phase liquid system (ATPS) based on the ionic liquid 1-butyl-3-methyl imidazolium chloride (BMIM Cl), potassium dibasic phosphate (K(2)HPO(4)) and water was recently proposed in the literature. The full phase diagram of this ATPS was prepared and some tie lines were fully determined. It was compared to classical ATPSs based on polyethylene glycol with an average molecular mass of 1000 (PEG 1000) and 10,000 (PEG 10000) and K(2)HPO(4). Two countercurrent chromatography (CCC) columns, a hydrostatic Sanki and a J type hydrodynamic CCC columns were used to test the liquid phase retention of these ATPSs in all possible configurations. It was found that the BMIM Cl ATPS liquid phases were much easier to retain in the two CCC columns than the PEG 1000 ATPS phases. Using protein and alcohol solutes, it was established that the BMIM Cl ATPS has a polarity completely different from that of the PEG 1000 ATPS. For example, ovalbumin partitions equally between the two phases of the PEG 1000 ATPS (K(D)=1.4) when it is completely located in the BMIM Cl upper phase of the ionic liquid ATPS (K(D)=180). The discrimination factor of the ionic liquid system and its intrinsic hydrophobicity were respectively found three times higher and ten times lower than the respective values of the PEG 1000 ATPS. PMID:17166506

  5. Enzymatic hydrolysis of cellulose in aqueous two-phase systems. 1. Partition of cellulases from Trichoderma reesei

    SciTech Connect

    Tjerneld, F.; Persson, J.; Albertsson, P.A.; Hahn-Haegerdal, B.

    1985-07-01

    The partitioning of endo-..beta..-glucanase, exo-..beta..-glucananse, and ..beta..-glucosidase from Trichoderma reesei QM 9414 in aqueous two-phase systems has been studied with the object of designing a phase system for continuous bioconversion of cellulose. The partitioning of the enzymes in two-phase systems composed of various water soluble polymeric compounds were studied. Systems based on dextran and polyethylene glycol (PEG) were optimal for one sidedly partitioning of the enzymes to the bottom phase. The influence of polymer molecular weights, polymer concentration, ionic composition of the medium, pH, temperature, and adsorption of the enzymes to cellulose on the enyzme partition coefficients (K) were studied. By combining the effects of polymer molecular weight and adsorption to cellulose, K values could be reduced for endo-..beta..-glucanase to 0.02 and for ..beta..-glucosidase to 0.005 at 20 degrees C in a phase system of Dvalues could be reduced for endo-..beta..-glucanase to 0.02 and for ..beta..-glucosidase to 0.005 at 20 degrees C in a phase system of Dextran 40-PEG 40000 in the presence of excess cellulose. At 50 degrees C, K values were increased by a factor of two. In a phase system based on inexpensive crude dextran and PEG, the partition coefficient for endo-..beta..-glucanase was 0.16 and for beta-glucosidase was 0.14 at 20 degrees C with excess cellulose present.

  6. Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Effect of entrained micelle-poor domains.

    PubMed

    Kamei, Daniel T; King, Jonathan A; Wang, Daniel I C; Blankschtein, Daniel

    2002-04-20

    Unlike the partitioning behavior of hydrophilic, water-soluble proteins, the partitioning behavior of viruses in the two-phase aqueous nonionic n-decyl tetra(ethylene oxide) (C10E4) micellar system cannot be fully explained using the excluded-volume theory developed recently by our group. A central assumption underlying the excluded-volume theory--that macroscopic phase separation equilibrium is attained--was therefore challenged experimentally and theoretically. Photographs of the two-phase aqueous C10E4 micellar system were taken for different volume ratios to demonstrate that the entrainment of micelle-poor (virus-rich) domains in the macroscopic, top, micelle-rich phase decreases with a decrease in the volume ratio. Partitioning experiments were then conducted with the model virus bacteriophage P22 and the model protein cytochrome c at different operating temperatures for different volume ratios. For bacteriophage P22, the measured viral partition coefficient at each temperature decreased by about an order of magnitude when the volume ratio was decreased from 10 to 0.1, which clearly indicated that entrainment is an important factor influencing viral partitioning. For cytochrome c, the measured protein partition coefficient did not change, which demonstrated that this entrainment effect negligibly influences protein partitioning. A new theoretical description of partitioning was also developed that combines the excluded-volume theory with this entrainment effect. In this theory, one fitted parameter--the volume fraction of entrained micelle-poor domains in the macroscopic, top, micelle-rich phase--is used to account for the entrainment. To fit this parameter, only a single partitioning experiment is required for a given volume ratio, irrespectively of the partitioning solute. The new theoretical description of partitioning yielded very good quantitative predictions of the viral partition coefficients. Accordingly, it can be concluded that the primary mechanisms

  7. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  8. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    SciTech Connect

    Lewis, Scott; lynch, Andrew; Bachas, Leonidas; hampson, Steve; Ormsbee, Lindelle; Bhattacharyya, Dibakar

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  9. Aqueous two-phase extraction for determination of triazine herbicides in milk by high-performance liquid chromatography.

    PubMed

    Yang, Xiao; Yu, Rui; Zhang, Shaohua; Cao, Bocheng; Liu, Zhongling; Lei, Lei; Li, Na; Wang, Zhibing; Zhang, Liyuan; Zhang, Hanqi; Chen, Yanhua

    2014-12-01

    A simple extraction method based on acetonitrile-K2HPO4 aqueous two-phase system was developed for separation and enrichment of five triazines in milk samples. Acetonitrile was used for extraction of analytes from milk sample and precipitation of milk protein. Deproteinization and extraction were achieved in one single step. Analytes were extracted into the upper phase of the aqueous two-phase system. The parameters affecting the extraction efficiency, such as the volume of acetonitrile, the type and amount of salts, pH value of sample and extraction time were investigated. The limits of detection of atraton, desmetryn, atrazine, terbumeton and terbuthylazine were 2.1, 2.6, 2.3, 2.8 and 2.5μg/L, respectively. When the present method was applied to the analysis of real milk samples, the recoveries of analytes ranged from 86.3 to 120.6% and relative standard deviations were lower than 7.9%. PMID:25444545

  10. Liquid-liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature.

    PubMed

    Mochizuki, Kenji; Sumi, Tomonari; Koga, Kenichiro

    2016-01-01

    We investigate driving forces of the liquid-liquid phase separation of N-isopropylpropionamide (NiPPA) aqueous solutions above the lower critical solution temperature using molecular dynamics simulations. Spontaneous phase separations of the model aqueous solution with a modified OPLS-AA force field are observed above the experimentally determined cloud point. The destabilization toward the phase separation is confirmed by temperature dependence of the long-wavelength limit of the concentration-concentration structure factor, the dominant component of which is found to be an increasing effective attraction between NiPPA molecules. At varying temperatures, the potentials of mean force (PMFs) between a pair of NiPPA molecules at infinite dilution are obtained and decomposed into the nonpolar and Coulombic contributions. The nonpolar contribution, arising essentially from molecular volume, promotes association of NiPPA molecules with increasing temperature while the Coulombic one antagonizes the association. Thus, our analysis leads to a conclusion that the driving force of thermally induced aggregation of NiPPA molecules is the temperature dependence of the nonpolar contribution in PMF between NiPPA molecules, not the temperature dependence of the number or strength of hydrogen bonds between NiPPA and water molecules. PMID:27098236

  11. Liquid–liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature

    NASA Astrophysics Data System (ADS)

    Mochizuki, Kenji; Sumi, Tomonari; Koga, Kenichiro

    2016-04-01

    We investigate driving forces of the liquid–liquid phase separation of N-isopropylpropionamide (NiPPA) aqueous solutions above the lower critical solution temperature using molecular dynamics simulations. Spontaneous phase separations of the model aqueous solution with a modified OPLS-AA force field are observed above the experimentally determined cloud point. The destabilization toward the phase separation is confirmed by temperature dependence of the long-wavelength limit of the concentration-concentration structure factor, the dominant component of which is found to be an increasing effective attraction between NiPPA molecules. At varying temperatures, the potentials of mean force (PMFs) between a pair of NiPPA molecules at infinite dilution are obtained and decomposed into the nonpolar and Coulombic contributions. The nonpolar contribution, arising essentially from molecular volume, promotes association of NiPPA molecules with increasing temperature while the Coulombic one antagonizes the association. Thus, our analysis leads to a conclusion that the driving force of thermally induced aggregation of NiPPA molecules is the temperature dependence of the nonpolar contribution in PMF between NiPPA molecules, not the temperature dependence of the number or strength of hydrogen bonds between NiPPA and water molecules.

  12. Liquid–liquid phase separation of N-isopropylpropionamide aqueous solutions above the lower critical solution temperature

    PubMed Central

    Mochizuki, Kenji; Sumi, Tomonari; Koga, Kenichiro

    2016-01-01

    We investigate driving forces of the liquid–liquid phase separation of N-isopropylpropionamide (NiPPA) aqueous solutions above the lower critical solution temperature using molecular dynamics simulations. Spontaneous phase separations of the model aqueous solution with a modified OPLS-AA force field are observed above the experimentally determined cloud point. The destabilization toward the phase separation is confirmed by temperature dependence of the long-wavelength limit of the concentration-concentration structure factor, the dominant component of which is found to be an increasing effective attraction between NiPPA molecules. At varying temperatures, the potentials of mean force (PMFs) between a pair of NiPPA molecules at infinite dilution are obtained and decomposed into the nonpolar and Coulombic contributions. The nonpolar contribution, arising essentially from molecular volume, promotes association of NiPPA molecules with increasing temperature while the Coulombic one antagonizes the association. Thus, our analysis leads to a conclusion that the driving force of thermally induced aggregation of NiPPA molecules is the temperature dependence of the nonpolar contribution in PMF between NiPPA molecules, not the temperature dependence of the number or strength of hydrogen bonds between NiPPA and water molecules. PMID:27098236

  13. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs. PMID:21410278

  14. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    PubMed

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  15. Formation and Dynamics of Ion-Stabilized Gas Nanobubble Phase in the Bulk of Aqueous NaCl Solutions.

    PubMed

    Bunkin, Nikolai F; Shkirin, Alexey V; Suyazov, Nikolay V; Babenko, Vladimir A; Sychev, Andrey A; Penkov, Nikita V; Belosludtsev, Konstantin N; Gudkov, Sergey V

    2016-02-25

    Ion-stabilized gas nanobubbles (the so-termed "bubstons") and their clusters are investigated in bulk aqueous solutions of NaCl at different ion concentrations by four independent laser diagnostic methods. It turned out that in the range of NaCl concentration 10(-6) < C < 1 M the radius of bubston remains virtually unchanged at a value of 100 nm. Bubstons and their clusters are a thermodynamically nonequilibrium phase, which has been demonstrated in experiments with magnetic stirrer at different stirring rates. Different regimes of the bubston generation, resulting from various techniques of processing the liquid samples, were explored. PMID:26849451

  16. Propeller-Like Nanorod-Upconversion Nanoparticle Assemblies with Intense Chiroptical Activity and Luminescence Enhancement in Aqueous Phase.

    PubMed

    Wu, Xiaoling; Xu, Liguang; Ma, Wei; Liu, Liqiang; Kuang, Hua; Kotov, Nicholas A; Xu, Chuanlai

    2016-07-01

    Propeller-like nanoscale assemblies with exceptionally intense chiroptical activity and strong luminescence are prepared using gold nanorods and upconversion nanoparticles. The circular dichroism intensity of the tetramer reached 80.9 mdeg, with g-factor value of 2.1 × 10(-2) . The enhancement factor of upconversion luminescence is as high as 21.3 in aqueous phase. Attomolar bioanalysis of a cancer biomarker with two model is also achieved, showing potential for early disease diagnosis and environmental monitoring. PMID:27158947

  17. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    NASA Astrophysics Data System (ADS)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  18. Aqueous-Phase Palladium-Catalyzed Coupling. A Green Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Harper, Brandy A.; Chance Rainwater, J.; Birdwhistell, Kurt; Knight, D. Andrew

    2002-06-01

    An upper-level inorganic/organic experiment presents important concepts in modern green chemistry. A water-soluble modified triphenylphosphine ligand is prepared and used to prepare a water-soluble palladium catalyst. The palladium catalyst is formed in situ and used for the aqueous, homogenous, palladium-catalyzed cross-coupling reaction of iodobenzene and diethyl phosphite. The product is diethyl phenylphosphonate.

    Featured on the Cover

  19. Aqueous two-phase flotation for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10.

    PubMed

    Md Sidek, Nurul Lyana; Tan, Joo Shun; Abbasiliasi, Sahar; Wong, Fadzlie Wong Faizal; Mustafa, Shuhaimi; Ariff, Arbakariya B

    2016-08-01

    An aqueous two-phase flotation (ATPF) system based on polyethylene glycol (PEG) and sodium citrate (NaNO3C6H5O7·2H2O) was considered for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. The effects of ATPF parameters namely phase composition, tie-line length (TLL), volume ratio between the two phases (VR), amount of crude load (CL), pH, nitrogen gas flow rate (FR) and flotation time (FT) on the performance of recovery were evaluated. BLIS was mainly concentrated into the upper PEG-rich phase in all systems tested so far. The optimum conditions for BLIS purification, which composed of PEG 8000/sodium citrate, were: TLL of 42.6, VR of 0.4, CL of 22% (w/w), pH 7, average FT of 30min and FR of 20mL/min. BLIS was partially purified up to 5.9-fold with a separation efficiency of 99% under this optimal conditions. A maximum yield of BLIS activity of about 70.3% was recovered in the PEG phase. The BLIS from the top phase was successfully recovered with a single band in SDS-gel with molecular weight of about 10-15kDa. ATPF was found to be an effective technique for the recovery of BLIS from the fermentation broth of P. acidilactici Kp10. PMID:27262666

  20. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis.

    PubMed

    Chethana, S; Nayak, Chetan A; Madhusudhan, M C; Raghavarao, K S M S

    2015-04-01

    C-phycocyanin, a natural food colorant, is gaining importance worldwide due to its several medical and pharmaceutical applications. In the present study, aqueous two-phase extraction was shown to be an attractive alternative for the downstream processing of C-phycocyanin from Spirulina platensis. By employing differential partitioning, C-phycocyanin selectively partitioned to the polymer rich (top) phase in concentrated form and contaminant proteins to the salt rich (bottom) phase. This resulted in an increase in the product purity (without losing much of the yield) in a single step without the need of multiple processing steps. Effect of process parameters such as molecular weight, tie line length, phase volume ratio, concentration of phase components on the partitioning behavior of C-phycocyanin was studied. The results were explained based on relative free volume of the phase systems. C-phycocyanin with a purity of 4.32 and yield of about 79 % was obtained at the standardized conditions. PMID:25829627

  1. Reversible flocculation of silica across the phase boundary of poly(vinyl caprolactam) in aqueous solution.

    PubMed

    Qiu, Q; Pethica, B A; Somasundaran, P

    2005-12-20

    The colloid stability of silica dispersions in water in the presence of poly(vinyl caprolactam) (PVCAP) has been studied below and above the lower consolute temperature (LCT) of its solutions. The dispersion sediments slowly without PVCAP in the temperature range studied (26-40 degrees C) or with PVCAP below the LCT ( approximately 30 degrees C). In contrast, with PVCAP above the LCT, rapid flocculation occurs at acid pH, with re-dispersal on cooling. Reversible flocculation is also obtained above the LCT by cycling the pH from alkaline to acid and back. The flocculation observed above the LCT may also be regarded as heterocoagulation between the silica particles and the aggregates of the polymer. PMID:16342979

  2. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  3. Differential partition of virulent Aeromonas salmonicida and attenuated derivatives possessing specific cell surface alterations in polymer aqueous-phase systems

    NASA Technical Reports Server (NTRS)

    Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.

    1986-01-01

    Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.

  4. Formation and manipulation of cell spheroids using a density adjusted PEG/DEX aqueous two phase system

    PubMed Central

    Han, Chungmin; Takayama, Shuichi; Park, Jaesung

    2015-01-01

    Various spheroid formation techniques have been widely developed for efficient and reliable 3-D cell culture research. Although those efforts improved many aspects of spheroid generation, the procedures became complex and also required unusual laboratory equipment. Many recent techniques still involve laborious pipetting steps for spheroid manipulation such as collection, distribution and reseeding. In this report, we used a density-controlled polyethylene glycol and dextran aqueous two phase system to generate spheroids that are both consistent in size and precisely size-controllable. Moreover, by adding a few drops of fresh medium to the wells the contain spheroids, they can be simply settled and attached to the culture surface due to reduced densities of the phases. This unique attribute of the technique significantly reduces the numerous pipetting steps of spheroid manipulation to a single pipetting; therefore, the errors from those steps are eliminated and the reliability and efficiency of a research can be maximized. PMID:26144552

  5. A modular diffusion barrier based on phase separation for localized delivery of discrete drug volumes in aqueous environments.

    PubMed

    Steigert, Juergen; Strasser, Monika; Wangler, Nicolai; Brett, Olivia; Streule, Wolfgang; Koltay, Peter; Daub, Martina; Zengerle, Roland

    2009-06-21

    We present a new tool for the precisely controlled transfer of individual picoliter (pL) droplets in the range of 150-950 pL at user defined local positions within aqueous liquid environments while avoiding any leakage by diffusion. This is achieved by a low-cost, disposable and biocompatible cap that can be placed on top of any pL-dispenser and generates a phase-gap between dispensing agent and target liquid when the dispenser is dipped into the latter. We developed two different working modes: (i) the standard mode enables an instant injection (< 1 ms) of the droplet into the liquid environment and (ii) the focus mode further increases the spatial resolution from 100 microm to 50 microm at the cost of slowing down the injection time. For the phase-gap we have proven an excellent long-term stability of more than 30 hours against capillary priming. PMID:19495466

  6. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Tlili, S.; Ravier, S.; Clément, J.-L.; Monod, A.

    2015-08-01

    Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found that could reproduce laboratory data over a wide range of experimental conditions. This mechanism is the first that comprehensively describes such radical-initiated oligomer formation. This mechanism was implemented into a multiphase box model that simulates secondary organic aerosol (SOA) formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. While in laboratory experiments oxygen limitation might occur and lead to accelerated oligomer formation, such conditions are likely not met in the atmosphere. The comparison of predicted oligomer formation shows that MVK and MACR likely do negligibly contribute to total SOA as their solubilities are low and even reduced in aerosol water due to ionic strength effects (Setchenov coefficients). Significant contribution by oligomers to total SOA might only occur if a substantial fraction of particulate carbon acts as oligomer precursors and/or if oxygen solubility in aerosol water is strongly reduced due to salting-out effects.

  7. Microfluidic aqueous two-phase extraction of bisphenol A using ionic liquid for high-performance liquid chromatography analysis.

    PubMed

    Qi, Linlin; Wang, Yunhua; Li, Yajie; Zheng, Guoxia; Li, Changping; Su, Hongzhen

    2015-05-01

    An aqueous two-phase microfluidics (ATPM) method suitable for selective extraction of bisphenol A (BPA) in aqueous samples was developed, and a functional ionic liquid of N, N, N-trioctyl ammonium propionate (TOAP) was specially employed for the formation of a parallel flow system. Based on the analytical model, we optimized the chip design into branch-connection length pattern to achieve maximum extraction efficiency (φ max) and ensure phase separation. In combining the design flexibility and ideal reaction activity of extractant (TOAP), the developed ATPM enabled a selective and effective extraction of BPA (φ max of 95% within 2 s) from phenol derivatives. Meanwhile, the total operation time and ionic liquid consumption of the microfluidic extraction were only 2.5 min and 5 μl, respectively. The ATPM can be run at normal pH and room temperature and showed no interferences from components found in tap or beach water. To be noted, this specific extraction system was applied in real water samples; the recoveries of standard addition for all water samples spiked with BPA were from 96 to 110%. Finally, successful reuse of the chip was also realized. In all cases, the developed microfluidic chip was proven to be useful as an effective and low consumption approach in extracting BPA and should be expanded as a "green" preparative method for high-performance liquid chromatography (HPLC) analysis. PMID:25796523

  8. Distribution of phenanthrene between soil and an aqueous phase in the presence of anionic micelle-like amphiphilic polyurethane particles.

    PubMed

    Lee, Kangtaek; Choi, Heon-Sik; Kim, Ju-Young; Ahn, Ik-Sung

    2003-12-12

    Sorption of micelle-like amphiphilic polyurethane (APU) particles to soil was studied and compared to that of a model anionic surfactant, sodium dodecyl sulfate (SDS). Three types of APU particles with different hydrophobicity were synthesized from urethane acrylate anionomers (UAA) and used in this study. Due to the chemically cross-linked structure, APU exhibited less sorption to the soil than SDS and a greater reduction in the sorption of phenanthrene, a model soil contaminant, to the soil was observed in the presence of APU than SDS even though the solubility of phenanthrene was higher in the presence of SDS than APU. A mathematical model was developed to describe the phenanthrene distribution between soil and an aqueous phase containing APU particles. The sorption of phenanthrene to the test soil could be well described by Linear isotherm. APU sorption to the soil was successfully described by Langmuir and Freundlich isotherms. The partition of phenanthrene between water and APU were successfully explained with a single partition coefficient. The model, which accounts for the limited solubilization of phenanthrene in sorbed APU particles, successfully described the experimental data for the distribution of phenanthrene between the soil and the aqueous phase in the presence of APU. PMID:14623427

  9. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.

    PubMed

    Serrano-Ruiz, Juan Carlos; Luque, Rafael; Sepúlveda-Escribano, Antonio

    2011-11-01

    Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals. PMID:21713268

  10. Kinetics of OH-initiated oxidation of some oxygenated organic compounds in the aqueous phase under tropospheric conditions

    NASA Astrophysics Data System (ADS)

    Poulain, L.; Grubert, S.; François, S.; Monod, A.; Wortham, H.

    2003-04-01

    The interest for multiphase interactions of Volatile Organic Compounds (VOCs) in the troposphere has increased for a few years. Inside the clouds water droplets, soluble VOCs can be oxidized by free radicals thus modifying the droplet composition. This reactivity has an impact on the tropospheric oxidizing capacity as well as the aerosols' properties. In the present work, we measured aqueous phase OH-initiated oxidation rate constants of several oxygenated organic compounds relevant to the atmosphere or chosen as test compounds (ethanol, t-butanol, 1-butanol, iso-propanol, 1-propanol, acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, phenol, ethyl ter-butyl ether (ETBE), n-propyl acetate, acetone, methyl ethyl ketone (MEK), methyl iso-butyl ketone (MIBK), ethyl formate). Experiments took place in an aqueous phase photoreactor. The rate constants were determinated using the relative kinetic method. Different OH-radical sources were tested, as well as different reference compounds in order to detect any artifact. The results have shown validation of the experimental protocol on test compounds. The overall results allowed to propose a structure reactivity method in order to predict OH-oxidation rate constant of new compounds. Finally, tropospheric life times of the studied compounds were compared inside and outside a cloud.

  11. A Simple and Fast Aqueous-Phase Synthesis of Ultra-Highly Concentrated Silver Nanoparticles and Their Catalytic Properties.

    PubMed

    Shahzad, Aasim; Chung, Minsub; Yu, Taekyung; Kim, Woo-Sik

    2015-11-01

    A simple and fast synthetic route to ultra-highly concentrated silver nanoparticles with long-term stability by reducing AgNO3 with ascorbic acid in the presence of polyethyleneimine (PEI) as a stabilizer in an aqueous phase is reported. The concentration of silver precursor was as high as 2000 mm (200 g of Ag nanoparticle per liter of water) and the reaction time was less than 10 min. The resulting silver nanoparticles show long-term stability after two months of storage at room temperature without any signs of particle aggregation or precipitation in an aqueous phase. The successful ligand exchange of PEI-stabilized silver nanoparticles to polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) without particle aggregation is also demonstrated. In addition, the catalytic activities of silver nanoparticles stabilized by various stabilizers prepared by the ligand exchange method was investigated. The PEI-stabilized silver nanoparticles exhibited a higher stability than those of PEG- and PVP-stabilized silver nanoparticles in the diffusion-controlled catalytic reduction of 4-nitrophenol to 4-aminophenol by NaBH4 . PMID:26324024

  12. Demixing of aqueous polymer two-phase systems in low gravity

    NASA Technical Reports Server (NTRS)

    Bamberger, S.; Van Alstine, J. M.; Snyder, R. S.; Harris, J. M.; Baird, J. K.

    1988-01-01

    Experiments on the effect of gravity on phase emulsion demixing were performed in order to study the potential of two-phase partitioning in space. The behavior of phase systems possessing phase density differences and systems with essentially identical phase densities was investigated during one-g and low-g parabolic aircraft maneuvers. It is found that demixing can occur rather rapidly in space, although more slowly than on earth. The Ostwald ripening theory predicts demixing rates many orders of magnitude lower than the observed values.

  13. Experimental data developed to support the selection of a treatment process for West Valley alkaline supernatant

    SciTech Connect

    Bray, L.A.; Holton, L.K.; Myers, T.R.; Richardson, G.M.; Wise, B.M.

    1984-01-01

    At the request of West Valley Nuclear Services Co., Inc., the Pacific Northwest Laboratory (PNL) has studied alternative treatment processes for the alkaline PUREX waste presently being stored in Tank 8D2 at West Valley, New York. Five tasks were completed during FY 1983: (1) simulation and characterization of the alkaline supernatant and sludge from the tank. The radiochemical and chemical distributions between the aqueous and solid phase were determined, and the efficiency of washing sludge with water to remove ions such as Na/sup +/ and SO/sub 4//sup 2 -/ was investigated; (2) evaluation of a sodium tetraphenylboron (Na-TPB) precipitation process to recover cesium (Cs) and a sodium titanate (Na-TiA) sorption process to recover strontium (Sr) and plutonium (Pu) from the West Valley Alkaline supernatant. These processes were previously developed and tested at the US Department of Energy's Savannah River Plant; (3) evaluation of an organic cation-exchange resin (Duolite CS-100) to recover Cs and Pu from the alkaline supernatant followed by an organic macroreticular cation exchange resin (Amberlite IRC-718) to recover Sr; (4) evaluation of an inorganic ion exchanger (Linde Ionsiv IE-95) to recover Cs, Sr, and Pu from the alkaline supernatant; and (5) evaluation of Dowex-1,X8 organic anion exchange resin to recover technetium (Tc) from alkaline supernatant. The findings of these tasks are reported. 21 references, 36 figures, 34 tables.

  14. Passage of TBP-uranyl complexes from aqueous-organic interface to the organic phase: insights from molecular dynamics simulation.

    PubMed

    Sahu, Pooja; Ali, Sk Musharaf; Shenoy, Kalasanka Trivikram

    2016-08-24

    The present study reports molecular dynamics simulations for biphasic systems comprising tributyl phosphate (TBP) in dodecane and uranyl nitrate in the aqueous phase, which are key chemical species in the well-known Pu-U extraction (PUREX) process. An attempt has been made to understand the nature of interface and mechanism of 'TBP associated uranyl' crossing under neutral and acidic conditions. Results show that the solvent density undergoes large fluctuation near the interface depending on the nature of the aqueous-organic phase. The study provides compelling evidence of experimentally observed reorganization of interfacial complexes at the interface and their structural reformation during extraction. It has been observed that the surface active nature of TBP and their interfacial coverage is modulated by the nature of incorporated solute species and their location with respect to the interface. Also, the TBP structuring near the interface is destroyed when an acidic interface is considered rather than a neutral one which favors the uranyl extraction. With an acidic interface, the water humidity of organic phase was observed to be increased in the experiments. Furthermore, the acid/water solubility in the organic phase was observed to be influenced by selection of acid models and their concentration. Simulations with high acid concentration show water pocket formation in the organic phase. However, in the case of dissociated ions or a mixture of both, no such water pool is observed and the extracted water remains dispersed in the organic phase, having the tendency to be replaced by HNO3 because of preferred TBP·HNO3 complexation over TBP·H2O. Most remarkably, the present study makes evident the TBP-induced charge redistribution of uranyl complexes during migration from the interface to the bulk organic phase, which contributes to drive uranyl complexes such as UO2·NO3·4TBP, UO2·5TBP and UO2·NO3·3TBP·HNO3 in the organic phase, and this was reestablished by

  15. Differential scanning calorimetry of thermotropic phase transitions in vitaminylated lipids: aqueous dispersions of N-biotinyl phosphatidylethanolamines.

    PubMed Central

    Swamy, M. J.; Angerstein, B.; Marsh, D.

    1994-01-01

    The thermotropic phase behavior of a homologous series of saturated diacyl phosphatidylethanolamines in which the headgroup is N-derivatized with biotin has been investigated by differential scanning calorimetry. In 1 M NaCl, derivatives with acyl chainlengths from C(12:0) to C(20:0) all exhibit sharp chain-melting phase transitions, which are reversible with a hysteresis of 1.5 degrees or less, except for the C(12:0) lipid which has a transition temperature below 0 degree C. The transition enthalpy and the transition entropy depend approximately linearly on the lipid chainlength, with incremental values per CH2 group that are very similar to those obtained for the corresponding underivatized phosphatidylethanolamines in aqueous dispersion. The chainlength-independent contribution to the transition enthalpy is significantly smaller than that for the underivatized phosphatidylethanolamines, and that for the transition entropy is much smaller; the latter suggesting that the N-biotinylated phosphatidylethanolamine headgroups are differently hydrated from those of the underivatized lipids. The gel-to-fluid phase transition temperatures of the N-biotinylated lipids are lower than those of the parent phosphatidylethanolamines, and their chainlength dependence conforms well with that predicted by assuming that the transition enthalpy and entropy are linearly dependent on chainlength. Although the chain-melting phase behavior is generally similar to that of the parent phosphatidylethanolamines, the gel phases (and the fluid phases in the case of chainlengths C(12:0) to C(16:0)) have a different lyotropic structure in the two cases, and this is reflected in the chainlength-independent contributions to the thermodynamic parameters. In the absence of salt, the thermotropic phase behavior of aqueous dispersions of the N-biotinyl phosphatidylethanolamines is considerably more complex. The transition temperatures are consistently lower than those in 1 M NaCI, but the transitions

  16. Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium.

    PubMed

    Rodrigues, Guilherme Dias; de Lemos, Leandro Rodrigues; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2013-03-01

    This work developed a new and efficient method of extracting and separating Co(II), Ni(II) and Cd(II) in aqueous two-phase systems (ATPS) composed of triblock copolymer (L64)+Na(2)C(4)H(4)O(6)+water and L64+Li(2)SO(4)+water using the hydrophobic extractant 1-nitroso-2-naphtol, which complexes the metal ions and partitions in the triblock copolymer micelles in the ATPS top phase. Metal extraction from the salt-rich phase to the copolymer - rich phase is strongly affected by the fine-tuning of the following parameters: amount of added extractant, type of electrolyte, pH, and tie-line length. Excellent separation factors (S(i,j)) between the metals were obtained at pH=3.00 (S(Co,Cd)=1550 and S(Ni,Cd)=16,700) and pH=1.00 (S(Co,Ni)=826). In the interference study, Co(II) was selectivity extracted in the top phase in the presence of Ni(II) and Cd(II) in a concentration of up to 20 times the cobalt level in the system. PMID:23357750

  17. Phase behavior of aqueous suspensions of Mg(2)Al layered double hydroxide: the competition among nematic ordering, sedimentation, and gelation.

    PubMed

    Zhang, Jie; Luan, Lingyu; Zhu, Wenxia; Liu, Shangying; Sun, Dejun

    2007-05-01

    Birefringence observations and rheological measurements were used to monitor the phase behavior of Mg/Al (the molar ratio of Mg(2+) to Al(3+) being 2:1) layered double hydroxide (LDH) suspensions. The suspensions of concentration lower than 16% (w/w) appear isotropic (I) between crossed polarizers. In contrast, the suspensions of concentration between 16% and 30% (w/w) showed an isotropic (I)-nematic (N) biphasic coexistence. Detailed observations led us to divide the suspensions in the gap into three groups according to their behaviors: the suspensions with concentration between 16% and 25% (w/w) experienced an I-N phase transition and particle sedimentation simultaneously, while the suspensions of 25% to 27% (w/w) showed I-N transition after particle sedimentation, and in the suspension of 30% (w/w), a critical sol-gel transition appeared with an I-N transition. Above 33% (w/w), the gel network hindered a complete I-N separation in the suspensions. Upon raising the NaCl concentration, the liquid crystalline phase transition and the sol-gel transition shifted to higher particle concentrations. The facts demonstrate that the phase behavior of aqueous LDH suspensions is controlled by the competition among liquid crystal phase transition, sedimentation, and gelation. PMID:17439162

  18. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    PubMed

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. PMID:27474855

  19. KEMOD: A mixed chemical kinetic and equilibrium model of aqueous and solid phase geochemical reactions

    SciTech Connect

    Yeh, G.T.; Iskra, G.A.; Szecsody, J.E.; Zachara, J.M.; Streile, G.P.

    1995-01-01

    This report presents the development of a mixed chemical Kinetic and Equilibrium MODel in which every chemical species can be treated either as a equilibrium-controlled or as a kinetically controlled reaction. The reaction processes include aqueous complexation, adsorption/desorption, ion exchange, precipitation/dissolution, oxidation/reduction, and acid/base reactions. Further development and modification of KEMOD can be made in: (1) inclusion of species switching solution algorithms, (2) incorporation of the effect of temperature and pressure on equilibrium and rate constants, and (3) extension to high ionic strength.

  20. Three-phase compositional modeling of CO2 injection by higher-order finite element methods with CPA equation of state for aqueous phase

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Li, Zhidong; Firoozabadi, Abbas

    2012-12-01

    Most simulators for subsurface flow of water, gas, and oil phases use empirical correlations, such as Henry's law, for the CO2 composition in the aqueous phase, and equations of state (EOS) that do not represent the polar interactions between CO2and water. Widely used simulators are also based on lowest-order finite difference methods and suffer from numerical dispersion and grid sensitivity. They may not capture the viscous and gravitational fingering that can negatively affect hydrocarbon (HC) recovery, or aid carbon sequestration in aquifers. We present a three-phase compositional model based on higher-order finite element methods and incorporate rigorous and efficient three-phase-split computations for either three HC phases or water-oil-gas systems. For HC phases, we use the Peng-Robinson EOS. We allow solubility of CO2in water and adopt a new cubic-plus-association (CPA) EOS, which accounts for cross association between H2O and CO2 molecules, and association between H2O molecules. The CPA-EOS is highly accurate over a broad range of pressures and temperatures. The main novelty of this work is the formulation of a reservoir simulator with new EOS-based unique three-phase-split computations, which satisfy both the equalities of fugacities in all three phases and the global minimum of Gibbs free energy. We provide five examples that demonstrate twice the convergence rate of our method compared with a finite difference approach, and compare with experimental data and other simulators. The examples consider gravitational fingering during CO2sequestration in aquifers, viscous fingering in water-alternating-gas injection, and full compositional modeling of three HC phases.

  1. Near-explicit Gas-phase Chemistry Coupled with Extensive Aqueous Mechanism: Looking at Ethanol (E85) Exhaust in a Fog

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, D. L.; Jacobson, M. Z.

    2011-12-01

    We combine a near-explicit gas-phase chemical mechanism with an extensive aqueous mechanism in a chemical solver to examine the effects of ethanol (E85) versus gasoline on the fate of pollutants in the presence of a fog. We use the Master Chemical Mechanism (MCM, version 3.1, Leeds University) and the Chemical Aqueous Phase Radical Mechanism, CAPRAM 3.0, with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate complex chemistry. The MCM has over 13, 500 organic reactions and 4,600 species, while CAPRAM treats aqueous chemistry among 390 species and 829 reactions (including 51 gas-to-aqueous phase reactions). We validate a simplified version of the model against results from a comprehensive intercomparison by Barth et al (2003). In previous work on ethanol (E85), we analyzed the temperature-dependence of ethanol and gasoline exhaust chemistry and its impact on urban air pollution considering only gas-phase chemistry. In addition to the air pollution findings, we verified that using the MCM with SMVGEAR is practical in a 3-D model. Here, we extend our study to include aqueous chemistry in the presence of a fog. We investigate the impact aqueous reactions have on unburned ethanol and acetaldehyde mixing ratios in the atmosphere in particular because acetaldehyde is an ozone precursor and carcinogen, and aqueous oxidation has potential to speed the conversion of unburned ethanol to acetaldehyde. Acetaldehyde also forms acetic acid in aqueous solution. Acetic acid vapor is an eye, nose, and lung irritant, so both species contribute negatively to human health. We look at the impact of fog liquid water content and temperature on the degradation of emitted aromatic and other species as well, from both gasoline and E85.

  2. Aqueous Phase Non Enzymatic Chemistry of Cyanide, Formaldehyde and RNH2

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)

    1994-01-01

    It is postulated that amino acids were produced on the early earth from dilute aqueous solution of cyanide, carbonyls and ammonia (the Strecker synthesis RNH2 + R"R""C=O + KCN yields H-N(R)-C(R")(R"")-CO2H. We have studied the products obtained from dilute aqueous solutions of cyanide, formaldehyde (R"=R""=H), ammonia (R=H) and amino acids. Solutions in the pH range from 8 to 10. at room temperature and at reactant concentrations from 0.001 M to 0.3 M have been studied. With R= H product yields were low (less than 3%). Only with R"=R""=H and R represented by the following: CH2CO2H (glycine); CH(CH3)CO2H (alanine); CH(CH2CH3)CO2H (a-amino n=butyric acids); C(CH3)2(CO2H) (a-aminoisobutyric acid); CH(CH(CH3)2)CO2H (valine); and CH(CH2CO2H)CO2H (aspartic acid), were product yields high (greater than 10%). The yields of glycine were larger with R not equal to H. The prebiotic implications of these findings will be discussed.

  3. Distribution of arsenic between the particulate and aqueous phases in surface water from three freshwater lakes in China.

    PubMed

    Yang, Fen; Geng, Di; Wei, Chaoyang; Ji, Hongbing; Xu, Hai

    2016-04-01

    Total arsenic (As) in suspended particulate matter (SPM) of lacustrine ecosystems has been extensively documented, but knowledge on the distribution of As between the particle and aqueous phases in freshwater lakes remains largely unknown. The present study employed a rapid method to determine the total and dissolved As and As in SPM at sites covering the entire areas of three large shallow lakes in China, e.g., Taihu, Chaohu, and Dianchi, to obtain a "representative" mean value of the As concentration in various phases. The average concentrations of total and dissolved As were below 6.0 and 3.3 μg/L, respectively. Arsenic in SPM was much higher than that in waters, as ranging from 24.7 to 516 μg/g. Lake Taihu exhibited extensive seasonal variation both in total and dissolved As, while little difference was observed in SPM concentration, with an average value of 54.2 and 49.3 mg/L in winter and summer, respectively. Among the algae in the three lakes, Cyanophyta dominated in both cell abundance and biomass. Algae mass occupied significant parts of SPM, especially in Dianchi; the proportions of algae in the SPM fractions were measured as 10.4 and 7.1 % in Taihu in winter and summer, 4.5 % in Chaohu, and 53.3 % in Dianchi, both in summer season. The total As in SPM had a significant positive relationship with total As in water and a high distribution coefficient (Kd) between SPM and dissolved fraction of As at all three lakes. The high proportions of Algae, especially Cyanophyta in the composition of SPM in the three large shallow lakes, might play an important role in affecting the As distribution between the aqueous and particulate phases in aquatic ecosystem. PMID:26705755

  4. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures.

    PubMed

    Gerson, D F; Akit, J

    1980-11-01

    Partition coefficients in biphasic mixtures of poly(ethylene glycol) and Dextran are compared to cell surface energies obtained from contact angles of each liquid phase on cell layers. Linear relationships are observed between these two independent measurements for a variety of bacterial cells. The results demonstrate the importance of interfacial phenomena and contact angles in the phase-partition process. PMID:6159003

  5. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt.

    PubMed

    He, Chiyang; Li, Shehong; Liu, Huwei; Li, Kean; Liu, Feng

    2005-08-01

    Based on aqueous two-phase systems (ATPS) consisting of 1-butyl-3-methylimidazolium chloride, a hydrophilic ionic liquid (IL), and K2HPO4, a new and simple extraction technique, coupled with a reversed-phase high performance liquid chromatography (RP-HPLC), was developed for the simultaneous concentration and analysis of testosterone (T) and epitestosterone (ET) in human urine. Under the optimal conditions, the extraction efficiencies for both analytes were 80-90% in a one-step extraction. The method required only 3.0 mL of urine and a single hydrolysis/deproteinization/extraction step followed by direct injection of the IL-rich upper phase into HPLC system for analysis. The method has been satisfactorily applied to the analysis of T and ET in human urine with detection limits of 1 ng/mL and linear ranges of 10-500 ng/mL for both compounds. Compared with conventional liquid-liquid extraction or solid phase extraction, this new method is much "greener" due to no use of volatile organic solvent and low consumption of IL. The proposed extraction technique opens up new possibilities in the separation of other drugs. PMID:16035355

  6. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography.

    PubMed

    Schwienheer, C; Prinz, A; Zeiner, T; Merz, J

    2015-10-01

    For the production of bio active compounds, e.g., active enzymes or antibodies, a conserved purification process with a minimum loss of active compounds is necessary. In centrifugal partition chromatography (CPC), the separation effect is based on the different distribution of the components to be separated between two immiscible liquid phases. Thereby, one liquid phase is kept stationary in chambers by a centrifugal field and the mobile phase is pumped through via connecting ducts. Aqueous two phase systems (ATPS) are known to provide benign conditions for biochemical products and seem to be promising when used in CPC for purification tasks. However, it is not known if active biochemical compounds can "survive" the conditions in a CPC where strong shear forces can occur due to the two-phasic flow under centrifugal forces. Therefore, this aspect has been faced within this study by the separation of active laccases from a fermentation broth of Pleurotus sapidus. After selecting a suitable ATPS and operating conditions, the activity yield was calculated and the preservation of the active enzymes could be observed. Therefore, CPC could be shown as potentially suitable for the purification of bio-active compounds. PMID:26295695

  7. Genetically engineered charge modifications to enhance protein separation in aqueous two-phase systems: Charge directed partitioning

    SciTech Connect

    Luther, J.R.; Glatz, C.E.

    1995-04-05

    This report continues the authors` examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extraction. The genetic modifications consisted of the fusion of charged peptide tails to {beta}-galactosidase and charge-change point mutations to T4 lysozyme. In this study, they examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the {beta}-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contribution to the extreme partitioning. Unlike the potential-driven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K{sub p}) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions.

  8. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    NASA Astrophysics Data System (ADS)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  9. Synthesis of nc-UO2 by controlled precipitation in aqueous phase

    NASA Astrophysics Data System (ADS)

    Jovani-Abril, R.; Gibilaro, M.; Janßen, A.; Eloirdi, R.; Somers, J.; Spino, J.; Malmbeck, R.

    2016-08-01

    Nanocrystalline UO2 has been produced through controlled precipitation from an electrolytically reduced U(IV) solution. The reduction process of U(VI) to U(IV) was investigated by cyclic voltammetry in combination with absorption spectrophotometry. Precipitation was achieved by controlled alkalinisation following closely the solubility line of U(IV) in aqueous media. The highest starting concentration used was 0.5 M uranylnitrate which yielded, with the equipment used, around 10 g material pro batch. The produced nc-UO2 was characterised by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and exhibited the typical UO2+x fcc fluorite structure with an average crystallite size of 3.9 nm.

  10. Structural phase transition of merocyanine J-aggregate induced by ion-recombination in the aqueous sub-phase

    NASA Astrophysics Data System (ADS)

    Kato, Noritaka; Saito, Kentaro; Uesu, Yoshiaki

    2000-08-01

    By using the sub-phase, which contains two different kinds of counter-ions, we found a reversible thermochromic transition between different J-aggregate states of amphiphilic merocyanine dye (MD) molecules in the monolayer at the air-water interface. This chromatic change is attributed to the structural phase transition of MD J-aggregate crystallites induced by the mutual recombination of different counter-ions to MD molecules. The drastic morphological change of the MD monolayer during the transition is revealed by the in-situ observation using a multipurpose non-linear optical microscope.

  11. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  12. Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids.

    PubMed

    Li, Shehong; He, Chiyang; Liu, Huwei; Li, Kean; Liu, Feng

    2005-11-01

    An ionic liquid, 1-butyl-3-methylimidazolium chloride ([C4 mim]Cl)/salt aqueous two-phase systems (ATPS) was presented as a simple, rapid and effective sample pretreatment technique coupled with high-performance liquid chromatography (HPLC) for analysis of the major opium alkaloids in Pericarpium papaveris. To find optimal conditions, the partition behaviors of codeine and papaverine in ionic liquid/salt aqueous two-phase systems were investigated. Various factors were considered systematically, and the results indicated that both the pH value and the salting-out ability of salt had great influence on phase separation. The recoveries of codeine and papaverine were 90.0-100.2% and 99.3-102.0%, respectively, from aqueous samples of P. papaveris by the proposed method. PMID:16143571

  13. Enzymatic hydrolysis of cellulose in aqueous two-phase systems. II. Semicontinuous conversion of a model substrate, solka floc bw 200

    SciTech Connect

    Tjerneld, F.; Persson, I.; Albertsson, P.A.; Hahn-Haegerdal, B.

    1985-07-01

    A model substrate, Solka Floc BW 200, was semicontinuously hydrolyzed in an aqueous two-phase system based on crude dextran and polyethylene glye, Solka Floc BW 200, was semicontinuously hydrolyzed in an aqueous two-phase system based on crude dextran and polyethylene glycol over a period of more than 450 h. With an initial concentration of 75 g/l and intermittent addition of cellulose an average concentration of 50 g/l sugar was semicontinuously produced at dilution rates of 0.006-0.012 per h. The conversion of substrate varied between 49 and 66%. The enzyme consumption measured as FPU/g reducing sugar produced could be reduced by a factor two when compared to a batch process since, in the aqueous two-phase system investigated, the enzyme could be recycled two times.

  14. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    NASA Astrophysics Data System (ADS)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  15. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    PubMed

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility. PMID:25656072

  16. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    PubMed Central

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-01-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings. PMID:24786974

  17. Emerging cool white light emission from Dy(3+) doped single phase alkaline earth niobate phosphors for indoor lighting applications.

    PubMed

    Vishwakarma, Amit K; Jha, Kaushal; Jayasimhadri, M; Sivaiah, B; Gahtori, Bhasker; Haranath, D

    2015-10-21

    Single-phase cool white-light emitting BaNb2O6:Dy(3+) phosphors have been synthesized via a conventional solid-state reaction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) observations and spectrofluorophotometric measurements. XRD and Rietveld structural refinement studies confirm that all the samples exhibit pure orthorhombic structure [space group -C2221(20)]. SEM observations reveal the dense particle packaging with irregular morphology in a micron range. The as-prepared phosphors exhibit blue (482 nm) and yellow (574 nm) emissions under 349, 364, 386 and 399 nm excitations corresponding to (4)F9/2→(6)HJ (J = 15/2, 13/2) transitions of Dy(3+) ions. The energy transfer mechanism between Dy(3+) ions has been studied in detail and the luminescence decay lifetime for the (4)F9/2 level was found to be around 146.07 μs for the optimized phosphor composition. The calculated Commission Internationale de L'Eclairage (CIE) chromaticity coordinates for the optimized phosphor are (x = 0.322, y = 0.339), which are close to the National Television Standard Committee (NTSC) (x = 0.310, y = 0.316) coordinates. The values of CIE chromaticity coordinates and correlated color temperature (CCT) of 5907 K endorse cool white-light emission from the phosphor. The study reveals that BaNb2O6:Dy(3+) phosphor could be a potential candidate for near ultra-violet (NUV) excited white-LED applications. PMID:26374377

  18. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  19. A Novel Aqueous Micellar Two-Phase System Composed of Surfactant and Sorbitol for Purification of Pectinase Enzyme from Psidium guajava and Recycling Phase Components

    PubMed Central

    Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  20. Cell separation in immunoaffinity partition in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1989-01-01

    Two methods for immunoaffinity partitioning are described. One technique involves the covalent coupling of poly (ethylene glycol) (PEG) to immunoglobulin G antibody preparations. In the second method PEG-modified Protein A is used to complex with cells and unmodified antibody. The effects of PEG molecular weight, the degree of modification, and varying phase system composition on antibody activity and its affinity for the upper phase are studied. It is observed that both methods resulted in effective cell separation.

  1. Joint aqueous solutions of dextran and bovine serum albumin: coexistence of three liquid phases.

    PubMed

    Antonov, Yurij; Wolf, Bernhard A

    2014-06-10

    The phase diagram of the system water/dextran (DEX)/BSA was measured as well as modeled. On the experimental side, cloud points were determined and the coexisting phases were analyzed. The theoretical calculations use an approach capable of describing solutions of chain polymers and of globular proteins with the same formalism. The required thermodynamic input comes from experiments concerning the binary subsystems, except for the polymer blend for which one interaction parameter had to be adjusted. Both sources of information yield the same essential features: the existence of a large composition area of immiscibility, starting from the subsystem DEX/BSA and extending well into the region of dilute polymer solutions. This range is subdivided into three sections: one two-phase area at high polymer content, a two-phase area at low polymer content, and a three-phase region located in between. Measured and calculated phase diagrams match qualitatively; the reasons for the quantitative discrepancies are being discussed. PMID:24832129

  2. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    DOE PAGESBeta

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-13

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants – the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as amore » function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to  ∼  2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values

  3. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; George, Katheryn M.; Anastasio, Cort; Laskin, Julia; Dillner, Ann M.; Zhang, Qi

    2016-04-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C∗) and hydroxyl radical (OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ˜ 2 h irradiation under midday winter solstice sunlight in Northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated ring-opening molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures (C∗) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C∗ values is observed

  4. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Laskin, A.; George, K. M.; Anastasio, C.; Laskin, J.; Dillner, A. M.; Zhang, Q.

    2015-10-01

    Organic aerosol is formed and transformed in atmospheric aqueous phases (e.g., cloud and fog droplets and deliquesced airborne particles containing small amounts of water) through a multitude of chemical reactions. Understanding these reactions is important for a predictive understanding of atmospheric aging of aerosols and their impacts on climate, air quality, and human health. In this study, we investigate the chemical evolution of aqueous secondary organic aerosol (aqSOA) formed during reactions of phenolic compounds with two oxidants - the triplet excited state of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). Changes in the molecular composition of aqSOA as a function of aging time are characterized using an offline nanospray desorption electrospray ionization mass spectrometer (nano-DESI MS) whereas the real-time evolution of SOA mass, elemental ratios, and average carbon oxidation state (OSC) are monitored using an online aerosol mass spectrometer (AMS). Our results indicate that oligomerization is an important aqueous reaction pathway for phenols, especially during the initial stage of photooxidation equivalent to ∼ 2 h irradiation under midday, winter solstice sunlight in northern California. At later reaction times functionalization (i.e., adding polar oxygenated functional groups to the molecule) and fragmentation (i.e., breaking of covalent bonds) become more important processes, forming a large variety of functionalized aromatic and open-ring products with higher OSC values. Fragmentation reactions eventually dominate the photochemical evolution of phenolic aqSOA, forming a large number of highly oxygenated open-ring molecules with carbon numbers (nC) below 6. The average nC of phenolic aqSOA decreases while average OSC increases over the course of photochemical aging. In addition, the saturation vapor pressures C*) of dozens of the most abundant phenolic aqSOA molecules are estimated. A wide range of C* values is observed

  5. The petrology of the layered gabbro intrusion, eastern gabbro, Coldwell alkaline complex, Northwestern Ontario, Canada: evidence for multiple phases of intrusion in a ring dyke

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.

    1997-07-01

    The Coldwell alkaline complex is a large (> 350 km 2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.

  6. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    PubMed

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-01

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  7. Electrochromic behavior of a lambda-MnO{sub 2} electrode accompanying Li{sup +}-insertion in an aqueous phase

    SciTech Connect

    Kanoh, Hirofumi; Hirotsu, Takahiro; Ooi, Kenta

    1996-03-01

    Electrochemical insertion/extraction reactions of spinel-type manganese oxide with Li{sup +} ions have been extensively studied from the standpoint of the development of alternative materials for secondary batteries. electrochromic properties of thin manganese oxide films have been examined for application to electrochromic materials. Electrochromism of spinel-type manganese oxide accompanying an Li{sup +}-insertion in an aqueous phase was examined by visual light spectrometry. An absorbance spectrum for lithiated manganese oxide gave lower absorbance in the wave-length range < 700 nm than did an Li{sup +}-extracted one. The greatest difference was observed at {approximately} 450 nm and is explained by the difference between the spectra for Mn{sup 3+} and Mn{sup 4+}. A reversible change in absorbance at 450 nm occurred with the Li{sup +}-insertion/extraction reaction. Cyclic voltammetry indicated that the absorbance change couples with the electrochemical response of the manganese oxide to Li{sup +} ions.

  8. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    PubMed

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. PMID:25280108

  9. Quantification of the antifungal lipopeptide iturin A by high performance liquid chromatography coupled with aqueous two-phase extraction.

    PubMed

    Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2011-09-15

    Iturin A, a powerful antifungal surfactant, is a kind of bacterial lipopeptide produced by Bacillus strains. This study addresses the use of an aqueous two-phase system (ATPS) using ethanol/ammonium sulfate to extract iturin A from Bacillus amyloliquefaciens NJN-6 fermentation broth and the quantification of iturin A by HPLC. Baseline separation of iturin A homologues was performed using an RP-C(18) column with a mixture of water and acetonitrile. The results showed that the correlation coefficient between integral area and concentration was 0.9961 within the range of 20-140 mg/l. The RSD of the retention time and the peak area were 1.29% and 1.45%, respectively. The effects of some operating parameters in ATPS, e.g., pH, temperature and centrifugation time, were also studied. This method can be successfully used for the rapid quantification of iturin A. PMID:21872538

  10. Graphene nanoplatelets as a highly efficient solid-phase extraction sorbent for determination of phthalate esters in aqueous solution.

    PubMed

    Luo, Xi; Zhang, FeiFang; Ji, Shunli; Yang, Bingcheng; Liang, Xinmiao

    2014-03-01

    Graphene nanoplatelet (GN) as a solid-phase extraction (SPE) sorbent in combination with high performance liquid chromatography has been used for the determination of five phthalate esters (PAEs) in aqueous solution. The operation parameters affecting the extraction efficiency were optimized. Comparative studies showed that GN was superior to other common SPE sorbents in terms of recovery and adsorption capacity. Under optimization conditions, detection limits of 0.09-0.33 ng mL(-1) were achieved for five PAEs and enrichment factors of 402-711 for the analytes were obtained. The proposed method was successfully applied for the determination of PAEs in tap water and drink samples with recoveries ranging from 87.7% to 100.9%. PMID:24468344

  11. Base-Free Aqueous-Phase Oxidation of 5-Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks.

    PubMed

    Artz, Jens; Palkovits, Regina

    2015-11-01

    The base-free aqueous-phase oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxilic acid (FDCA) was performed at 140 °C and 20 bar of synthetic air as the oxidant. Ru clusters supported on covalent triazine frameworks (CTFs) enabled superior conversion (99.9%) and FDCA yields in comparison to other support materials such as activated carbon and γ-Al2O3 after only 1 h. The properties of the CTFs such as pore volume, specific surface area, and polarity could be tuned by using different monomers. These material properties influence the catalytic activity of Ru/CTF significantly as mesoporous CTFs showed superior activity compared to microporous materials, whereas high polarities provide further beneficial effects. The recyclability of the prepared Ru/CTF catalysts was comparable to that of Ru/C at high conversions and product yields. Nevertheless, minor deactivation in five successive recycling experiments was observed. PMID:26482331

  12. Solid phase micro extraction - A new technique coupled with gas chromatograph for chloroethene analysis from aqueous samples

    SciTech Connect

    Xu, N.; Sewell, G.W.

    1996-10-01

    Once the chloroethenes (tetrachloroethene and trichloroethene) contamination occurs in the subsurface environment, they tend to retain and form a Pollution plum in the aquifer because of their recalcitrance to aerobic oxidation. Currently, the most promising bioremediation method for chlorinated compounds is through anaerobic reductive biotransformation, in which each chlorine is replaced by a hydrogen. To study the biodegradation process, it is essential to monitor tetrachloroethene and its degradation daughter products frequently. An analytical method has been modified for chloroethene analysis by gas chromatography. Solid Phase Micro Extraction technique has been used to extract aqueous sample onto a fiber and then to desorb the sample directly into a gas chromatograph injection port. The total run time is less than 17 minutes.

  13. Experimental observation of the transition between gas-phase and aqueous solution structures for acetylcholine, nicotine, and muscarine ions.

    PubMed

    Seydou, Mahamadou; Grégoire, Gilles; Liquier, Jean; Lemaire, J; Schermann, Jean Pierre; Desfrançois, Charles

    2008-03-26

    Structural information on acetylcholine and its two agonists, nicotine, and muscarine has been obtained from the interpretation of infrared spectra recorded in the gas-phase or in low pH aqueous solutions. Simulated IR spectra have been obtained using explicit water molecules or a polarization continuum model. The conformational space of the very flexible acetylcholine ions is modified by the presence of the solvent. Distances between its pharmacophoric groups cover a lower range in hydrated species than in isolated species. A clear signature of the shift of protonation site in nicotine ions is provided by the striking change of their infrared spectrum induced by hydration. On the contrary, structures of muscarine ions are only slightly influenced by the presence of water. PMID:18311975

  14. Cavitation on deterministically nanostructured surfaces in contact with an aqueous phase: a small-angle neutron scattering study.

    PubMed

    Melnichenko, Yuri B; Lavrik, N V; Popov, E; Bahadur, J; He, L; Kravchenko, I I; Smith, G; Pipich, V; Szekely, N K

    2014-08-26

    The structure of deterministically nanopatterned surfaces created using a combination of electron beam lithography and reactive ion etching was evaluated using small-angle neutron scattering (SANS). Samples exhibit 2D neutron scattering patterns that confirm the presence of ordered nanoscale cavities consistent with the targeted morphologies as well as with SEM data analysis. Comparison of SANS intensities obtained from samples in air and in contact with an aqueous phase (pure deuterium oxide, D2O, or a contrast matched mixture of D2O + H2O) reveals formation of stable gaseous nanobubbles trapped inside the cavities. The relative volume of nanobubbles depends strongly on the hydrophobicity of the cavity walls. In the case of hydrophobic surfaces, nanobubbles occupy up to 87% of the total cavity volume. The results demonstrate the high degree of sensitivity of SANS measurements for detecting and characterizing nano- and mesoscale bubbles with the volume fraction as low as ∼10(-6). PMID:25084807

  15. Stereochemical control of nonamphiphilic lyotropic liquid crystals: chiral nematic phase of assemblies separated by six nanometers of aqueous solvents.

    PubMed

    Yang, Sijie; Wang, Bing; Cui, Dawei; Kerwood, Deborah; Wilkens, Stephan; Han, Junjie; Luk, Yan-Yeung

    2013-06-13

    Unlike conventional thermotropic and lyotropic liquid crystals, nonamphiphilic lyotropic liquid crystals consist of hydrated assemblies of nonamphiphilic molecules that are aligned with a separation of about 6 nm between assemblies in an aqueous environment. This separation raises the question of how chirality, either from chiral mesogens or chiral dopants, would impact the phase as the assemblies that need to interact with each other are about 6 nm apart. Here, we report the synthesis of three stereoisomers of disodium chromonyl carboxylate, 5'DSCG-diviol, and the correlation between the molecular structure, bulk assembly, and liquid crystal formation. We observed that the chiral isomers (enantiomers 5'DSCG-(R,R)-diviol and 5'DSCG-(S,S)-diviol) formed liquid crystals while the achiral isomer 5'DSCG-meso-diviol did not. Circular dichroism indicated a chiral conformation with bisignate cotton effect. The nuclear Overhauser effect in proton NMR spectroscopy revealed conformations that are responsible for liquid crystal formation. Cryogenic transmission electron microscopy showed that chiral 5'DSCG-diviols form assemblies with crossings. Interestingly, only planar alignment of the chiral nematic phase was observed in liquid crystal cells with thin spacers. The homeotropic alignment that permitted a fingerprint texture was obtained only when the thickness of the liquid crystal cell was increase to above ~500 μm. These studies suggest that hydrated assemblies of chiral 5'DSCG-diviol can interact with each other across a 6 nm separation in an aqueous environment by having a twist angle of about 0.22° throughout the sample between the neighboring assemblies. PMID:23688325

  16. Fourier Transform Infrared Spectroscopy for Identification and Quantification of Organic Functional Groups in Aqueous Phase Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    George, K.; Ruthenburg, T. C.; Smith, J.; Anastasio, C.; Dillner, A. M.

    2011-12-01

    Particles in the atmosphere influence visibility, climate, and human health. Secondary organic aerosols (SOA) formed from chemical reactions in the atmosphere constitute a portion of total organic particle mass. Most research on SOA has focused on gas phase reactions; however, reactions taking place in cloud and fog drops may be significant. One group of water-soluble compounds that participate in these reactions is phenols. Phenols, emitted from biomass burning, react in the aqueous phase to form low-volatility SOA products. The products formed from these reactions are currently poorly characterized. In order to characterize laboratory-generated samples, we are developing an attenuated total reflectance-Fourier transform infrared spectroscopic (ATR-FTIR) technique to identify and quantify organic functional groups in SOA. Aqueous SOA is made in the laboratory by illuminating solutions of phenolic compounds with an oxidant. The illuminated solution is then blown to dryness in order to determine the mass of SOA produced. The dry SOA is reconstituted in water and drops of this solution are placed onto a single-reflection ATR accessory. In order to identify and quantify functional groups in the complex SOA samples, it is necessary to calibrate with compounds and mixtures of compounds containing bond types similar to those found in the laboratory-generated SOA. Initially, focus has been placed on multiple peaks located in the region between 1800 cm-1 and 800 cm-1, including peaks for C=O and C-O. We distinguish between characteristic absorbances to begin determining the organic functional group composition of the SOA samples. This ATR-FTIR technique complements information from mass spectrometry measurements and allows us to quantify organic mass for non-volatile SOA products.

  17. Aqueous Phase Glycerol Reforming by PtMo Bimetallic Nano-Particle Catalyst: Product Selectivity and Structural Characterization

    SciTech Connect

    Stach E. A.; Dietrich, P.J.; Lobo-Lapidus, R.J.; Wu, T.; Sumer, A.; Akatay, M.C.; Fingland, B.R.; Guo, N.; Dumesic, J.A.; Marshall, C.L.; Jellinek, J.; Delgass, W.N.; Ribeiro, F.H.; Miller, J.T.

    2012-03-01

    A carbon supported PtMo aqueous phase reforming catalyst for producing hydrogen from glycerol was characterized by analysis of the reaction products and pathway, TEM, XPS and XAS spectroscopy. Operando X-ray absorption spectroscopy (XAS) indicates the catalyst consists of bimetallic nano-particles with a Pt rich core and a Mo rich surface. XAS of adsorbed CO indicates that approximately 25% of the surface atoms are Pt. X-ray photoelectron spectroscopy indicates that there is unreduced and partially reduced Mo oxide (MoO{sub 3} and MoO{sub 2}), and Pt-rich PtMo bimetallic nano-particles. The average size measured by transmission electron microscopy of the fresh PtMo nano-particles is about 2 nm, which increases in size to 5 nm after 30 days of glycerol reforming at 31 bar and 503 K. The catalyst structure differs from the most energetically stable structure predicted by density functional theory (DFT) calculations for metallic Pt and Mo atoms. However, DFT indicates that for nano-particles composed of metallic Pt and Mo oxide, the Mo oxide is at the particle surface. Subsequent reduction would lead to the experimentally observed structure. The aqueous phase reforming reaction products and intermediates are consistent with both C-C and C-OH bond cleavage to generate H{sub 2}/CO{sub 2} or the side product CH{sub 4}. While the H{sub 2} selectivity at low conversion is about 75%, cleavage of C-OH bonds leads to liquid products with saturated carbon atoms. At high conversions (to gas), these will produced additional CH{sub 4} reducing the H{sub 2} yield and selectivity.

  18. Downstream processing of virus-like particles: single-stage and multi-stage aqueous two-phase extraction.

    PubMed

    Ladd Effio, Christopher; Wenger, Lukas; Ötes, Ozan; Oelmeier, Stefan A; Kneusel, Richard; Hubbuch, Jürgen

    2015-02-27

    The demand for vaccines against untreated diseases has enforced the research and development of virus-like particle (VLP) based vaccine candidates in recent years. Significant progress has been made in increasing VLP titres during upstream processing in bacteria, yeast and insect cells. Considering downstream processing, the separation of host cell impurities is predominantly achieved by time-intensive ultracentrifugation processes or numerous chromatography and filtration steps. In this work, we evaluate the potential of an alternative separation technology for VLPs: aqueous two-phase extraction (ATPE). The benefits of ATPE have been demonstrated for various biomolecules, but capacity and separation efficiency were observed to be low for large biomolecules such as VLPs or viruses. Both performance parameters were examined in detail in a case study on human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A solubility-guided approach enabled the design of polyethylene (PEG) salt aqueous two-phase systems with a high capacity of up to 4.1mg/mL VLPs. Unique separation efficiencies were obtained by varying the molecular weight of PEG, the pH value and by using neutral salt additives. Further improvement of the separation of host cell impurities was achieved by multi-stage ATPE on a centrifugal partition chromatography (CPC) device in 500mL scale. While single-stage ATPE enabled a DNA clearance of 99.6%, multi-stage ATPE improved the separation of host cell proteins (HCPs). The HPLC purity ranged from 16.8% (100% VLP recovery) for the single-stage ATPE to 69.1% (40.1% VLP recovery) for the multi-stage ATPE. An alternative two-step downstream process is presented removing the ATPS forming polymer, cell debris and 99.77% DNA with a HPLC purity of 90.6% and a VLP recovery of 63.9%. PMID:25637013

  19. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase.

    PubMed

    Xin, Yunhong; Wang, Qi; Liu, Taihong; Wang, Lingling; Li, Jia; Fang, Yu

    2012-11-21

    A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity. PMID:23007322

  20. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  1. Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt.

    PubMed

    Jiang, Bin; Feng, Zhibiao; Liu, Chunhong; Xu, Yingcao; Li, Dongmei; Ji, Guo

    2015-05-01

    To explore a new and simple rapid extraction and purification technique for wheat-esterase, an ionic liquids (ILs)-based aqueous two-phase system (ATPS) was developed for the purification of wheat-esterase from wheat extracts. Effects of various process parameters such as the concentrations of [Bmim]BF4, the types and concentrations of phase-forming salt, the system pH and the temperature on partitioning of wheat-esterase were evaluated. The obtained data indicated that wheat-esterase was preferentially partitioned into the ILs-rich phase and the ATPS composed of 20 % [Bmim]BF4 (w/w) and 25 % (w/w) NaH2PO4(pH = 4.8) showed good selectivity on wheat-esterase. Under the optimum conditions, wheat-esterase was purified with an acceptable yield (88.93 %), but produced wheat-esterase was 4.23 times as pure. It was obvious that temperature shows little influence on the purification between 10 and 50 °C. Sephadex G-150FF revealed that the band intensity of contaminating proteins in ATPS fraction almost disappeared. Therefore, ILs-based ATPS was an effective method for partitioning and recovery of wheat-esterase from wheat crude extracts. PMID:25892786

  2. Influence of process variables on extraction of Cefalexin in a novel biocompatible ionic liquid based-aqueous two phase system.

    PubMed

    Abdolrahimi, Shiva; Nasernejad, Bahram; Pazuki, Gholamreza

    2015-01-01

    Despite the fact that ionic liquid-based aqueous two phase systems (ATPSs) have been widely studied for extraction purposes, the adequacy of biodegradable organic salts as salting out agents has been left unexploited. In this study, we investigated the ability of sodium-based organic salts in the formation of ATPS in the presence of a common ionic liquid, [C4mim]BF4. In the pioneering aspect of this work, Response Surface Methodology (RSM) based on three-variable central composite design (CCD) was employed for determination of the effect of pH and the initial concentration of phase components on the partition coefficient of Cefalexin. Consequently, regression model equations and contour plots were applied to evaluate the effect of system's parameters on biomolecule's extraction. The tie-line (TL) data were determined for each experimental run and their reliability was confirmed by Othmer-Tobias and Bancroft correlations. In order to investigate the salting-out ability the effective excluded volume (EEV) was determined from the binodal data. Furthermore, FTIR spectra confirmed no chemical interactions between Cefalexin and [C4mim]BF4 in the extraction process. The microscopic structure of the top phase was analyzed by DLS, conductivity and TEM in order to investigate the mechanism of extraction. Hydrophobic interaction, the salting-out effect and the aggregation phenomena played the dominant role in the study of the extraction process. PMID:25407265

  3. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. PMID:22341919

  4. Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems.

    PubMed

    Quental, Maria V; Caban, Magda; Pereira, Matheus M; Stepnowski, Piotr; Coutinho, João A P; Freire, Mara G

    2015-09-01

    Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) are promising platforms for the extraction and purification of proteins. In this work, a series of alternative and biocompatible ABS composed of cholinium-based ILs and polypropylene glycol were investigated. The respective ternary phase diagrams, tie-lines, tie-line lengths and critical points were determined at 25°C. The extraction performance of these systems for commercial bovine serum albumin (BSA) was then evaluated. The stability of BSA at the IL-rich phase was ascertained by size exclusion high-performance liquid chromatography and Fourier transform infrared spectroscopy. Appropriate ILs lead to the complete extraction of BSA for the IL-rich phase, in a single step, while maintaining the protein's native conformation. Furthermore, to evaluate the performance of these systems when applied to real matrices, the extraction of BSA from bovine serum was additionally carried out, revealing that the complete extraction of BSA was maintained and achieved in a single step. The remarkable extraction efficiencies obtained are far superior to those observed with typical polymer-based ABS. Therefore, the proposed ABS may be envisaged as a more effective and biocompatible approach for the separation and purification of other value-added proteins. PMID:25864445

  5. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  6. Irradiation of ultrasound to 5-methylbenzotriazole in aqueous phase: Degradation kinetics and mechanisms.

    PubMed

    Kim, Duk K; He, Yingxin; Jeon, Junho; O'Shea, Kevin E

    2016-07-01

    Ultrasonic irradiation (640kHz) leads to the effective degradation of 5-methyl-benzotriazole (5-MBT) in O2 saturated aqueous solution. Up to 97% of 5-MBT is eliminated within 2h of treatment. Upon extended treatment of 6h, UV absorbance of the n→π(∗) and π→π(∗) transitions associated with aromatic and conjugated systems are completely removed, indicating complete destruction of the aromatic system in 5-MBT. The decomposition of 5-MBT follows pseudo-first order kinetics and the observed decomposition rate dropped significantly in the presence of tertiary butyl alcohol. Detailed product studies were performed employing a negative mode ESI LC-MS. Twenty eight intermediate products were detected during ultrasonic mediated degradation of 5-MBT. Reaction pathways are proposed based on the structures of products assigned to observed 28 masses from LC-MS and commonly accepted degradation pathways observed by thermal and hydroxyl radical mediated pathways often associated with ultrasonic treatment. PMID:26964945

  7. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires

    PubMed Central

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui

    2016-01-01

    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm−1), compared with ZnO-CdS NWAs (6.3 Vμm−1) and ZnO-Ag2S NWAs (5.0 Vμm−1). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures. PMID:27387653

  8. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires.

    PubMed

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui

    2016-01-01

    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm(-1)), compared with ZnO-CdS NWAs (6.3 Vμm(-1)) and ZnO-Ag2S NWAs (5.0 Vμm(-1)). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures. PMID:27387653

  9. Hydrogen Isotope Exchange of Chlorinated Ethylenes in Aqueous Solution: Possibly a Termolecular Liquid Phase Reaction.

    PubMed

    Gabričević, Mario; Lente, Gábor; Fábián, István

    2015-12-24

    This work reports an experimental study of the hydrogen/deuterium exchange in the basic aqueous solutions of trichloroethylene, trans-1,2-dichloroethylene, and cis-1,2-dichloroethylene using (1)H NMR as a monitoring method. 1,1-Dichlorethylene was also investigated but found not to exchange hydrogen isotopes with water. The kinetics of isotope exchange features two different pathways, the first is first order with respect to hydroxide ion, whereas the second is second order. The first pathway is interpreted as a straightforward bimolecular reaction between chloroethylene and hydroxide ion, which leads to the deprotonation of chloroethylene. The second pathway involves a transition state with the association of one molecule of the chloroethylene and two hydroxide ions. It is shown that the second pathway could involve the formation of a precursor complex composed of one chloroethylene molecule and one hydroxide ion, but a direct termolecular elementary reaction is also feasible, which is shown by deriving a theoretical highest limit for the rate constants of termolecular reactions in solution. PMID:26618984

  10. Aqueous Phase Synthesis of ZIF-8 Membrane with Controllable Location on an Asymmetrically Porous Polymer Substrate.

    PubMed

    Shamsaei, Ezzatollah; Lin, Xiaocheng; Low, Ze-Xian; Abbasi, Zahra; Hu, Yaoxin; Liu, Jefferson Zhe; Wang, Huanting

    2016-03-01

    In this study, we have demonstrated a simple, scalable, and environmentally friendly route for controllable fabrication of continuous, well-intergrown ZIF-8 on a flexible polymer substrate via contra-diffusion method in conjunction with chemical vapor modification of the polymer surface. The combined chemical vapor modification and contra-diffusion method resulted in controlled formation of a thin, defect-free, and robust ZIF-8 layer on one side of the support in aqueous solution at room temperature. The ZIF-8 membrane exhibited propylene permeance of 1.50 × 10(-8) mol m(-2) s(-1) Pa(-1) and excellent selective permeation properties; after post heat-treatment, the membrane showed ideal selectivities of C3H6/C3H8 and H2/C3H8 as high as 27.8 and 2259, respectively. The new synthesis approach holds promise for further development of the fabrication of high-quality polymer-supported ZIF membranes for practical separation applications. PMID:26886288

  11. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  12. Conformation and Phase Separation of Oligo (ethylene glycol) Grafted Polystyrene in Dilute Aqueous Solutions

    SciTech Connect

    Cheng, Gang; Melnichenko, Yuri B; Wignall, George D; Hua, Fengjun; Hong, Kunlun; Mays, Jimmy

    2007-01-01

    Temperature induced conformational changes of poly(p-oligo(ethylene glycol) styrene) (POEGS) in aqueous solutions were investigated by small angle neutron scattering (SANS), neutron transmission and dynamic light scattering (DLS). The molecular weight of the polymer studied was 9400 g/mol with a polydispersity index of 1.18 and each repeat unit of the polymer had four ethylene glycol monomer segments. The polymer was water soluble due to the hydrophilicity of the OEG side chains and these solutions showed lower critical solution temperature (LCST) depending on the concentration of the polymer. Measurements of solution behavior were made as a function of temperature in the range of 25-55 C for three polymer concentrations (0.1 wt%, 0.3 wt%, and 1.8 wt%). Neutron transmission measurements were used to monitor the amount of polymer which precipitated or remained in solution above the cloud point temperature (T{sub CP}). DLS revealed the presence of large clusters in all solutions both below and above T{sub CP} while SANS provided information on the structure and interactions between individual chains. It was found that in the homogeneous region below T{sub CP} the shape of individual polymers in solution was close to ellipsoidal with the dimensions R{sub a} = 37 Angstroms and R{sub b} = 14 Angstroms and was virtually independent of temperature. The SANS data taken for the most concentrated solution studied (1.8 wt%) were fit to the ellipsoidal model with attractive interactions which were approximated by the Ornstein-Zernike function with a temperature-dependent correlation length in the range of 24-49 Angstroms. The collapse of individual polymers to spherical globules with the radius of 15 Angstroms above TCP was observed.

  13. Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, W. R.; Macdonald, A. M.; Valsaraj, K. T.; Herckes, P.

    2012-12-01

    Cloud and fog droplets efficiently scavenge and process water-soluble compounds and thus modify the chemical composition of the gas and particle phases. The concentrations of dissolved organic carbon (DOC) in the aqueous phase reach concentrations on the order of ~10 mg C L-1 which is typically on the same order of magnitude as the sum of inorganic anions. Aldehydes and carboxylic acids typically comprise a large fraction of DOC because of their high solubility. The dissolution of species in the aqueous phase can lead to (i) the removal of species from the gas phase preventing their processing by gas phase reactions (e.g. photolysis of aldehydes) and (ii) the formation of unique products that do not have any efficient gas phase sources (e.g. dicarboxylic acids). We present measurements of DOC and select aldehydes in fog water at high elevation and intercepted clouds in a biogenically-impacted location (Whistler, Canada) and in fog water in a more polluted area (Davis, CA). Concentrations of formaldehyde, glyoxal and methylglyoxal were in the micromolar range and comprised ≤2% each individually of the DOC. Comparison of the DOC and aldehyde concentrations to those at other locations shows good agreement and reveals highest levels for both in anthropogenically impacted regions. Based on this overview, we conclude that the fraction of organic carbon (dissolved and insoluble inclusions) in the aqueous phase comprises 1-~40% of total organic carbon. Higher values are observed to be associated with aged air masses where organics are expected to be more highly oxidized and thus more soluble. Accordingly, the aqueous/gas partitioning ratio expressed here as an effective Henry's law constant for DOC (KH*DOC) increases by an order of magnitude from 7×103 M atm-1 to 7×104 M atm-1 during the ageing of air masses. The measurements are accompanied by photochemical box model simulations. They suggest that the scavenging of aldehydes by the aqueous phase can reduce HO2 gas

  14. Laser-induced chemical liquid phase deposition of copper from aqueous solutions without reducing agents

    SciTech Connect

    Kochemirovsky, V A; Tumkin, I I; Logunov, L S; Safonov, S V; Menchikov, Leonid G

    2012-08-31

    Laser-induced chemical liquid phase deposition of copper without a traditional reducing agent has been used for the first time to obtain conductive patterns on a dielectric surface having a reducing ability. It is shown that phenol-formaldehyde binder of the dielectric (glass fibre) can successfully play the role of a reducing agent in this process. The resulting copper sediments have low electrical resistance and good topology. (interaction of laser radiation with matter. laser plasmas)

  15. Linker Length-Dependent Control of Gemini Surfactant Aqueous Lyotropic Gyroid Phase Stability.

    PubMed

    Perroni, Dominic V; Baez-Cotto, Carlos M; Sorenson, Gregory P; Mahanthappa, Mahesh K

    2015-03-19

    Network-phase lyotropic liquid crystals (LLCs) derived from the water-directed self-assembly of small molecule amphiphiles comprise a useful class of soft nanomaterials, with wide-ranging applications in structural biology and membrane science. However, few known surfactants enable access to these mesophases over wide temperature and amphiphile concentration phase windows. Recent studies have demonstrated that gemini ("twin tail") dicarboxylate surfactants, in which alkyl carboxylates are covalently linked near the headgroups by a hydrophobic bridge, exhibit increased propensities to form double gyroid network phase LLCs. We demonstrate herein that the lyotropic self-assembly behaviors of gemini dicarboxylates sensitively depend on the linker length, whereby odd-carbon linkers stabilize the double gyroid network LLC over unprecedented amphiphile concentration windows up to ∼45 wt % wide between T ≈ 22-80 °C. These self-assembly phenomena, which arise from the linker length-dependent preferred molecular conformations of these amphiphiles, will broaden the technological applications of these nanostructured LLCs. PMID:26262858

  16. Kinetics and mechanisms for the two-phase reaction between aqueous aniline and benzoyl chloride in chloroform, with and without pyridine catalysis

    SciTech Connect

    Wamser, C.C.; Yates, J.A.

    1989-01-06

    This paper reports relative rates and product yields for the reaction of aniline with benzoyl chloride under conditions in which the two reactants begin in separate immiscible phases. Typically the aniline is initially in an aqueous phase over a chloroform phase containing benzoyl chloride, and the lower solution is stirred slowly. Under these conditions, the observed reaction rate, monitored by appearance of chloride into the aqueous phase, is slower than the rate of mass transport of aniline from the aqueous to the chloroform phase. Addition of pyridine as a nucleophilic catalyst significantly increases the reaction rate, in particular when the pyridine is initially in the chloroform phase. The observed rate of chloride ion appearance in the pyridine-catalyzed reaction exceeds the sum of the rates of aniline transport (from water) and benzoylpyridinium chloride transport (into water), indicating that reaction occurs in both phases. In the uncatalyzed reaction, the product is benzanilide, in high yield (80-90%). The benzanilide yields are lower in the pyridine-catalyzed reactions (37-70%), where hydrolysis to benzoic acid competes significantly. 13 references, 3 figures, 3 tables.

  17. Determination of lignin in marine sediment using alkaline cupric oxide oxidation-solid phase extraction-on-column derivatization-gas chromatography

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Li, Xianguo; Sun, Shuwen; Lan, Haiqing; Du, Peirui; Wang, Min

    2013-03-01

    Lignin serves as one of the most important molecular fossils for tracing Terrestrial Organic Matters (TOMs) in marine environment. Extraction and derivatization of lignin oxidation products (LOPs) are crucial for accurate quantification of lignin in marine sediment. Here we report a modification of the conventional alkaline cupric oxide (CuO) oxidation method, the modification consisting in a solid phase extraction (SPE) and a novel on-column derivatization being employed for better efficiency and reproducibility. In spiking blanks, recoveries with SPE for the LOPs are between 77.84% and 99.57% with relative standard deviations (RSDs) ranging from 0.57% to 8.04% ( n=3), while those with traditional liquid-liquid extraction (LLE) are from 44.52% to 86.16% with RSDs being from 0.53% to 13.14% ( n=3). Moreover, the reproducibility is greatly improved with SPE, with less solvent consumption and shorter processing time. The average efficiency of on-column derivatization for LOPs is 100.8% ± 0.68%, which is significantly higher than those of in-vial or in-syringe derivatization, thus resulting in still less consumption of derivatizing reagents. Lignin in the surface sediments sampled from the south of Yangtze River estuary, China, was determined with the established method. Recoveries of 72.66% to 85.99% with standard deviation less than 0.01mg/10g dry weight are obtained except for p-hydroxyben-zaldehyde. The lignin content Σ8 (produced from 10 g dry sediment) in the research area is between 0.231 and 0.587 mg. S/V and C/V ratios (1.028 ± 0.433 and 0.192 ± 0.066, respectively) indicate that the TOMs in this region are originated from a mixture of woody and nonwoody angiosperm plants; the high values of (Ad/Al)v suggest that the TOMs has been highly degraded.

  18. Colorimetric quantification of sucrose in presence of thermo-sensitive polymers present in aqueous two-phase systems.

    PubMed

    Ramalakshmi, Subbarayalu; Ooi, Chien Wei; Ariff, Arbakariya B; Ramanan, Ramakrishnan Nagasundara

    2014-01-01

    The use of biodegradable material such as simple carbohydrates and recyclable material such as thermo-sensitive polymers is in need to develop a sustainable aqueous two-phase system (ATPS) for the purification of biomolecules. Accurate determination of sucrose concentration is important in liquid-liquid equilibrium (LLE) study of carbohydrate-based ATPS. The well-established phenol-sulfuric acid method has been widely employed in the measurement of carbohydrate concentration. However, the presence of thermo-sensitive polymers, which has a lower critical solution temperature (LCST) below room temperature, in carbohydrate samples could hamper the precision of spectrophotometric analysis due to the formation of two phases or cloudiness in the sample. Thus, the following modifications were made in an attempt to eliminate the interference occurred during conventional phenol-sulfuric acid assay.•The modified assay for sucrose quantification was performed at an ice-cold temperature throughout the reaction in order to avoid the interference from thermo-sensitive polymers.•This method required a sample volume of 3 μL and hence the volume of other reagents employed was also considerably reduced.•The absorbance was measured at 520 nm which allowed a longer linearity range (0.05-7.5%, w/v). PMID:26150957

  19. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    PubMed

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). PMID:26922478

  20. Structural rearrangements in the aqueous phase of cell suspensions and protein solutions induced by a light-oxygen effect

    SciTech Connect

    Zakharov, S D; Nguen, K T; Panasenko, N A; Perov, S N; Timofeev, Yu P; Ivanov, Andrei V; Wolf, E B; Skopinov, S A; Danilov, V P; Murina, T M; Novikov, E G

    2003-02-28

    Temperature-dependent transient processes initiated by a direct photogeneration of singlet oxygen in suspensions of human erythrocytes and solutions of serum albumin are studied. The processes appear as anomalous jumps in the temperature dependences of the deformability coefficient of erythrocytes and the refractive index of the extracellular medium and protein solution. In the temperature regions of anomalous jumps, cells and proteins transfer to a metastable state of a lower activity, but they can be isothermally photoreactivated. Simultaneously, a reversible rearrangement of the aqueous phase occurs near the cell and protein surfaces, accompanied by the formation of an extended corona (hydrogel). The transient processes are interpreted as phase transitions in the membrane of erythrocytes and conformation transitions in proteins. The interaction between erythrocytes and albumin via hydrogel is discovered (hydro-conformational interaction). A qualitative physical model of the early stages of the light-oxygen effect is proposed, in which collective magnetic interactions between the electron spins of oxygen molecules and the nuclear magnetic moments of protons in H{sub 2}O molecules play a dominant role. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  1. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography.

    PubMed

    Gritti, Fabrice; Pereira, Alberto dos Santos; Sandra, Pat; Guiochon, Georges

    2009-11-27

    The adsorption isotherms of pyridine were measured by frontal analysis (FA) on a column packed with shell particles of neat porous silica (Halo), using water-acetonitrile mixtures as the mobile phase at 295K. The isotherm data were measured for pyridine concentrations covering a dynamic range of four millions. The degree of heterogeneity of the surface was characterized by the adsorption energy distribution (AED) function calculated from the raw adsorption data, using the expectation-maximization (EM) procedure. The results showed that two different retention mechanisms dominate in Per aqueous liquid chromatography (PALC) at low acetonitrile concentrations and in hydrophilic interaction chromatography (HILIC) at high acetonitrile concentrations. In the PALC mode, the adsorption mechanism of pyridine on the silica surface is controlled by hydrophobic interactions that take place on very few and ultra-active adsorption sites, which might be pores on the irregular and rugose surface of the porous silica particles. The surface is seriously heterogeneous, with up to five distinct adsorption sites and five different energy peaks on the AED of the packing material. In contrast, in the HILIC mode, the adsorption behavior is quasi-homogeneous and pyridine retention is governed by its adsorption onto free silanol groups. For intermediate mobile phase compositions, the siloxane and the silanol groups are both significantly saturated with acetonitrile and water, respectively, causing a minimum of the retention factor of pyridine on the Halo column. PMID:19853257

  2. A linear fluorescence-quenching response in an amidine-functionalised solid-state sensor for gas-phase and aqueous CO2 detection.

    PubMed

    Das, A; D'Alessandro, D M

    2016-04-19

    An amidine-functionalised metal-organic framework (MOF) was shown to be an effective chemosensor in the presence of gaseous and aqueous phase CO2 by virtue of a quenched fluorescence response. This work demonstrates how multifunctional MOFs with high selectivity for CO2 may be exploited to develop CO2 chemosensors. PMID:27011235

  3. OZONATION BY-PRODUCTS 2. IMPROVEMENT OF AN AQUEOUS- PHASE DERIVITIZATION METHOD FOR THE DETECTION OF FORMALDEHYDE AND OTHER CARBONYL COMPOUNDS FORMED BY THE OZONATION OF DRINKING WATER

    EPA Science Inventory

    A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...

  4. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  5. Effect of Humic Acid on Migration, Distribution and Remediation of Dense Non-aqueous Phase Liquids: A laboratory investigation

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Wu, J.; Xu, H.; Gao, Y.

    2014-12-01

    Over the last decades, dense non-aqueous phase liquids (DNAPLs) contamination in the subsurface increases with the rapid development of oil industry and becomes the focus of many studies. The migration, distribution and remediation efficiency of DNAPLs in the subsurface environment are greatly affected by the solution chemistry besides the physical heterogeneities of aquifers. Humic acid (HA), which is ubiquitous in natural environments, is a surface active substance exhibiting solubility enhancement behavior for hydrophobic organic compounds such as DNAPLs. Here we reported a laboratory investigation to study the effects of HA on the infiltration, immobilization and subsequent recovery of DNAPL in porous media. Tetrachloroethylene (PCE) was selected as the representative DNAPL in this study. Two-dimensional (2-D) sandbox experiments were conducted to investigate the effects of different HA concentrations on the transport, distribution of PCE and the remediation of PCE using surfactant (Tween 80) flushing in a saturated porous media system. The surfactant flushing of PCE was performed after the PCE transport and distribution had reached equilibrium. A light transmission visualization method with charge-coupled device (CCD) camera was adopted to visualize PCE distribution and quantify its saturation. In addition, the experiments were also designed to gather data for the validation of multiphase flow models. Effluent samples were collected to determine dissolved PCE concentrations. PCE solubilization and PCE-water interfacial tension were experimentally determined in aqueous solutions of varying HA concentrations. The experimental results showed that the presence of HA can have a dramatic impact on PCE flow and entrapment, and significantly improved the recovery of PCE during surfactant enhanced aquifer remediation (SEAR). The findings are of use for better understanding of the migration and entrapment of DNAPLs and developing of SEAR technology.

  6. Aqueous phase synthesized CdSe magic-sized clusters: solution composition dependence of adsorption layer structure.

    PubMed

    Park, Yeon-Su; Okamoto, Yukihiro; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2012-01-01

    We report dispersion solution composition dependence of the adsorption layer structure and the physical and optical properties of aqueous phase-synthesized semiconductor nanoparticles (NPs). We synthesized cysteine (Cys)-capped CdSe NPs with well-defined core structures, dispersed them in a series of aqueous solutions with different compositions, and then investigated their adsorption layer structure and physical and optical properties. Each CdSe NP consisted of a (CdSe)33 or (CdSe)34 magic-sized cluster (d - 1.45 nm) core, a ligand-Cys shell, and an adsorption layer. The dispersion solution composition strongly affected the adsorption layer structure of the CdSe NPs. The solution with a composition close to that of the as-prepared solution stabilized the physical and optical properties of the NPs. The solution with a composition different from that of the as-prepared solution, however, resulted in large changes in their adsorption layer structure and thus their physical and optical properties. The solution composed of neutral or weakly charged Cys and Cd-Cys complexes led to the adsorption layer with low charge density and that destabilized the NPs. The solution containing only neutral or weakly charged forms of Cys, without Cd-Cys complexes, was favorable to the formation of a thick adsorption layer with low charge density and that destabilized the NPs. The amount of adsorbed Cys in the adsorption layer depended on the dispersion solution composition. However, the amount of adsorbed Cd-Cys complexes in the adsorption layer was almost constant regardless of the dispersion solution composition. PMID:22524016

  7. Equilibrium partial pressures, thermodynamic properties of aqueous and solid phases, and Cl{sub 2} production from aqueous HCl and HNO{sub 3} and their mixtures

    SciTech Connect

    Massucci, M.; Clegg, S.L.; Brimblecombe, P.

    1999-05-27

    Equilibrium total pressures have been measured above aqueous HNO{sub 3} and aqueous HCl using a capacitance manometer. Equilibrium partial pressures of the acids have also been determined, by mass spectrometry, from 274.8 to 234.6 K for both HCl solutions, and from 265.0 to 240.1 K for 15.73 mol kg{sup {minus}1} HNO{sub 3}. Results are generally consistent with model predictions, though with small systematic deviations for the total pressure measurements over aqueous HCl at about 220 K. Mixtures of HCl{minus}HNO{sub 3}{minus}H{sub 2}O composition yielded measured total pressures orders of magnitude greater than predicted for the gases H{sub 2}O, HNO{sub 3}, and HCl. Mass spectrometric determinations and equilibrium thermodynamic calculations suggest that Cl{sub 2} and NOCl were produced by the reaction: 4H{sup +}{sub aq} + NO{sub 3}{sup {minus}}{sub aq} + 3Cl{sup {minus}}{sub aq} {r_equilibrium} NOCl{sub aq} + Cl{sub 2(aq)} + 2H{sub 2}O{sub (1)}, which is known to occur in aqua regia. Calculations for aqueous solutions of stratospheric aerosol composition suggest, purely on equilibrium grounds, that the reaction could be a source of active chlorine in the stratosphere. The correlation of Clegg and Brimblecombe of the thermodynamic properties of aqueous HNO{sub 3} activities has been revised, and vapor pressure products assessed from literature studies. The activity product for the reaction HNO{sub 3}{center_dot}2H{sub 2}O{sub (cr)} {r_equilibrium} H{sup +}{sub (aq)} + NO{sub 3}{sup {minus}}{sub (aq)} + 2H{sub 2}O{sub (1)} has also been determined. The model of Carslaw et al. has been revised for the solubility of HBr in aqueous H{sub 2}SO{sub 4} to stratospheric temperatures.

  8. Phase diagrams and water activities of aqueous ammonium salts of malonic acid.

    PubMed

    Beyer, Keith D; Richardson, Michael; Reusch, Breanna

    2011-04-14

    Malonic acid has been observed in the free troposphere and as a component of tropospheric aerosol, among other dicarboxylic acids. These aerosols can uptake ammonia, which partially or completely neutralizes the acids. Therefore, the impact of ammoniated dicarboxylic acids on the phases that can exist in aerosols at atmospheric temperatures needs investigation. To that end, the low temperature, solid/liquid phase diagrams of ammonium hydrogen malonate/water, ammonium malonate/water, and triammonium hydrogen malonate/water have been investigated with differential scanning calorimetry and infrared spectroscopy of thin films. Results show that the order of increasing solubility is triammonium hydrogen malonate, ammonium hydrogen malonate, malonic acid, and ammonium malonate. We have also determined a hydrate may form in the ammonium malonate system and decompose below 240 K. We report water activities at the ice melting points for each system up to the respective eutectic concentrations, and find for a given mole fraction of water, increasing ammonium content leads to decreasing water activity coefficients. PMID:21428389

  9. Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2011-02-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. In this study, we succeeded in the preparation of a novel MEL homolog having no acetyl groups, namely MEL-D. MEL-D was synthesized by lipase-catalyzed hydrolysis of acetyl groups from a known MEL, and identified as 4-O-[2',3'-di-O-alka(e)noyl-β-d-mannopyranosyl]-(2R,3S)-erythritol. The obtained MEL-D showed a higher critical aggregation concentration (CAC=1.2 × 10(-5)M) and hydrophilicity compared to known MELs, retaining an excellent surface tension lowering activity (the surface tension at the CAC was 24.5mN/m). In addition, we estimated the binary phase diagram of the MEL-D-water system based on a combination of visual inspection, polarized optical microscopy, and SAXS measurement. From these results, MEL-D was found to self-assemble into a lamellar (L(α)) structure over all ranges of concentration. Meanwhile, the one-phase L(α) region of MEL-D was extended wider than those of known MELs. MEL-D might keep more water between the polar layers in accordance with the extension of the interlayer spacing (d). These results suggest that the newly obtained MEL-D would facilitate the application of MELs in various fields as a lamellar-forming glycolipid with higher hydrate ability. PMID:21163471

  10. Cell Co-culture Patterning Using Aqueous Two-phase Systems

    PubMed Central

    Frampton, John P.; White, Joshua B.; Abraham, Abin T.; Takayama, Shuichi

    2013-01-01

    Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type. PMID:23567187

  11. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. PMID:26094138

  12. Evaluating the potential for quantitative monitoring of in situ chemical oxidation of aqueous-phase TCE using in-phase and quadrature electrical conductivity

    NASA Astrophysics Data System (ADS)

    Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.

    2015-07-01

    Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.

  13. Comparison of iso-eluotropic mobile phases at different temperatures for the separation of triacylglycerols in Non-Aqueous Reversed Phase Liquid Chromatography.

    PubMed

    Hmida, Dorra; Abderrabba, Manef; Tchapla, Alain; Héron, Sylvie; Moussa, Fathi

    2015-05-15

    Triacylglycerols (TAGs) are a large class of neutral lipids that naturally occur in both plant and animal oils and fats. Their analyses in Non-Aqueous Reversed Phase Liquid Chromatography (NARP) require a mixture of weak solvent (mostly acetonitrile) and strong solvent. In the present work, we have established eluotropic solvent strength scale of several binary mobile phases on C18 bonded silica at different temperatures (acetonitrile/methylene chloride, acetonitrile/acetone, acetonitrile/ethyl acetate, acetonitrile/propan-2-ol, and acetonitrile/butan-1-ol at 25°C, 43°C, 63°C and 85°C); it is based on the methylene selectivity and the use of homologous series. We show that this scale is well suited to the TAGs analysis. The analysis of nine seed oils (Aleurites fordii, Calophyllum inophyllum, Glycina max, Olea europea, Orbignya olifeira, Pinus koraiensis, Pistacia lentiscus, Punica granatum and Ribes nigrum) in iso-eluotropic conditions leads to propose unambiguously the couple MeCN/BuOH at 25°C as the best system to separate TAGs. The use of butanol, as strong solvent, provides very good TAGs congeners separations and avoids the use of chlorinated solvents which gave to this day the best separations. PMID:25855317

  14. Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids from manufactured gas plants by reversed phase comprehensive two-dimensional gas chromatography.

    PubMed

    McGregor, Laura A; Gauchotte-Lindsay, Caroline; Daéid, Niamh Nic; Thomas, Russell; Daly, Paddy; Kalin, Robert M

    2011-07-22

    Ultra resolution chemical fingerprinting of dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plants (FMGPs) was investigated using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC×GC TOFMS). Reversed phase GC×GC (i.e. a polar primary column coupled to a non-polar secondary column) was found to significantly improve the separation of polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues. Sample extraction and cleanup was performed simultaneously using accelerated solvent extraction (ASE), with recovery rates between 76% and 97%, allowing fast, efficient extraction with minimal solvent consumption. Principal component analysis (PCA) of the GC×GC data was performed in an attempt to differentiate between twelve DNAPLs based on their chemical composition. Correlations were discovered between DNAPL composition and historic manufacturing processes used at different FMGP sites. Traditional chemical fingerprinting methods generally follow a tiered approach with sample analysis on several different instruments. We propose ultra resolution chemical fingerprinting as a fast, accurate and precise method of obtaining more chemical information than traditional tiered approaches while using only a single analytical technique. PMID:21652041

  15. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms.

    PubMed

    Bentley, Fiona K; Melis, Anastasios

    2012-01-01

    Photosynthesis for the generation of fuels and chemicals from cyanobacteria and microalgae offers the promise of a single host organism acting both as photocatalyst and processor, performing sunlight absorption and utilization, as well as CO(2) assimilation and conversion into product. However, there is a need to develop methods for generating, sequestering, and trapping such bio-products in an efficient and cost-effective manner that is suitable for industrial scale-up and exploitation. A sealed gaseous/aqueous two-phase photobioreactor was designed and applied for the photosynthetic generation of volatile isoprene (C(5)H(8)) hydrocarbons, which operates on the principle of spontaneous diffusion of CO(2) from the gaseous headspace into the microalgal or cyanobacterial-containing aqueous phase, followed by photosynthetic CO(2) assimilation and isoprene production by the transgenic microorganisms. Volatile isoprene hydrocarbons were emitted from the aqueous phase and were sequestered into the gaseous headspace. Periodic replacement (flushing) of the isoprene (C(5)H(8)) and oxygen (O(2)) content of the gaseous headspace with CO(2) allowed for the simultaneous harvesting of the photoproducts and replenishment of the CO(2) supply in the gaseous headspace. Reduction in practice of the gaseous/aqueous two-phase photobioreactor is offered in this work with a fed-batch and a semi-continuous culturing system using Synechocystis sp. PCC 6803 heterologously expressing the Pueraria montana (kudzu) isoprene synthase (IspS) gene. Constitutive isoprene production was observed over 192 h of experimentation, coupled with cyanobacterial biomass accumulation. The diffusion-based process in gaseous/aqueous two-phase photobioreactors has the potential to be applied to other high-value photosynthetically derived volatile molecules, emanating from a variety of photosynthetic microorganisms. PMID:21830206

  16. Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Gandolfo, A.; Socorro, J.; Salque, G.; Ravier, S.; Quivet, E.; Clément, J.-L.; Traikia, M.; Delort, A.-M.; Voisin, D.; Vuitton, V.; Thissen, R.; Monod, A.

    2013-07-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. Methyl vinyl ketone (MVK) was chosen in the present study as it is an α,β-unsaturated carbonyl that can undergo radical oligomerization in the aerosol aqueous phase. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under various conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series) are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights in our experiments the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the dominance of oligomerization reactions after several minutes of reaction. These processes, together with the large range of initial concentrations investigated show the fundamental role that radical oligomerization processes likely play in polluted fogs and atmospheric aerosol.

  17. Enhancing the lateral-flow immunoassay for viral detection using an aqueous two-phase micellar system.

    PubMed

    Mashayekhi, Foad; Chiu, Ricky Y T; Le, Alexander M; Chao, Felix C; Wu, Benjamin M; Kamei, Daniel T

    2010-12-01

    Availability of a rapid, accurate, and reliable point-of-care (POC) device for detection of infectious agents and pandemic pathogens, such as swine-origin influenza A (H1N1) virus, is crucial for effective patient management and outbreak prevention. Due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements, the lateral-flow (immuno)assay (LFA) has gained much attention in recent years as a possible solution. However, since the sensitivity of LFA has been shown to be inferior to that of the gold standards of pathogen detection, namely cell culture and real-time PCR, LFA remains an ineffective POC assay for preventing pandemic outbreaks. A practical solution for increasing the sensitivity of LFA is to concentrate the target agent in a solution prior to the detection step. In this study, an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 was investigated for concentrating a model virus, namely bacteriophage M13 (M13), prior to LFA. The volume ratio of the two coexisting micellar phases was manipulated to concentrate M13 in the top, micelle-poor phase. The concentration step effectively improved the M13 detection limit of the assay by tenfold from 5 × 10(8) plaque forming units (pfu)/mL to 5 × 10(7) pfu/mL. In the future, the volume ratio can be further manipulated to yield a greater concentration of a target virus and further decrease the detection limits of the LFA. PMID:20865404

  18. Extraction of natural red colorants from the fermented broth of Penicillium purpurogenum using aqueous two-phase polymer systems.

    PubMed

    Santos-Ebinuma, Valéria Carvalho; Lopes, André Moreni; Pessoa, Adalberto; Teixeira, Maria Francisca Simas

    2015-01-01

    Safety concerns related to the increasing and widespread application of synthetic coloring agents have increased the demand for natural colorants. Fungi have been employed in the production of novel and safer colorants. In order to obtain the colorants from fermented broth, suitable extraction systems must be developed. Aqueous two-phase polymer systems (ATPPS) offer a favorable chemical environment and provide a promising alternative for extracting and solubilizing these molecules. The aim of this study was to investigate the partitioning of red colorants from the fermented broth of Penicillium purpurogenum using an ATPPS composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA). Red colorants partitioned preferentially to the top (PEG-rich phase). In systems composed of PEG 6,000 g/mol/NaPA 8,000 g/mol, optimum colorant partition coefficient (KC ) was obtained in the presence of NaCl 0.1 M (KC  = 10.30) while the PEG 10,000 g/mol/NaPA 8,000 g/mol system in the presence of Na2 SO4 0.5 M showed the highest KC (14.78). For both polymers, the mass balance (%MB) and yield in the PEG phase (%ηTOP ) were close to 100 and 79%, respectively. The protein selectivity in all conditions evaluated ranged from 2.0-3.0, which shows a suitable separation of the red colorants and proteins present in the fermented broth. The results suggest that the partitioning of the red colorants is dependent on both the PEG molecular size and salt type. Furthermore, the results obtained support the potential application of ATPPS as the first step of a purification process to recover colorants from fermented broth of microorganisms. PMID:26097197

  19. Role of Presolvation and Anharmonicity in Aqueous Phase Hydrated Proton Solvation and Transport.

    PubMed

    Biswas, Rajib; Tse, Ying-Lung Steve; Tokmakoff, Andrei; Voth, Gregory A

    2016-03-01

    Results from condensed phase ab initio molecular dynamics (AIMD) simulations suggest a proton transfer reaction is facilitated by "presolvation" in which the hydronium is transiently solvated by four water molecules, similar to the typical solvation structure of water, by accepting a weak hydrogen bond from the fourth water molecule. A new version 3.2 multistate empirical valence bond (MS-EVB 3.2) model for the hydrated excess proton incorporating this presolvation behavior is therefore developed. The classical MS-EVB simulations show similar structural properties as those of the previous model but with significantly improved diffusive behavior. The inclusion of nuclear quantum effects in the MS-EVB also provides an even better description of the proton diffusion rate. To quantify the influence of anharmonicity, a second model (aMS-EVB 3.2) is developed using the anharmonic aSPC/Fw water model, which provides similar structural properties but improved spectroscopic responses at high frequencies. PMID:26575795

  20. Phase transitions of aqueous atmospheric particles: Crystallization of ammonium salts promoted by oxide mineral constituents

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Ho

    2001-09-01

    Knowledge of the hygroscopic response of aerosols is a fundamental factor necessary for the accurate quantitative modeling of visibility degradation, global warming, PM-10 health issues, cloud microphysics, and the oxidizing capacity of the troposphere. At the present time, however, our current understanding of phase transitions is insufficient to develop accurate quantitative models. The discrepancy between current atmospheric models and field measurements originates mainly from a lack of understanding of the efflorescence of real atmospheric particles. While there have been many studies on the homogeneous nucleation of the soluble organic, inorganic, or multi-component materials, many recent in situ field measurements with single-particle mass spectrometry reveal that the individual particles in the troposphere are primarily composed of more than one component. One of the common mixed component particle types contains both water- soluble and insoluble components. Through atmospheric processes, the soluble component can be expected to form a coating around the insoluble constituents. This type of atmospheric particles is very important because the insoluble constituent can play a role as a template for the crystallization of the soluble components by heterogeneous nucleation. In the atmosphere, the most prevalent insoluble constituents are mineral dusts, which have their origin from Saharan and Gobbi deserts. The existence of these coated particles has been supported by several field measurements as well as model studies. Therefore, it becomes imperative to simulate more realistic atmospheric particles for more exact (or realistic) understanding the phase transition of the ambient aerosol particles in the real world. In this context, a series of studies has been completed to solve the aforementioned problems in the phase transition study and to better understand the heterogeneous nucleation of these internally mixed particles. An in-line tube furnace has been

  1. Phase transfer and freezing processes investigated on acoustically levitated aqueous droplets.

    PubMed

    Jacob, P; Stockhaus, A; Hergenröder, R; Klockow, D

    2001-11-01

    An acoustic trap was designed and constructed to investigate, on a microscale, physicochemical processes relevant to the troposphere, mainly focusing on the temperature range below 0 degrees C. Droplets ranging from 0.5 nL to 4 microliter (0.1 to 2 mm in diameter) were introduced into the cooled reaction chamber by means of a piezo-driven micro pump with a reproducibility better than 5%. Up-take of H2O2 from the gas phase by the levitated droplet was measured and calibrated by in-situ chemiluminescence. Freezing of stably positioned droplets was observed and documented by means of a microscope and a video camera; this demonstrated the usefulness of the technique for simulation and investigation of cloud processes. Ex-situ microanalysis of sub-microliter droplets by use of a fiber optic luminometer was also shown to be a suitable means of investigating relevant physicochemical processes on a micro scale. PMID:11768458

  2. Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms

    USGS Publications Warehouse

    Mazanti, L.; Rice, C.; Bialek, K.; Sparling, D.; Stevenson, C.; Johnson, W.E.; Kangas, P.; Rheinstein, J.

    2003-01-01

    Dissipation processes are described for a combination of commonly used pesticides--atrazine (6-chloro-4--ethylamino-6-isopropylamino-s-triazine), metolachlor (2-chloro-N-[2-ethyl-6-methyl-phenyl]-N-[2-methoxy-l-methylethyl] acetamide), and chlorpyrifos (O-O diethyl O-[3,5,6-trichloro-2-pyridinyl] phosphorothioate)--in a laboratory and outdoor pond systems. Dosing rates and timing were designed to duplicate those common in the mid-Atlantic Coastal Plain, USA. Treatment ranged from 2 and 2.5 mg/L to 0.2 and 0.25 mg/L respectively for atrazine and metolachlor, and chlorpyrifos was added at 1.0 and 0.1 mg/L in the aquaria and at 0.1 mg/L in the outdoor macrocosms. Chlorpyrifos disappearance was rapid in all of the systems and followed a two-phase sequence. Initial half-lives varied from 0.16 da), to 0.38 day and showed similar rates in the aquaria and the outdoor systems. The second phase of the chlorpyrifos loss pattern was slower (18-20 days) in all the treatments except for the low herbicide treatment in the outdoor test, where it was 3.4 days. Compared to the outdoor system, herbicide losses were much slower in the aquaria, e.g., 150 days for atrazine and 55 days for metolachlor, and no appreciable loss of herbicide was apparent in the high-treated aquaria. In the outdoor systems, the half-lives for the low herbicide treatment were 27 days and 12 days, respectively, for atrazine and metolachlor, and 48 and 20 days, respectively for the high herbicide-treated pond. Very low levels of CIAT (6-amino-2-chloro-4-iso-propylamino-s-triazine) and CEAT (2-chloro-4-ethylamino-6-ethylamino-s-triazine), degradation products of atrazine, were observed in the outdoor studies.

  3. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  4. Aqueous Alteration on Mars. Chapter 23

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.

    2007-01-01

    Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the

  5. Integrated process for purification of plasmid DNA using aqueous two-phase systems combined with membrane filtration and lid bead chromatography.

    PubMed

    Kepka, Cecilia; Lemmens, Raf; Vasi, Jozsef; Nyhammar, Tomas; Gustavsson, Per-Erik

    2004-11-19

    An integrated process for purifying a 6.1 kilo base pair (kbp) plasmid from a clarified Escherichia coli cell lysate based on an ultra/diafiltration step combined with polymer/polymer aqueous two-phase system and a new type of chromatography is described. The process starts with a volume reduction (ultrafiltration) and buffer exchange (diafiltration) of the clarified lysate using a hollow fibre membrane system. The concentrated and desalted plasmid solution is then extracted in a thermoseparating aqueous two-phase system, where the contaminants (RNA and proteins) to a large extent are removed. While the buffer exchange (diafiltration) is necessary in order to extract the plasmid DNA exclusively to the top phase, experiments showed that the ultrafiltration step increased the productivity of the aqueous two-phase system by a factor of more than 10. The thermoseparated water phase was then subjected to a polishing step using lid bead chromatography. Lid beads are a new type of restricted access chromatography beads, here with a positively charged inner core that adsorbed the remaining RNA while its inert surface layer prevented adsorption of the plasmid DNA thus passing in the flow-through of the column. Differently-sized plasmid DNA in the range of 2.7-20.5 kbp were also partitioned in the aqueous two-phase system. Within this size range, all plasmid DNA was exclusively extracted to the top phase. The complete process is free of additives and easy scalable for use in large scale production of plasmid DNA. The overall process yield for plasmid DNA was 69%. PMID:15584230

  6. DISTRIBUTION OF ACTINIDES BETWEEN THE AQUEOUS AND ORGANIC PHASES IN THE TALSPEAK PROCESS

    SciTech Connect

    Rudisill, T.; Kyser, E.

    2010-09-02

    One objective of the US Department of Energy's Office of Nuclear Energy (DOE-NE) is the development of sustainable nuclear fuel cycles which improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and complement institutional measures limiting proliferation risks. Activities in progress which support this objective include the development of advanced separation technologies to recover the actinides from used nuclear fuels. With the increased interest in the development of technology to allow closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, at this time, the level of understanding associated with the chemistry and the control of the process variables is not acceptable for deployment of the process on an industrial scale. To address this issue, DOE-NE is supporting basic scientific studies focused on the TALSPEAK process through its Fuel Cycle Research and Development (R&D) program. One aspect of these studies is an experimental program at the Savannah River National Laboratory (SRNL) in which temperature-dependent distribution coefficients for the extraction of actinide elements in the TALSPEAK process were measured. The data were subsequently used to calculate conditional enthalpies and entropies of extraction by van't Hoff analysis to better understand the thermodynamic driving forces for the TALSPEAK process. In the SRNL studies, the distribution of Pu(III) in the TALSPEAK process was of particular interest. A small amount of Pu(III) would be present in the feed due to process losses and valence adjustment in prior recovery operations. Actinide elements such as Np and Pu have multiple stable oxidation states in aqueous solutions; therefore the oxidation state for these elements must be controlled in the TALSPEAK process, as the extraction chemistry is dependent upon

  7. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature

    PubMed Central

    Li, Yanhong; Lipowsky, Reinhard; Dimova, Rumiana

    2011-01-01

    Tubular membrane structures are widespread in eukaryotic cells, but the mechanisms underlying their formation and stability are not well understood. Previous work has focused on tube extrusion from cells and model membranes under the application of external forces. Here, we present novel membrane/polymer systems, where stable tubes form in the absence of externally applied forces. Solutions of two water-soluble polymers, polyethylene glycol and dextran, were encapsulated in giant lipid vesicles, cell-size model systems. Hypertonic deflation induced phase separation of the enclosed solution. The excess membrane area created during the deflation process was stored in a large number of membrane nanotubes inside the vesicle. The tubes had a diameter below optical resolution and became visible only when fluorescently labeled. The tubes were rather stable: In the absence of external forces, they existed for several days. A theoretical analysis of the shapes of the deflated vesicles reveals that these shapes would be unstable if the membranes had no spontaneous curvature. Us