Science.gov

Sample records for alkaline cell technology

  1. Advanced technology for extended endurance alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Sheibley, D. W.; Martin, R. A.

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  2. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  3. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  4. High power density alkaline fuel cell technology for MMW space burst power

    NASA Astrophysics Data System (ADS)

    Preston, J. Lawrence, Jr.; Trocciola, John C.; Wertheim, Ronald J.

    The use of advanced alkaline regenerative fuel cell energy storage systems to provide 10's to 100's of MWe of sprint (burst) power for 100's of seconds per orbit of SDI weapons platform was studied. Recharge power is supplied by a multimegawatt space based nuclear power system. Regenerative fuel cell energy storage systems offer the potential for significant platform mass reduction by reducing the size and mass of the nuclear power source required. This is because the reactor can be sized for the smaller average power level for the energy storage system, rather than the sprint power level. The regenerative fuel cell is a particularly attractive energy storage device because the fuel cell is essentially a static power conversion device, which results in excellent platform stability for weapon pointing and tracking. Based upon the detailed point design and conceptual layout, the alkaline regenerative fuel cell energy storage system is an attractive choice for integration with a nuclear thermionic system for providing multimegawatt burst power and multi orbit capability.

  5. Alkaline falling-film fuel cell - a breakthrough in technology and cost

    NASA Astrophysics Data System (ADS)

    Tetzlaff, K. H.; Walz, R.; Gossen, C. A.

    1994-07-01

    The work described in this paper was oriented towards fuel cells for practical applications, but mainly presents data obtained using half-cells. The economic significance of these data is discussed, together with the technical concept of fuel cell power stations and for transportation applications. The proposed fuel cell will generate power at much lower costs than conventional power plants, and a zero-emission vehicle with fuel cells will operate at lower fuel cost than a car with an internal combustion engine. The simple falling-film process leads to high power densities (6 kW/l) and low cost. The details given are valid for the use of hydrogen produced from fossil energy sources. Concentrated CO2, a byproduct of this technology can be stored in discussed oil and gas fields at a very low cost to avoid global warming. Thus, this 'down-to-earth' hydrogen technology is as free from CO2 emissions as solar-hydrogen technology.

  6. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  7. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  8. The application of alkaline lysis and pressure cycling technology in the differential extraction of DNA from sperm and epithelial cells recovered from cotton swabs.

    PubMed

    Nori, Deepthi V; McCord, Bruce R

    2015-09-01

    This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.

  9. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  10. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  11. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  12. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  13. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  14. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  15. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  16. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Astrophysics Data System (ADS)

    Burke, K. A.; Schubert, F. H.

    1981-11-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  17. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  18. Development of an alkaline fuel cell subsystem

    NASA Astrophysics Data System (ADS)

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  19. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  20. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  1. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  2. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  3. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  4. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    SciTech Connect

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  5. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry; Giner, Jose

    1987-09-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  6. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  7. Technology Status: Fuel Cells and Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1978-01-01

    The status of the baselined shuttle fuel cell as well as the acid membrane fuel cell and space-oriented water electrolysis technologies are presented. The more recent advances in the alkaline fuel cell technology area are the subject of a companion paper. A preliminary plan for the focusing of these technologies towards regenerative energy storage applications in the multi-hundred kilowatt range is also discussed.

  8. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  9. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Astrophysics Data System (ADS)

    Martin, R. E.

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  10. Alkaline fuel cells for the regenerative fuel cell energy storage system

    SciTech Connect

    Martin, R.E.

    1983-08-01

    United Technologies Corporation has been conducting a development program sponsored by Lewis Research Center of NASA directed toward advancing the state of the art of the alkaline fuel cell. The goal of the program is the development of an extended endurance, high-performance, high-efficiency fuel cell for use in a multi-hundred kilowatt regenerative fuel cell. This technology advancement program has identified a low-weight design and cell components with increased performance and extended endurance. Longterm endurance testing of full-size fuel cell modules has demonstrated the extended endurance capability of potassium titanate matrix cells, the long-term performance stability of the anode catalyst, and the suitability of a lightweight graphite structure for use at the anode in an alkaline fuel cell. In addition under the program, a full-size alkaline fuel cell module has completed 5,000 hours of a planned 20,000-hour test to a cyclical load profile. The continuous load profile consists of 60 minutes at open circuit followed by 30 minutes at 200 ASF which simulates the operation of a Regenerative Fuel Cell Energy Storage System in low earth orbit.

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  12. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  13. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  14. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  15. Light Weight Design Nickel-Alkaline Cells Using Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Pickett, David F.; Willis, Bob; Britton, Doris; Saelens, Johan

    2005-01-01

    Using fiber electrode technology, currently produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC., Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel-hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr/kg) as state-of-the-art nickel-hydrogen cells that are flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel-alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as ability to undergo continuous overcharge, reversal on discharge and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures. In development to date seven 50 ampere-hour nickel-hydrogen have been constructed, acceptance tested and briefly tested in a low earth orbit (LEO) cycle regime. The effort was jointly funded by Electro Energy, Inc. and NASA Glenn Research Center, Cleveland, OH. Five of the seven cells have been shipped to NASA GRC for further cycle testing. Two of the cells experienced failure due to internal short circuits during initial cycle testing at EEL Destructive Physical Analysis (DPA) of one of the cells has shown the failure mode to be due to inadequate hydrogen catalyst electrodes that were not capacity balanced with the higher energy density nickel oxide electrodes. In the investigators opinion, rebuild of the cells using proper electrode balance would result in cells that could sustain over 30,000 cycles at moderate depths-of-discharge in a LEO regime or endure over 20 years of geosynchronous orbit (GEO) cycling while realizing a two-fold increase in specific energy for the battery or a 1.1 kg weight savings per 50 ampere-hour cell. Additional

  16. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  17. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  18. Evaluation of packed-bed and fluidized-bed cell technology for the destruction and removal of contaminants in alkaline waste solutions. Final report

    SciTech Connect

    Hobbs, D.T.; Bockris, J.O.M.; Kim, Jinseong

    1995-12-31

    Disposing of the large quantity of nuclear waste that has been produced within the DOE complex is an area of active research and development. Electrochemical processes have been reported for the treatment of alkaline wastes including the destruction of nitrate and nitrite and the removal of metals such as Tc and Ru. Electrolytic recovery of metals from dilute solution has been reported using conventional porous electrodes such as felt electrode and reticulated electrode, but use of such electrodes is limited. The pores of such electrodes become blocked as a consequence of metal deposition. If an attempt is made to regenerate these electrodes by dissolution of the deposited metals, oxygen evolution on the matrix competes with dissolution of metals deposited within the pores. On the other hand, the use of three dimensional packed-bed and fluidized-bed electrodes having large surface area per unit volume would offer an improvement on felt or reticulated system because of the greater ease of regeneration.

  19. Developments in MEMS scale printable alkaline and Li-ion technology

    NASA Astrophysics Data System (ADS)

    Littau, K. A.; Cobb, C. L.; Spengler, N.; Solberg, S.; Weisberg, M.; Chang, N.; Rodkin, A.

    2011-06-01

    Two technologies for MEMS (Microelectromechanical Systems) scale cell formation are discussed. First, the fabrication of planar alkaline cell batteries compatible with MEMS scale power storage applications is shown. Both mm scale and sub-mm scale individual cells and batteries have been constructed. The chosen coplanar electrode geometry allows for easy fabrication of series connected cells enabling higher voltage while simplifying the cell sealing and electrode formation. The Zn/Ag alkaline system is used due to the large operating voltage, inherent charge capacity, long shelf life, and ease of fabrication. Several cells have been constructed using both plated and spun-on silver. The plated cells are shown to be limited in performance due to inadequate surface area and porosity; however, the cells made from spun-on colloidal silver show reasonable charge capacity and power performance with current densities of up to 200 uA/mm2 and charge capacities of up to 18 mA-s/mm2. Second, a new printing method for interdigitated 3-D cells is introduced. A microfluidic printhead capable of dispensing multiple materials at high resolution and aspect ratio is described and used to form fine interdigitated cell features which show >10 times improvement in energy density. Representative structures enabled by this method are modeled, and the energy and power density improvements are reported.

  20. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  1. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  2. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  3. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    PubMed

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  4. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  5. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Astrophysics Data System (ADS)

    Swette, L.; Kackley, N.; McCatty, S. A.

    1991-09-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  6. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  7. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  8. Performance of alkaline battery cells used in emergency locator transmitters

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.; Sokol, S.; Motley, W. R., III; Mcclelland, E. L.

    1984-01-01

    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented.

  9. Stress-life interrelationships associated with alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Martin, Ronald E.; Stedman, James K.

    1987-01-01

    A review is presented concerning the interrelationships between applied stress and the expected service life of alkaline fuel cells. Only the physical, chemical, and electrochemical phenomena that take place within the fuel cell stack portion of an overall fuel cell system will be discussed. A brief review will be given covering the significant improvements in performance and life over the past two decades as well as summarizing the more recent advances in understanding which can be used to predict the performance and life characteristics of fuel cell systems that have yet to be built.

  10. Extracellular Alkalinization as a Defense Response in Potato Cells

    PubMed Central

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes. PMID:28174578

  11. Extracellular Alkalinization as a Defense Response in Potato Cells.

    PubMed

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  12. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  13. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  14. Evaluation parameters for the alkaline fuel cell oxygen electrode

    NASA Technical Reports Server (NTRS)

    Singer, J.; Srinivasan, V.

    1985-01-01

    Studies were made of Pt- and Au-catalyzed porous electrodes, designed for the cathode of the alkaline H2/O2 fuel cell, employing cyclic voltammetry and the floating half-cell method. The purpose was to obtain parameters from the cyclic voltammograms which could predict performance in the fuel cell. It was found that a satisfactory relationship between these two types of measurement could not be established; however, useful observations were made of relative performance of several types of carbon used as supports for noble metal catalysts and of some Au catalysts. The best half-cell performance with H2/O2 in a 35 percent KOH electrolyte at 80 C was given by unsupported fine particle Au on Teflon; this electrode is used in the Orbiter fuel cell.

  15. Alkaline buffers release EDRF from bovine cultured aortic endothelial cells.

    PubMed Central

    Mitchell, J. A.; de Nucci, G.; Warner, T. D.; Vane, J. R.

    1991-01-01

    1. Release of endothelium-derived relaxing factor (EDRF) and prostacyclin (PGI2) from bovine cultured aortic endothelial cells (EC) was measured by bioassay and radioimmunoassay, respectively. 2. Bradykinin (BK, 3-30 pmol), adenosine diphosphate (ADP, 2-6 nmol) or the sodium ionophore monensin (40-100 nmol) injected through a column of EC released EDRF. L-Arginine free base (FB; 10-20 mumol) or D-arginine FB (10-20 mumol) injected through the column of EC released similar amounts of EDRF and also caused an increase in pH of the Krebs solution perfusing the EC from 7.5-8.0 to 8.6-9.5. Sodium carbonate (Na2CO3) an alkaline buffer which caused the same changes in the pH of the Krebs solution also induced the same release of EDRF. The hydrochloride salts of L- or D-arginine did not cause either release of EDRF when injected through the column of EC or increases in the pH of the Krebs solution. 3. Inhibitors of either diacylglycerol lipase (RHC 80267) or kinase (R59022) inhibited the release of EDRF induced by BK or ADP but potentiated the release induced by L-arginine FB, monensin (40-100 nmol) or alkaline buffer (Na2CO3). R59022 and RHC 80267 infused through the EC increased the basal release of EDRF. 4. When calcium chloride was omitted from the Krebs solution the release of EDRF induced by alkaline buffer (Na2CO3; pH 8.6-9.5) or L-arginine FB (10-20 mumol) was selectively inhibited when compared to that induced by BK (3-30 pmol) or ADP (2-6 nmol). This inhibition was reversed when calcium (2.5 mM) was restored. 5. NG-monomethyl-L-arginine (NMMA; 30 microM) inhibited release of EDRF induced by BK (10-30 pmol) or alkaline buffers (Na2CO3 or D-arginine FB; pH 8.6-9.5). This inhibition was partially reversed by L- but not D-arginine FB or HCl (30-100 microM). 6. Prostacyclin was released when BK (10 pmol), ADP (2 nmol) or arachidonic acid (30 nmol) were injected through the column of EC. However, monensin (40 nmol) or alkaline buffers (pH 8.6-9.5) did not release

  16. Designing advanced alkaline polymer electrolytes for fuel cell applications.

    PubMed

    Pan, Jing; Chen, Chen; Zhuang, Lin; Lu, Juntao

    2012-03-20

    Although the polymer electrolyte fuel cell (PEFC) is a superior power source for electric vehicles, the high cost of this technology has served as the primary barrier to the large-scale commercialization. Over the last decade, researchers have pursued lower-cost next-generation materials for fuel cells, and alkaline polymer electrolytes (APEs) have emerged as an enabling material for platinum-free fuel cells. To fulfill the requirements of fuel cell applications, the APE must be as conductive and stable as its acidic counterpart, such as Nafion. This benchmark has proved challenging for APEs because the conductivity of OH(-) is intrinsically lower than that of H(+), and the stability of the cationic functional group in APEs, typically quaternary ammonia (-NR(3)(+)), is usually lower than that of the sulfonic functional group (-SO(3)(-)) in acidic polymer electrolytes. To improve the ionic conductivity, APEs are often designed to be of high ion-exchange capacity (IEC). This modification has caused unfavorable changes in the materials: these high IEC APEs absorb excessive amounts of water, leading to significant swelling and a decline in mechanical strength of the membrane. Cross-linking the polymer chains does not completely solve the problem because stable ionomer solutions would not be available for PEFC assembly. In this Account, we report our recent progress in the development of advanced APEs, which are highly resistant to swelling and show conductivities comparable with Nafion at typical temperatures for fuel-cell operation. We have proposed two strategies for improving the performance of APEs: self-cross-linking and self-aggregating designs. The self-cross-linking design builds on conventional cross-linking methods and works for APEs with high IEC. The self-aggregating design improves the effective mobility of OH(-) and boosts the ionic conductivity of APEs with low IEC. For APEs with high IEC, cross-linking is necessary to restrict the swelling of the

  17. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  18. Degradation modes of alkaline fuel cells and their components

    NASA Astrophysics Data System (ADS)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  19. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  20. Long life expectancy of alkaline fuel cells in hybrid vehicles

    SciTech Connect

    Kordesch, K.; Gsellmann, J.; Aronson, R.R.

    1998-07-01

    The alkaline Hydrogen-Air fuel cell system with circulating KOH-electrolyte and low-cost catalyzed carbon electrodes has a simple design and a good efficiency (high voltage). With new electrodes current densities of 200 to 300 mA/cm 2 are expected with air operation at 80 o C. The Austin A-40 City Car Hybrid vehicle which K. Kordesch operated on public roads for 3 years, demonstrated already in the early 1970s that the useful life of the alkaline system with circulating electrolyte can be increased by completely shutting down the fuel cell part of an AFC-lead-acid battery hybrid system. In this way, only the operating hours during driving time of the vehicle are counting and the electrode deterioration processes going on at open circuit (e.g. carbon oxidation, deep wetting of the electrode interface, parasitic current phenomena, etc.) are reduced. Like with a combustion engine, 3000--4000 actual operating hours are what are required for 200.000 km driving. The stacks, which use low-cost modular cell units, could be replaced after that. Another objective is to lower the fuel cell system cost on a mass production scale to the range of $ 100 to 150 per kW, which is then competitive with car engines, which cost only $ 50 to 75 per kW. No other fuel cell system could even approach such cost estimates. For reasons demanded by space requirements the historic development of AFC's shifted to matrix AFC systems. However, for terrestrial applications the use of circulation systems is more advantageous for thermal and water management. Jet pumps are usable for providing a load-dependent gas circulation. The exchangeability of the KOH makes it possible to operate on air with a less than complete removal of the CO{sub 2}. Cell reversal of series-connected cells, a frequent failure mode during shut-down and starting, is one of the main causes for the short life of electrodes in a high voltage stack. It can be prevented by a parallel, potential providing circuit.

  1. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

    PubMed Central

    Lu, Shanfu; Pan, Jing; Huang, Aibin; Zhuang, Lin; Lu, Juntao

    2008-01-01

    In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

  2. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  3. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  4. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    SciTech Connect

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY

    2015-01-10

    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  5. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  6. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  7. Fuel cell technology for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Deronck, Henry J.

    1992-01-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  8. Fuel cell technology for lunar surface operations

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    1992-02-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  9. Biochemical Localization of Alkaline Phosphatase in the Cell Wall of a Marine Pseudomonad

    PubMed Central

    Thompson, Linda M. M.; MacLeod, Robert A

    1974-01-01

    The various layers of the cell envelope of marine pseudomonad B-16 (ATCC 19855) have been separated from the cells and assayed directly for alkaline phosphatase activity under conditions established previously to be optimum for maintenance of the activity of the enzyme. Under conditions known to lead to the release of the contents of the periplasmic space from the cells, over 90% of the alkaline phosphatase was released into the medium. Neither the loosely bound outer layer nor the outer double-track layer (cell wall membrane) showed significant activity. A small amount of the alkaline phosphatase activity of the cells remained associated with the mureinoplasts when the outer layers of the cell wall were removed. Upon treatment of the mureinoplasts with lysozyme, some alkaline phosphatase was released into the medium and some remained with the protoplasts formed. Cells washed and suspended in 0.5 M NaCl were lysed by treatment with 2% toluene, and 95% of the alkaline phosphatase in the cells was released into the medium. Cells washed and suspended in complete salts solution (0.3 M NaCl, 0.05 M MgSO4, and 0.01 M KCl) or 0.05 M MgSO4 appeared intact after treatment with toluene but lost 50 and 10%, respectively, of their alkaline phosphatase. The results suggest that the presence of Mg2+ in the cell wall is necessary to prevent disruption of the cells by toluene and may also be required to prevent the release of alkaline phosphatase by toluene when disruption of the cells by toluene does not take place. PMID:4811547

  10. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  11. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-03-11

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility.

  12. A new type of auxiliary electrode for alkaline zinc cells

    NASA Astrophysics Data System (ADS)

    Skowronski, J. M.; Reksc, Wl.; Jurewicz, K.

    1988-07-01

    Auxiliary electrodes having a low hydrogen overpotential were prepared by electrodepositing active nickel onto chemically-metallized polypropylene fiber. They effectively overcame the problem of zinc anode shape change in alkaline electrolyte by dissolving residual zinc, which remained on the anode plates due to passivation and exhaustion of cathode capacity. Residual discharge with such an auxiliary electrode restores the balance of charge efficiencies. Polypropylene-nickel auxiliary electrodes with a very long lifespan can be made in various shapes and sizes. Their polarization curves and the effect they have on the zinc anode discharge process are both illustrated.

  13. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  14. Limitations of Commercializing Fuel Cell Technologies

    NASA Astrophysics Data System (ADS)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  15. l-Glutamate-Dependent Medium Alkalinization by Asparagus Mesophyll Cells 1

    PubMed Central

    McCutcheon, Steve L.; Ciccarelli, Bruce W.; Chung, Induk; Shelp, Barry; Bown, Alan W.

    1988-01-01

    Mechanically isolated Asparagus sprengeri Regel mesophyll cells cause alkalinization of the suspension medium on the addition of l-glutamate or its analog l-methionine-d,l-sulfoximine. Using a radiolabeled pH probe, it was found that both compounds caused internal acidification whereas l-aspartate did not. Fusicoccin stimulated H+ efflux from the cells by 111% and the uptake of l-[U-14C]glutamate by 55%. Manometric experiments demonstrated that, unlike l-methionine-d,l-sulfoximine, l-glutamate stimulated CO2 evolution from nonilluminated cells. Simultaneous measurements of medium alkalinization and 14CO2 evolution upon the addition of labeled l-glutamate showed that alkalinization was immediate and reached a maximum value after 45 minutes whereas 14CO2 evolution exhibited a lag before its appearance and continued in a linear manner for at least 100 minutes. Rates of alkalinization and uptake of l-[U-14C]glutamate were higher in the light while rates of 14CO2 evolution were higher in the dark. The major labeled product of glutamate decarboxylation, γ-aminobutyric acid, was found in the cells and the suspension medium. Its addition to the cell suspension did not result in medium alkalinization and evidence indicates that it is lost from the cell to the medium. The data suggest that the origin of medium alkalinization is co-transport not metabolism, and that the loss of labeled CO2 and γ-aminobutyric acid from the cell result in an overestimation of the stoichiometry of the H+/l-glutamate uptake process. Images Fig. 5 PMID:16666418

  16. Poly(imide)/Organically-Modified Montmorillonite Nanocomposite as a Potential Membrane for Alkaline Fuel Cells

    PubMed Central

    Battirola, Liliane C.; Gasparotto, Luiz H. S.; Rodrigues-Filho, Ubirajara P.; Tremiliosi-Filho, Germano

    2012-01-01

    In this work we evaluated the potentiality of a poly(imide) (PI)/organically-modified montmorillonite (O-MMT) nanocomposite membrane for the use in alkaline fuel cells. Both X-ray diffraction and scanning electron microscopy revealed a good dispersion of O-MMT into the PI matrix and preservation of the O-MMT layered structure. When compared to the pure PI, the addition of O-MMT improved thermal stability and markedly increased the capability of absorbing electrolyte and ionic conductivity of the composite. The results show that the PI/O-MMT nanocomposite is a promising candidate for alkaline fuel cell applications. PMID:24958290

  17. The evolution of the performance of alkaline fuel cells with circulating electrolyte

    NASA Astrophysics Data System (ADS)

    Gouérec, P.; Poletto, L.; Denizot, J.; Sanchez-Cortezon, E.; Miners, J. H.

    The most recent information is presented concerning the development of the alkaline fuel cell (AFC) with circulating aqueous electrolyte technology at Eident Energy (EE). The latest version of this commercially sold sub-stack or "module" results in improved performance (400-430 to 590 W at 4 V and 51% total efficiency ( η) versus LHV, i.e. from 100 to 137 mA cm -2 at 0.67 V per cell) and durability (2500 h expected with 10% decrease in power when operating at constant nominal current). The catalyst content in the module is also reduced from 1.2 to 0.5-0.6 mg cm -2. These improvements were achieved via an optimisation the porosity of the electrodes in order to obtain greater air diffusion inside the electrode. The authors also present the results of experiments that determine the origin of the performance loss of the AFC module over time. In contrast to much of the literature, the results do not support the irreversible corrosion of materials due to the oxygen reduction reaction. Indeed, over the investigated working period (i.e. ca. 1500-2000 h), the degradation of the performance was attributed to a slow and constant physical flooding due to imperfections in the wet proofing coating. Based on these facts, strategies are proposed to slow, avoid and even reverse to this flooding.

  18. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.

  19. Culture of osteogenic cells from human alveolar bone: a useful source of alkaline phosphatase.

    PubMed

    Simão, Ana Maria S; Beloti, Marcio M; Rosa, Adalberto L; de Oliveira, Paulo T; Granjeiro, José Mauro; Pizauro, João M; Ciancaglini, Pietro

    2007-11-01

    The aim of this study was to obtain membrane-bound alkaline phosphatase from osteoblastic-like cells of human alveolar bone. Cells were obtained by enzymatic digestion and maintained in primary culture in osteogenic medium until subconfluence. First passage cells were cultured in the same medium and at 7, 14, and 21 days, total protein content, collagen content, and alkaline phosphatase activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Cells in primary culture at day 14 were washed with Tris-HCl buffer, and used to extract the membrane-bound alkaline phosphatase. Cells expressed osteoblastic phenotype. The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10.0. This enzyme also hydrolyzes ATP, ADP, fructose-1-phosphate, fructose-6-phosphate, pyrophosphate and beta-glycerophosphate. PNPPase activity was reduced by typical inhibitors of alkaline phosphatase. SDS-PAGE of membrane fraction showed a single band with activity of approximately 120 kDa that could be solubilized by phospholipase C or Polidocanol.

  20. Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells.

    PubMed

    Wu, Haibin; Chen, Wei

    2011-10-05

    Copper nitride nanocubes are synthesized in a facile one-phase process. The crystal size could be tuned easily by using different primary amines as capping agents. Such Pt-free nanocrystals exhibit electrocatalytic activity toward oxygen reduction and appear to be promising cathodic electrocatalysts in alkaline fuel cells.

  1. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    DTIC Science & Technology

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...electrospinning, will be employed to make hydroxide-conducting membranes with an entirely new morphology, where one electrospun polymer provides pathways...for ion conductivity and the second electrospun polymer restricts ionomer swelling and imparts mechanical strength to the membrane. The functional

  2. Computer simulation of thermal modelling of alkaline hydrogen/oxygen fuel cells

    NASA Astrophysics Data System (ADS)

    Baumann, A.; Hauff, S.; Bolwin, K.

    1991-11-01

    An essential problem connected with the operation of regenerative fuel cell systems in space is the rejection of waste heat, produced mainly during discharging the regenerative fuel cell. The intention of this investigation was to gain a better understanding of the heat generation and heat rejection mechanism in alkaline fuel cells by performing detailed thermal modeling of a single cell stack. In particular, spatial temperature profiles within the fuel cell stack and the start-up behavior of the cells were predicted. Furthermore a model simulation of an emergency situation due to a partial failure of the coolant circuit was performed and theoretically temperature versus time curves were given for restarting the cooling.

  3. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tewari, A.; Sambhy, V.; Urquidi Macdonald, M.; Sen, A.

    Carbon dioxide intolerance has impeded the development of alkaline fuel cells as an alternate source of power supply. The CO 2, in a fuel cell system, could come from the anode side (if "dirty" H 2 is used as fuel), from the cathode side (if air instead of pure O 2 is used as an oxidant) or from inside the electrolyte (if methanol is used as a fuel). In this work, an novel analytical approach is proposed to study and quantify the carbon dioxide poisoning problem. Accelerated tests were carried out in an alkaline fuel cell using methanol as a fuel with different electrical loads and varying the concentration of carbon dioxide in a mixture CO 2/O 2 used as oxidant. Two characteristic quantities, t max and R max, were specified which were shown to comprehensively define the nature and extent of carbon dioxide poisoning in alkaline fuel cells. The poisoning phenomenon was successfully quantified by determining the dependence of these characteristic quantities on the operating parameters, viz. atmospheric carbon dioxide concentration and applied electrical load. Such quantification enabled the prediction of the output of a fuel cell operating in a carbon dioxide enriched atmosphere. In addition, static and dynamic analyses of electrolytes were carried out to determine the dependence of cell current on the electrolyte composition in a fuel cell undergoing poisoning. It was observed that there is a critical concentration of KOH in the electrolyte only below which the effect of carbon dioxide poisoning is reflected on the cell performance. Potentiostatic polarization tests confirmed that the underlying reason for the decreased cell performance because of carbon dioxide poisoning is the sluggish kinetics of methanol oxidation in the presence of potassium carbonate in the electrolyte. Moreover, the decreased conductivity of the electrolyte resulting from hydroxide to carbonate conversion was also shown to increase the ohmic loses in an alkaline fuel cell leading to lower

  4. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    PubMed

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water.

  5. In vitro osteogenesis assays: influence of the primary cell source on alkaline phosphatase activity and mineralization.

    PubMed

    Hoemann, C D; El-Gabalawy, H; McKee, M D

    2009-06-01

    In trabecular bone fracture repair in vivo, osteogenesis occurs through endochondral ossification under hypoxic conditions, or through woven bone deposition in the vicinity of blood vessels. In vitro osteogenesis assays are routinely used to test osteoblastic responses to drugs, hormones, and biomaterials for bone and cartilage repair applications. These cell culture models recapitulate events that occur in woven bone synthesis, and are carried out using primary osteoblasts, osteoblast precursors such as bone marrow-derived mesenchymal stromal cells (BMSCs), or various osteoblast cell lines. With time in culture, cell differentiation is typically assessed by examining levels of alkaline phosphatase activity (an early osteoblast marker) and by evaluating the assembly of a collagen (type I)-containing fibrillar extracellular matrix that mineralizes. In this review, we have made a comparative analysis of published osteogenic assays using calvarial cells, calvaria-derived cell lines, and bone marrow stromal cells. In all of these cell types, alkaline phosphatase activity shows similar progression over time using a variety of osteogenic and mineralizing media conditions; however, levels of alkaline phosphatase activity are not proportional to observed mineralization levels.

  6. A study of the direct dimethyl ether fuel cell using alkaline anolyte

    NASA Astrophysics Data System (ADS)

    Xu, Kan; Lao, Shao Jiang; Qin, Hai Ying; Liu, Bin Hong; Li, Zhou Peng

    The electrooxidation behavior of dimethyl ether (DME) dissolved in acidic, neutral or alkaline anolyte has been studied. The cyclic voltammetry measurements reveal that DME in alkaline anolyte demonstrates higher electrooxidation reactivity than that in acidic or neutral anolyte. With increasing the NaOH concentration in the anolyte, the electrooxidation reactivity of DME can be further improved. Direct dimethyl ether fuel cells (DDFCs) are assembled by using Nafion membrane as the electrolyte, Pt/C as the cathode catalyst, and Pt-Ru/C as the anode catalyst. It is found that the use of alkaline anolyte can significantly improve the performance of DDFCs. A maximum power density of 60 mW cm -2 has been achieved when operating the DDFC at 80 °C under ambient pressure.

  7. Inhibition of human natural killer cell activity by Pseudomonas aeruginosa alkaline protease and elastase.

    PubMed Central

    Pedersen, B K; Kharazmi, A

    1987-01-01

    The present study was designed to examine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (Ela) on human natural killer (NK) cell activity in vitro. AP and Ela were found to inhibit NK cell function. Addition of alpha interferon and interleukin-2 did not abolish this inhibition of NK cell activity. Adhesion of effector to target cells was studied in a single-cell agarose assay of monocyte-depleted NK-cell-enriched cell populations. AP and Ela were shown to inhibit effector/target cell conjugate formation. Furthermore, AP and Ela inhibited the binding of the monoclonal antibody Leu-11, which reacts with the Fc receptor of NK cells. The inhibition of NK cell binding to the target cell by P. aeruginosa proteases is most likely due to proteolytic cleavage of the surface receptors involved in the binding of the effector cell to the target cell. PMID:3030937

  8. Modeling the effect of membrane conductivity on the performance of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Raya, Isaac P.; Ellis, Michael W.; Hernandez-Guerrero, Abel; Elizalde-Blancas, Francisco

    2016-03-01

    The present work proposes and demonstrates a methodology to capture the effect of operating conditions on ionic conductivity of membranes immersed in alkaline media. Based on reported experimental results for an anion exchange membrane (A-201 by Tokuyama) and a cation exchange membrane (Nafion 211), two novel expressions are developed for the ionic conductivity by incorporating the effects of solution concentration and temperature. The expression for the cationic conductivity is applied in a cell-level model to predict the performance of an alkaline direct borohydride fuel cell; it is found that the membrane ionic conductivity significantly affects the cell performance and capturing its functionality is essential to accurately predict the fuel cell performance.

  9. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  10. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  11. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials.

  12. Cationic Polymers Developed for Alkaline Fuel Cell Applications

    DTIC Science & Technology

    2015-01-20

    cell (AEMFC) adopts cationic group-functionalized polymers as the solid electrolyte instead of liquid potassium hydroxide or sodium hydroxide used in...hydroxide or sodium hydroxide used in the traditional AFC, avoiding leakage problems, bicarbonate and carbonate salt induced electrode degradation...the solid electrolyte instead of liquid potassium hydroxide or sodium hydroxide used in the traditional AFC, avoiding leakage problems, bicarbonate

  13. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    PubMed

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  14. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  15. The choice of low-temperature hydrogen fuel cells: Acidic - or alkaline

    NASA Astrophysics Data System (ADS)

    Kordesch, K.

    A comparison of the major types of hydrogen-oxygen (air) fuel cells is given. The criteria for the selection is the fuel availability, system performance, optimal cost and life expectancy in most suitable application areas. Special recommendations are given for designs of bipolar alkaline batteries for intermittent use in electric vehicles on the road, combining high conversion efficiency with long stand-by periods. Such batteries with liquid alkaline electrolytes will have to compete with matrix-type cells using improved acidic- or membrane-type cells. Hybrid systems will be discussed and their advantages from the economic point of view will be considered. In electric vehicles the combination with an advanced rechargeable battery system, like zinc-bromine, could be decisive for success. Unfortunately, there are not enough cost data available to compare the systems now.

  16. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell.

    PubMed

    Liu, Susu; Liu, Xianhua; Wang, Ying; Zhang, Pingping

    2016-12-01

    The goal of this work was to develop a method for the direct power generation using macroalgae Enteromorpha prolifera. The process conditions for the saccharification of macroalgae were optimized and a type of alkaline fuel cell contained no precious metal catalysts was developed. Under optimum conditions (170°C and 2% hydrochloric acid for 45min), dilute acid hydrolysis of the homogenized plants yielded 272.25g reducing sugar/kg dry algal biomass. The maximum power density reached 3.81W/m(2) under the condition of 3M KOH and 18.15g/L reducing sugar in hydrolysate, higher than any other reported algae-fed fuel cells. This study represents the first report on direct electricity generation from macroalgae using alkaline fuel cells, suggesting that there is great potential for the production of renewable energy using marine biomass.

  17. Life capability of the silver electrode in alkaline electrochemical cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1976-01-01

    Estimates of silver electrode degradation rates were made by comparing the recently measured capacities with the reported early life capacities. Chemical analyses were carried out to determine the extent of silver loss from the electrode and its distribution throughout the cell components. The results established that the silver electrode is very stable when stored at reduced temperatures in the range of 0 to -51 C, in which it exhibits a permanent degradation in capacity of 0.5%/year. The results also indicated that the silver electrode is not quite as stable when operated and stored at room temperature, where it exhibits permanent degradation in the range of 3% to 14%/year. These results were employed in predicting the life capability of the proposed new Ag-H2 cell and also in assessing the merits of employing silver electrodes in long-life probe batteries.

  18. Porous matrix structures for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  19. Direct use of alcohols and sodium borohydride as fuel in an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verma, A.; Basu, S.

    The performance of an alkaline fuel cell (AFC) was studied at different electrolyte concentrations and temperatures for the direct feeding of methanol, ethanol and sodium borohydride as fuels. Potassium hydroxide is used as the electrolyte in the alkaline fuel cell. The anode was prepared by using Pt black, carbon paper and Nafion dispersion. Nickel mesh was used as the current collector. A standard cathode made of manganese dioxide/carbon paper/Ni-mesh/Teflon dispersion (Electro-Chem-Technic, UK) was used for testing the fuel cell performance. The experimental results showed that the current density increases with increase in KOH concentration. Maximum current densities of 300, 270 and 360 A m -2 were obtained for methanol, ethanol and sodium borohydride as fuel respectively with 3 M KOH electrolyte at 25 °C. The cell performance decreases with further increase in the KOH concentration. The current density of the alkaline fuel cell increases with increase in temperature for all the three fuels. The increase in current density with temperature is not as high as expected for sodium borohydride. These results are explained based on an electrochemical phenomenon and different associated losses.

  20. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    SciTech Connect

    Li, NW; Leng, YJ; Hickner, MA; Wang, CY

    2013-07-10

    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers with benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.

  1. Fabric-based alkaline direct formate microfluidic fuel cells.

    PubMed

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  2. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  3. Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report

    SciTech Connect

    Murray, J N

    1983-03-01

    This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

  4. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    It is desirable to employ a corrosion screening test for catalyst or support candidates for the fuel cell cathode before entering upon optimization of the candidate or of the catalytic electrode. To this end, corrosion test electrodes, intended for complete immersion and maximum wetting, have been made with 30 to 40 vol. pct Teflon; with perovskites this is about 10 to 15 pct. The candidates were synthesized by methods intended for single-phase product without special emphasis on high surface area, although the substances tested were no coarser than 2 m squared/g. A typical loading was 25 mg/cm sq of the pure substance, usually on gold screen, a few mm squared of which were left bare for contacting. Contact to the gold lead wire was made by welding with a micro-torch or a spot-welder. Corrosion testing consisted of obtaining current-voltage data under flowing inert gas in the potential region for reduction of O2. The electrode was immersed in 30 pct KOH. Observations were made at 20 C and 80 C, and the results compared with data from gold standards. Results with some perovskites, pyrochlores, spinels, and interstitial compounds will be discussed.

  5. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  6. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    PubMed Central

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared by the students in the laboratory. The GC and CP were modified with palladium nanoparticles (PdNP) suspensions. The electrodes efficiencies were studied for ethanol oxidation in alkaline solution using cyclic voltammetry techniques. The ethanol oxidation currents obtained were used to determine the current density using the geometric and surface area of each electrode. Finally, students were able to choose the best electrode and relate catalytic activity to surface area for ethanol oxidation in alkaline solution by completing a critical analysis of the cyclic voltammetry results. With this activity, fundamental electrochemical concepts were reinforced. PMID:25691801

  7. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications.

    PubMed

    Feliciano-Ramos, Ileana; Casañas-Montes, Barbara; García-Maldonado, María M; Menéndez, Christian L; Mayol, Ana R; Díaz-Vázquez, Liz M; Cabrera, Carlos R

    2015-02-10

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared by the students in the laboratory. The GC and CP were modified with palladium nanoparticles (PdNP) suspensions. The electrodes efficiencies were studied for ethanol oxidation in alkaline solution using cyclic voltammetry techniques. The ethanol oxidation currents obtained were used to determine the current density using the geometric and surface area of each electrode. Finally, students were able to choose the best electrode and relate catalytic activity to surface area for ethanol oxidation in alkaline solution by completing a critical analysis of the cyclic voltammetry results. With this activity, fundamental electrochemical concepts were reinforced.

  8. 2007 Fuel Cell Technologies Market Report

    SciTech Connect

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  9. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  10. Cultivation of marine shrimp in biofloc technology (BFT) system under different water alkalinities.

    PubMed

    Piérri, V; Valter-Severino, D; Goulart-de-Oliveira, K; Manoel-do-Espírito-Santo, C; Nascimento-Vieira, F; Quadros-Seiffert, W

    2015-08-01

    The aim of this study was to evaluate the influence of different levels of alkalinity for the superintensive cultivation of marine shrimp Litopenaeus vannamei in biofloc system. A total of 12 experimental circular units of 1000L were used supplied with 850L water from a nursery, populated at a density of 165 shrimps.m-3 and average weight of 5.6 g. The treatments, in triplicate, consisted in four levels of alkalinity in the water: 40, 80, 120 and 160 mg.L-1 of calcium carbonate. To correct the alkalinity was used calcium hydroxide (CaOH). It was observed a decrease in pH of the water in the treatments with lower alkalinity (p<0.05). The total suspended settleable solids were also lower in the treatment of low alkalinity. No significant difference was observed in other physico-chemical and biological parameters in the water quality assessed, as well as the zootechnical parameters of cultivation between treatments (p≥0.05). The results of survival and growth rate of shrimps were considered suitable for the cultivation system used in the different treatments. The cultivation of marine shrimp Litopenaeus vannamei in biofloc at density of 165 shrimps.m-3 can be performed in waters with alkalinity between 40 and 160 mg.L-1 of CaCO3, without compromising the zootechnical indexes of cultivation.

  11. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    PubMed

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes.

  12. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  13. Alkaline phosphatase determines polyphosphate-induced mineralization in a cell-type independent manner.

    PubMed

    Mikami, Yoshikazu; Tsuda, Hiromasa; Akiyama, Yuko; Honda, Masaki; Shimizu, Noriyoshi; Suzuki, Naoto; Komiyama, Kazuo

    2016-11-01

    Polyphosphate [Poly(P)] has positive effects on osteoblast mineralization; however, the underlying mechanism remains unclear. In addition, it is unknown whether Poly(P) promotes mineralization in soft tissues. We investigated this by using various cells. Poly(P) concentrations of 1 and 0.5 mg/mL yielded high levels of mineralization in ROS17/2.8 osteoblast cells. Similarly, Poly(P) induced mineralization in cell types expressing alkaline phosphatase (ALP), namely, ATDC5 and MC3T3-E1, but not in CHO, C3H10T1/2, C2C12, and 3T3-L1 cells. Furthermore, forced expression of ALP caused Poly(P)-induced mineralization in CHO cells. These results suggest that ALP determines Poly(P)-induced mineralization in a cell-type independent manner.

  14. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    NASA Astrophysics Data System (ADS)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  15. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma

    PubMed Central

    2009-01-01

    The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH− efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3− symport or OH−/HCO3− antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions. PMID:19820298

  16. A self-humidifying acidic-alkaline bipolar membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Peng, Sikan; Xu, Xin; Lu, Shanfu; Sui, Pang-Chieh; Djilali, Ned; Xiang, Yan

    2015-12-01

    To maintain membrane hydration and operate effectively, polymer electrolyte membrane fuel cells (PEMFCs) require elaborate water management, which significantly increases the complexity and cost of the fuel cell system. Here we propose a novel and entirely different approach to membrane hydration by exploiting the concept of bipolar membranes. Bipolar membrane (BPM) fuel cells utilize a composite membrane consisting of an acidic polymer electrolyte membrane on the anode side and an alkaline electrolyte membrane on the cathode side. We present a novel membrane electrode assembly (MEA) fabrication method and demonstrate experimentally and theoretically that BPM fuel cells can (a) self-humidify to ensure high ionic conductivity; and (b) allow use of non-platinum catalysts due to inherently faster oxygen reduction kinetics on an alkaline cathode. Our Pt-based BPM fuel cell achieves a two orders of magnitude gain in power density of 327 mW cm-2 at 323 K under dry gas feed, the highest power output achieved under anhydrous operation conditions. A theoretical analysis and in situ measurements are presented to characterize the unique interfacial water generation and transport behavior that make self-humidification possible during operation. Further optimization of these features and advances in fabricating bipolar MEAs would open the way for a new generation of self-humidifying and water-management-free PEMFCs.

  17. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  18. Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1.

    PubMed Central

    Rebbe, N F; Tong, B D; Finley, E M; Hickman, S

    1991-01-01

    The protein responsible for both nucleotide pyrophosphatase (EC 3.6.1.9) and alkaline phosphodiesterase I (EC 3.1.4.1) activities was purified from MOPC 315 plasmacytoma cells. A single SDS/PAGE-purified 115-kDa protein band was used to produce a rabbit polyclonal antiserum. This antibody preparation precipitated alkaline phosphodiesterase I activity, indicating that the SDS/PAGE-purified protein was nucleotide pyrophosphatase/alkaline phosphodiesterase I. When used for Western blot analysis, the antiserum detected a 115-kDa protein as well as a 220-kDa protein band. Multiple overlapping cDNA clones were isolated from a cDNA expression library screened with this anti-nucleotide pyrophosphatase/alkaline phosphodiesterase I antiserum. Sequence analysis indicated that the isolated cDNA clones encoded PC-1, a murine plasma cell differentiation antigen. To confirm the suspected enzymatic identity of PC-1, a recombinant PC-1 fusion protein was expressed in bacteria, purified, and used to produce another rabbit polyclonal antiserum. This antiserum likewise immunoprecipitated alkaline phosphodiesterase I activity and recognized the 115-kDa and 220-kDa proteins in Western blot analyses of cell extracts. Furthermore, expression of nucleotide pyrophosphatase/alkaline phosphodiesterase I corresponded directly with mRNA and protein levels of PC-1 in cells known to express different levels of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity. Finally, steroid induction of enzymatic activity was mirrored by levels of PC-1 mRNA and protein expression. Together, these data indicate that the plasma cell differentiation antigen PC-1 is a membrane-bound enzyme, nucleotide pyrophosphatase/alkaline phosphodiesterase I. Images PMID:1647027

  19. Expression of a human placental alkaline phosphatase gene in transfected cells: Use as a reporter for studies of gene expression

    SciTech Connect

    Henthorn, P.; Zervos, P.; Raducha, M.; Harris, H.; Kadesch, T.

    1988-09-01

    The human placental alkaline phosphatase gene has been cloned and reintroduced into mammalian cells. When a plasmid carrying the gene under control of the simian virus 40 early promoter (pSV2Apap) is transfected into a variety of different cell types, placental alkaline phosphatase activity can readily be detected by using whole cell suspensions or cell lysates. Alkaline phosphatase activity can also be visualized directly in individual transfected cells by histochemical staining. The gene is appropriate for use as a reporter in studies of gene regulation since its expression is dependent on the presence of exogenous transcription control elements. The overall assay to detect the expression of the gene is quantitative, very rapid, and inexpensive. Cotransfections of cells with pSV2Apap and a related plasmid carrying the bacterial chloramphenicol acetyltransferase gene (pSV2Acat) indicate that transcription of these two genes is detected with roughly the same sensitivity.

  20. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    DOE PAGES

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; ...

    2015-01-01

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymermore » films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.« less

  1. Towards high conductivity in anion-exchange membranes for alkaline fuel cells.

    PubMed

    Li, Nanwen; Guiver, Michael D; Binder, Wolfgang H

    2013-08-01

    Quaternized poly(2,6-dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3-triazoles were first prepared through Cu(I) -catalyzed "click chemistry" to improve the anion transport in anion-exchange membranes (AEMs). Clicked 1,2,3-triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen-bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8-62 mS cm(-1) at 20 °C in water, which was several times higher than that of a typical PPO-based AEM (TMA-20) derived from trimethylamine (5 mS cm(-1) ). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine-based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non-clicked membranes. The performance of a H2 /O2 single cell assembled with a clicked AEM was much improved compared to that of a non-clicked TMA-20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm(-2) at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells.

  2. Cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes

    SciTech Connect

    Lu, Yuan; Artmentrout, Aaron A.; Li, Juchuan; Tekinalp, Halil L.; Nanda, Jagjit; Ozcan, Soydan

    2015-01-01

    Cellulose nanocrystal (CNC)-based composite films were prepared as a solid electrolyte for alkaline fuel cells. Poly (vinyl alcohol) (PVA) and silica gel hybrid was used to bind the CNCs to form a robust composite film. The mass ratio (i.e., 1 : 1, 1 : 2) of PVA and silica gel was tuned to control the hydrophobicity of the resulting films. Composite films with a range of CNC content (i.e., 20 to 60%) were prepared to demonstrate the impact of CNC on the performance of these materials as a solid electrolyte for alkaline fuel cells. Different from previously reported cross-linked polymer films, CNC-based composite films with 40% hydrophobic binder (i.e., PVA : silica gel=1 : 2) exhibited simultaneous low water swelling (e.g., ~5%) and high water uptake (e.g., ~80%) due to the hydrophilicity and extraordinary dimensional stability of CNC. It also showed a conductivity of 0.044 and 0.065 S/cm at 20 and 60 oC, respectively. To the best of our knowledge, the film with 60% CNC and 40% binder is characterized by the lowest hydroxide conductivity-normalized swelling ratio. Decreased CNC content (i.e., 40 and 20%) resulted in comparable hydroxide conductivity but a greater swelling ratio. These results demonstrate the advantage of CNC as a key component for a solid electrolyte for alkaline fuel cells over conventional polymers, suggesting the great potential of CNCs in improving the dimensional stability while maintaining the conductivity of existing anion exchange membranes.

  3. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  4. Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine.

    PubMed Central

    Hummer, C; Millán, J L

    1991-01-01

    The catalytic activity of human placental alkaline phosphatase (PLAP) and germ cell alkaline phosphatase (GCAP) can be inhibited, through an uncompetitive mechanism, by L-Phe. GCAP is also selectively inhibited by L-Leu. Site-directed mutagenesis of five of the 12 residues which are different in PLAP and GCAP revealed that Gly429 is the primary determinant of GCAP inhibition by L-Leu, and Ser84 and Leu297 play a modulatory role in the inhibition. PMID:2001256

  5. Characterization of human foetal intestinal alkaline phosphatase. Comparison with the isoenzymes from the adult intestine and human tumour cell lines.

    PubMed Central

    Behrens, C M; Enns, C A; Sussman, H H

    1983-01-01

    The molecular structure of human foetal intestinal alkaline phosphatase was defined by high-resolution two-dimensional polyacrylamide-gel electrophoresis and amino acid inhibition studies. Comparison was made with the adult form of intestinal alkaline phosphatase, as well as with alkaline phosphatases isolated from cultured foetal amnion cells (FL) and a human tumour cell line (KB). Two non-identical subunits were isolated from the foetal intestinal isoenzyme, one having same molecular weight and isoelectric point as placental alkaline phosphatase, and the other corresponding to a glycosylated subunit of the adult intestinal enzyme. The FL-cell and KB-cell alkaline phosphatases were also found to contain two subunits similar to those of the foetal intestinal isoenzyme. Characterization of neuraminidase digests of the non-placental subunit showed it to be indistinguishable from the subunits of the adult intestinal isoenzyme. This implies that no new phosphatase structural gene is involved in the transition from the expression of foetal to adult intestinal alkaline phosphatase, but that the molecular changes involve suppression of the placental subunit and loss of neuraminic acid from the non-placental subunit. Enzyme-inhibition studies demonstrated an intermediate response to the inhibitors tested for the foetal intestinal, FL-cell and KB-cell isoenzymes when compared with the placental, adult intestinal and liver forms. This result is consistent with the mixed-subunit structure observed for the former set of isoenzymes. In summary, this study has defined the molecular subunit structure of the foetal intestinal form of alkaline phosphatase and has demonstrated its expression in a human tumour cell line. Images Fig. 1. PMID:6882358

  6. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; da Silva, Dionisio Furtunato; e Silva, Leonardo Gondim de Andrade; Spinacé, Estevam Vitório; Neto, Almir Oliveira; dos Santos, Mauro Coelho

    2015-10-01

    Pd/C, PdAu/C 50:50, PdSn/C 50:50, PdAuSn/C 50:40:10 and PdAuSn/C 50:10:40 electrocatalysts are prepared using an electron beam irradiation reduction method and tested for glycerol electro-oxidation in alkaline medium. X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV) are used to characterize the resulting materials. The activity for glycerol electro-oxidation is tested in alkaline medium at room temperature using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct glycerol fuel cell (ADGFC) at temperature range of 60-90 °C. EDX analysis demonstrate that Pd:Au:Sn atomic ratios are very similar to the nominal ones. X-ray diffractograms of PdAuSn/C electrocatalysts evidence the presence of Pd (fcc), Au (fcc) and SnO2 phases. TEM analysis demonstrates a good dispersion of the nanoparticles on the carbon support with some agglomerates. Cyclic Voltammetry experiments suggest that PdAuSn/C electrocatalysts demonstrate better results. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 glycerol in 2.0 mol L-1 KOH solutions, the electrocatalyst PdAuSn/C 50:40:10 demonstrate highest power density (51 mW cm-2) and the 120 h durability tests demonstrate a 210 μV h-1 degradation rate.

  7. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  8. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  9. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  10. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  11. Energy 101: Fuel Cell Technology

    SciTech Connect

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  12. Energy 101: Fuel Cell Technology

    ScienceCinema

    None

    2016-07-12

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  13. The effects of retinoic acid on alkaline phosphatase activity and tissue-non-specific alkaline phosphatase gene expression in human periodontal ligament cells and gingival fibroblasts.

    PubMed

    San Miguel, S M; Goseki-Sone, M; Sugiyama, E; Watanabe, H; Yanagishita, M; Ishikawa, I

    1998-10-01

    Alkaline phosphatase (ALP) in human periodontal ligament (HPDL) cells is classified as a tissue-non-specific alkaline phosphatase (TNSALP) by its enzymatic and immunological properties. Since retinoic acid (RA) has been shown as a potent inducer of TNSALP expression in various osteoblastic and fibroblastic cells, we investigated the effects of RA on the level of ALP activity and expression of TNSALP mRNAs in HPDL cells. Cultured cells were treated with desired RA concentrations (0, 10(-7), 10(-6), 10(-5) M) in medium containing 1% bovine serum albumin without serum. ALP activity was determined by the rate of hydrolysis of p-nitrophenyl phosphate and was also assayed in the presence of specific inhibitors. In order to identify the TNSALP mRNA type expressed by HPDL, a set of oligonucleotide primers corresponding to 2 types of human TNSALP mRNA (i.e. bone-type and liver-type) were designed, and mRNA isolated from HPDL was amplified by means of reverse transcription-polymerase chain reaction (RT-PCR). After treatment with RA (10(-6) M) for 4 d, there was a significant increase in the ALP activity of HPDL cells. The use of inhibitors and thermal inactivation experiments showed that the increased ALP activity had properties of the TNSALP type. RT-PCR analysis revealed that bone-type mRNA was highly stimulated in HPDL cells by RA treatment, but the expression of liver-type mRNA was not detected. These results indicated that the upregulation of ALP activity in HPDL cells by RA was due to the increased transcription of bone-type mRNA of the TNSALP gene.

  14. Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Gsellmann, Josef; Cifrain, Martin; Voss, Susanne; Hacker, Victor; Aronson, Robert R.; Fabjan, Christoph; Hejze, Thomas; Daniel-Ivad, Josef

    Alkaline fuel cell (AFC) hybrids with the capability to shut down completely between uses (by draining the circulating KOH electrolyte) can expect an operating life of about 4000 h, which is equivalent to 200,000 km of driving, They should be able to compete on cost with heat engines (US50 to US100 per kW). An early model is the hydrogen/air fuel cell lead-acid hybrid car, built by K. Kordesch in the 1970s. Improved air electrodes plus new variations of the bipolar stack assembly developed in Graz, make success probable. In cooperation with Electric Auto (EAC), an ammonia cracker is also in development. A RAM™ battery-AFC hybrid combination has been optimized.

  15. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  16. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    SciTech Connect

    Sakisaka, Yukihiko; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi; Nemoto, Eiji

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  17. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells.

  18. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  19. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  20. Alkaline Hydrolysis is an Effective Treatment Technology for RDX-Contaminated Groundwater

    SciTech Connect

    Hqang, Snagchul; Felt, Deborah R.; Bouwer, Edward J.; Brooks, Michael C.; Larson, Steven L.; Davis, Jeffrey L.

    2003-03-26

    Kinetics and treatability of alkaline hydrolysis were investigated in batch reactor and continuous flow-stirred tank reactor (CFSTR) for remediating groundwater contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The batch system (pH 11 to 13, RDX 1 to 10 mg/L) achieved pseudo first-order RDX transformation rates in the range of 0.2 to 47.5 min-1, corresponding to 57.8 to 0.2 hrs of half-life period, respectively. In the CFSTR system (pH 11 to 11.9, HRT 0.54 to 2 days), the best alkaline RDX transformation was achieved a 99% RDX removal with the longest HRT and the highest reaction pH. Formate ({approx}2 M/M RDXremoved) and nitrite ({approx}0.2 M/M RDXremoved) were produced as the major hydrolysates, indicative of a simultaneous transformation mechanism by RDX ring cleavage and ring nitrogen elimination. The net OH- demand was found to be 1.5, 390 and 130 M OH-/M RDXremoved at the pH of 11.9, 11.5 and 11.0, respectively, in the CFSTR system.

  1. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    PubMed

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  2. Bone cell responses to the composite of Ricinus communis polyurethane and alkaline phosphatase.

    PubMed

    Beloti, Marcio Mateus; de Oliveira, Paulo Tambasco; Tagliani, Marcela Martini; Rosa, Adalberto Luiz

    2008-02-01

    The aim of this study was to evaluate the response of osteoblastic cells to the composite of Ricinus communis polyurethane (RCP) and alkaline phosphatase (ALP) incubated in synthetic body fluid (SBF). RCP pure (RCPp) and RCP blended with ALP 6 mg/mL polymer (RCP+ALP) were incubated in SBF for 17 days. Four groups of RCP were tested: RCPp, RCP+ALP, and RCPp and RCP+ALP incubated in SBF (RCPp/SBF and RCP+ALP/SBF). Stem cells from rat bone marrow were cultured in conditions that allowed osteoblastic differentiation on RCP discs and were evaluated: cell adhesion, culture growth, cell viability, total protein content, ALP activity, and bone-like nodule formation. Data were compared by ANOVA or Kruskal-Wallis test. The group RCP+ALP was highly cytotoxic and, therefore, was not considered here. Cell adhesion (p = 0.14), culture growth (p = 0.39), viability (p = 0.46) and total protein content (p = 0.12) were not affected by either RCP composition or incubation in SBF. ALP activity was affected (p = 0.0001) as follows: RCPp < RCPp/SBF < RCP+ALP/SBF. Bone-like nodule formation was not observed on all evaluated groups. The composite RCP+ALP prior to SBF incubation is cytotoxic and must not be considered as biomaterial, but the incorporation of ALP to the RCP followed by SBF incubation could be a useful alternative to improve the biological properties of the RCP.

  3. Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles.

    PubMed

    Ralph, S; Petras, M; Pandrangi, R; Vrzoc, M

    1996-01-01

    Small bodies of water (e.g., creeks, ponds, and drainage ditches) have received very little attention in genotoxicity studies, yet these areas are important because they are often the first to be affected by industrial effluents, sewage contaminants, accidental spills, internal combustion engine emissions, landfill runoffs, and pesticide uses. To address this deficiency, we examined erythrocytes in two species of tadpoles, Rana clamitans and Bufo americanus, using the alkaline single-cell gel (SCG) ("comet") assay. This approach involves detection, under alkaline conditions, of cell DNA fragments, which on electrophoresis migrate from the nuclear core, resulting in a "comet-with-tail" formation. Exposure of R. clamitans todpoles to a range of concentrations of methyl methanesulfonate (MMS) produced a linear increase in DNA length to DNA core width ratios. This is consistent with findings in a number of other species. Time-dose experiments using MMS suggest that the peak level of DNA damage in R. clamitans todpoles occurred 42 hr after exposure. B. americanus tadpoles exposed to 6.25 mg/l of MMS for 12 hours had a significant increase in DNA damage over that seen in the controls. Freshly caught R. clamitans tadpoles from Highgate and B. americanus tadpoles from Duart, both on the north shore of Lake Erie, gave ratios of 2.78 and 2.07, respectively. This region of Ontario is a prime agricultural area and pesticide use is extensive. Tadpoles from Highgate and Duart, maintained in the laboratory for 4 months and 6 weeks, respectively, gave ratios of 1.29 and 1.44. The results of the SCG procedure in tadpoles indicate that this assay is extremely sensitive and suitable for detecting genotoxicity in the environment.

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  5. Development and operation of a hybrid acid-alkaline advanced water electrolysis cell

    NASA Astrophysics Data System (ADS)

    Teschke, O.; Zwanziger, M.

    A hybrid acid-alkaline water electrolysis cell has been developed for hydrogen production. The cell is based on the use of an acidic solution at the cathode and a basic solution at the anode to reduce the minimum theoretical voltage for water decomposition from the thermoneutral potential of 1.47 V to close to 1.4 V at 25 C and 1 atm. The pH differential is maintained by the removal of OH ions from the cathode section and water removal from the anode section, which can be driven by heat energy. A practical cell has been built using a solid polymer electrolyte in which, however, the cathodic compartment is not acidic but neutral. Tests with a platinum black cathode catalyst and a platinum-iridium anode catalyst have resulted in steady-state water hydrolysis at an applied voltage of 0.9 V, and a V-I diagram with a considerably lower slope than that of a conventional cell has been obtained at 90 C.

  6. Review and assessment of technologies for the separation of strontium from alkaline and acidic media

    SciTech Connect

    Orth, R.J.; Kurath, D.E.

    1994-01-01

    A literature survey has been conducted to identify and evaluate methods for the separation of strontium from acidic and alkaline media as applied to Hanford tank waste. The most promising methods of solvent extraction, precipitation, and ion exchange are described. The following criteria were used for evaluating the separation methods: Appreciable strontium removal must be demonstrated; Strontium selectivity over bulk components must be demonstrated; The method must show promise for evolving into a practical and fairly simple process; The process should be safe to operate; The method must be robust (i.e., capable of separating strontium from various waste types); Secondary waste generation must be minimized; and The method must show resistance to radiation damage. The methods discussed did not necessarily satisfy all of the above criteria; thus, key areas requiring further development are also given for each method. Less promising solvent extraction, precipitation, and ion exchange methods were also identified; areas for potential development are included in this report.

  7. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  8. Studies of a granular aluminum anode in an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Popovich, Neil A.; Govind, Rakesh

    A granular aluminum anode was investigated for use in an alkaline aluminum/hydrogen peroxide fuel cell. The fuel cell utilizes granules of aluminum (8-12 mm in diameter) as an anode, potassium hydroxide (KOH) as an anolyte and hydrogen peroxide as a catholyte. Granular anodes have a significantly higher surface area than planar surfaces, thereby resulting in higher utilization of the anode material. Polarization experiments were performed as well as closed circuit power production experiments. KOH concentrations were varied in the experiments. Polarization experiments achieved a current density of 10.02 mA/cm 2 using 2 M KOH and granular aluminum with a surface area of 205.6 cm 2. Power production experiments sustained a current density of 0.05 mA/cm 2 using 1.5 M KOH and granular aluminum with a surface area of 59.8 cm 2. Results indicate that granular metal anodes have potential for use in high energy density fuel cells.

  9. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  10. A rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro.

    PubMed

    Sabokbar, A; Millett, P J; Myer, B; Rushton, N

    1994-10-01

    Alkaline phosphatase (ALP) is the most widely recognized biochemical marker for osteoblast activity. Although its precise function is poorly understood, it is believed to play a role in skeletal mineralization. The aim of this study was to develop an assay suitable for measuring the activity of this enzyme in microtiter plate format. Using the well-characterized osteoblast-like cell line Saos-2, this paper describes an optimized biochemical assay suitable for measuring ALP activity in tissue culture samples. We have determined that a p-nitrophenyl phosphate substrate concentration of 9 mM provides highest enzyme activities. We have found that cell concentration, and hence enzyme concentration, affects both the kinetics and precision of the assay. We also tested several methods of enzyme solubilization and found that freeze-thawing the membrane fractions twice at -70 degrees C/37 degrees C or freeze-thawing once with sonication yielded highest enzyme activities. The activity of the enzyme decreased by 10% after 7 days storage. This assay provides a sensitive and reproducible method that is ideally suited for measuring ALP activity in isolated osteoblastic cells, although sample preparation and storage can influence results.

  11. Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies

    NASA Astrophysics Data System (ADS)

    Oshiba, Yuhei; Hiura, Junya; Suzuki, Yuto; Yamaguchi, Takeo

    2017-03-01

    In solid-state alkaline fuel cells (SAFCs), water is generated at the anode and is reacted at the cathode; as such, flooding occurs much more easily at the anode than it does in proton-exchange membrane fuel cells (PEMFCs). Anode flooding is a reason for the low performance of SAFCs, and so it is important that this flooding phenomenon is mitigated. In this study, we control water transport to suppress anode flooding. We do this through two approaches: changing the thickness of the anion exchange membrane (AEM) and changing the anode flow rate. Among two AEMs with two different thicknesses (27 μm and 6 μm) prepared, thinner AEM shows improved fuel cell performance. Increasing the anode flow rate also improved the performance of SAFCs. To find out what caused this, the water transport inside the membrane electrode assembly (MEA) was analyzed. The flooding region was estimated using calculated relative humidity at anode outlet. On the basis of our experimental and calculation approaches, flooding can be suppressed by using thin AEMs and increasing the anode flow rate.

  12. Human Placental Alkaline Phosphatase as a Tracking Marker for Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Balmayor, Elizabeth Rosado; Flicker, Magdalena; Käser, Tobias; Saalmüller, Armin

    2013-01-01

    Abstract Currently, adult mesenchymal stem cells (MSCs) are being evaluated for a wide variety of therapeutic approaches. It has been suggested that MSCs possess regenerative properties when implanted or injected into damaged tissue. However, the efficacy of MSCs in several of the proposed treatments is still controversial. To further explore the therapeutic potential of these cells, it is necessary to trace the fate of individual donor or manipulated cells in the host organism. Recent studies from our lab showed that human placental alkaline phosphatase (hPLAP) is a marker with great potential for cell tracking. However, a potential concern related to this marker is its enzymatic activity, which might alter cell behavior and differentiation by hydrolyzing substrates in the extracellular space and thereby changing the cellular microenvironment. Therefore, the aim of this study was to characterize bone marrow MSCs (BMSCs) derived from hPLAP-transgenic inbred F344 rats (hPLAP-tg) in comparison to wild type (wt) BMSCs. Here, we show that BMSCs from wt and hPLAP-tg donors are indistinguishable in terms of cell morphology, viability, adhesion, immune phenotype, and proliferation as well as in their differentiation capacity over six passages. The expression of the hPLAP marker enzyme was not impaired by extensive in vitro cultivation, osteogenic, adipogenic, or chondrogenic differentiation, or seeding onto two- or three-dimensional biomaterials. Thus, our study underscores the utility of genetically labeled BMSCs isolated from hPLAP-tg donors for long-term tracking of the fate of transplanted MSCs in regenerative therapies. PMID:24083090

  13. Hybrid Fuel Cell Technology Overview

    SciTech Connect

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  14. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  15. Fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.

  16. Genome wide expression profile in human HTR-8/Svneo trophoblastic cells in response to overexpression of placental alkaline phosphatase gene.

    PubMed

    Bellazi, L; Mornet, E; Meurice, G; Pata-Merci, N; De Mazancourt, P; Dieudonné, M-N

    2011-10-01

    During pregnancy, placental growth allows the adaptation of the feto-maternal unit to fetal requirements. Placental alkaline phosphatase (PLAP) is a phosphomonoesterase produced increasingly until term by the placenta and also ectopically in some tumors. To precise the role of this enzyme in the placenta, we analyzed the genome wide expression profile of HTR-8/Svneo trophoblastic cells after overexpression of the alkaline phosphatase gene (ALPP). We showed that ALPP overexpression mainly altered expression of genes implicated in cellular growth and proliferation. These results were confirmed by the study of cellular effects in HTR-8/Svneo cells overexpressing ALPP and in HTR-8/Svneo cells in which ALPP expression was suppressed by siRNA. We showed that PLAP exerts a positive effect on DNA replication and acts as a proliferative factor in trophoblastic cells.

  17. Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kruusenberg, Ivar; Ratso, Sander; Vikkisk, Merilin; Kanninen, Petri; Kallio, Tanja; Kannan, Arunachala M.; Tammeveski, Kaido

    2015-05-01

    Direct methanol fuel cells are assembled and evaluated using Fumatech FAA3 alkaline anion exchange membrane. Two novel metal-free cathode catalysts are synthesised, investigated and compared with the commercial Pt-based catalyst. In this work nitrogen-doped few-layer graphene/multi-walled carbon nanotube (N-FLG/MWCNT) composite and nitrogen-doped MWCNT (N-MWCNT) catalyst are prepared by pyrolysing the mixture of dicyandiamide (DCDA) and carbon nanomaterials at 800 °C. The resulting cathode catalyst material shows a remarkable electrocatalytic activity for oxygen reduction reaction (ORR) in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Fuel cell tests are performed by using 1 M methanol as anode and pure oxygen gas cathode feed. The maximum power density obtained with the N-FLG/MWCNT material (0.72 mW cm-2) is similar to that of the Pt/C catalyst (0.72 mW cm-2), whereas the N-MWCNT material shows higher peak power density (0.92 mW cm-2) than the commercial Pt/C catalyst.

  18. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

  19. Goblet cells and intestinal Alkaline phosphatase expression (IAP) during the development of the rat small intestine.

    PubMed

    Gomes, José Rosa; Ayub, Laís Costa; Dos Reis, Camila Audrey; Machado, Miriam Joice; da Silva, Jéssica; Omar, Nádia Fayez; de Miranda Soares, Maria Albertina

    2017-01-01

    This study aimed to evaluate the temporal and spacial distribution of the mucins produced by goblet cells and intestinal alkaline phosphatase (IAP) expression during the development of the small intestine of the rat. Intestines were removed from rats on the 15th, 17th and 18th days of intratuterine life (i.u.) and on the 3rd, 10th, 17th and 25th days after birth (a.b.). Intestines were processed for routine histological procedures and sections were submitted to histochemistry using PAS to stain neutral glycoproteins and Alcian blue for acidic glycoproteins, as well as immunohistochemistry to detect IAP. In rats, glycoprotein production was seen to begin in the intestinal epithelium cell at around the 17th day of i.u. life; however, this production was not accompanied by morphological indications of the presence of goblet cells. By the 18th i.u. day, the villus epithelium was undergoing differentiation and the first goblet cells could be identified from this time. At around the 10th day a.b., both compartments of the small intestine were detected; i.e. the villi and the crypts. At this timepoint, goblet cells were present in the villi, and also in the upper regions of the crypts. On the 3rd, 10th 17th and 25th days a.b., the presence of the goblet cells increased and presented regional differences in the sections evaluated. IAP was not detected during i.u. life, but was weakly detected in the cells of the villi from the 3rd day a.b., along the entire extension of the villi. On the 10th day, IAP was detected at the tip of the villi, while on the 25th day, it was detected along the extension of the villi, but with a weaker intensity. In conclusion, a temporal and spacial distribution of goblet cells and IAP activity occurs during the development of the small intestine, suggesting a possible regulatory control in accordance with the suckling and weaning phases of food intake in the rat's life.

  20. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  1. Influence of Hydration Level on Polymer and Water Dynamics in Alkaline Anion Exchange Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Tarver, Jacob; Kim, Jenny; Tyagi, Madhu; Soles, Christopher; Tsai, Tsung-Han; Coughlin, Bryan

    2015-03-01

    Triblock copolymers based on poly(chloromethylstyrene)-b-poly(ethylene)-b-poly(chloromethylstyrene) can be quaternized to different extents to yield anion exchange membranes for alkaline fuel cells. In the absence of moisture, these membranes demonstrate bilayer lamellar morphology. Upon high levels of hydration, however, in-situ small angle neutron scattering reveals the emergence of higher-order diffraction peaks. This phenomena has previously been observed in analogous diblock copolymer-based membranes and has been attributed to the induction of a multilayer lamellar morphology in which selective striping of water occurs in the center of the ion-rich domain. By conducting humidity-resolved quasielastic neutron scattering (QENS) measurements using deuterated water, we are able to isolate differences in the pico- to nanosecond timescale dynamics of the hydrogenated membrane upon hydration. QENS measurements in the presence of a hydrogenated water source subsequently permit deconvolution and isolation of the translational and rotational dynamics of water as a function of relative humidity, revealing spatial and temporal changes in polymer and water motion at high levels of hydration.

  2. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    PubMed

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production.

  3. Model-based analysis of water management in alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Weinzierl, C.; Krewer, U.

    2014-12-01

    Mathematical modelling is used to analyse water management in Alkaline Direct Methanol Fuel Cells (ADMFCs) with an anion exchange membrane as electrolyte. Cathodic water supply is identified as one of the main challenges and investigated at different operation conditions. Two extreme case scenarios are modelled to study the feasible conditions for sufficient water supply. Scenario 1 reveals that water supply by cathodic inlet is insufficient and, thus, water transport through membrane is essential for ADMFC operation. The second scenario is used to analyse requirements on water transport through the membrane for different operation conditions. These requirements are influenced by current density, evaporation rate, methanol cross-over and electro-osmotic drag of water. Simulations indicate that water supply is mainly challenging for high current densities and demands on high water diffusion are intensified by water drag. Thus, current density might be limited by water transport through membrane. The presented results help to identify important effects and processes in ADMFCs with a polymer electrolyte membrane and to understand these processes. Furthermore, the requirements identified by modelling show the importance of considering water transport through membrane besides conductivity and methanol cross-over especially for designing new membrane materials.

  4. Development of an alkaline fuel cell subsystem. Final program summary report, 10 April 1986-31 March 1987

    SciTech Connect

    Not Available

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  5. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  6. Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electron-transfer catalyst

    NASA Astrophysics Data System (ADS)

    Hao, Miaoqing; Liu, Xianhua; Feng, Mengnan; Zhang, Pingping; Wang, Guangyi

    2014-04-01

    In this work, we developed a single-compartment direct cellulose alkaline fuel cell by using nickel foam as the anode and methyl viologen as an electron transfer catalyst. The maximum power density of the fuel cell at optimal conditions is 450 mW m-2. High-performance liquid chromatography detected short-chain aliphatic carboxylic acids in the oxidation products. Using common reed and red algae as fuels, the fuel cell achieved maximum power densities of 295 mW m-2 and 154 mW m-2, respectively.

  7. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  8. Development of Integrated TiO2 on Carburized Si Nanowires as a Catalyst/Support Structure for Alkaline Fuel Cells

    NASA Astrophysics Data System (ADS)

    Lemke, Adam J.

    Due to a combination of environmental and economic motivations, there is a strong impetus to transition away from fossil fuels towards renewable sources of energy. Critical to achieving this goal will be technologies that allow for the storage and transmission of energy derived from renewable sources. Hydrogen fuel cells may play a significant role in making this a reality, allowing for the use of hydrogen as a non-carbon based fuel, in particular for vehicle applications. Hydrogen fuel cells directly convert chemical energy into electrical energy, with only water vapor and heat as waste products. There are challenges facing fuel cell technology that inhibit its wider implementation. One of the most significant of these is the cost of the platinum that is typically used in fuel cells to catalyze the oxygen reduction reaction (ORR), which is the bottleneck reaction in hydrogen fuel cells. The rarity and expense of platinum significantly add to the cost of fuel cells, thus reducing their economic viability. Therefore there is much interest in developing catalysts from alternative materials with a lower cost. A second, and related issue facing fuel cells is the degradation over time of the support structure that puts the catalyst into electrical connection with the external load. The carbon structure that currently serves as the standard catalyst support degrades over time under the harsh operating conditions of the cell, leading to catalyst agglomeration and reducing the lifetime of the cell. It is therefore desirable to develop support structures that will be more stable, while still providing electrical conductivity. The following presents original research pertaining to the development of catalyst/support materials making use of non-noble metal oxides synthesized by means of wet chemical methods. Metal oxides such as manganese oxide and titanium oxide are capable of serving as support materials and (in the case of alkaline fuel cells) even as catalysts. Wet

  9. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  10. Aloe-emodin induces in vitro G2/M arrest and alkaline phosphatase activation in human oral cancer KB cells.

    PubMed

    Xiao, Bingxiu; Guo, Junming; Liu, Donghai; Zhang, Shun

    2007-10-01

    Aloe-emodin is a natural anthraquinone compound from the root and rhizome of Rheum palmatum. In this study, KB cells were treated with 2.5, 5, 10, 20, and 40 microM aloe-emodin for 1 to 5 days. The results showed that aloe-emodin inhibited cancer cells in a dose-dependent manner. Treatment with aloe-emodin at 10 to 40 microM resulted in cell cycle arrest at G2/M phase. The alkaline phosphatase (ALP) activity in KB cells increased upon treatment with aloe-emodin when compared to controls. This is one of the first studies to focus on the expression of ALP in human oral carcinomas cells treated with aloe-emodin. These results indicate that aloe-emodin has anti-cancer effect on oral cancer, which may lead to its use in chemotherapy and chemopreventment of oral cancer.

  11. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase.

    PubMed Central

    Hoylaerts, M F; Manes, T; Millán, J L

    1992-01-01

    Placental (PLAP) and germ-cell (GCAP) alkaline phosphatases are inhibited uncompetitively by L-Leu and L-Phe. Whereas L-Phe inhibits PLAP and GCAP to the same extent, L-Leu inhibits GCAP 17-fold more strongly than it does PLAP. This difference has been attributed [Hummer & Millán (1991) Biochem. J 274, 91-95] to a Glu----Gly substitution at position 429 in GCAP. The D-Phe and D-Leu enantiomorphs are also inhibitory through an uncompetitive mechanism but with greatly decreased efficiencies. Replacement of the active-site residue Arg-166 by Ala-166 changes the inhibition mechanism of the resulting PLAP mutant to a more complex mixed-type inhibition, with decreased affinities for L-Leu and L-Phe. The uncompetitive mechanism is restored on the simultaneous introduction of Gly-429 in the Ala-166 mutant, but the inhibitions of [Ala166,Gly429]PLAP and even [Lys166,Gly429]PLAP by L-Leu and L-Phe are considerably decreased compared with that of [Gly429]PLAP. These findings point to the importance of Arg-166 during inhibition. Active-site binding of L-Leu requires the presence of covalently bound phosphate in the active-site pocket, and the inhibition of PLAP by L-Leu is pH-sensitive, gradually disappearing when the pH is decreased from 10.5 to 7.5. Our data are compatible with the following molecular model for the uncompetitive inhibition of PLAP and GCAP by L-Phe and L-Leu: after binding of a phosphorylated substrate to the active site, the guanidinium group of Arg-166 (normally involved in positioning phosphate) is redirected to the carboxy group of L-Leu (or L-Phe), thus stabilizing the inhibitor in the active site. Therefore leucinamide and leucinol are weaker inhibitors of [Gly429]PLAP than is L-Leu. During this Arg-166-regulated event, the amino acid side group is positioned in the loop containing Glu-429 or Gly-429, leading to further stabilization. Replacement of Glu-429 by Gly-429 eliminates steric constraints experienced by the bulky L-Leu side group during its

  12. Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell.

    PubMed

    Yang, Na; Ren, Yueping; Li, Xiufen; Wang, Xinhua

    2017-06-01

    Anolyte acidification is a drawback restricting the electricity generation performance of the buffer-free microbial fuel cells (MFC). In this paper, a small amount of alkali-treated anion exchange resin (AER) was placed in front of the anode in the KCl mediated single-chamber MFC to slowly release hydroxyl ions (OH(-)) and neutralize the H(+) ions that are generated by the anodic reaction in two running cycles. This short-term alkaline intervention to the KCl anolyte has promoted the proliferation of electroactive Geobacter sp. and enhanced the self-buffering capacity of the KCl-AER-MFC. The pH of the KCl anolyte in the KCl-AER-MFC increased and became more stable in each running cycle compared with that of the KCl-MFC after the short-term alkaline intervention. The maximum power density (Pmax) of the KCl-AER-MFC increased from 307.5mW·m(-2) to 542.8mW·m(-2), slightly lower than that of the PBS-MFC (640.7mW·m(-2)). The coulombic efficiency (CE) of the KCl-AER-MFC increased from 54.1% to 61.2% which is already very close to that of the PBS-MFC (61.9%). The results in this paper indicate that short-term alkaline intervention to the anolyte is an effective strategy to further promote the performance of buffer-free MFCs.

  13. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  14. Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice.

    PubMed

    Tan, Yi; Zhang, Ling; Man, Ka Ho; Peltier, Raoul; Chen, Ganchao; Zhang, Huatang; Zhou, Liyi; Wang, Feng; Ho, Derek; Yao, Shao Q; Hu, Yi; Sun, Hongyan

    2017-03-01

    Alkaline phosphatases are a group of enzymes that play important roles in regulating diverse cellular functions and disease pathogenesis. Hence, developing fluorescent probes for in vivo detection of alkaline phosphatase activity is highly desirable for studying the dynamic phosphorylation in living organisms. Here, we developed the very first reaction-based near-infrared (NIR) probe (DHXP) for sensitive detection of alkaline phosphatase activity both in vitro and in vivo. Our studies demonstrated that the probe displayed an up to 66-fold fluorescence increment upon incubation with alkaline phosphatases, and the detection limit of our probe was determined to be 0.07 U/L, which is lower than that of most of alkaline phosphatase probes reported in literature. Furthermore, we demonstrated that the probe can be applied to detecting alkaline phosphatase activity in cells and mice. In addition, our probe possesses excellent biocompatibility and rapid cell-internalization ability. In light of these prominent properties, we envision that DHXP will add useful tools for investigating alkaline phosphatase activity in biomedical research.

  15. Nicotine inhibits collagen synthesis and alkaline phosphatase activity, but stimulates DNA synthesis in osteoblast-like cells

    SciTech Connect

    Ramp, W.K.; Lenz, L.G.; Galvin, R.J. )

    1991-05-01

    Use of smokeless tobacco is associated with various oral lesions including periodontal damage and alveolar bone loss. This study was performed to test the effects of nicotine on bone-forming cells at concentrations that occur in the saliva of smokeless tobacco users. Confluent cultures of osteoblast-like cells isolated from chick embryo calvariae were incubated for 2 days with nicotine added to the culture medium (25-600 micrograms/ml). Nicotine inhibited alkaline phosphatase in the cell layer and released to the medium, whereas glycolysis (as indexed by lactate production) was unaffected or slightly elevated. The effects on medium and cell layer alkaline phosphatase were concentration dependent with maximal inhibition occurring at 600 micrograms nicotine/ml. Nicotine essentially did not affect the noncollagenous protein content of the cell layer, but did inhibit collagen synthesis (hydroxylation of ({sup 3}H)proline and collagenase-digestible protein) at 100, 300, and 600 micrograms/ml. Release of ({sup 3}H)hydroxyproline to the medium was also decreased in a dose-dependent manner, as was the collagenase-digestible protein for both the medium and cell layer. In contrast, DNA synthesis (incorporation of ({sup 3}H)thymidine) was more than doubled by the alkaloid, whereas total DNA content was slightly inhibited at 600 micrograms/ml, suggesting stimulated cell turnover. Morphologic changes occurred in nicotine-treated cells including rounding up, detachment, and the occurrence of numerous large vacuoles. These results suggest that steps to reduce the salivary concentration of nicotine in smokeless tobacco users might diminish damaging effects of this product on alveolar bone.

  16. Maltol complexes of vanadium (IV) and (V) regulate in vitro alkaline phosphatase activity and osteoblast-like cell growth.

    PubMed

    Barrio, D A; Braziunas, M D; Etcheverry, S B; Cortizo, A M

    1997-06-01

    Vanadium compounds have been found to possess insulin- and growth factor-mimetic effects. In consequence, these derivatives are potentially useful as effective oral therapeutic agents in diabetic patients. However, their use has been limited by various toxic side-effects and by the low solubility of different derivatives. Recently, vanadium complex with maltol, a sugar used as a common food additive, have been synthesised and investigated in animals, showing possible insulin-mimetic effects with low toxic side-effects. In the present study we have investigated the effect of bis(maltolato)oxovanadium (IV) (BMOV) and bis(maltolato)dioxovanadium (V) (BMV) on bone cells in culture as well as their direct effect on alkaline phosphatase in vitro. A comparison was also made with the action of vanadate and vanadyl cation. Vanadium compounds regulated cell proliferation in a biphasic manner with similar potencies. Osteoblast differentiation, assessed by alkaline phosphatase activity, was found to be dose-dependent, with the inhibitory effect being stronger for vanadate and BMOV than for vanadyl and BMV. All vanadium compounds directly inhibited bovine intestinal ALP with a similar potency. Thus, maltol vanadium derivatives behave in a similar way to vanadate and vanadyl in osteoblast-like UMR 106 cells in culture.

  17. Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions.

    PubMed

    Bundeleva, Irina A; Shirokova, Liudmila S; Bénézeth, Pascale; Pokrovsky, Oleg S; Kompantseva, Elena I; Balor, Stephanie

    2011-08-01

    Electrophoretic mobility measurements and surface adsorption of Ca on living, inactivated, and heat-killed haloalkaliphilic Rhodovulum steppense, A-20s, and halophilic Rhodovulum sp., S-17-65 anoxygenic phototrophic bacteria (APB) cell surfaces were performed to determine the degree to which these bacteria metabolically control their surface potential equilibria. Zeta potential of both species was measured as a function of pH and ionic strength, calcium and bicarbonate concentrations. For both live APB in 0.1M NaCl, the zeta potential is close to zero at pH from 2.5 to 3 and decreases to -30 to -40 mV at pH of 5-8. In alkaline solutions, there is an unusual increase of zeta potential with a maximum value of -10 to -20 mV at a pH of 9-10.5. This increase of zeta potential in alkaline solutions is reduced by the presence of NaHCO(3) (up to 10 mM) and only slightly affected by the addition of equivalent amount of Ca. At the same time, for inactivated (exposure to NaN(3), a metabolic inhibitor) and heat-killed bacteria cells, the zeta potential was found to be stable (-30 to -60 mV, depending upon the ionic strength) between pH 5 and 11 without any increase in alkaline solutions. Adsorption of Ca ions on A-20s cells surface was more significant than that on S-17-65 cells and started at more acidic pHs, consistent with zeta potential measurements in the presence of 0.001-0.01 mol/L CaCl(2). Overall, these results indicate that APB can metabolically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting/avoiding Ca ions to prevent CaCO(3) precipitation in the vicinity of cell surface and thus, cell incrustation.

  18. Technology status: Batteries and fuel cells

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  19. Preliminary study of genotoxicity evaluation of orthodontic miniscrews on mucosa oral cells by the alkaline comet assay.

    PubMed

    Martín-Cameán, Ana; Puerto, María; Jos, Ángeles; Azqueta, Amaya; Iglesias-Linares, Alejandro; Solano, Enrique; Cameán, Ana M

    2015-01-01

    Miniscrew implants are widely used nowadays in orthodontic treatments due to their good results in clinical practice. However, data regarding the biocompatibility of commercially available orthodontic miniscrews and temporary devices are very scarce, and their role as genotoxicity inducers has been not previously evaluated with the alkaline comet assay. The aim of this study was to investigate the DNA damage in buccal cells of patients subjected to orthodontic treatments. The alkaline comet assay has been applied in oral mucosa cells from patients treated with conventional orthodontic treatment in comparison to patients treated additionally with miniscrews, non-treated volunteers (control) and smoking volunteers (positive control). The application of orthodontic appliances and miniscrews induced significant and similar (2-fold) increases of %DNA in tail in comparison to control group. Females experienced a significant increase in %DNA in all the treatments in comparison to the control group, whereas males showed significant damage only with the combined orthodontic and miniscrew treatment. In conclusion, conventional orthodontic appliances induced genotoxicity, and the incorporation of miniscrews assayed did not imply any additional increase of DNA damage.

  20. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  1. Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentation.

    PubMed

    Wang, Zhihao; Wang, Yun; Zhang, Dongxu; Li, Jianghua; Hua, Zhaozhe; Du, Guocheng; Chen, Jian

    2010-02-01

    Alkaline polygalacturonate lyase (PGL) production by Pichia pastoris GS115 was used as a model to study the mechanism and strategy for enhancing heterologous protein production. In order to enhance cell viability and volumetric recombinant protein productivity, sorbitol, which had been confirmed to be a non-repressive carbon source, was added together with methanol during the induction phase. The resultant PGL activity was up to 1593 U mL(-1), which was enhanced 1.85-fold compared to the control (863 U mL(-1)) cultured with sorbitol added at a constant rate of 3.6 g h(-1)L(-1) after an induction period of 100 h. Further results revealed that an appropriate sorbitol co-feeding strategy not only decreased the cell mortality to 8.8% (the control is about 23.1%) in the end of fermentation, but also reduced the proteolytic degradation of PGL.

  2. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    DTIC Science & Technology

    2012-01-01

    Schematic of the permeation cell experiment used to measure transient CO2 flux across the polymer electrolyte membrane. Experimental result vs. model trend...Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells ; Part 2. Ion and Water Transport in Alkaline Anion...through the use of the Fuel Cell Technologies Test Station such as the relative humidity and flow rate of the feed gases, the cell temperature, and the

  3. Panax notoginseng stimulates alkaline phosphatase activity, collagen synthesis, and mineralization in osteoblastic MC3T3-E1 cells.

    PubMed

    Ji, Zhe; Cheng, Yizhao; Yuan, Puwei; Dang, Xiaoqian; Guo, Xiong; Wang, Weizhuo

    2015-10-01

    Total Panax notoginseng saponin (PNS) has been extensively used to treat a variety of diseases, such as bone fractures, soft tissue injuries, etc. In this study, mouse calvaria-original osteoblastic MC3T3-E1 cells were cultured in various concentrations of PNS (0.005-5 mg/mL) during the period (1, 5, 14, and 23 d). At the endpoint, the osteogenic capacity of MC3T3-E1 cells was investigated by measuring the alkaline phosphatase (ALP) activity, the deposited calcium, and the expression of osteogenic-related markers, including bone collagen type 1 (Col1) and osteocalcin (OCN). Compared with all groups in each period, the most pronounced effect was observed at the concentration range between 0.05 and 0.5 mg/mL (P < 0.05) and the cell proliferation with PNS treatment was found during the whole osteogenic period. Moreover, cellular ALP activity with PNS was increased during 7, 14, and 21 d and cell mineralization with PNS was enhanced in 14 and 21 d. Furthermore, the differentiation markers Col1 and OCN increased in the PNS-treated cells. Our work suggests that PNS may stimulate the osteogenesis process which contains osteoblastic proliferation, differentiation, and mineralization by increasing cellular ALP activity, extracellular matrix mineralization, and osteoblast-associated molecules in the osteoblasts.

  4. Maximum equivalent power output and performance optimization analysis of an alkaline fuel cell/heat-driven cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqin; Chen, Jincan

    A generic model of the hybrid system consisting of an alkaline fuel cell (AFC) and a heat-driven cycle, which may work as either a refrigerator or a heat pump, is originally established. On the basis of the models of AFCs and three-heat-reservoir cycles, the equivalent power output and efficiency of the hybrid system are obtained. The performance characteristic curves of the hybrid system are represented through numerical calculation. The maximum equivalent power output and efficiency of the hybrid system are determined. Problems concerning the optimal operation of the hybrid system are discussed. The effects of the main irreversible losses on the performance of the hybrid system are investigated in detail. It is important to note that the waste heat produced in the AFC can be readily used in such a hybrid cycle.

  5. In and ex situ characterization of an anion-exchange membrane for alkaline direct methanol fuel cell (ADMFC)

    NASA Astrophysics Data System (ADS)

    Santasalo-Aarnio, Annukka; Hietala, Sami; Rauhala, Taina; Kallio, Tanja

    2011-08-01

    Anion exchange membrane fumasep® FAA-2 was characterized with ex and in situ methods in order to estimate the membranes' suitability as an electrolyte for an alkaline direct methanol fuel cell (ADMFC). The interactions of this membrane with water, hydroxyl ions and methanol were studied with both calorimetry and NMR and compared with the widely used proton exchange membrane Nafion® 115. The results indicate that FAA-2 has a tighter structure and more homogeneous distribution of ionic groups in contrast to the clustered structure of Nafion, moreover, the diffusion of OH- ions through this membrane is clearly slower compared to water molecules. The permeability of methanol through the FAA-2 membrane was found to be an order of magnitude lower than for Nafion. Fuel cell experiments in 1 mol dm-3 methanol with FAA-2 resulted in OCV of 0.58 V and maximum power density of 0.32 mW cm-2. However, even higher current densities were obtained with highly concentrated fuels. This implies that less water is needed for fuel dilution, thereby decreasing the mass of the fuel cell system. In addition, electrochemical impedance spectroscopy for the ADMFC was used to determine ohmic resistance of the cell facilitating the further membrane development.

  6. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  7. Changes in morphology of actin filaments and expression of alkaline phosphatase at 3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds.

    PubMed

    Goncharenko, A V; Malyuchenko, N V; Moisenovich, A M; Kotlyarova, M S; Arkhipova, A Yu; Kon'kov, A S; Agapov, I I; Molochkov, A V; Moisenovich, M M; Kirpichnikov, M P

    2016-09-01

    3D cultivation of MG-63 osteoblast-like cells on mineralized fibroin scaffolds leads to an increase in the expression of alkaline phosphatase, an early marker of bone formation. Increased expression is associated with the actin cytoskeleton reorganization under the influence of 3D cultivation and osteogenic calcium phosphate component of the microcarrier.

  8. AN EVALUATION OF THE RELATIVE GENOTOXICITY OF ARSENITE, ARSENATE, AND FOUR METHYLATED METABOLITES IN VITRO USING THE ALKALINE SINGLE CELL GEL ASSAY

    EPA Science Inventory

    An Evaluation of the Relative Genotoxicity of Arsenite, Arsenate, and Four Methylated
    Metabolites In Vitro Using the Alkaline Single Cell Gel Assay (ASCG).

    Arsenic ( As) is a genotoxic and carcinogenic metal found in many drinking water systems throughout the world. ...

  9. Low molecular weight silk fibroin increases alkaline phosphatase and type I collagen expression in MG63 cells.

    PubMed

    Kim, Jwa-Young; Choi, Je-Yong; Jeong, Jae-Hwan; Jang, Eun-Sik; Kim, An-Sook; Kim, Seong-Gon; Kweon, Hae Yong; Jo, You-Young; Yeo, Joo-Hong

    2010-01-01

    Silk fibroin, produced by the silkworm Bombyx mori, has been widely studied as a scaffold in tissue engineering. Although it has been shown to be slowly biodegradable, cellular responses to degraded silk fibroin fragments are largely unknown. In this study, silk fibroin was added to MG-63 cell cultures, and changes in gene expression in the MG-63 cells were screened by DNA microarray analysis. Genes showing a significant (2-fold) change were selected and their expression changes confirmed by quantitative RT-PCR and western blotting. DNA microarray results showed that alkaline phosphatase (ALP), collagen type-I alpha-1, fibronectin, and transforming growth factor-beta1 expressions significantly increased. The effect of degraded silk fibroin on osteoblastogenic gene expression was confirmed by observing up-regulation of ALP activity in MG-63 cells. The finding that small fragments of silk fibroin are able to increase the expression of osteoblastogenic genes suggests that controlled degradation of silk fibroin might accelerate new bone formation. [BMB reports 2010; 43(1): 52-56].

  10. Synthesis and performance of novel anion exchange membranes based on imidazolium ionic liquids for alkaline fuel cell applications

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Lyu, Ming; Wang, Xin; Wu, Yongbin; Zhao, Jinbao

    2015-06-01

    Novel anion exchange membranes (AEMs) based on two types of imidazolium ionic liquids, 1-vinyl-3-methylimidazolium iodide [VMI]I and 1-vinyl-3-butylimidazolium bromide [VBI]Br, have been synthesized by copolymerization. The obtained membranes are characterized in terms of water uptake, ion exchange capacity (IEC), ionic conductivity as well as thermal and chemical stability. The conductivity reaches 0.0226 Scm-1 at 30 °C. All the membranes show excellent thermostability. The membranes are stable in 10 mol L-1 NaOH solution at 60 °C for 120 h without obvious changes in ion conductivity. Fuel cell performance using the resulting membrane has been investigated. The open circuit voltage (OCV) of the H2/O2 fuel cell is 1.07 V. A peek power density of 116 mW cm-2 is obtained at a current density of 230 mA cm-2 at 60 °C. The results demonstrate the brilliant prospect of the developed membranes for alkaline fuel cell applications.

  11. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  12. Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications

    NASA Astrophysics Data System (ADS)

    Cox, Brian; Treyer, Karin

    2015-02-01

    Global mobile telecommunication is possible due to millions of Base Transceiver Stations (BTS). Nearly 1 million of these are operating off-grid, typically powered by diesel generators and therefore leading to significant CO2 emissions and other environmental burdens. A novel type of Alkaline Fuel Cell (AFC) powered by cracked ammonia is being developed for replacement of these generators. This study compares the environmental and economic performance of the two systems by means of Life Cycle Assessment (LCA) and Levelised Cost of Electricity (LCOE), respectively. Results show that the production of ammonia dominates the LCA results, and that renewable ammonia production pathways greatly improve environmental performance. Sensitivity analyses reveal that the fuel cell parameters that most affect system cost and environmental burdens are cell power density and lifetime and system efficiency. Recycling of anode catalyst and electrode substrate materials is found to have large impacts on environmental performance, though without large cost incentives. For a set of target parameter values and fossil sourced ammonia, the AFC is calculated to produce electricity with life cycle CO2 eq emissions of 1.08 kg kWh-1, which is 23% lower than a diesel generator with electricity costs that are 14% higher in the same application.

  13. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  14. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  15. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area.

  16. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    ERIC Educational Resources Information Center

    Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…

  17. Stem cell technology for neurodegenerative diseases.

    PubMed

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  18. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  19. Technologies for Single-Cell Isolation.

    PubMed

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-07-24

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field.

  20. Technologies for Single-Cell Isolation

    PubMed Central

    Gross, Andre; Schoendube, Jonas; Zimmermann, Stefan; Steeb, Maximilian; Zengerle, Roland; Koltay, Peter

    2015-01-01

    The handling of single cells is of great importance in applications such as cell line development or single-cell analysis, e.g., for cancer research or for emerging diagnostic methods. This review provides an overview of technologies that are currently used or in development to isolate single cells for subsequent single-cell analysis. Data from a dedicated online market survey conducted to identify the most relevant technologies, presented here for the first time, shows that FACS (fluorescence activated cell sorting) respectively Flow cytometry (33% usage), laser microdissection (17%), manual cell picking (17%), random seeding/dilution (15%), and microfluidics/lab-on-a-chip devices (12%) are currently the most frequently used technologies. These most prominent technologies are described in detail and key performance factors are discussed. The survey data indicates a further increasing interest in single-cell isolation tools for the coming years. Additionally, a worldwide patent search was performed to screen for emerging technologies that might become relevant in the future. In total 179 patents were found, out of which 25 were evaluated by screening the title and abstract to be relevant to the field. PMID:26213926

  1. Development of PEM fuel cell technology at international fuel cells

    SciTech Connect

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  2. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  3. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells.

    PubMed

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-05-07

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m(2) g(-1), respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2(-) content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm(-2) were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.

  4. Detection of endogenous alkaline phosphatase activity in intact cells by flow cytometry using the fluorogenic ELF-97 phosphatase substrate

    NASA Technical Reports Server (NTRS)

    Telford, W. G.; Cox, W. G.; Stiner, D.; Singer, V. L.; Doty, S. B.

    1999-01-01

    BACKGROUND: The alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazolinone (ELF((R))-97 for enzyme-labeled fluorescence) has been found useful for the histochemical detection of endogenous AP activity and AP-tagged proteins and oligonucleotide probes. In this study, we evaluated its effectiveness at detecting endogenous AP activity by flow cytometry. METHODS: The ELF-97 phosphatase substrate was used to detect endogenous AP activity in UMR-106 rat osteosarcoma cells and primary cultures of chick chondrocytes. Cells were labeled with the ELF-97 reagent and analyzed by flow cytometry using an argon ultraviolet (UV) laser. For comparison purposes, cells were also assayed for AP using a Fast Red Violet LB azo dye assay previously described for use in detecting AP activity by flow cytometry. RESULTS: The ELF-97 phosphatase substrate effectively detected endogenous AP activity in UMR-106 cells, with over 95% of the resulting fluorescent signal resulting from AP-specific activity (as determined by levamisole inhibition of AP activity). In contrast, less than 70% of the fluorescent signal from the Fast Red Violet LB (FRV) assay was AP-dependent, reflecting the high intrinsic fluorescence of the unreacted components. The ELF-97 phosphatase assay was also able to detect very low AP activity in chick chondrocytes that was undetectable by the azo dye method. CONCLUSIONS: The ELF-97 phosphatase assay was able to detect endogenous AP activity in fixed mammalian and avian cells by flow cytometry with superior sensitivity to previously described assays. This work also shows the applicability of ELF-97 to flow cytometry, supplementing its previously demonstrated histochemical applications. Copyright 1999 Wiley-Liss, Inc.

  5. Cell sheet technology and cell patterning for biofabrication.

    PubMed

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized.

  6. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain

    PubMed Central

    Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D.; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J.; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui

    2015-01-01

    Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409

  7. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses

    PubMed Central

    Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe

    2015-01-01

    In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network. PMID:26740745

  8. Exploring Hydrogen Fuel Cell Technology

    ERIC Educational Resources Information Center

    Brus, David; Hotek, Doug

    2010-01-01

    One of the most significant technological issues of the 21st Century is finding a way to fulfill the energy demands without destroying the environment through global warming and climate change. Worldwide human population is on the rise, and with it, the demand for more energy in pursuit of a higher quality of life. In the meantime, as people use…

  9. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  10. Cell technology: Advanced silicon sheet

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D.

    1986-01-01

    The Flat-plate Solar Array (FSA)-sponsored Fourth Silicon Stress/Strain Workshop reviewed, coordinated, and assessed the progress in understanding and controlling stress and strain during the crystal growth of silicon ribbons. dislocation electrical activity and limits on solar cell efficiency, and on studying the effects of dopants on EFG characteristics. Work on silicon for high-efficiency solar cells, stress-strain relationships in silicon ribbon, and high temperature deformation of dendritic web ribbon was also discussed.

  11. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  12. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  13. High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2015-04-01

    Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In this report, we present the development of a highly active, stable and low-cost non-precious metal ORR catalyst by direct synthesis under autogenic-pressure conditions. Transmission electron microscopy studies show highly porous Fe-N-C and Co-N-C structures, which were further confirmed by Brunauer-Emmett-Teller surface area measurements. The surface areas of the Fe-N-C and Co-N-C catalysts were found to be 377.5 and 369.3 m2 g-1, respectively. XPS results show the possible existence of N-C and M-Nx structures, which are generally proposed to be the active sites in non-precious metal catalysts. The Fe-N-C electrocatalyst exhibits an ORR half-wave potential 20 mV higher than the reference Pt/C catalyst. The cycling durability test for Fe-N-C over 5000 cycles shows that the half-wave potential lost only 4 mV, whereas the half-wave potential of the Pt/C catalyst lost about 50 mV. The Fe-N-C catalyst exhibited an improved activity and stability compared to the reference Pt/C catalyst and it possesses a direct 4-electron transfer pathway for the ORR process. Further, the Fe-N-C catalyst produces extremely low HO2- content, as confirmed by the rotating ring-disk electrode measurements. In the alkaline fuel single cell tests, maximum power densities of 75 and 80 mW cm-2 were observed for the Fe-N-C and Pt/C cathodes, respectively. Durability studies (100 h) showed that decay of the fuel cell current was more prominent for the Pt/C cathode catalyst compared to the Fe-N-C cathode catalyst. Therefore, the Fe-N-C catalyst appears to be a promising new class of non-precious metal catalysts prepared by an autogenic synthetic method.Non-precious metal catalysts, such as metal-coordinated to nitrogen doped-carbon, have shown reasonable oxygen reduction reaction (ORR) performances in alkaline fuel cells. In

  14. Effects of tunicamycin, mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells.

    PubMed

    Farley, J R; Magnusson, P

    2005-01-01

    Skeletal alkaline phosphatase (sALP) is a glycoprotein- approximately 20% carbohydrate by weight, with five presumptive sites for N-linked glycosylation, as well as a carboxy-terminal site for attachment of the glycolipid structure (glycosylphosphatidylinositol, GPI), which anchors sALP to the outer surface of osteoblasts. The current studies were intended to characterize the effects of inhibiting glycosylation and glycosyl-processing on the synthesis, plasma membrane attachment, cellular-extracellular distribution, and reaction kinetics of sALP in human osteosarcoma (SaOS-2) cells. sALP synthesis, glycosylation, and GPI-anchor attachment were assessed as total protein synthesis/immunospecific sALP synthesis, sialic acid content (i.e., wheat germ agglutinin precipitation), and insolubility (i.e., temperature-dependent phase-separation), respectively. sALP reaction kinetics were characterized by analysis of dose-dependent initial velocity data, with a phosphoryl substrate. The results of these studies revealed that the inhibition of either N-linked glycosylation or oligosaccharide synthesis for GPI-anchor addition could affect the synthesis and the distribution of sALP, but not the kinetics of the phosphatase reaction. Tunicamycin-which blocks N-linked glycosylation by inhibiting core oligosaccharide synthesis-decreased cell layer protein and the total amount of sALP in the cells, while increasing the relative level of sALP in the cell-conditioned culture medium (CM, i.e., the amount of sALP released). These effects were attributed to dose- and time-dependent decreases in sALP synthesis and N-linked glycosylation, and an increase in apoptotic cell death (P <0.001 for each). In contrast to the effects of tunicamycin on N-linked glycosylation, the effects of mannosamine, which inhibits GPI-anchor glycosylation/formation, included (1) an increase in cell layer protein; (2) decreases in sALP specific activity, in the cells and in the CM; and (3) increases in the

  15. Investigation on the heavy metal content of zinc-carbon and alkaline manganese dry cells

    SciTech Connect

    Recknagel, Sebastian Richter, Andrea; Richter, Silke

    2009-03-15

    The objective of this work was to test the compliance of commercially available batteries with the German Battery Ordinance, a project of the German government that was initiated by the Federal Environment Agency. Different types of commercially available dry cells were analysed for their cadmium, lead and mercury contents. The dry cells underwent mechanical pre-treatment, separation of the different components and microwave-assisted digestion before determination of the heavy metals. Mercury is sometimes added to prevent the generation of gaseous hydrogen from the electrochemical process. Lead could be present since it is sometimes used as an alloying element of zinc. Cadmium has no technical importance and is an undesirable impurity. None of the batteries contained higher heavy metal mass fractions than the permissible limits.

  16. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1995-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing one or more hydroxides having the formula M(OH), one or more fluorides having the formula MF, and one or more carbonates having the formula M.sub.2 CO.sub.3, where M is a metal selected from the group consisting of alkali metals. The electrolyte inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  17. Development of gold alloy catalyst cathode for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Freed, M. S.; Lawrance, R. J.

    1975-01-01

    A program for the development of improved catalyst and Teflon-bonded electrode structures using this improved catalyst is described, for use in fuel cell cathodes. It was found that Au-Pt was superior to the traditional platinum black as a catalyst. The impetus to the program was provided by the discovery that a life-limiting mechanism on the old catalyst was the gradual dissolution of platinum from the cathode and subsequent redeposition in the electrolyte-containing matrix.

  18. Genotoxicity of chlorpyrifos in freshwater fish Labeo rohita using Alkaline Single-cell Gel Electrophoresis (Comet) assay.

    PubMed

    Ismail, Muhammad; Khan, Qaiser Mahmood; Ali, Rahat; Ali, Tayyaba; Mobeen, Ameena

    2014-10-01

    Chlorpyrifos is a widely used insecticide of organophosphate group, which causes severe toxicological effects in non target aquatic organisms especially in fish. In the present study the genotoxic effects of sublethal concentrations of chlorpyrifos were observed in the erythrocytes and gill cells of Labeo rohita (commonly known as rohu) using the Alkaline Single-Cell Gel Electrophoresis (Comet) assay. Effects of chlorpyrifos on the behavior of the fish were also investigated. The 96 h LC50 value of chlorpyrifos, estimated by Trimmed Spearman-Karber (TSK) in static bioassay, was found to be 442.8 µg/L. On the basis of LC50 value, the fish were exposed to three sublethal concentrations of chlorpyrifos (SL-I ∼221.4 µg/L, SL- II ∼110.7 µg/L and SL-III ∼73.8 µg/L) for 96 h. Blood and gill samples were collected at every 24 h and were subjected to the Comet assay. The observed DNA damage was concentration dependent and time dependent and those levels of DNA damage in between the tested concentrations and times were significantly different (p < 0.01). It was also found that the gill cells are more sensitive to chlorpyrifos, though; it revealed more DNA damage as compared to the erythrocytes of fish. Fish exposed to different concentrations of chlorpyrifos showed different neurotoxic behavioral responses. It was concluded that chlorpyrifos is a genotoxic and neurotoxic insecticide causing DNA damage and neurotoxic effects in Labeo rohita.

  19. Application of Adipose-Derived Stem Cells on Scleral Contact Lens Carrier in an Animal Model of Severe Acute Alkaline Burn

    PubMed Central

    Espandar, Ladan; Caldwell, Delmar; Watson, Richard; Blanco-Mezquita, Tomas; Zhang, Shijia; Bunnell, Bruce

    2015-01-01

    Purpose To evaluate the therapeutic effect of human adipose-derived stem cells (hASCs) overlaid on a scleral contact lens (SCL) carrier in a rabbit model of ocular alkaline burn. Materials and Methods After inducing alkaline burn in 11 New Zealand white rabbits, hASCs cultured on SCLs were placed on the right eye of 5 rabbits, SCLs without cells were used in 5, and no treatment was applied in 1 eye. Each eye was examined and photographed for corneal vascularization, opacities, and epithelial defect in week 1, 2, and 4 after surgery. After 1 month, rabbits were killed and the corneas were removed and cut in half for electron and light microscopy examination. Results Human adipose-derived stem cells were attached to SCL surface and confluent easily. Human adipose-derived stem cells on SCL eyes showed smaller epithelial defect, less corneal opacity, corneal neovascularization relative to SCL eyes. Both groups showed no symblepharon. However, the cornea in the untreated eye was melted in 2 weeks and developed severe symblepharon. Conclusion Human adipose-derived stem cells on SCL can reduce inflammation and corneal haziness in severe ocular alkaline burn injury in rabbits. PMID:24901976

  20. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells

    PubMed Central

    Zhang, N.; Chen, F. Y.; Wu, X.Q.

    2015-01-01

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is −3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells. PMID:26148904

  1. Using the DNA alkaline unwinding assay to detect DNA damage in laboratory and environmentally exposed cells and tissues

    SciTech Connect

    Nacci, D.; Jackim, E.

    1990-01-01

    The DNA alkaline unwinding assay is being evaluated for use in the detection of DNA damage in marine animals exposed to environmental pollutants. In preliminary work, DNA unwinding methods were used with in vitro cell systems to demonstrate DNA strand breaks. Cultured mammalian fibroblasts and sperm from marine fish and invertebrates (Pseudopleuronectes, Arbacia and Mytilus) showed concentration-dependent increases in DNA strand breaks after brief exposures to alkylating agents. DNA unwinding methods were also used on DNA extracted from marine animals injected with genotoxicants and from animals exposed in situ at an estuarine site. Gills from blue mussels caged at the New Bedford Harbor Superfund Site (MA, USA) highly contaminated with many organic (e.g. PCBs) and inorganic contaminants, were also examined. A significant increase in DNA strand breaks was seen in gill tissues of animals held in the contaminated site for as little as 3 days. Although not as severe, an increase in strand breaks was also seen in animals held at the control site for 28 days.

  2. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.

    PubMed

    Zhang, N; Chen, F Y; Wu, X Q

    2015-07-07

    The structure of 38 atoms Ag-Cu cluster is studied by using a combination of a genetic algorithm global optimization technique and density functional theory (DFT) calculations. It is demonstrated that the truncated octahedral (TO) Ag32Cu6 core-shell cluster is less stable than the polyicosahedral (pIh) Ag32Cu6 core-shell cluster from the atomistic models and the DFT calculation shows an agreeable result, so the newfound pIh Ag32Cu6 core-shell cluster is further investigated for potential application for O2 dissociation in oxygen reduction reaction (ORR). The activation energy barrier for the O2 dissociation on pIh Ag32Cu6 core-shell cluster is 0.715 eV, where the d-band center is -3.395 eV and the density of states at the Fermi energy level is maximal for the favorable absorption site, indicating that the catalytic activity is attributed to a maximal charge transfer between an oxygen molecule and the pIh Ag32Cu6 core-shell cluster. This work revises the earlier idea that Ag32Cu6 core-shell nanoparticles are not suitable as ORR catalysts and confirms that Ag-Cu nanoalloy is a potential candidate to substitute noble Pt-based catalyst in alkaline fuel cells.

  3. Cross-linked anion exchange membranes with pendent quaternary pyrrolidonium salts for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Chunhua; Fang, Jun; Guan, Yingjie; Zhou, Huili; Zhao, Jinbao

    2015-11-01

    Novel anion-exchange membranes based on two kinds of pyrrolidonium type ionic liquids, N-methyl-N-vinyl-pyrrolidonium (NVMP) and N-ethyl-N-vinyl-pyrrolidonium (NVEP), have been synthesized via polymerization and crosslinking treatment, followed by membrane casting. The covalent cross-linked structures of these membranes are confirmed by FT-IR. The obtained membranes are also characterized in terms of water uptake, ion exchange capacity (IEC), ionic conductivity as well as thermal, dimensional and chemical stability. The membranes display hydroxide conductivity of above 10-2 S cm-1 at 25 °C. Excellent thermal stability with onset degradation temperature above 235 °C, good alkaline stability in 6 mol L-1 NaOH at 60 °C for 168 h and remarkable dimensional stability of the resulting membranes have been proved. H2/air single fuel cells employed membrane M3 and N3 show the open-circuit voltage (OCV) of 0.953 V and 0.933 V, and the maximum power density of 88.90 mW cm-2 and 81.90 mW cm-2 at the current density of 175 mA cm-2 and 200 mA cm-2 at 65 °C, respectively.

  4. A semi-interpenetrating network approach for dimensionally stabilizing highly-charged anion exchange membranes for alkaline fuel cells.

    PubMed

    He, Steve S; Strickler, Alaina L; Frank, Curtis W

    2015-04-24

    There is a delicate balance between ion exchange capacity (IEC), conductivity, and dimensional stability in anion exchange membranes as higher charge content can lead to increased water uptake, causing excessive swelling and charge dilution. Using highly-charged benzyltrimethylammonium polysulfone (IEC=2.99 mEq g(-1) ) as a benchmark (which ruptured in water even at room temperature), we report the ability to dramatically decrease water uptake using a semi-interpenetrating network wherein we reinforced the linear polyelectrolyte with a crosslinked poly(styrene-co-divinylbenzene) network. These membranes show enhanced dimensional stability as a result of lower water uptake (75 % vs. 301 % at 25 °C) while maintaining excellent hydroxide conductivity (up to 50 mS cm(-1) at 25 °C). These improvements produced an enhanced alkaline fuel cell capable of generating 236 mW cm(-2) peak power density at 80 °C. This method is easily adaptable and can be a viable strategy for stabilizing existing systems.

  5. Evaluation of fuel-cell technology for Coast Guard applications. Final report

    SciTech Connect

    Barrett, T.J.

    1988-10-01

    Recent proposals and the literature show promise of fuel cells being commercially available in the next decade. We searched the literature to determine the current state of fuel-cell technology, to determine if fuel cells can be used by the U.S. Coast Guard, and to make proposals for possible research and development efforts by the Coast Guard. Alkaline and phosphoric acid fuel cell technologies are now technically capable of full scale commercial production. Molten-carbonate and solid-oxide fuel-cell technologies should be commercially produced within the next decade. Phosphoric Acid Fuel Cell (PAFC) technology is the most promising for Coast Guard use. However, there is no operational need for fuel cells at present and high capital costs and low-energy prices make them economically noncompetitive. We suggest three areas of R D to prepare for changes in operational needs or energy economics. They are: operation of a 200-kW PAFC cogeneration plant to gain fuel-cell experience; development of low-maintenance/high availability PAFC system for remote power; and development of fuel cells for or aircraft propulsion in case there is a strategic crisis in petroleum-distillate supplies.

  6. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells.

    PubMed

    Owen, R L; Bhalla, D K

    1983-10-01

    M cells in Peyer's patch follicle epithelium endocytose and transport luminal materials to intraepithelial lymphocytes. We examined (1) enzymatic characteristics of the epithelium covering mouse and rat Peyer's patches by using cytochemical techniques, (2) distribution of lectin-binding sites by peroxidase-labeled lectins, and (3) anionic site distribution by using cationized ferritin to develop a profile of M cell surface properties. Alkaline phosphatase activity resulted in deposits of dense reaction product over follicle surfaces but was markedly reduced over M cells, unlike esterase which formed equivalent or greater product over M cells. Concanavalin A, ricinus communis agglutinin, wheat germ agglutinin and peanut agglutinin reacted equally with M cells and with surrounding enterocytes over follicle surfaces. Cationized ferritin distributed in a random fashion along microvillus membranes of both M cells and enterocytes, indicating equivalent anionic site distribution. Staining for alkaline phosphatase activity provides a new approach for distinguishing M cells from enterocytes at the light microscopic level. Identical binding of lectins indicates that M cells and enterocytes share common glycoconjugates even though molecular groupings may differ. Lectin binding and anionic charge similarities of M cells and enterocytes may facilitate antigen sampling by M cells of particles and compounds that adhere to intestinal surfaces in non-Peyer's patch areas.

  7. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH.

  8. Rechargeability and economic aspects of alkaline zinc-manganese dioxide cells for electrical storage and load leveling

    SciTech Connect

    Ingale, ND; Gallaway, JW; Nyce, M; Couzis, A; Banerjee, S

    2015-02-15

    Batteries based on manganese dioxide (MnO2) cathodes are good candidates for grid-scale electrical energy storage, as MnO2 is low-cost, relatively energy dense, safe, water-compatible, and non-toxic. Alkaline Zn-MnO2 cells, if cycled at reduced depth of discharge (DOD), have been found to achieve substantial cycle life with battery costs projected to be in the range of $100 to 150 per kWh (delivered). Commercialization of rechargeable Zn-MnO2 batteries has in the past been hampered due to poor cycle life. In view of this, the work reported here focuses on the long-term rechargeability of prismatic MnO2 cathodes at reduced DOD when exposed to the effects of Zn anodes and with no additives or specialty materials. Over 3000 cycles is shown to be obtainable at 10% DOD with energy efficiency >80%. The causes of capacity fade during long-term cycling are also investigated and appear to be mainly due to the formation of irreversible manganese oxides in the cathode. Analysis of the data indicates that capacity loss is rapid in the first 250 cycles, followed by a regime of stability that can last for thousands of cycles. A model has been developed that captures the behavior of the cells investigated using measured state of charge (SOC) data as input. An approximate economic analysis is also presented to evaluate the economic viability of Zn-MnO2 batteries based on the experiments reported here. (C) 2014 Elsevier B.V. All rights reserved.

  9. Novel quaternized poly(arylene ether sulfone)/Nano-ZrO₂ composite anion exchange membranes for alkaline fuel cells.

    PubMed

    Li, Xiuhua; Yu, Yingfeng; Meng, Yuezhong

    2013-02-01

    A series of composite anion exchange membranes based on novel quaternized poly(arylene ether sulfone)/nanozirconia (QPAES/nano-ZrO₂) composites are prepared using a solution casting method. The QPAES/nano-ZrO₂ composite membranes are characterized by FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). The ion exchange capacity (IEC), water uptake, swelling ratio, hydroxide ion conductivity, mechanical properties, thermal stability, and chemical stability of the composite membranes are measured to evaluate their applicability in fuel cells. The introduction of nano-ZrO₂ induces the crystallization of the matrix and enhances the IEC of the composite membranes. The modification with nano-ZrO₂ improves water uptake, dimension stability, hydroxide ion conductivity, mechanical properties, and thermal and chemical stabilities of the composite membranes. The QPAES/nano-ZrO₂ composite membranes show hydroxide ion conductivities over 25.7 mS cm⁻¹ at a temperature above 60 °C. Especially, the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 7.5% display hydroxide ion conductivities over 41.4 mS cm⁻¹ at 80 °C. The E(a) values of the QPAES/nano-ZrO₂ composite membranes with the nano-ZrO₂ content above 5% are lower than 11.05 kJ mol⁻¹. The QPAES/7.5% nano-ZrO₂ composite membrane displays the lowest E(a) value and the best comprehensive properties and constitutes a good potential candidate for alkaline fuel cells.

  10. Optimizing operating conditions and electrochemical characterization of glucose-gluconate alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Pasta, M.; La Mantia, F.; Ruffo, R.; Peri, F.; Pina, C. Della; Mari, C. M.

    The direct oxidation of glucose to produce electrical energy has been widely investigated because of renewability, abundance, high energy density and easy handling of the carbohydrate. Most of the previous studies have been conducted in extreme conditions in order to achieve complete glucose oxidation to CO 2, neglecting the carbohydrate chemical instability that generally leads to useless by-products mixtures. The partial oxidation to gluconate, originally studied for implantable fuel cells, has the advantage of generating a commercially valuable chemical. In the present paper we optimized fuel composition and operating conditions in order to selectively oxidize glucose to gluconate, maximizing the power density output of a standard commercial platinum based anode material. A deep electrochemical characterization concerning reversible potential, cyclic voltammetry and overpotential measurements have been carried out at 25 °C in the D-(+)-glucose concentration range 1.0 × 10 -2 to 1.0 M. NMR and EIS investigation clarify the role of the buffer in enhancing the electrochemical performance.

  11. Novel refractory alkaline earth silicate sealing glasses for planar solid oxide fuel cells

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

    2007-07-01

    A novel “refractory” Sr-Ca-Y-B-Si sealing glass (glass-ceramic) was developed for solid oxide fuel cells (SOFCs). The objective was to develop sealing glass with desired thermal properties and minimal interfacial reactions with SOFC components, ceramic electrolyte and metallic interconnect. The current glass was different from conventional sealing glass in that the sealing temperatures were targeted higher (>950 degree C) and hence more refractory. Six glasses were formulated and made by conventional glass-making process. Thermal properties were characterized in the glass state and the sintered (crystallized) state. The effect of formulation on thermal properties was discussed. Candidate glasses were also aged for 1000 to 2000 h at elevated temperatures. Thermal expansion measurements showed minimal change after aging. A candidate glass (YSO-1) was used in sealing ceramic electrolyte to a metallic interconnect from 900 degree C to 1050 degree C in air. The interfacial microstructure was characterized and SrCrO4 was identified near the metal interface. Possible reaction mechanism for the chromate formation was discussed.

  12. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Sarapuu, Ave; Rauwel, Protima; Saar, Rando; Joost, Urmas; Aruväli, Jaan; Kanninen, Petri; Kallio, Tanja; Tammeveski, Kaido

    2016-11-01

    Non-precious metal catalysts for electrochemical oxygen reduction reaction are synthesised by pyrolysis of multi-walled carbon nanotubes in the presence of nitrogen and iron precursors. For the physico-chemical characterisation of the catalysts transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction are used. The electrocatalytic activity of the catalysts for oxygen reduction is studied in 0.1 M KOH solution using the rotating disk electrode method. The Fe-containing nitrogen-doped carbon nanotubes exhibit an enhanced electrocatalytic performance as compared to metal-free counterparts and their electrocatalytic activity is comparable to that of commercial Pt/C catalyst. Alkaline direct methanol fuel cell tests also show performance close to Pt/C. Thus, these materials can be considered as promising cathode catalysts for application in alkaline fuel cells.

  13. An Overview of Stationary Fuel Cell Technology

    SciTech Connect

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  14. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    Vincent, B.

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  15. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  16. BENZO[A]PYRENE AND ITS K-REGION DIOL INDUCE DNA DAMAGE IN C3H10T1/2C18 CELLS AS MEASURED BY THE ALKALINE SINGLE CELL GEL (COMET) ASSAY

    EPA Science Inventory


    160. Benzo[a]pyrene and its K-region diol induce DNA damage in C3HlOTl/2Cl8 cells as measured by the alkaline single cell gel (Comet) assay

    In a continuing series of studies on the genotoxicity ofK-region dihydrodiols of polycyclic aromatic hydrocarbons, we have repo...

  17. Gas cooled fuel cell systems technology development

    NASA Astrophysics Data System (ADS)

    Canton, M. H.; Chepanoske, W. A.; Feret, J. M.; France, L. L.; Haines, N. L.; Heberling, C. F.; Holman, R. R.; Kelly, J. L.; Kochka, E. L.

    1992-03-01

    The development is reported of a Phosphoric Acid Fuel Cell (PAFC) for electric utility or industrial power plant applications. Results of this effort include: (1) development of a baseline rolled electrode technology; (2) advancement of fuel cell technology through improvements in the areas of acid management, catalyst selection, electrode and plate materials and processes, components designs, and quality assurance programs; (3) demonstration of improved fuel cell and stack performance and endurance; (4) successful scaleup of cell and stack design features into fun height 100 kill stacks; and (5) demonstration of combining stacks into a 400 kill module that will be the building block for power plants, including the development of testing facilities and operating procedures applicable to plant operations.

  18. Gas cooled fuel cell systems technology development

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This report documents in detail the work performed by Westinghouse Electric Corporation and the Energy Research Corporation during the fourth phase of a planned multiphase program to develop a Phosphoric Acid Fuel Cell (PAFC) for electric utility or industrial power plant applications. The results of this effort include (1) development of a baseline rolled electrode technology; (2) advancement of fuel cell technology through innovative improvements in the areas of acid management, catalyst selection, electrode and plate materials and processes, component designs, and quality assurance programs; (3) demonstration of improved fuel cell and stack performance and endurance; (4) successful scaleup of cell and stack design features into full height 100 kW stacks; and (5) demonstration of combining stacks into a 400 kW module that will be the building block for power plants, including the development of testing facilities and operating procedures applicable to plant operations.

  19. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  20. Evaluation of the efficacy of polyphosphate remediation technology: Direct and indirect remediation of uranium under alkaline conditions

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Richards, Emily L.; Jansik, Danielle P.; Edge, Ellen

    2011-08-31

    A field-scale technology demonstration has been conducted to optimize polyphosphate remediation technology for enhanced monitored natural attenuation of the uranium plume within the 300 Area aquifer at the Hanford Site, southeastern Washington State. The objective was to evaluate the efficacy of polyphosphate to treat uranium-contaminated groundwater in situ. Focused application of polyphosphate was conducted in a source or 'hot spot' area to reduce the inventory of available uranium contributing to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite which can serve as a long-term sorbent for uranium. The test site consisted of an injection well and 15 monitoring wells installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium- contaminated groundwater at the Hanford Site 300 Area. However, the formation of the apatite during the test was limited due to two separate overarching issues: (1) formation and emplacement of apatite via polyphosphate technology, and (2) efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions.

  1. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    SciTech Connect

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN/sub 2/), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN/sub 2/ at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN/sub 2/ and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents.

  2. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells.

    PubMed

    Pianezzi, Fabian; Reinhard, Patrick; Chirilă, Adrian; Bissig, Benjamin; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2014-05-21

    Thin film solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer achieved efficiencies above 20%. In order to achieve such high performance the absorber layer of the device has to be doped with alkaline material. One possibility to incorporate alkaline material is a post deposition treatment (PDT), where a thin layer of NaF and/or KF is deposited onto the completely grown CIGS layer. In this paper we discuss the effects of PDT with different alkaline elements (Na and K) on the electronic properties of CIGS solar cells. We demonstrate that whereas Na is more effective in increasing the hole concentration in CIGS, K significantly improves the pn-junction quality. The beneficial role of K in improving the PV performance is attributed to reduced recombination at the CdS/CIGS interface, as revealed by temperature dependent J-V measurements, due to a stronger electronically inverted CIGS surface region. Computer simulations with the software SCAPS are used to verify this model. Furthermore, we show that PDT with either KF or NaF has also a distinct influence on other electronic properties of the device such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J-V curve at low temperature. In view of the presented results we conclude that a model based on a secondary diode at the CIGS/Mo interface can best explain these features.

  3. Photovoltaic-cell technologies joust for position

    NASA Astrophysics Data System (ADS)

    Fischetti, M. A.

    1984-03-01

    The three most promising photovoltaic cell technologies, single-crystal-silicon cells, polycrystalline thin films, and amorphous silicon thin films, are reviewed and discussed in terms of present levels of applicability and the prospects for domination of PV markets in the future. A U.S. DOE research plan running from 1984 to 1988 which aims to produce PV modules that will generate electricity at $.20/kWh by 1988 is outlined, and R & D efforts in Japan and Europe are considered. Although GaAs cells have reached efficiencies to 20 percent in the laboratory, the most successful commercial products have been single-crystal-silicon cells with efficiencies between 11 and 12 percent. It is suggested that the immiment rise of amorphous silicon in the late 1980s may thwart polycrystalline-cell development before it has a chance to flourish.

  4. Molten carbonate fuel cell technology improvement

    NASA Astrophysics Data System (ADS)

    1989-09-01

    The overall objective of this program is to define a competitive CG/MCFC (Molten Carbonate Fuel Cell) power plant and the associated technology development requirements and to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, has reduced cell creep and electrolyte management consistent with 40,000 hour projected life, reduces existing cell cost, and is adaptable to a range of power plant applications. Component design specifications for the end-cells of the alternative cell configuration were completed. Testing to evaluate new components was performed on 14 cells during this reporting period with eight tests started and terminated, and six tests continuing into the next reporting period. A test and performance summary of all the single cell tests conducted to date on this program is presented. A single cell test to qualify new matrix materials and matrix reinforcement was successfully completed. Integrated cell testing of new anode- and cathode-side components was completed. Single cell tests were conducted to identify the electrolyte fill procedure for the new cell configuration. Methods of fabricating manifold seals from the new candidate materials are being developed. Preparation of construction drawings for the 1-ft(sup 2) short stack was continued. Fabrication of repeating cell components for the 1-ft(sup 2) short stack was initiated. Trials to tape cast electrodes and matrices were initiated, tooling to form current collectors is being fabricated, and existing tooling to form separator plates is being modified. Non-repeat components from the previous 1-ft(sup 2) short stack that are acceptable for re-use were identified. New non-repeat components that are required have been ordered. Preparation of the test stand for the 1-ft(sup 2) short stack test was initiated.

  5. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  6. Stem cell technologies: regulation, patents and problems.

    PubMed

    Then, Shih-Ning

    2004-11-01

    Human embryonic stem cell research promises to deliver in the future a whole range of therapeutic treatments, but currently governments in different jurisdictions must try to regulate this burgeoning area. Part of the problem has been, and continues to be, polarised community opinion on the use of human embryonic stem cells for research. This article compares the approaches of the Australian, United Kingdom and United States governments in regulating human embryonic stem cell research. To date, these governments have approached the issue through implementing legislation or policy to control research. Similarly, the three jurisdictions have viewed the patentability of human embryonic stem cell technologies in their own ways with different policies being adopted by the three patent offices. This article examines these different approaches and discusses the inevitable concerns that have been raised due to the lack of a universal approach in relation to the regulation of research; the patenting of stem cell technologies; and the effects patents granted are having on further human embryonic stem cell research.

  7. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  8. Development of micropatterning technology for cultured cells.

    PubMed

    Matsuda, T; Inoue, K; Sugawara, T

    1990-01-01

    The manipulation of regional cell adhesiveness by surface design could provide micropatterned cell culturing. Based on the photoreactive chemistry of a phenylazide group, a novel surface micropatterning technology for cultured cells was successfully developed. The principle is as follows: 1) a photoreactive hydrophilic co-polymer with phenylazide was cast on a hydrophobic matrix surface, 2) a photoreactive hydrophobic co-polymer was cast on a hydrophilic matrix; 3) a photomask with a given pattern was tightly placed on the cast film; and 4) after UV irradiation and subsequent washing, bovine endothelial cells (ECs) were seeded and cultured. ECs adhered and grew only on nonhydrophilic regions, eventually resulting in micropatterning of ECs. The micropatterns of cultured ECs prepared by 1) and 2) were negative- and positive-type patterns to that of the photomask used, respectively.

  9. Immobilized cell technologies for the dairy industry.

    PubMed

    Champagne, C P; Lacroix, C; Sodini-Gallot, I

    1994-01-01

    The potential applications of immobilized cell technology (ICT) to the dairy industry are examined. Immobilization modifies the physiology of cells, and the consequences of ICT on lactose as well as citrate metabolism are reviewed. Immobilization also affects the sensitivity of lactic acid bacteria (LAB) to salt and penicillin. ICT can be used to produce starters for the dairy industry, and aspects of biomass production in beads, continuous cell release from beads, and continuous fermentations with filtration cell recycle are examined. Potential applications of ICT to the dairy industry include acidification of raw milk prior to ultrafiltration, inhibition of psychrotrophic bacteria in raw milk, yogurt production, cheese manufacture, and cream fermentations. Impacts of yeast, bacterial, or bacteriophage contaminations in ICT processes as well as their control are discussed.

  10. Sheet silicon cell/module technology

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    The cost involved in the performance of the standard operations for the manufacture of silicon wafers is insignificant in the case of space photovoltaics applications. It is, however, a decisive factor with respect to terrestrial applications of silicon photovoltaic devices. In 1975, a program was, therefore, begun to develop low cost silicon solar arrays for terrestrial applications. The goal was silicon-based photovoltaic (PV) modules ready for installation at a selling price of $0.50/watt (1975 dollars). Sheet and ribbon silicon growth held out the promise of reduced cost through continuous operation, high material throughput, high material utilization efficiency, and a product whose shape lent itself to the assembly of high packing density modules. Attention is given to ribbon growth technologies, sheet technology generic problems, and ribbon cell and module technology status. It is concluded that the potential for crystalline ribbon silicon appears to be better today than ever before.

  11. Production of placental alkaline phosphatase (PLAP) and PLAP-like material by epithelial germ cell and non-germ cell tumours in vitro.

    PubMed Central

    Iles, R. K.; Ind, T. E.; Chard, T.

    1994-01-01

    Placental and placental-like alkaline phosphatase (PLAP) levels in the culture media of 87 cell lines of neoplastic and 'normal' origin were measured by a conventional immunosorbent enzymatic assay (IAEA) and by a new immunoradiometric assay (IRMA). The IRMA detected immunoreactive PLAP in 37 of 80 (46%) human epithelial and germ cell cultures, while the IAEA detected PLAP in only 25 (33%). Of the 52 non-germ cell tumour cultures, the IRMA detected expression in 24 (46%) and the IAEA in only 16 (31%). In 17 cases (21%) the IRMA recorded levels double that of the IAEA, while in five cultures (6%) the reverse was true. The IRMA was much more robust than the IAEA and had considerably lower inter- and intra-assay coefficients of variation (3.75-8.5% vs 5.2-46%). Detection of PLAP(-like) expression by IAEA is dependent on neoplastic expression of enzymatically functional molecules and quantification assumes constant enzyme kinetics. PLAP-like material has a higher catalytic rate constant than PLAP and thus will give higher values on a stoichiometric basis in an IAEA. The higher detection rate and levels of PLAP-like material in neoplastic cultures when measured by the IRMA clearly demonstrate ectopic expression of non-enzymatic PLAP and PLAP-like genes. The incidence of PLAP(-like) expression by non-germ cell and possible germ cell tumours has been underestimated and its utility as a tumour marker should be re-examined using assays which measure antigen mass rather than phosphatase activity. PMID:8297725

  12. Current detection technologies for circulating tumor cells.

    PubMed

    Shen, Zheyu; Wu, Aiguo; Chen, Xiaoyuan

    2017-04-10

    Circulating tumor cells (CTCs) are cancer cells that circulate in the blood stream after being naturally shed from original or metastatic tumors, and can lead to a new fatal metastasis. CTCs have become a hotspot research field during the last decade. Detection of CTCs, as a liquid biopsy of tumors, can be used for early diagnosis of cancers, earlier evaluation of cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer drugs. Therefore, CTC detection is a crucial tool to fight against cancer. Herein, we classify the currently reported CTC detection technologies, introduce some representative samples for each technology, conclude the advantages and limitations, and give a future perspective including the challenges and opportunities of CTC detection.

  13. Patenting Stem Cell Technologies in Europe

    PubMed Central

    Sheard, Andrew

    2015-01-01

    European patent law as it applies to stem cell technologies is complex. The complexities have developed from different supranational sources of law during the last 50 years and from the various levels of exceptions to patentability embodied in the law. In relation to stem cells of human embryonic origin, the definition of a human embryo, although broad, is still in some respects unclear; and the definition of what constitutes the use of a human embryo for industrial or commercial purposes, which is excluded from patentability in Europe, is also remarkably broad. Further clarification is awaited from the courts and from the Boards of Appeal of the European Patent Office. PMID:25395376

  14. The status of fuel cell technology

    SciTech Connect

    O'Sullivan, J.B.

    1991-02-20

    This brief status report provides an introduction to what fuel cells are, why they are important, what uses have been made of them to date, the goals and timetables of current programs, and who the players are in this vital technology. Copies of most of the slides presented and additional diagrams are appended to this paper. Further details can be obtained from the comprehensive texts cited in the bibliography. 11 refs., 44 figs.

  15. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  16. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  17. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  18. A polysaccharide from the alkaline extract of Glycyrrhiza inflata induces apoptosis of human oral cancer SCC-25 cells via mitochondrial pathway.

    PubMed

    Zeng, Guang; Shen, Huan; Tang, Guo; Cai, Xingwei; Bi, Lixia; Sun, Bin; Yang, Yongjin; Xun, Wenxing

    2015-09-01

    In the present study, we isolated and characterized a homogenous polysaccharide (GIAP1) from the alkaline extract of the roots of Glycyrrhiza inflata. The anti-tumor activity of GIAP1 toward human oral cancer SCC-25 cells and the underlying mechanisms were also examined in vitro. GIAP1 dose-dependently inhibited the proliferation of SCC-25 cells via inducing apoptosis. Moreover, GIAP1 downregulated Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), and caused the release of cytochrome c to cytosol. Besides, GIAP1 triggered activation of capase-3 and caspase-9, as well as the degradation of poly (ADP-ribose) polymerase (PARP). In addition, the caspase-3 or caspase-9 inhibitor significantly inhibited GIAP1-induced apoptosis in SCC-25 cells. Collectively, we can conclude that the GIAP1 induces apoptosis in SCC-25 cells via a mitochondrial pathway.

  19. Multijunction cells for concentrators: Technology prospects

    NASA Technical Reports Server (NTRS)

    Ferber, R. R. (Compiler); Costogue, E. N. (Compiler); Shimada, K. (Compiler)

    1984-01-01

    Development of high-efficiency multijunction solar cells for concentrator applications is a key step in achieving the goals of the U.S. Department of Energy National Photovoltaics Program. This report summarizes findings of an issue study conducted by the Jet Propulsion Laboratory Photovoltaic Analysis and Integration Center, with the assistance of the Solar Energy Research Institute and Sandia National laboratoies, which surveyed multijunction cell research for concentrators undertaken by federal agencies and by private industry. The team evaluated the potentials of research activities sponsored by DOE and by corporate funding to achieve projected high-efficiency goals and developed summary statements regarding industry expectations. Recommendations are made for the direction of future work to address specific unresolved aspects of multijunction cell technology.

  20. Current status of silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1975-01-01

    Recent advances in solar cell technology have led to the development of laboratory cells with efficiencies above 15% and production cells with efficiencies in the area of 13%. The increased output is largely the result of increases in the short-circuit current. The most significant gain in the amount of light entering the cell has been obtained through surface texturing by chemical etching techniques. Sheet resistances resulting from phosphorus diffusion in the 800 C temperature range yield junction depths on the order of 0.1 micrometer, leading to significant increases in the blue region of the cell spectral response. The inclusion of a back surface field in 10 ohm-cm cells has produced an increase in open-circuit voltage of about 50 mV and an increase in the minority carrier lifetime. It appears that a low emitter efficiency of the diffused region is the cause of poor voltages. Future research will be primarily directed toward correcting this deficiency and toward the development of low cost production methods.

  1. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojiao; He, Yao; Zhang, Youyu; Liu, Meiling; Liu, Yang; Li, Jinghong

    2014-09-01

    A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode

  2. High efficiency low cost GaAs/Ge cell technology

    NASA Technical Reports Server (NTRS)

    Ho, Frank

    1990-01-01

    Viewgraphs on high efficiency low cost GaAs/Ge cell technology are presented. Topics covered include: high efficiency, low cost GaAs/Ge solar cells; advantages of Ge; comparison of typical production cells for space applications; panel level comparisons; and solar cell technology trends.

  3. Investigation of nanostructured platinum-nickel supported on the titanium surface as electrocatalysts for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tamašauskaitė-Tamašiūnaitė, L.; Balčiūnaitė, A.; Vaiciukevičienė, A.; Selskis, A.; Pakštas, V.

    2012-06-01

    This study involves the formation of nanostructured platinum-nickel supported on the titanium surface catalysts using the galvanic displacement technique and investigation of their electrocatalytic activity toward the oxidation of borohydride, methanol and ethanol in an alkaline media by cyclic voltammetry and chronoamperometry. Scanning electron microscopy, Energy Dispersive X-ray Spectroscopy and X-ray diffraction were used to characterize the surface structure, composition and morphology. The nanoPt(Ni)/Ti and nanoPt/Ti catalysts exhibited a higher catalytic efficiency to the oxidation of borohydride, ethanol and methanol as compared with that of pure Pt.

  4. LaNi{sub 5{minus}x}M{sub x} metal hydride alloys for alkaline rechargeable cells

    SciTech Connect

    Witham, C.K.; Hightower, A.; Bowman, R.C. Jr.; Fultz, B.; Ratnakumar, B.V.

    1997-12-01

    This work centers on making alloy modifications to LaNi{sub 5} by replacing Ni with various metal elements. The primary goal of the alloy modifications is to stabilize the alloy during electrochemical cycling in an alkaline medium. The reasons that some elements promote cyclic stability are explored, and the relative magnitude of their effect is Ge > Sn > Si > Ga > Al > In > Ni. Other properties are determined for each alloy, such as maximum capacity, charge transfer kinetics, hydrogen diffusion, charge overpotentials, and charge efficiency. Alloy microstructural information is measured by X-ray diffraction, and gas-phase.

  5. The relationship between the acid and alkaline phosphatase activity and the adherence of clinical isolates of Candida parapsilosis to human buccal epithelial cells.

    PubMed

    Fernanado, P H; Panagoda, G J; Samaranayake, L P

    1999-11-01

    Candida parapsilosis is an emerging fungal pathogen implicated in many diseases, especially in compromised hosts. Candidal colonization and infection depends on the initial ability to adhere to host surfaces, which in turn depends upon the cell wall components and the allied structures of both the host and the fungus. Examination of a miscellaneous collection of 24 C. parapsilosis isolates, from both superficial and deep infections, for their potential pathogenic traits displayed a relationship between the phosphatase activity measured with p-nitrophenol phosphate and adhesion of the yeasts to human buccal epithelial cells (BECs). Significant intraspecies differences were seen in both the alkaline and acid phosphatase activity as well as in their adhesion to BECs (p<0.0001). The acid phosphatase activity of the superficial isolates was significantly greater (152%) than that of the systemic isolates (p = 0.0352). A highly significant positive correlation was also established between the yeast adhesion to BECs and both the acid (r = 0.88, p<0.0001) and alkaline (r = 0.9, p<0.0001) phosphatase activity. These relationships, described here for the first time, imply that phosphatases of Candida species may play a crucial role in potentiating their virulence.

  6. Extracellular pH alkalinization by Cl-/HCO3- exchanger is crucial for TASK2 activation by hypotonic shock in proximal cell lines from mouse kidney.

    PubMed

    L'Hoste, S; Barriere, H; Belfodil, R; Rubera, I; Duranton, C; Tauc, M; Poujeol, C; Barhanin, J; Poujeol, P

    2007-02-01

    We have previously shown that K(+)-selective TASK2 channels and swelling-activated Cl(-) currents are involved in a regulatory volume decrease (RVD; Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. J Gen Physiol 122: 177-190, 2003; Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. Am J Physiol Renal Physiol 284: F812-F828, 2003). The aim of this study was to determine the mechanism responsible for the activation of TASK2 channels during RVD in proximal cell lines from mouse kidney. For this purpose, the patch-clamp whole-cell technique was used to test the effect of pH and the buffering capacity of external bath on Cl(-) and K(+) currents during hypotonic shock. In the presence of a high buffer concentration (30 mM HEPES), the cells did not undergo RVD and did not develop outward K(+) currents (TASK2). Interestingly, the hypotonic shock reduced the cytosolic pH (pH(i)) and increased the external pH (pH(e)) in wild-type but not in cftr (-/-) cells. The inhibitory effect of DIDS suggests that the acidification of pH(i) and the alkalinization of pH(e) induced by hypotonicity in wild-type cells could be due to an exit of HCO(3)(-). In conclusion, these results indicate that Cl(-) influx will be the driving force for HCO(3)(-) exit through the activation of the Cl(-)/HCO(3)(-) exchanger. This efflux of HCO(3)(-) then alkalinizes pH(e), which in turn activates TASK2 channels.

  7. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay.

    PubMed

    Franzellitti, Silvia; Valbonesi, Paola; Ciancaglini, Nicola; Biondi, Carla; Contin, Andrea; Bersani, Ferdinando; Fabbri, Elena

    2010-01-05

    One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR=2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity.

  8. Fuel cell technology for prototype logistic fuel cell mobile systems

    SciTech Connect

    Sederquist, R.A.; Garow, J.

    1995-08-01

    Under the aegis of the Advanced Research Project Agency`s family of programs to develop advanced technology for dual use applications, International Fuel Cells Corporation (IFC) is conducting a 39 month program to develop an innovative system concept for DoD Mobile Electric Power (MEP) applications. The concept is to integrate two technologies, the phosphoric acid fuel cell (PAFC) with an auto-thermal reformer (ATR), into an efficient fuel cell power plant of nominally 100-kilowatt rating which operates on logistic fuels (JP-8). The ATR fuel processor is the key to meeting requirements for MEP (including weight, volume, reliability, maintainability, efficiency, and especially operation on logistic fuels); most of the effort is devoted to ATR development. An integrated demonstration test unit culminates the program and displays the benefits of the fuel cell system, relative to the standard 100-kilowatt MEP diesel engine generator set. A successful test provides the basis for proceeding toward deployment. This paper describes the results of the first twelve months of activity during which specific program aims have remained firm.

  9. Perovskite-type oxides La 1- xSr xMnO 3 for cathode catalysts in direct ethylene glycol alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kohei; Sugimura, Naotsugu; Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Carbon-supported La 1- xSr xMnO 3 (LSM/C) was prepared by reversible homogeneous precipitation method, and its catalytic activities for oxygen reduction under the existence of ethylene glycol (EG) were investigated by using rotating disk electrode. LSM/C exhibited the high activity for oxygen reduction irrespective with the presence of EG, indicating that EG is not oxidized by LSM/C at the cathode side in the present system. Consequently, LSM/C can serve as a cathode catalyst in alkaline direct alcohol fuel cells with no crossover problem. Performance test for fuel cells operation also supported these results and showed cathodic polarization curves were not affected by the concentration of EG supplied to anode even at 5 mol dm -3.

  10. Uptake of nickel from 316L stainless steel into contacting osteoblastic cells and metal ion interference with BMP-2-induced alkaline phosphatase.

    PubMed

    Mölders, Martina; Felix, Joachim; Bingmann, Dieter; Hirner, Alfred; Wiemann, Martin

    2007-11-01

    Bone cells contacting nickel (Ni)-containing implant materials may be affected by Ni species via disturbed signaling pathways involved in bone cell development. Here we analyze effects of the Ni-containing steel 316L and major metal constituents thereof on bone morphogenetic protein-2 (BMP-2)-induced alkaline phosphatase (ALP) of MC3T3-E1 cells. While cells grew normally on 316L, cellular Ni content increased 10-fold vs. control within 4 days. With respect to the major components of 316L, Ni2+ (3-50 microM) was most inhibitory to BMP-2-induced ALP, whereas even 50 microM Fe3+, Cr3+, Mo5+, or Mn2+ had no such effect. In line with this, BMP-2-induced ALP was significantly reduced in cells on 316L. This effect was not prevented by the metal ion chelator diethylenetriaminepentaacetic acid (DTPA). Instead, DTPA abolished the stimulatory effect of BMP-2 on ALP, pointing to chelatable metal ions involved. Zn2+, as one possible candidate, antagonized the Ni2+ inhibition of BMP-2-induced ALP in both MC3T3-E1 and human bone marrow stromal cells. Results show that cells contacting 316L steel are exposed to increased concentrations of Ni which suffice to impair BMP-2-induced ALP activity. Zn2+, as a competitor of this inhibition, may help to restore normal osteoblastic function and bone development under these conditions.

  11. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    NASA Astrophysics Data System (ADS)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  12. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  13. Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lin, Sheng-Jen; Hsu, Sung-Ting

    Alkaline SPE was obtained from a blend of polyvinyl alcohol (PVA) and poly(epichlorohydrin) (PECH), PVA-PECH, by a solution-cast technique. The PVA host polymer is blended with PECH polymer to provide a polymer electrolyte with improved chemical and mechanical properties. The ionic conductivity of the PVA-PECH polymer electrolytes is between 10 -2 and 10 -3 S cm -1 at room temperature when the blend ratio is varied from 1:0.2 to 1:1. The PVA-PECH polymer was characterized by means of scanning electron microscopy, X-ray diffraction, stress-strain test, cyclic voltammetry, and a.c. impedance spectroscopy. It is found that the polymer electrolytes exhibit good mechanical strength and excellent chemical stability. The electrochemical performance of solid-state Zn-air batteries with various types of the blended polymer electrolyte films is examined by a galvanostatic discharge method.

  14. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  15. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  16. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    SciTech Connect

    Bradley, M.O.; Dysart, G. )

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  17. Growth inhibitory effects of gastric cancer cells with an increase in S phase and alkaline phosphatase activity repression by aloe-emodin.

    PubMed

    Guo, Junming; Xiao, Bingxiu; Zhang, Shun; Liu, Donghai; Liao, Yiping; Sun, Qian

    2007-01-01

    Aloe-emodin is a novel active compound found in the root and rhizome of Rheum palmatum. To investigate the effects and mechanisms of aloe-emodin on human gastric cancer, MGC-803 cells were treated with 2.5, 5, 10, 20 and 40 microM aloe-emodin for 1-5 d. The results showed that aloe-emodin inhibited the growth of cancer cells in a dose-dependent manner with an increase in S phase and in the proportion of cells cycling at a higher ploidy level (>G2/M). Moreover, the alkaline phosphatase (ALP) activity, an indicator of cell differentiation, was found decreased. This is one of the first to focus on the effect of ALP activity in human gastric carcinomas cells treated by aloe-emodin. These results indicate that aloe-emodin has a potential value for the treatment of gastric cancer and its mechanisms are by means of cell cycle interruption and induce differentiation.

  18. Assessment of DNA damage of Lewis lung carcinoma cells irradiated by carbon ions and X-rays using alkaline comet assay

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhou, Li-Bin; Jin, Xiao-Dong; He, Jing; Dai, Zhong-Ying; Zhou, Guang-Ming; Gao, Qing-Xiang; Li, Sha; Li, Qiang

    2008-01-01

    DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of “Tail DNA (%)” (TD) and “Olive tail moment” (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radiosensitivity.

  19. Differences in the release of 5'-nucleotidase and alkaline phosphatase from plasma membrane of several cell types by PI-PLC.

    PubMed

    Zekri, M; Harb, J; Bernard, S; Poirier, G; Devaux, C; Meflah, K

    1989-01-01

    1. We have compared the effect of phosphatidyl inositol specific phospholipase C (PI-PLC) on the attachment of both 5'-nucleotidase and alkaline phosphatase to the liver plasma membrane from different species. 2. Our results demonstrate differences in the susceptibilities of both enzymes to PI-PLC treatment in relation to their origin. 3. These results were confirmed by immunoblotting using polyclonal anti-5'-nucleotidase antibodies. 4. In addition, in a single animal, susceptibility of both enzymes to PI-PLC treatment is different from one tissue to another. 5. The different percentages of released enzymes could be explained either by a polymorphism in the anchoring of these proteins at the cell surface membrane, or by a different steric hindrance or environment at the cleavage site itself.

  20. Combined Extraction of Cesium, Strontium, and Actinides from Alkaline Media: An Extension of the Caustic-Side Solvent Extraction (CSSX) Process Technology

    SciTech Connect

    Kenneth Raymond

    2004-11-03

    The wastes present at DOE long-term storage sites are usually highly alkaline, and because of this, much of the actinides in these wastes are in the sludge phase. Enough actinide materials still remain in the supernatant liquid that they require separation followed by long-term storage in a geological repository. The removal of these metals from the liquid waste stream would permit their disposal as low-level waste and dramatically reduce the volume of high-level wastes.

  1. Manganese oxide/poly(3,4-ethylenedioxythiophene) hybrid electrocatalysts for the oxygen reduction reaction in alkaline fuel cells

    SciTech Connect

    Lambert, Timothy N.; Vigil, Julian A.

    2016-08-22

    Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnOx/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnOx/PEDOT provided improvements over MnOx-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnOx/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnOx/PEDOT also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnOx/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnOx with PEDOT and due to the increase in Mn3+ content at the surface of the oxide.

  2. Manganese oxide/poly(3,4-ethylenedioxythiophene) hybrid electrocatalysts for the oxygen reduction reaction in alkaline fuel cells

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.

    2016-08-22

    Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnOx/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnOx/PEDOT provided improvements over MnOx-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnOx/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnOx/PEDOT also displayed a more positivemore » half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnOx/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnOx with PEDOT and due to the increase in Mn3+ content at the surface of the oxide.« less

  3. Single-cell sequencing technologies: current and future.

    PubMed

    Liang, Jialong; Cai, Wanshi; Sun, Zhongsheng

    2014-10-20

    Intensively developed in the last few years, single-cell sequencing technologies now present numerous advantages over traditional sequencing methods for solving the problems of biological heterogeneity and low quantities of available biological materials. The application of single-cell sequencing technologies has profoundly changed our understanding of a series of biological phenomena, including gene transcription, embryo development, and carcinogenesis. However, before single-cell sequencing technologies can be used extensively, researchers face the serious challenge of overcoming inherent issues of high amplification bias, low accuracy and reproducibility. Here, we simply summarize the techniques used for single-cell isolation, and review the current technologies used in single-cell genomic, transcriptomic, and epigenomic sequencing. We discuss the merits, defects, and scope of application of single-cell sequencing technologies and then speculate on the direction of future developments.

  4. Analysis of possible genotoxicity of the herbicide flurochloridone and its commercial formulations: Endo III and Fpg alkaline comet assays in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Soloneski, Sonia; Nikoloff, Noelia; Larramendy, Marcelo L

    2016-02-01

    Cytotoxic and genotoxic effects of flurochloridone (FLC) and its formulations Twin Pack Gold(®) and Rainbow(®) were evaluated in CHO-K1 cells. Using the alkaline single-cell gel electrophoresis (SCGE) assay, we observed that FLC (15 μg/ml), Twin Pack Gold(®) or Rainbow(®) induced primary DNA damage, increasing the frequency of damaged nucleoids. Vitamin E pretreatment did not modify the effect. Decreased cell viability was observed only in Twin Pack Gold(®)-treated cultures and was significantly ameliorated by vitamin E. Post-treatment of herbicide-damaged CHO-K1 cells with the enzymes Endo III or Fpg did not increase FLC-, Twin Pack Gold(®)-, or Rainbow(®)-induced DNA damage. These results demonstrate that neither FLC nor FLC-based formulations induce DNA damage through hydroxyl radical or lipid alkoxyl radical production, and that the induced DNA lesions were not related to oxidative damage at the purine/pyrimidine level. Our observations strongly suggest that the cytotoxic effects observed after Twin Pack Gold(®) exposure are due to the excipients contained within the technical formulation rather than FLC itself.

  5. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM: FUEL CELLS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This techno...

  7. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.

    PubMed

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B

    2015-07-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment.

  8. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines

    PubMed Central

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-01-01

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649

  9. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    SciTech Connect

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment

  10. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize ( Zea mays L.) lines

    DOE PAGES

    Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...

    2015-02-20

    A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less

  11. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages.

    PubMed

    Shioi, Atsushi; Katagi, Miwako; Okuno, Yasuhisa; Mori, Katsuhito; Jono, Shuichi; Koyama, Hidenori; Nishizawa, Yoshiki

    2002-07-12

    Inflammatory cells such as macrophages and T lymphocytes play an important role in vascular calcification associated with atherosclerosis and cardiac valvular disease. In particular, macrophages activated with cytokines derived from T lymphocytes such as interferon-gamma (IFN-gamma) may contribute to the development of vascular calcification. Moreover, we have shown the stimulatory effect of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro calcification through increasing the expression of alkaline phosphatase (ALP), an ectoenzyme indispensable for bone mineralization, in vascular smooth muscle cells. Therefore, we hypothesized that macrophages may induce calcifying phenotype, especially the expression of ALP in human vascular smooth muscle cells (HVSMCs) in the presence of IFN-gamma and 1,25(OH)2D3. To test this hypothesis, we used cocultures of HVSMCs with human monocytic cell line (THP-1) or peripheral blood monocytes (PBMCs) in the presence of IFN-gamma and 1,25(OH)2D3. THP-1 cells or PBMCs induced ALP activity and its gene expression in HVSMCs and the cells with high expression of ALP calcified their extracellular matrix by the addition of beta-glycerophosphate. Thermostability and immunoassay showed that ALP induced in HVSMCs was bone-specific enzyme. We further identified tumor necrosis factor-alpha (TNF-alpha) and oncostatin M (OSM) as major factors inducing ALP in HVSMCs in the culture supernatants of THP-1 cells. TNF-alpha and OSM, only when applied together, increased ALP activities and in vitro calcification in HVSMCs in the presence of IFN-gamma and 1,25(OH)2D3. These results suggest that macrophages may contribute to the development of vascular calcification through producing various inflammatory mediators, especially TNF-alpha and OSM.

  12. Fuel cell development at McDermott Technology, Inc.

    SciTech Connect

    Tharp, M.R.; Privette, R.M.; Rowley, D.R.; Khandkar, A.

    1999-07-01

    McDermott Technology, Inc. (MTI) has been involved with the development of a wide variety of fuel cell technologies since 1990. Current programs include the development of planar solid fuel cell (pSOFC) stacks and systems and fuel processing and balance of plant development for proton exchange membrane (PEM) systems. These programs are described.

  13. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    SciTech Connect

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  15. Alkaline Cytosolic pH and High Sodium Hydrogen Exchanger 1 (NHE1) Activity in Th9 Cells.

    PubMed

    Singh, Yogesh; Zhou, Yuetao; Shi, Xiaolong; Zhang, Shaqiu; Umbach, Anja T; Salker, Madhuri S; Lang, Karl S; Lang, Florian

    2016-11-04

    CD4(+) T helper 9 (Th9) cells are a newly discovered Th cell subset that produce the pleiotropic cytokine IL-9. Th9 cells can protect against tumors and provide resistance against helminth infections. Given their pivotal role in the adaptive immune system, understanding Th9 cell development and the regulation of IL-9 production could open novel immunotherapeutic opportunities. The Na(+)/H(+) exchanger 1 (NHE1; gene name Slc9α1)) is critically important for regulating intracellular pH (pHi), cell volume, migration, and cell survival. The pHi influences cytokine secretion, activities of membrane-associated enzymes, ion transport, and other effector signaling molecules such as ATP and Ca(2+) levels. However, whether NHE1 regulates Th9 cell development or IL-9 secretion has not yet been defined. The present study explored the role of NHE1 in Th9 cell development and function. Th cell subsets were characterized by flow cytometry and pHi was measured using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-acetoxymethyl ester (BCECF-AM) dye. NHE1 functional activity was estimated from the rate of realkalinization following an ammonium pulse. Surprisingly, in Th9 cells pHi and NHE1 activity were significantly higher than in all other Th cell subsets (Th1/Th2/Th17 and induced regulatory T cells (iTregs)). NHE1 transcript levels and protein abundance were significantly higher in Th9 cells than in other Th cell subsets. Inhibition of NHE1 by siRNA-NHE1 or with cariporide in Th9 cells down-regulated IL-9 and ATP production. NHE1 activity, Th9 cell development, and IL-9 production were further blunted by pharmacological inhibition of protein kinase Akt1/Akt2. Our findings reveal that Akt1/Akt2 control of NHE1 could be an important physiological regulator of Th9 cell differentiation, IL-9 secretion, and ATP production.

  16. Genotoxicity of the herbicide imazethapyr in mammalian cells by oxidative DNA damage evaluation using the Endo III and FPG alkaline comet assays.

    PubMed

    Soloneski, Sonia; Ruiz de Arcaute, Celeste; Nikoloff, Noelia; Larramendy, Marcelo L

    2017-03-07

    We evaluated the role of oxidative stress in the genotoxic damage induced by imazethapyr (IMZT) and its formulation Pivot® in mammalian CHO-K1 cell line. Using the alkaline comet assay, we observed that a concentration of 0.1 μg/mL of IMZT or Pivot® was able to induce DNA damage by increasing the frequency of damaged nucleoids. To test whether the DNA lesions were caused by oxidative stress, the DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), which convert base damage to strand breaks, were used. Our results demonstrate that after treatment of CHO-K1 cells with the pure active ingredient as well as the commercial formulation Pivot®, an increase in DNA strand breaks was observed after incubation of both Endo III and Fpg enzymes, indicating that both compounds induce DNA damage involving both pyrimidine and purine-based oxidations, at least in CHO-K1 cells. Our findings confirm the genotoxic potential of IMZT and suggest that this herbicide formulation must be employed with great caution, especially not only for exposed occupational workers but also for other living species.

  17. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  18. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  19. Assessing the genotoxic potentials of roxarsone in V79 cells using the alkaline Comet assay and micronucleus test.

    PubMed

    Zhang, Yumei; Ying, Jun; Chen, Jun; Hu, Chenyun

    2012-01-24

    Until recently, knowledge about the genotoxicity of roxarsone in vitro or in vivo was limited. This study assessed the genotoxicity of roxarsone in an in vitro system. Roxarsone was tested for potential genotoxicity on V79 cells by a Comet assay and a micronucleus (MN) test, exposing the cells to roxarsone (1-500 μM) and to sodium arsenite (NaAsO₂, 20 μM) solutions for 3-48 h. Roxarsone was found to be cytotoxic when assessed with a commercial cell counting kit (CCK-8) used to evaluate cell viability, and moderately genotoxic in the Comet assay and micronucleus test used to assess DNA damage. The Comet metrics (percentages TDNA, TL, TM) increased significantly in a time- and concentration-dependent manner in roxarsone-treated samples compared with PBS controls (P<0.05), while the data from samples treated with 20 μM NaAsO₂ were comparable to those from 500 μM roxarsone-treated samples. The MN frequency of V79 cells treated with roxarsone was higher than that in the negative control but lower than the frequency in cells treated with 20 μM NaAsO₂. A dose- and time-dependent response in MN induction was observed at 10, 50, 100 and 500 μM doses of roxarsone after 12-48 h exposure time. The DNA damage in V79 cells treated with 500 μM roxarsone was similar to cells exposed to 20 μM NaAsO₂. The uptake of cells was correlated with the DNA damage caused by roxarsone. This investigation depicts the genotoxic potentials of roxarsone to V79 cells, which could lead to further advanced studies on the genotoxicity of roxarsone.

  20. Evaluation of Fuel Cell Technology for Coast Guard Applications

    DTIC Science & Technology

    1988-10-01

    PAFCs have good stability and the ability to use light hydrocarbon fuels. In addition , PAFCs have a higher thermal efficiency for electricity...requirement for premium fuels. In addition to the high capital costs discussed above, PAFCs may have a high life cycle cost because the fuel cell stacks will...and Solid Oxide fuel cell technologies should be commerically produced within the next decade. Phosphoric Acid Fuel Cell ( PAFC ) technology is the most

  1. The use of tissue-nonspecific alkaline phosphatase (TNAP) and PHOSPHO1 inhibitors to affect mineralization by cultured cells.

    PubMed

    Kiffer-Moreira, Tina; Narisawa, Sonoko

    2013-01-01

    Here, we describe methods to evaluate the ability of small molecules inhibitors of TNAP and PHOSPHO1 in preventing mineralization of primary cultures of murine vascular smooth muscle cells. The procedures are also applicable to primary cultures of calvarial osteoblasts. These cell-based assays are used to complement kinetic testing during structure-activity relationship studies aimed at improving scaffolds in the generation of pharmaceuticals for the treatment for medial vascular calcification.

  2. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  3. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  4. Proceedings -- US Russian workshop on fuel cell technologies

    SciTech Connect

    Baker, B.; Sylwester, A.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  6. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

  7. Fuel cell technology: A sweeter fuel

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin

    2002-12-01

    Eating sugar gives us a boost when we feel tired because our cells use it as fuel to produce energy. Likewise, sugar can now be used to produce power in artificial biological fuel cells that function in a physiological environment.

  8. Fuel Cell Technologies: State And Perspectives

    NASA Astrophysics Data System (ADS)

    Sammes, Nigel; Smirnova, Alevtina; Vasylyev, Oleksandr

    Fuel Cells have become a potentially highly efficient sustainable source of energy and electricity for an ever-demanding power hungry world. The two main types of fuel cells ripe for commercialisation are the high temperature solid oxide fuel cell (SOFC) and the low temperature polymer electrolyte membrane fuel cell (PEM). The commercial uses of which include, but are not limited to, military, stand-by power, commercial and industrial, and remoter power. However, all aspects of the electricity market are being considered.

  9. Application of encapsulation technology in stem cell therapy.

    PubMed

    Hashemi, Maryam; Kalalinia, Fatemeh

    2015-12-15

    Stem cells are characterized by their capacity for self-renewal and their ability to differentiate into specific cell types under the influence of their microenvironment. These cells are potent therapeutic tools to treat various regenerative diseases based on their ability to produce a therapeutic protein or restore natural tissue function with minimal side effects. However, a major problem that must be overcome is to find a suitable stem cell delivery system. Cell encapsulation is a novel concept in which cells are immobilized inside a biocompatible and semi-permeable natural or synthetic matrix. The purpose of encapsulation is to protect the cell from the host's immune system, improve cell expansion and maintain cell viability, self-renewal potency and direct cell differentiation toward a desired lineage. This review will provide an overview of the application of encapsulation technology for phenotypic and functional improvement of stem cells and using these encapsulated cells to treat various diseases.

  10. Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses

    PubMed Central

    Puvirajesinghe, Tania M.; Turnbull, Jeremy. E.

    2016-01-01

    Microarray technologies inspired the development of carbohydrate arrays. Initially, carbohydrate array technology was hindered by the complex structures of glycans and their structural variability. The first designs of glycoarrays focused on the HTP (high throughput) study of protein–glycan binding events, and subsequently more in-depth kinetic analysis of carbohydrate–protein interactions. However, the applications have rapidly expanded and now achieve successful discrimination of selective interactions between carbohydrates and, not only proteins, but also viruses, bacteria and eukaryotic cells, and most recently even live cell responses to immobilized glycans. Combining array technology with other HTP technologies such as mass spectrometry is expected to allow even more accurate and sensitive analysis. This review provides a broad overview of established glycoarray technologies (with a special focus on glycosaminoglycan applications) and their emerging applications to the study of complex interactions between glycans and whole living cells. PMID:27600069

  11. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  12. Single-cell technologies to study the immune system.

    PubMed

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system.

  13. An improved bifunctional oxygen (air) electrode for reversible alkaline fuel cell systems and for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Kordesch, K.; Steininger, K.-H.; Tomantschger, K.

    1988-10-01

    Electrodes with a nickel layer of dual pore structure on the electrolyte side and a PTFE-bonded carbon layer on the oxygen (air) side are discussed, with application to space energy storage. During the electrolyis stage, the oxygen fills the large pores of the porous Ni structure with gas. During the discharge cycle, the iron/air or zinc/air cell of the carbon layer operates as a regular oxygen electrode.

  14. Fabrication and Investigation of Nickel-Alkaline Cells. Part 1. Fabrication of Nickel-Hydroxide Electrodes Using Electrochemical Impregnation Techniques

    DTIC Science & Technology

    1975-10-01

    electrodes show capacities as high as 9.5 ampere-hours per cubic inch after these cycles. The alcohol process has been scaled to pilot production, FORM 1473...expel residual nitrogen as ammonia. This procedure must be repeated several * Presently only nickel-cadmium cells are used in Air Force missions; Nickel...hydrates of nickel and cadmium nitrates followed by a heat treatment to decompose the imbibed nitrates to hydroxides(2,3). The final process in all Ni-Cd

  15. Boron Induces Early Matrix Mineralization via Calcium Deposition and Elevation of Alkaline Phosphatase Activity in Differentiated Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Movahedi Najafabadi, Bent-al-hoda; Abnosi, Mohammad Hussein

    2016-01-01

    Objective Boron (B) is essential for plant development and might be an essential micronutrient for animals and humans. This study was conducted to characterize the impact of boric acid (BA) on the cellular and molecular nature of differentiated rat bone marrow mesenchymal stem cells (BMSCs). Materials and Methods In this experimental study, BMSCs were extracted and expanded to the 3rdpassage, then cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) complemented with osteogenic media as well as 6 ng/ml and 6 µg/ml of BA. After 5, 10, 15 and 21 days the viability and the level of mineralization was determined using MTT assay and alizarin red respectively. In addition, the morphology, nuclear diameter and cytoplasmic area of the cells were studied with the help of fluorescent dye. The concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) as well as sodium and potassium levels were also evaluated using commercial kits and a flame photometer respectively. Results Although 6 µg/ml of BA was found to be toxic, a concentration of 6 ng/ml increased the osteogenic ability of the cell significantly throughout the treatment. In addition it was observed that B treatment caused the early induction of matrix mineralization compared to controls. Conclusion Although more investigation is required, we suggest the prescription of a very low concentration of B in the form of BA or foods containing BA, in groups at high risk of osteoporosis or in the case of bone fracture. PMID:27054120

  16. Molten carbonate fuel cells - Technology status

    NASA Astrophysics Data System (ADS)

    Pierce, R. D.

    The functional principles, components, operating conditions, and problems in prototype molten carbonate fuel cell plants are described. Centralized carbonate fuel cells consist of four subsystems: a coal gasifier and gas cleanup system, fuel cell stacks, heat removal and recovery system, and a power conditioner to convert dc to ac current. The fuel in the cells comprises hydrogen and carbon monoxide, and produces current by means of completion of an electrical circuit through transfer of carbonate ions through the electrolyte and electrons from cell to cell and eventually into the external circuit. Electrodes are porous sheets which provide sites for the electrochemical reaction and conduction paths for the reactants and products. The construction of LiAlO2-carbonate electrolyte structures is noted, and the electrolyte distribution and structures, the anodes, cathodes, separator plate, and operational problems are considered.

  17. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The overall objectives of the Phase IV Solid Polymer Electrolyte Fuel Cell Technology Program were to: (1) establish fuel cell life and performance at temperatures, pressures and current densities significantly higher than those previously demonstrated; (2) provide the ground work for a space energy storage system based on the solid polymer electrolyte technology (i.e., regenerative H2/O2 fuel cell); (3) design, fabricate and test evaluate a full-scale single cell unit. During this phase, significant progress was made toward the accomplishment of these objectives.

  18. Marine Fuel Cell Technology Verification Trainer Program: Operator Curriculum Development

    DTIC Science & Technology

    2007-11-02

    ofinito acn. including suggestetns Ior reductng the burden, to Departnment of Defne, t . Washingtn Headquara Services., Diremtorte for information...materials, reference FuelCell Energy (FCE, the manufacturer) documentation are subject to change as the Direct Fuel Cell ( DFC ) SSFC plant technology matures...introduction to the Direct Fuel Cell Ship Service Fuel Cell ( DFC SSFC) for future operators. These modules would fill a 2- to 4- day lecture and

  19. Aptamer technology for tracking cells' status & function.

    PubMed

    Wiraja, Christian; Yeo, David; Lio, Daniel; Labanieh, Louai; Lu, Mengrou; Zhao, Weian; Xu, Chenjie

    2014-01-01

    In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.

  20. New Advanced Technologies in Stem Cell Therapy

    DTIC Science & Technology

    2012-09-01

    stem” like state when expanded in a cell monolayer. A media formulation of 10% fetal bovine serum , 10% horse serum , 1% penicillin /streptomycin and 1...medium (DMEM supplemented with 10% fetal bovine serum , 10% horse serum , 0.5% chicken embryo extract and 1% Penicillin -streptomycin) until the cell...expanded in DMEM containing 10% fetal bovine serum (FBS), 10% horse serum , 1% penicillin -streptomycin, and 0.5% chick embryo extract. Cells were

  1. New Advanced Technologies In Stem Cell Therapy

    DTIC Science & Technology

    2011-09-01

    Project 1: Duchenne Muscular Dystrophy (DMD), human muscle-derived cells (hMDC), myoendothelial cells, pericytes, hMDC transplantation, angiogenesis...function of skeletal muscle that has been damaged by Duchenne muscular dystrophy (DMD) and other muscle degenerative disorders and injury...of Contents 4) Project 1: Muscle stem cell transplantation for Duchenne muscular dystrophy A) Introduction……………………………………………………………6

  2. In vivo genotoxicity of ortho-phenylphenol, biphenyl, and thiabendazole detected in multiple mouse organs by the alkaline single cell gel electrophoresis assay.

    PubMed

    Sasaki, Y F; Saga, A; Akasaka, M; Yoshida, K; Nishidate, E; Su, Y Q; Matsusaka, N; Tsuda, S

    1997-12-12

    In Japan, ortho-phenylphenol (OPP), biphenyl (BP), and thiabendazole (2-(4'-thiazolyl)benzimidazole, TBZ) are commonly used as a postharvest treatment to preserve imported citrus fruits during transport and storage. We used a modification of the alkaline single cell gel electrophoresis (SCG) (Comet) assay to test the in vivo genotoxicity of those agents in mouse stomach, liver, kidney, bladder, lung, brain, and bone marrow. CD-1 male mice were sacrificed 3, 8, and 24 h after oral administration of the test compounds. OPP (2000 mg/kg) induced DNA damage in the stomach, liver, kidney, bladder, and lung, BP (2000 mg/kg) and TBZ (200 mg/kg) induced DNA damage in all the organs studied. For OPP, increased DNA damage peaked at 3-8 h and tended to decrease at 24 h. For BP, on the contrary, increased DNA migration peaked at 24 h. That delay may have been due to the fact that OPP is metabolized by cytochrome 450 and prostaglandin H synthase to phenylbenzoquinone (PBQ), a DNA binding metabolite, and BP is metabolized to PBQ via OPP and m-phenylphenol. The positive response to TBZ, an aneugen, supports the in vivo DNA-damaging action of TBZ.

  3. Detection of in vivo DNA damage induced by ethanol in multiple organs of pregnant mice using the alkaline single cell gel electrophoresis (Comet) assay.

    PubMed

    Kido, Ryoko; Sato, Itaru; Tsuda, Shuji

    2006-01-01

    Ethanol is principal ingredient of alcohol beverage, but considered as human carcinogen, and has neurotoxicity. Alcohol consumption during pregnancy often causes fetal alcohol syndrome. The DNA damage is one of the important factors in carcinogenicity or teratogenicity. To detect the DNA damage induced by ethanol, we used an in vivo alkaline single cell gel electrophoresis (Comet) assay in pregnant mice organs and embryos. Pregnant ICR mice on Day 7 of gestation were treated with 2, 4 or 8 g/kg ethanol, and maternal organs/tissues and embryos were subjected to the Comet assay at 4, 8, 12 and 24 hr after ethanol treatment. Four and 8 g/kg ethanol induced DNA damage in brain, lung and embryos at 4 or 8 hr after the treatment. Two g/kg ethanol did not cause any DNA damage, and 8 g/kg ethanol only increased the duration of DNA damage without distinct increase in the degree of the damage. No significant DNA damage was observed in the liver. To detect the effect of acetaldehyde, disulfiram, acetaldehyde dehydrogenase inhibitor, was administered before 4 g/kg ethanol treatment. No significant increase of DNA damage was observed in the disulfiram pre-treated group. These data indicate that ethanol induces DNA damage, which might be related to ethanol toxicity. Since pre-treatment of disulfiram did not increase DNA damage, DNA damage observed in this study might not be the effect of acetaldehyde.

  4. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.

    PubMed

    Sa, Young Jin; Park, Chiyoung; Jeong, Hu Young; Park, Seok-Hee; Lee, Zonghoon; Kim, Kyoung Taek; Park, Gu-Gon; Joo, Sang Hoon

    2014-04-14

    A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.

  5. Advances and Applications of Single Cell Sequencing Technologies

    PubMed Central

    Wang, Yong; Navin, Nicholas E.

    2015-01-01

    Single cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic. PMID:26000845

  6. Advances and applications of single-cell sequencing technologies.

    PubMed

    Wang, Yong; Navin, Nicholas E

    2015-05-21

    Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic.

  7. RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION

    SciTech Connect

    Farfan, E.; Jannik, T.

    2010-03-25

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  9. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    SciTech Connect

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  12. Fifty years of dielectrophoretic cell separation technology.

    PubMed

    Hughes, Michael P

    2016-05-01

    In 1966, Pohl and Hawk [Science 152, 647-649 (1966)] published the first demonstration of dielectrophoresis of living and dead yeast cells; their paper described how the different ways in which the cells responded to an applied nonuniform electric field could form the basis of a cell separation method. Fifty years later, the field of dielectrophoretic (DEP) cell separation has expanded, with myriad demonstrations of its ability to sort cells on the basis of differences in electrical properties without the need for chemical labelling. As DEP separation enters its second half-century, new approaches are being found to move the technique from laboratory prototypes to functional commercial devices; to gain widespread acceptance beyond the DEP community, it will be necessary to develop ways of separating cells with throughputs, purities, and cell recovery comparable to gold-standard techniques in life sciences, such as fluorescence- and magnetically activated cell sorting. In this paper, the history of DEP separation is charted, from a description of the work leading up to the first paper, to the current dual approaches of electrode-based and electrodeless DEP separation, and the path to future acceptance outside the DEP mainstream is considered.

  13. Fifty years of dielectrophoretic cell separation technology

    PubMed Central

    Hughes, Michael P.

    2016-01-01

    In 1966, Pohl and Hawk [Science 152, 647–649 (1966)] published the first demonstration of dielectrophoresis of living and dead yeast cells; their paper described how the different ways in which the cells responded to an applied nonuniform electric field could form the basis of a cell separation method. Fifty years later, the field of dielectrophoretic (DEP) cell separation has expanded, with myriad demonstrations of its ability to sort cells on the basis of differences in electrical properties without the need for chemical labelling. As DEP separation enters its second half-century, new approaches are being found to move the technique from laboratory prototypes to functional commercial devices; to gain widespread acceptance beyond the DEP community, it will be necessary to develop ways of separating cells with throughputs, purities, and cell recovery comparable to gold-standard techniques in life sciences, such as fluorescence- and magnetically activated cell sorting. In this paper, the history of DEP separation is charted, from a description of the work leading up to the first paper, to the current dual approaches of electrode-based and electrodeless DEP separation, and the path to future acceptance outside the DEP mainstream is considered. PMID:27462377

  14. Fuel Cell Technology Status - Voltage Degradation (Presentation)

    SciTech Connect

    Kurtz, J.; Wipke,; Sprik, S.; Saur, G.

    2012-06-01

    This presentation describes an independent assessment of fuel cell durability status and discusses the project's relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; the FY12 technical accomplishments including the fourth annual publication of results; and project collaborations and future work.

  15. A gemini quaternary ammonium poly (ether ether ketone) anion-exchange membrane for alkaline fuel cell: design, synthesis, and properties.

    PubMed

    Si, Jiangju; Lu, Shanfu; Xu, Xin; Peng, Sikan; Xiu, Ruijie; Xiang, Yan

    2014-12-01

    To reconcile the tradeoff between conductivity and dimensional stability in AEMs, a novel Gemini quaternary ammonium poly (ether ether ketone) (GQ-PEEK) membrane was designed and successfully synthesized by a green three-step procedure that included polycondensation, bromination, and quaternization. Gemini quaternary ammonium cation groups attached to the anti-swelling PEEK backbone improved the ionic conductivity of the membranes while undergoing only moderate swelling. The grafting degree (GD) of the GQ-PEEK significantly affected the properties of the membranes, including their ion-exchange capacity, water uptake, swelling, and ionic conductivity. Our GQ-PEEK membranes exhibited less swelling (≤ 40 % at 25-70 °C, GD 67 %) and greater ionic conductivity (44.8 mS cm(-1) at 75 °C, GD 67 %) compared with single quaternary ammonium poly (ether ether ketone). Enhanced fuel cell performance was achieved when the GQ-PEEK membranes were incorporated into H2 /O2 single cells.

  16. Anion conductive aromatic block copolymers containing diphenyl ether or sulfide groups for application to alkaline fuel cells.

    PubMed

    Yokota, Naoki; Ono, Hideaki; Miyake, Junpei; Nishino, Eriko; Asazawa, Koichiro; Watanabe, Masahiro; Miyatake, Kenji

    2014-10-08

    A novel series of aromatic block copolymers composed of fluorinated phenylene and biphenylene groups and diphenyl ether (QPE-bl-5) or diphenyl sulfide (QPE-bl-6) groups as a scaffold for quaternized ammonium groups is reported. The block copolymers were synthesized via aromatic nucleophilic substitution polycondensation, chloromethylation, quaternization, and ion exchange reactions. The block copolymers were soluble in organic solvents and provided thin and bendable membranes by solution casting. The membranes exhibited well-developed phase-separated morphology based on the hydrophilic/hydrophobic block copolymer structure. The membranes exhibited mechanical stability as confirmed by DMA (dynamic mechanical analyses) and low gas and hydrazine permeability. The QPE-bl-5 membrane with the highest ion exchange capacity (IEC = 2.1 mequiv g(-1)) exhibited high hydroxide ion conductivity (62 mS cm(-1)) in water at 80 °C. A noble metal-free fuel cell was fabricated with the QPE-bl-5 as the membrane and electrode binder. The fuel cell operated with hydrazine as a fuel exhibited a maximum power density of 176 mW cm(-2) at a current density of 451 mA cm(-2).

  17. Silicon Cell Technology Enabling Cost Effective CPV System

    NASA Astrophysics Data System (ADS)

    Finot, Marc; Mayo, Aster; MacDonald, Bob

    2011-12-01

    Recent manufacturing technology developments in monocrystalline Silicon cells simultaneously improve efficiency in conventional flat-plate applications and provide a path for high efficiency low cost cells to be optimized for low and medium concentration applications. High volume cell suppliers are utilizing multiple approaches to improve efficiencies, including selective emitter doping, back passivation technology, n-type wafers, low resistance and high minority lifetime wafers, and high quality screen printing. Skyline Solar has developed a CPV system that leverages 1-sun standard Silicon cells and minimizes the total cost of energy that fully takes advantage of these technologies. Cell budget, size and geometries for optimized CPV systems will be discussed. The Skyline High Gain Solar architecture will be used as case study.

  18. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  19. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  20. Epitaxial technology for low cost solar cells

    NASA Technical Reports Server (NTRS)

    Kressel, H.; Raccah, P. M.

    1975-01-01

    Epitaxial solar cell structures on low cost silicon substrates are compared to direct diffusion substrates. Dislocation density in the epitaxial layers is found to be significantly lower than that of the substrate material. The saturation current density of diodes epitaxially formed on the substrate is commonly 2 to 3 orders of magnitude lower than for diodes formed by direct diffusion. Solar cells made epitaxially are substantially better than those made by direct diffusion into similar material.

  1. New Advanced Technologies in Stem Cell Therapy

    DTIC Science & Technology

    2014-11-01

    Pittsburgh, PA, USA. 8Stem Cell and Regenerative Medicine Center, Cellular and Molecular Arrhythmia Research Program, Department of Medicine, School...function and reduce ventricular arrhythmias (145). Preclinical studies are beginning to test PSC cell therapy in large-animal models of heart dis- ease...been ob- served (148). However, a transient increase in ventricular arrhythmias has occurred, raising a potential safety concern. Transplantation of hu

  2. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  3. Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells.

    PubMed

    Oh, Sang-Eun; Yoon, Joung Yee; Gurung, Anup; Kim, Dong-Jin

    2014-08-01

    This study investigated the effects of different sludge pretreatment methods (ultrasonic vs. combined heat/alkali) with varied sources of municipal sewage sludge (primary sludge (PS), secondary excess sludge (ES), anaerobic digestion sludge (ADS)) on electricity generation in microbial fuel cells (MFCs). Introduction of ultrasonically pretreated sludge (PS, ES, ADS) to MFCs generated maximum power densities of 13.59, 9.78 and 12.67mW/m(2) and soluble COD (SCOD) removal efficiencies of 87%, 90% and 57%, respectively. The sludge pretreated by combined heat/alkali (0.04N NaOH at 120°C for 1h) produced maximum power densities of 10.03, 5.21 and 12.53mW/m(2) and SCOD removal efficiencies of 83%, 75% and 74% with PS, ES and ADS samples, respectively. Higher SCOD by sludge pretreatment enhanced performance of the MFCs and the electricity generation was linearly proportional to the SCOD removal, especially for ES.

  4. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  5. Plant cell technologies in space: Background, strategies and prospects

    NASA Technical Reports Server (NTRS)

    Kirkorian, A. D.; Scheld, H. W.

    1987-01-01

    An attempt is made to summarize work in plant cell technologies in space. The evolution of concepts and the general principles of plant tissue culture are discussed. The potential for production of high value secondary products by plant cells and differentiated tissue in automated, precisely controlled bioreactors is discussed. The general course of the development of the literature on plant tissue culture is highlighted.

  6. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    PubMed Central

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  7. Cell-based therapy technology classifications and translational challenges

    PubMed Central

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  8. [Stem cell research and science and technology policy in Japan].

    PubMed

    Yashiro, Yoshimi

    2011-12-01

    In this paper I review the present condition of the regeneration medicine research using pluripotency and a somatic stem cell, and I describe the subject of the science and technology policy in Japan towards realization of regeneration medicine. The Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) supported research promotion by the prompt action in 2007 when establishment of the iPS cell was reported by Shinya Yamanaka. Although the hospitable support of the Japanese government to an iPS cell is continued still now, there are some problems in respect of the support to other stem cell researches, and industrialization of regeneration medicine. In order to win a place in highly competitive area of investigation, MEXT needs to change policy so that funds may be widely supplied also to stem cell researches other than iPS cell research.

  9. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  10. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1983-01-01

    The first phase of a planned multiphase program to develop a Phosphoric is addressed. This report describes the efforts performed that culminated in the: (1) Establishment of the preliminary design requirements and system conceptual design for the nominally rated 375 kW PAFC module and is interfacing power plant systems; (2) Establishment of PAFC component and stack performance, endurance, and design parameter data needed for design verification for power plant application; (3) Improvement of the existing PAFC materials data base and establishment of materials specifications and process procedes for the cell components; and (4) Testing of 122 subscale cell atmospheric test for 110,000 cumulative test hours, 12 subscale cell pressurized tests for 15,000 cumulative test hours, and 12 pressurized stack test for 10,000 cumulative test hours.

  11. Acid fuel cell technologies for vehicular power plants

    SciTech Connect

    Huff, J.R.; Srinivasan, S.

    1982-08-01

    Fuel cells offer a number of significant advantages as vehicular power sources. These include high efficiency, virtually no pollution, and the ability to use nonpetroleum fuel. To date, most fuel cell systems have been designed for either utility or space applications, which have substantially different requirements than vehicular applications. Several fuel cell technologies were assessed specifically for vehicular applications. The results of these assessments were used to calculate the performance and fuel consumption of a fuel cell powered GM X car. Results indicate that the phosphoric acid technology, which has the most development experience, can power a vehicle with reasonable performance, with a range of over 350 miles on 20 gallons of methanol and with high energy efficiency. Solid polymer electrolyte technology, which is second in development experience, can provide performance approaching that of an ICE vehicle and an energy efficiency 149% higher than the ICE-powered version.

  12. The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a Kruppel-like factor 5 (KLF5)-dependent manner.

    PubMed

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A; Tögel, Lars; Dávalos-Salas, Mercedes; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D; Young, Joanne P; Malo, Madhu S; Hodin, Richard A; Arango, Diego; Sieber, Oliver M; Augenlicht, Leonard H; Dhillon, Amardeep S; Weber, Thomas K; Mariadason, John M

    2014-09-05

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect.

  13. The Intestinal Epithelial Cell Differentiation Marker Intestinal Alkaline Phosphatase (ALPi) Is Selectively Induced by Histone Deacetylase Inhibitors (HDACi) in Colon Cancer Cells in a Kruppel-like Factor 5 (KLF5)-dependent Manner*

    PubMed Central

    Shin, Joongho; Carr, Azadeh; Corner, Georgia A.; Tögel, Lars; Dávaos-Salas, Mercedes; Tran, Hoanh; Chueh, Anderly C.; Al-Obaidi, Sheren; Chionh, Fiona; Ahmed, Naseem; Buchanan, Daniel D.; Young, Joanne P.; Malo, Madhu S.; Hodin, Richard A.; Arango, Diego; Sieber, Oliver M.; Augenlicht, Leonard H.; Dhillon, Amardeep S.; Weber, Thomas K.; Mariadason, John M.

    2014-01-01

    The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect. PMID:25037223

  14. Recent advances in microbial single cell genomics technology and applications

    NASA Astrophysics Data System (ADS)

    Stepanauskas, R.

    2015-12-01

    Single cell genomics is increasingly utilized as a powerful tool to decipher the metabolic potential, evolutionary histories and in situ interactions of environmental microorganisms. I will present several new developments of this exciting technology, which improve genomic data recovery from individual cells and allow its integration with cell's phenotypic properties. I will also demonstrate how these new technical capabilities help understanding the biology of the "microbial dark matter" inhabiting marine and terrestrial subsurface environments.

  15. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  16. Capillary Electrophoretic Technologies for Single Cell Metabolomics

    ERIC Educational Resources Information Center

    Lapainis, Theodore E.

    2009-01-01

    Understanding the functioning of the brain is hindered by a lack of knowledge of the full complement of neurotransmitters and neuromodulatory compounds. Single cell measurements aid in the discovery of neurotransmitters used by small subsets of neurons that would be diluted below detection limits or masked by ubiquitous compounds when working with…

  17. Vehicle Technologies and Fuel Cell Technologies Program: Prospective Benefits Assessment Report for Fiscal Year 2016

    SciTech Connect

    Stephens, T. S.; Taylor, C. H.; Moore, J. S.; Ward, J.

    2016-02-23

    Under a diverse set of programs, the Vehicle Technologies and Fuel Cell Technologies offices of DOE’s Office of Energy Efficiency and Renewable Energy invest in research, development, demonstration, and deployment of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies. This report estimates the benefits of successfully developing and deploying these technologies (a “Program Success” case) relative to a base case (the “No Program” case). The Program Success case represents the future with completely successful deployment of Vehicle Technologies Office (VTO) and Fuel Cell Technologies Office (FCTO) technologies. The No Program case represents a future in which there is no contribution after FY 2016 by the VTO or FCTO to these technologies. The benefits of advanced vehicle, hydrogen production, delivery and storage, and fuel cell technologies were estimated on the basis of differences in fuel use, primary energy use, and greenhouse gas (GHG) emissions from light-, medium- and heavy-duty vehicles, including energy and emissions from fuel production, between the base case and the Program Success case. Improvements in fuel economy of various vehicle types, growth in the stock of fuel cell vehicles and other advanced technology vehicles, and decreased GHG intensity of hydrogen production and delivery in the Program Success case over the No Program case were projected to result in savings in petroleum use and GHG emissions. Benefits were disaggregated by individual program technology areas, which included the FCTO program and the VTO subprograms of batteries and electric drives; advanced combustion engines; fuels and lubricants; materials (for reduction in vehicle mass, or “lightweighting”); and, for medium- and heavy-duty vehicles, reduction in rolling and aerodynamic resistance. Projections for the Program Success case indicate that by 2035, the average fuel economy of on-road, light-duty vehicle stock could be 47% to 76

  18. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.

    PubMed

    Fornero, Jeffrey J; Rosenbaum, Miriam; Cotta, Michael A; Angenent, Largus T

    2010-04-01

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance contributes to BES potential losses and, therefore, power losses. Here, we report that adding carbon dioxide (CO(2)) gas to the cathode, which creates a CO(2)/bicarbonate buffered catholyte system, can diminish microbial fuel cell (MFC) pH imbalances in contrast to the CO(2)/carbonate buffered catholyte system by Torres, Lee, and Rittmann [Environ. Sci. Technol. 2008, 42, 8773]. We operated an air-cathode and liquid-cathode MFC side-by-side. For the air-cathode MFC, CO(2) addition resulted in a stable catholyte film pH of 6.61 +/- 0.12 and a 152% increase in steady-state power density. By adding CO(2) to the liquid-cathode system, we sustained a steady catholyte pH (pH = 5.94 +/- 0.02) and a low pH imbalance (DeltapH = 0.65 +/- 0.18) over a 2-week period without external salt buffer addition. By migrating bicarbonate ions from the cathode to the anode (with an anion-exchange membrane), we increased the anolyte pH (DeltapH = 0.39 +/- 0.31), total alkalinity (494 +/- 6 to 582 +/- 6 as mg CaCO(3)/L), and conductivity (1.53 +/- 0.49 to 2.16 +/- 0.03 mS/cm) relative to the feed properties. We also verified with a phosphate-buffered MFC that our reaction rates were limited mainly by the reactor configuration rather than limitations due to the bicarbonate buffer.

  19. Lab-on-a-chip technologies for stem cell analysis.

    PubMed

    Ertl, Peter; Sticker, Drago; Charwat, Verena; Kasper, Cornelia; Lepperdinger, Günter

    2014-05-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of analyzing cell cultures under physiologically relevant conditions. In the present review, we address recent lab-on-a-chip developments for stem cell analysis. We highlight in particular the tangible advantages of microfluidic devices to overcome most of the challenges associated with stem cell identification, expansion and differentiation, with the greatest advantage being that lab-on-a-chip technology allows for the precise regulation of culturing conditions, while simultaneously monitoring relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of stem cell cultures are presented and their potential future applications discussed.

  20. Produced Water Treatment Using Microbial Fuel Cell Technology

    SciTech Connect

    Borole, A. P.; Campbell, R.

    2011-05-20

    ORNL has developed a treatment for produced water using a combination of microbial fuel cells and electrosorption. A collaboration between Campbell Applied Physics and ORNL was initiated to further investigate development of the technology and apply it to treatment of field produced water. The project successfully demonstrated the potential of microbial fuel cells to generate electricity from organics in produced water. A steady voltage was continuously generated for several days using the system developed in this study. In addition to the extraction of electrical energy from the organic contaminants, use of the energy at the representative voltage was demonstrated for salts removal or desalination of the produced water. Thus, the technology has potential to remove organic as well as ionic contaminants with minimal energy input using this technology. This is a novel energy-efficient method to treat produced water. Funding to test the technology at larger scale is being pursued to enable application development.

  1. Printing technologies for biomolecule and cell-based applications.

    PubMed

    Ihalainen, Petri; Määttänen, Anni; Sandler, Niklas

    2015-10-30

    Biomolecules, such as enzymes, proteins and other biomacromolecules (polynucleotides, polypeptides, polysaccharides and DNA) that are immobilized on solid surfaces are relevant to many areas of science and technology. These functionalized surfaces have applications in biosensors, chromatography, diagnostic immunoassays, cell culturing, DNA microarrays and other analytical techniques. Printing technologies offer opportunities in this context. The main interests in printing biomolecules are in immobilizing them on surfaces for sensors and catalysts or for controlled delivery of protein-based drugs. Recently, there have been significant developments in the use of inkjet printing for dispensing of proteins, biomacromolecules and cells. This review discusses the use of roll-to-roll and inkjet printing technologies in manufacturing of biomolecule and cell-based applications.

  2. Development of the fuel cell power generation technology, 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    NEDO arranged results of the research on the development of the fuel cell power generation technology during fiscal 1981 to 1987. During 1981 to 1983, research and development were made on a dispersed generation type fuel cell power generation system using phosphoric acid fuel cells (low temperature/pressure type) and a thermal power plant substitution type fuel cell power generation system (high temperature/pressure type). During 1984 to 1986, in addition to the above, research was made on a total system of phosphoric acid fuel cells, trial operation of a molten carbonate fuel cell power plant (matrix electrolyte method, paste electrolyte method) and a total system. In 1987, as to molten carbonate fuel cells, researches were made on stacks and a peripheral system, support, and a total system. As a comprehensive technology development of phosphoric acid fuel cells, researches were made on a fuel cell power generation system for isolated island use and a fuel cell power generation system for business use.

  3. Army Science Conference 2006 TECHNOLOGY ASSESSMENT OF SOLDIER & MAN PORTABLE FUEL CELL POWER

    DTIC Science & Technology

    2006-11-27

    Research Development Engineering Center (CERDEC) Fuel Cell Technology Team initiated several development contracts to address multiple areas where fuel cell technologies... fuel cell technology focuses specifically on Soldier worn power equipment, mainly from the sub to 100 Watt range. Man Portable Power fuel cell technology

  4. Fuel cell adventures. Dynamics of a technological community in a quasi-market of technological options

    NASA Astrophysics Data System (ADS)

    Schaeffer, G. J.; Uyterlinde, M. A.

    In this paper some insights from a social science perspective in the dynamics of the fuel cell community will be provided. An important concept used in the analysis is that of a `quasi'-market of technological options. The strategic choices of actors for certain technological options can be regarded as analogous to choices of consumers made on a market. A scientometric research approach has been used to investigate the aggregate effects of this and other variations of strategic behaviour. These concepts and analyses are shown to be helpful in answering questions such as why fuel cells are so popular today whereas they have not always been, and why preferences for different types of fuel cells shift over time. At the end of the paper the relevance of these kind of analyses for technology forecasting and management practices is briefly discussed.

  5. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  6. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  7. PAPSS2 Promotes Alkaline Phosphates Activity and Mineralization of Osteoblastic MC3T3-E1 Cells by Crosstalk and Smads Signal Pathways

    PubMed Central

    Wang, Weizhuo; Li, Fang; Wang, Kunzheng; Cheng, Bin; Guo, Xiong

    2012-01-01

    Several studies have indicated that PAPSS2 (3′-phosphoadenosine-5′-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways. PMID:22916269

  8. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    SciTech Connect

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  9. Development of exosome surface display technology in living human cells.

    PubMed

    Stickney, Zachary; Losacco, Joseph; McDevitt, Sophie; Zhang, Zhiwen; Lu, Biao

    2016-03-25

    Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell-cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated the successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.

  10. Advances in tubular solid oxide fuel cell technology

    SciTech Connect

    Singhal, S.C.

    1996-12-31

    The design, materials and fabrication processes for the earlier technology Westinghouse tubular geometry cell have been described in detail previously. In that design, the active cell components were deposited in the form of thin layers on a ceramic porous support tube (PST). The tubular design of these cells and the materials used therein have been validated by successful electrical testing for over 65,000 h (>7 years). In these early technology PST cells, the support tube, although sufficiently porous, presented an inherent impedance to air flow toward air electrode. In order to reduce such impedance to air flow, the wall thickness of the PST was first decreased from the original 2 mm (the thick-wall PST) to 1.2 mm (the thin-wall PST). The calcia-stabilized zirconia support tube has now been completely eliminated and replaced by a doped lanthanum manganite tube in state-of-the-art SOFCs. This doped lanthanum manganite tube is extruded and sintered to about 30 to 35 percent porosity, and serves as the air electrode onto which the other cell components are fabricated in thin layer form. These latest technology cells are designated as air electrode supported (AES) cells.

  11. Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters

    PubMed Central

    Bithi, Swastika S.; Vanapalli, Siva A.

    2017-01-01

    Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells. PMID:28150812

  12. Development of internal reforming carbonate fuel cell stack technology

    SciTech Connect

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  13. Managing Diabetes in Pregnancy Using Cell Phone/Internet Technology

    PubMed Central

    Soules, Karen; Church, Kacy; Shaha, Steve; Burlingame, Janet; Graham, George; Sauvage, Lynnae; Zalud, Ivica

    2015-01-01

    In Brief For pregnant women with diabetes, using cell phone/Internet technology to track and report self-monitoring of blood glucose results improves compliance and satisfaction compared to using the more traditional methods of log books, telephone calls, and voicemail messages. PMID:26487790

  14. Gene targeting in embryonic stem cells, II: conditional technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  15. Commitment to fuel cell technology?. How to interpret carmakers' efforts in this radical technology

    NASA Astrophysics Data System (ADS)

    van den Hoed, Robert

    Since the early 1990s, fuel cell (FC) technology has received a great deal of attention from the automotive industry. Its high efficiency and low emissions have made the technology become one of the dominant technological opportunities to achieve more sustainable mobility. Under pressure of ever-increasing regulatory standards, the automotive industry has spent billions of dollars on researching and developing fuel cell vehicles (FCVs), with the objective of starting commercialization in 5-10 years time. Industry experts evaluate the industry's apparent commitment to FC technology optimistically as well as critically. Optimists see carmakers' efforts as a sign of change in the industry, necessitated by regulation and societal needs of a cleaner environment. Skeptics see carmakers' efforts in FC technology as 'window dressing', investing minimal amounts of resources (with maximum public exposure) while being limitedly committed to commercialize FCVs. This paper makes an attempt to nuance both views by assessing levels of R&D commitments carmakers. Based on an analysis of patenting behavior, this paper concludes that automotive activities go beyond window dressing, but fall short of portraying full commitment to this radical technology.

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  17. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  18. Expression of chondrogenic genes by undifferentiated vs. differentiated human mesenchymal stem cells using array technology.

    PubMed

    Henrionnet, Christel; Roeder, Emilie; Gillet, Romain; Galois, Laurent; Bensoussan, Danièle; Mainard, Didier; Netter, Patrick; Gillet, Pierre; Pinzano, Astrid

    2010-01-01

    This study investigated the gene expression profile of human mesenchymal stem cells seeded in collagen sponge for 28 days in three different mediums: (1) basal medium as control containing ITS alone, (2) ITS+TGF-β1 alone or (3) ITS 1% supplemented sequentially by TGF-β1 (D3-D14) followed by BMP-2 (D15-D28). Differential expression of 84 genes implicated in chondrogenic and osteogenic differentiation of MSCs was analyzed at D28 by real-time RT-PCR array technology. TGF-β1 alone down-regulated two genes, CD36 and cathepsin K. Sixteen genes were significantly up-regulated, notably type 2 and type 10 collagens, COMP and Sox9. The sequential combination of TGF-β1 and BMP-2 produced a similar profile with prominent expression of type 2 collagen and the alkaline phosphatase gene. Interestingly, in this in vitro condition, RUNX2 was not up-regulated, suggesting that the sequential combination of TGF-β1/BMP2 enhances the hypertrophic chondrogenic profile without turning towards the osteoblastic pathway.

  19. AlliedSignal solid oxide fuel cell technology

    SciTech Connect

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K.

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  20. Proceedings of the 1999 Review Conference on Fuel Cell Technology

    SciTech Connect

    None Available

    2000-06-05

    The 1999 Review Conference on Fuel Cell Technology was jointly sponsored by the U.S. Department of Energy, Federal Energy Technology Center (FETC), the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI). It was held August 3 to 5 in Chicago, Illinois. The goal of this conference was to provide a forum for reviewing fuel cell research and development (R&D) programs, assist in strategic R&D planning, promote awareness of sponsor activities, and enhance interactions between manufacturers, researchers, and stakeholders. This conference was attended by over 250 representatives from industry, academia, national laboratories, gas and electric utilities, DOE, and other Government agencies. The conference agenda included a keynote session, five presentation sessions, a poster presentation reception, and three breakout sessions. The presentation session topics were DOD Fuel Cell Applications, Low-Temperature Fuel Cell Manufacturers, Low-Temperature Component Research, High-Temperature Fuel Cell Manufacturers, and High-Temperature Component Research; the breakout session topics were Future R&D Directions for Low-Temperature Fuel Cells, Future R&D Directions for High-Temperature Fuel Cells, and a plenary summary session. All sessions were well attended.

  1. Advances in Materials and System Technology for Portable Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.

    2007-01-01

    This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.

  2. Forward Technology Solar Cell Experiment First On-Orbit Data

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Garner, J. C.; Lam, S. N.; Vazquez, J. A.; Braun, W. R.; Ruth, R. E.; Warner, J. H.; Lorentzen, J. R.; Messenger, S. R.; Bruninga, R.; Jenkins, P. P.; Flatico, J. M.; Wilt, D. M.; Piszczor, M. F.; Greer, L. C.; Krasowski, M. J.

    2007-01-01

    This paper presents first on orbit measured data from the Forward Technology Solar Cell Experiment (FTSCE). FTSCE is a space experiment housed within the 5th Materials on the International Space Station Experiment (MISSE-5). MISSE-5 was launched aboard the Shuttle return to flight mission (STS-114) on July 26, 2005 and deployed on the exterior of the International Space Station (ISS). The experiment will remain in orbit for nominally one year, after which it will be returned to Earth for post-flight testing and analysis. While on orbit, the experiment is designed to measure a 36 point current vs. voltage (IV) curve on each of the experimental solar cells, and the data is continuously telemetered to Earth. The experiment also measures the solar cell temperature and the orientation of the solar cells to the sun. A range of solar cell technologies are included in the experiment including state-of-the-art triple junction InGaP/GaAs/Ge solar cells from several vendors, thin film amorphous Si and CuIn(Ga)Se2 cells, and next-generation technologies like single-junction GaAs cells grown on Si wafers and metamorphic InGaP/InGaAs/Ge triple-junction cells. In addition to FTSCE, MISSE-5 also contains a Thin-Film Materials experiment. This is a passive experiment that will provide data on the effect of the space environment on more than 200 different materials. FTSCE was initially conceived in response to various on-orbit and ground test anomalies associated with space power systems. The Department of Defense (DoD) required a method of rapidly obtaining on orbit validation data for new space solar cell technologies, and NRL was tasked to devise an experiment to meet this requirement. Rapid access to space was provided by the MISSE Program which is a NASA Langley Research Center program. MISSE-5 is a completely self-contained experiment system with its own power generation and storage system and communications system. The communications system, referred to as PCSat, transmits

  3. Long life Regenerative Fuel Cell technology development plan

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.

    1992-01-01

    This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.

  4. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies

    PubMed Central

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field. PMID:27994667

  5. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies.

    PubMed

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.

  6. Novel quaternary ammonium microblock poly (p-phenylene-co-aryl ether ketone)s as anion exchange membranes for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Dong, Xue; Xue, Boxin; Qian, Huidong; Zheng, Jifu; Li, Shenghai; Zhang, Suobo

    2017-02-01

    Using cation compounds as raw materials, three quaternized microblock poly(p-phenylene-co-aryl ether ketone)s (s-, m-, and l-QPP-co-PAEK) were synthesized using a nickel (0)-catalyzed coupling reaction. Hydrophilic and hydrophobic moieties were affixed using cationic quaternary ammonium (QA) groups attached to poly(p-phenylene) by a three-carbon interstitial spacer and nonionic dichloride monomers of various lengths, respectively. The morphology, water uptake, swelling ratio, mechanical properties, thermal stability, hydroxide conductivity and alkaline stability of these new membranes were investigated. Experimental results indicated that the membrane with the longest hydrophobic microblock exhibited high hydroxide conductivity (37.6 mS cm-1 at 80 °C) resulting from the aggregation of ionic clusters observed using TEM. The copolymers with longer hydrophobic nonionic segments exhibited improved alkaline stability, suggesting that the hydrophobic chain shields the QA groups and that the polymer chains pack in a manner that restricts rotation. Controlling the distribution of QA groups in poly(p-phenylene) moieties and tuning the block length of nonionic segments are demonstrated to be effective methods for improving the hydroxide conductivity and alkaline stability of anion exchange membranes.

  7. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  8. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  9. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  10. Using microelectronics technology to communicate with living cells.

    PubMed

    Heer, F; Hafizovic, S; Ugniwenko, T; Frey, U; Roscic, B; Blau, A; Hierlemann, A

    2007-01-01

    A monolithic microsystem in CMOS (complementary metal oxide semiconductor) technology is presented that provides bidirectional communication (stimulation and recording) between standard microelectronics and cultured electrogenic cells. The 128-electrode chip can be directly used as a substrate for cell culturing. It features circuitry units for stimulation and immediate cell signal treatment near each electrode. In addition, it provides on-chip A/D conversion as well as a digital interface so that a fast interaction is possible at good signal quality. Spontaneous and stimulated electrical activity recordings with neuronal and cardiac cell cultures will be presented. The system can be used to, e.g., study the behavior and development of neural networks in vitro, to reveal the effects of neuronal plasticity and to study network activity in response to pharmacological treatments.

  11. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  12. Electric utility acid fuel cell stack technology advancement

    NASA Technical Reports Server (NTRS)

    Congdon, J. V.; Goller, G. J.; Greising, G. J.; Obrien, J. J.; Randall, S. A.; Sandelli, G. J.; Breault, R. D.; Austin, G. W.; Bopse, S.; Coykendall, R. D.

    1984-01-01

    The principal effort under this program was directed at the fuel cell stack technology required to accomplish the initial feasibility demonstrations of increased cell stack operating pressures and temperatures, increased cell active area, incorporation of the ribbed substrate cell configuration at the bove conditions, and the introduction of higher performance electrocatalysts. The program results were successful with the primary accomplishments being: (1) fabrication of 10 sq ft ribbed substrate, cell components including higher performing electrocatalysts; (2) assembly of a 10 sq ft, 30-cell short stack; and (3) initial test of this stack at 120 psia and 405 F. These accomplishments demonstrate the feasibility of fabricating and handling large area cells using materials and processes that are oriented to low cost manufacture. An additional accomplishment under the program was the testing of two 3.7 sq ft short stacks at 12 psia/405 F to 5400 and 4500 hours respectively. These tests demonstrate the durability of the components and the cell stack configuration to a nominal 5000 hours at the higher pressure and temperature condition planned for the next electric utility power plant.

  13. Use of urchin-like NixCo3-xO4 hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells

    NASA Astrophysics Data System (ADS)

    Manivasakan, Palanisamy; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-01

    Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X-ray diffraction patterns showed that the NixCo3-xO4 crystallized in a cubic spinel phase. The electrochemical performance of the catalysts was investigated using a conventional cyclic voltammetry technique. The electrocatalytic behaviour of the NixCo3-xO4 hierarchical nanostructures was compared with the behaviour of Co3O4 and Co0.33Ni0.67O. The synergistic behaviour of the Ni in the NixCo3-xO4 nanostructures was established with respect to the Ni content. NixCo3-xO4 hierarchical nanostructures show a better catalytic behaviour than Co3O4 and Co0.33Ni0.67O. Although the NixCo3-xO4 compositions all showed good catalytic behaviour, Ni1Co2O4 was identified as a superior bifunctional electrocatalyst for the oxygen reduction and methanol oxidation reactions in alkaline media. The effect of the Ni content on the electrocatalytic properties of the NixCo3-xO4 hierarchical nanostructures was clearly shown. The use of these electrocatalysts based on non-precious metals could have a commercial impact on the development of non-platinum electrocatalysts for application in AEM alkaline alcohol fuel cells.Bifunctional electrocatalysts based on non-precious metals were developed for the dioxygen reduction and methanol oxidation reactions. These electrocatalysts can be considered as candidate cathode and anode materials for anion-exchange membrane (AEM) alkaline alcohol fuel cells. A series of Ni-doped cobalt oxide (NixCo3-xO4) hierarchical nanostructures composed of one-dimensional nanorods was prepared by an inexpensive hydrothermal method. X

  14. Recent advances in solid polymer electrolyte fuel cell technology

    SciTech Connect

    Ticianelli, E.A.; Srinivasan, S.; Gonzalez, E.R.

    1988-01-01

    With methods used to advance solid polymer electrolyte fuel cell technology, we are close to obtaining the goal of 1 A/cm/sup 2/ at 0.7. Higher power densities have been reported (2 A/cm/sup 2/ at 0.5 V) but only with high catalyst loading electrodes (2 mg/cm/sup 2/ and 4 mg/cm/sup 2/ at anode and cathode, respectively) and using a Dow membrane with a better conductivity and water retention characteristics. Work is in progress to ascertain performances of cells with Dow membrane impregnated electrodes and Dow membrane electrolytes. 5 refs., 6 figs.

  15. Solar cells: Operating principles, technology, and system applications

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    Solar cell theory, materials, fabrication, design, modules, and systems are discussed. The solar source of light energy is described and quantified, along with a review of semiconductor properties and the generation, recombination, and the basic equations of photovoltaic device physics. Particular attention is given to p-n junction diodes, including efficiency limits, losses, and measurements. Si solar cell technology is described for the production of solar-quality crystals and wafers, and design, improvements, and device structures are examined. Consideration is given to alternate semiconductor materials and applications in concentrating systems, storage, and the design and construction of stand-alone systems and systems for residential and centralized power generation.

  16. [Progress and potential applications of induced pluripotent stem cell technology].

    PubMed

    Wu, Cui-Ling; Zhang, Yu-Ming

    2014-08-01

    Differentiated somatic cells can be reprogrammed to a pluripotent state through ectopic expression of specific transcription factors. These reprogrammed cells, which were designated as induced pluripotent stem (iPS) cells, are detected to exhibit unlimited self-renewal capacity and pluripotency. This breakthrough in stem cell research provides a powerful and novel tool for the studies on pathogenesis of diseases, reprogramming mechanism and development of new therapies. For this reason, the iPSC technology has currently become one of the hot topics in stem cells research. Recently, major progress in this field has been achieved: initially, researchers succeeded in inducing the reprogramming of mouse fibroblasts by retroviral transduction of four specific transcription factors; in succession, the accelerated development of iPSC technology by employing non-integrating viral vectors, non-viral vectors or removing the introduced foreign genes via gene knock-out has ensured the yields of much safer iPSC; meanwhile, some researches discovered the proofs that a number of micro molecular compounds were potent in accelerating the cellular reprogramming. For a prospect, iPSC are highly promising for regenerative medicine, disease modeling and drug screening. In this review, the recent progress in the generation of iPSC, prospects of their possible clinical applications and problems in the iPSC research are summarized and discussed.

  17. Human embryonic stem cell technologies and drug discovery.

    PubMed

    Jensen, Janne; Hyllner, Johan; Björquist, Petter

    2009-06-01

    Development of new drugs is costly and takes huge resources into consideration. The big pharmaceutical companies are currently facing increasing developmental costs and a lower success-rate of bringing new compounds to the market. Therefore, it is now of outmost importance that the drug-hunting companies minimize late attritions due to sub-optimal pharmacokinetic properties or unexpected toxicity when entering the clinical programs. To achieve this, a strong need to test new candidate drugs in assays of high human relevance in vitro as early as possible has been identified. The traditionally used cell systems are however remarkably limited in this sense, and new improved technologies are of greatest importance. The human embryonic stem cells (hESC) is one of the most powerful cell types known. They have not only the possibility to divide indefinitely; these cells can also differentiate into all mature cell types of the human body. This makes them potentially very valuable for pharmaceutical development, spanning from use as tools in early target studies, DMPK or safety assessment, as screening models to find new chemical entities modulating adult stem cell fate, or as the direct use in cell therapies. This review illustrates the use of hESC in the drug discovery process, today, as well as in a future perspective. This will specifically be exemplified with the most important cell type for pharmaceutical development-the hepatocyte. We discuss how hESC-derived hepatocyte-like cells could improve this process, and how these cells should be cultured if optimized functionality and usefulness should be achieved. J. Cell. Physiol. 219: 513-519, 2009. (c) 2009 Wiley-Liss, Inc.

  18. Development of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony

    2011-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.

  19. iPS cell technology: Future impact on renal care.

    PubMed

    Freedman, Benjamin S; Steinman, Theodore I

    2015-08-01

    iPS cells from patients with kidney disease are a new tool with the potential to impact the future of renal care. They can be used in the laboratory to model the pathophysiology of human kidney disease, and have the potential to establish a new area of immunocompatible, on-demand renal transplantation. Critical challenges remain before the full potential of these cells can be accurately assessed. We need to understand whether the derived cell types are mature and can replace kidney function(s). To what extent can iPS cells model kidney disease in the simplified environment of cell culture? Ultimately, successful integration of these cells as autograft therapies will require demonstration of safety and efficacy equal or superior to the existing gold standards of kidney allograft transplantation and dialysis. Specific educational and infrastructural changes will be necessary if these specialized technologies are to be adopted as an accepted modalities in clinical medicine. Given these barriers, the first fruit of these labors is likely to be improved understanding of pathophysiological pathways in human IPS cell disease models, followed by drug discovery and testing. These experiments will lead naturally to improvements in differentiation and experiments in animal models testing function. The time course to achieve the desired goals remains unknown, but the ultimate hope is that new, more effective and less expensive modalities for renal replacement therapy will occur in the foreseeable future. A new standard of care for patients is anticipated that addresses limitations of currently available treatments.

  20. Single-cell technologies are revolutionizing the approach to rare cells.

    PubMed

    Proserpio, Valentina; Lönnberg, Tapio

    2016-03-01

    In the last lustrum single-cell techniques such as single-cell quantitative PCR, RNA and DNA sequencing, and the state-of-the-art cytometry by time of flight (CyTOF) mass cytometer have allowed a detailed analysis of the sub-composition of different organs from the bone marrow hematopoietic compartment to the brain. These fine-grained analyses have highlighted the great heterogeneity within each cell compartment revealing previously unknown subpopulations of cells. In this review, we analyze how this fast technological evolution has improved our understanding of the biological processes with a particular focus on rare cells of the immune system.

  1. High-resolution kinetics of transferrin acidification in BALB/c 3T3 cells: exposure to pH 6 followed by temperature-sensitive alkalinization during recycling.

    PubMed

    Sipe, D M; Murphy, R F

    1987-10-01

    The kinetics of acidification of diferric human transferrin in BALB/c mouse 3T3 cells were determined by flow cytometry using a modification of the fluorescein-rhodamine fluorescence ratio technique. For cells labeled at 0 degrees C and warmed to 37 degrees C, the minimum pH observed was 6.1 +/- 0.2, occurring 5 min after warmup. This step was followed by a slower alkalinization to the pH of the external medium, occurring with a half-time of 5 min. Warmup to 24 degrees C or 17 degrees C resulted in slowing of the time of onset of acidification such that the minimum pH was 6.3 +/- 0.2, attained 15 and 25 min after warmup, respectively; the alkalinization step was completely blocked. The limited acidification observed for transferrin corresponds to the initial phase of acidification normally observed for other (nonrecycled) ligands. Since transferrin is not further acidified, the results confirm the existence of two phases of acidification during endocytosis. Measurements of transferrin dissociation at neutral pH after exposure to mildly acidic pH support the conclusion that the transferrin cycle may be completed without exposure of transferrin to a pH below 6. The mildly acidic pH of the endocytic compartments involved in recycling may play a role in regulating enzymatic processing of endocytosed material.

  2. Allogeneic Cell Therapy Bioprocess Economics and Optimization: Single-Use Cell Expansion Technologies

    PubMed Central

    Simaria, Ana S; Hassan, Sally; Varadaraju, Hemanthram; Rowley, Jon; Warren, Kim; Vanek, Philip; Farid, Suzanne S

    2014-01-01

    For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot-sizes capable of meeting commercial demands of up to 109 cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost-effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier-based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost-effective and where microcarrier-based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier-based systems. These data are presented using a technology S-curve as well as windows of operation to identify the combination of cell productivities and scale of single-use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision-making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. Biotechnol. Bioeng. 2014;111: 69–83. © 2013 Wiley Periodicals, Inc. PMID:23893544

  3. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  4. Nanoengineering neural stem cells on biomimetic substrates using magnetofection technology.

    PubMed

    Adams, Christopher F; Dickson, Andrew W; Kuiper, Jan-Herman; Chari, Divya M

    2016-10-20

    Tissue engineering studies are witnessing a major paradigm shift to cell culture on biomimetic materials that replicate native tissue features from which the cells are derived. Few studies have been performed in this regard for neural cells, particularly in nanomedicine. For example, platforms such as magnetic nanoparticles (MNPs) have proven efficient as multifunctional tools for cell tracking and genetic engineering of neural transplant populations. However, as far as we are aware, all current studies have been conducted using neural cells propagated on non-neuromimetic substrates that fail to represent the mechano-elastic properties of brain and spinal cord microenvironments. Accordingly, it can be predicted that such data is of less translational and physiological relevance than that derived from cells grown in neuromimetic environments. Therefore, we have performed the first test of magnetofection technology (enhancing MNP delivery using applied magnetic fields with significant potential for therapeutic application) and its utility in genetically engineering neural stem cells (NSCs; a population of high clinical relevance) propagated in biomimetic hydrogels. We demonstrate magnetic field application safely enhances MNP mediated transfection of NSCs grown as 3D spheroid structures in collagen which more closely replicates the intrinsic mechanical and structural properties of neural tissue than routinely used hard substrates. Further, as it is well known that MNP uptake is mediated by endocytosis we also investigated NSC membrane activity grown on both soft and hard substrates. Using high resolution scanning electron microscopy we were able to prove that NSCs display lower levels of membrane activity on soft substrates compared to hard, a finding which could have particular impact on MNP mediated engineering strategies of cells propagated in physiologically relevant systems.

  5. Induced pluripotent stem cell technology and aquatic animal species.

    PubMed

    Temkin, Alexis M; Spyropoulos, Demetri D

    2014-06-01

    Aquatic animal species are the overall leaders in the scientific investigation of tough but important global health issues, including environmental toxicants and climate change. Historically, aquatic animal species also stand at the forefront of experimental biology, embryology and stem cell research. Over the past decade, intensive and high-powered investigations principally involving mouse and human cells have brought the generation and study of induced pluripotent stem cells (iPSCs) to a level that facilitates widespread use in a spectrum of species. A review of key features of these investigations is presented here as a primer for the use of iPSC technology to enhance ongoing aquatic animal species studies. iPSC and other cutting edge technologies create the potential to study individuals from "the wild" closer to the level of investigation applied to sophisticated inbred mouse models. A wide variety of surveys and hypothesis-driven investigations can be envisioned using this new capability, including comparisons of organism-specific development and exposure response and the testing of fundamental dogmas established using inbred mice. However, with these new capabilities, also come new criteria for rigorous baseline assessments and testing. Both the methods for inducing pluripotency and the source material can negatively impact iPSC quality and bourgeoning applications. Therefore, more rigorous strategies not required for inbred mouse models will have to be implemented to approach global health issues using individuals from "the wild" for aquatic animal species.

  6. Genome-editing Technologies for Gene and Cell Therapy.

    PubMed

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  7. Genome-editing Technologies for Gene and Cell Therapy

    PubMed Central

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  8. iPS cell technologies and cartilage regeneration.

    PubMed

    Tsumaki, Noriyuki; Okada, Minoru; Yamashita, Akihiro

    2015-01-01

    Articular cartilage covers the ends of bone and provides shock absorption and lubrication to the diarthrodial joints. Cartilage has a limited capacity for repair when injured, and there is a need for cell sources for chondrocytes that can be transplanted as part of a regenerative medicine approach. Induced pluripotent stem cells (iPSCs) have pluripotency and the potential for self-renewal similar to embryonic stem cells (ESCs), but are not associated with the ethical issues that have plagued ESCs. Recent progress has made it possible to generate integration-free iPSCs and to differentiate iPSCs toward chondrocytes. An iPSC library prepared from donors homozygous for common HLA types is being developed, and will be able to provide allogeneic iPSC-derived chondrocytes at low cost that can cover the majority of the population. As an alternative approach, chondrocytic cells can be induced directly from dermal fibroblasts without going through the iPSC stage. Another important application of the iPSC technology is modeling cartilage diseases, such as skeletal dysplasia. Chondrogenically differentiated iPSCs generated from patients would recapitulate the pathology, and may serve as a useful platform both for exploring the disease mechanisms and for drug screening. This article is part of a Special Issue entitled "Stem Cells and Bone".

  9. Status and prospects of fuel cell technology in Europe

    SciTech Connect

    Van Dijkum

    1998-07-01

    Fuel Cells attract a lot of press attention today and an some example of a recent press heading is: ``Orders for Onsi's fuel cells hit $111 million''. The principle of fuel cell technology is explained and examples of realized applications given. In short: fuel cells can be used everywhere where power (and heat) is needed. Regarding the status of fuel cells, Europe is way behind Japan and the US. The 15 PAFC-200 kWe units in operation in Europe (worldwide {gt} 90 units) produced 46,796 MWhe during 296,704 cumulative operating hours with an availability % over 70.00. The world record on continuous operation is held by Japan with 9,478 hours reached at 14th September 1996 and two PAFC-units passed their 40,000 hours of cumulative operation (US and Japan). In Japan, market enabling support is continued with subsidies of one third of the costs for 7 PAFC-units. In the Netherlands, Energy Distribution Companies test their tubular 100 kWe SOFC-unit. During 1,335 hours of continuous operation, the unit produced 165 MWhe in total at 3rd March. EnergieNed, CLC/Ansaldo and Gastec evaluated changes for co-generation and small power production with packaged fuel cell power plants in EU and EFTA countries. In general the authors concluded that implementation of fuel cell power plants in all EU and EFTA countries will be probably possible with today' s technical regulations. On might wonder: What has fuel cell technology to offer in one of the most efficient and low-priced gas economies in Europe, the Netherlands. An example of efficient energy use are greenhouses with artificial lighting and CO{sub 2}-fertilization and energy (heat) storage device. Applying relatively favorable depreciation periods and (utility) interest rate, a PAFC 200 kWe generates just a positive return (IRR = 1.7 % after taxes and subsidies) when part of a gas-engine capacity is replaced.

  10. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  11. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  12. Evolving technology: creating kidney organoids from stem cells

    PubMed Central

    Drummond, Bridgette E.; Wingert, Rebecca A.

    2016-01-01

    The kidney is a complex organ whose excretory and regulatory functions are vital for maintaining homeostasis. Previous techniques used to study the kidney, including various animal models and 2D cell culture systems to investigate the mechanisms of renal development and regeneration have many benefits but also possess inherent shortcomings. Some of those limitations can be addressed using the emerging technology of 3D organoids. An organoid is a 3D cluster of differentiated cells that are developed ex vivo by addition of various growth factors that result in a miniature organ containing structures present in the tissue of origin. Here, we discuss renal organoids, their development, and how they can be employed to further understand kidney development and disease.

  13. Lithium-ion cell technology demonstration for future NASA applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Chin, K. B.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Dalton, P. J.

    2002-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to their attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including planetary orbiters, rovers and landers. For example, under the Mars Surveyor Program MSP 01 lithium-ion batteries were developed by Lithion (each being 28 V, 25 Ah, 8-cells. and 9 kg) and fully qualified prior to mission cancellation. In addition to the requirement of being able to supply at least 90 cycles on the surface of Mars, the battery demonstrated operational capability (both charge and discharge) over a large temperature range (-2O'C to +4OoC), with tolerance to non-operational excursions to -30nd 50Currently, JPL is implementing lithium-ion technology on the 2003 Mars Exploration Rover (MER), which will be coupled with a solar array. This mission has similar performance requirements to that of the 2001 Lander in that high energy density and a wide operating temperature range are necessitated. In addition to planetary rover and lander applications, we are also engaged in determining the viability of using lithium-ion technology for orbiter applications that require exceptionally long life (>20,000 cydes at partial depth of discharge). To assess the viabili of lithium-ion cells for these applications, a number of performance characterization tests have been performed (at the cell and battery level) on state-of-art prototype lihium- ion cells, induding: assessing the cycle life performance (at varying DODs), life characteristics at extreme temperatures (< -10nd >+4OoC), rate capability as a function of temperature (-30' to 4OoC), pulse capability, self-discharge and storage characteristics, as well as, mission profile capability. This paper will describe the current and

  14. Comparison of radial immunodiffusion and alkaline cellulose acetate electrophoresis for quantitating elevated levels of fetal hemoglobin (HbF): application to evaluating patients with sickle cell disease treated with hydroxyurea.

    PubMed

    Schultz, J C

    1999-01-01

    Radial immunodiffusion (RID), alkaline cellulose acetate electrophoresis, and high-performance liquid chromatography (HPLC) were compared for quantitating the elevated (> 10%) level of fetal hemoglobin (HbF) found in the red blood cells of sickle cell disease patients undergoing treatment with hydroxyurea. HPLC- and electrophoresis-determined values were comparable. The RID-determined values were higher, in many cases twofold higher. False high HbF values would be misleading in assessing the effectiveness of hydroxyurea therapy in sickle cell disease patients. We subsequently initiated an examination of the variation in HbF values due to the use of different HbF radial immunodiffusion QUIPlates and different positions within a single plate in an attempt to determine the cause of these discrepancies. Within-run precision studies indicated that significantly different size precipitin rings were obtained depending upon which area of the plate the hemolysate containing antigen (HbF) was applied. A common feature associated with poor precision plates was a marked difference in degree of coloration of gel throughout the plate. Spuriously high HF concentrations were obtained with antigen (HbF) placed in wells located in the lighter colored gel area while antigen placed in wells in the darker colored area of the agarose gel bed were more in agreement with the electrophoretically determined HbF concentrations. The variation in HbF values was significantly greater in the diluted (HbF QUIPlate Diluent) samples than in the neat samples even on plates of uniform gel coloration. As a result of this study, we will continue to monitor high HbF levels by densitometry following alkaline cellulose acetate electrophoresis.

  15. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  16. Design Principles for Nickel/Hydrogen Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Manzo, Michelle A.; Gonzalez-Sanabria, Olga D.

    1987-01-01

    Individual-pressure-vessel (IPV) nickel/hydrogen cells and bipolar batteries developed for use as energy-storage subsystems for satelite applications. Design principles applied draw upon extensive background in separator technology, alkaline-fuel-cell technology and several alkaline-cell technology areas. Principals are rather straightforward applications of capillary-force formalisms, coupled with slowly developing data base resulting from careful post-test analyses. Based on preconceived assumptions relative to how devices work and how to be designed so they display longer cycle lives at deep discharge.

  17. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    SciTech Connect

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  18. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  19. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  20. Human cell chips: adapting DNA microarray spotting technology to cell-based imaging assays.

    PubMed

    Hart, Traver; Zhao, Alice; Garg, Ankit; Bolusani, Swetha; Marcotte, Edward M

    2009-10-28

    Here we describe human spotted cell chips, a technology for determining cellular state across arrays of cells subjected to chemical or genetic perturbation. Cells are grown and treated under standard tissue culture conditions before being fixed and printed onto replicate glass slides, effectively decoupling the experimental conditions from the assay technique. Each slide is then probed using immunofluorescence or other optical reporter and assayed by automated microscopy. We show potential applications of the cell chip by assaying HeLa and A549 samples for changes in target protein abundance (of the dsRNA-activated protein kinase PKR), subcellular localization (nuclear translocation of NFkappaB) and activation state (phosphorylation of STAT1 and of the p38 and JNK stress kinases) in response to treatment by several chemical effectors (anisomycin, TNFalpha, and interferon), and we demonstrate scalability by printing a chip with approximately 4,700 discrete samples of HeLa cells. Coupling this technology to high-throughput methods for culturing and treating cell lines could enable researchers to examine the impact of exogenous effectors on the same population of experimentally treated cells across multiple reporter targets potentially representing a variety of molecular systems, thus producing a highly multiplexed dataset with minimized experimental variance and at reduced reagent cost compared to alternative techniques. The ability to prepare and store chips also allows researchers to follow up on observations gleaned from initial screens with maximal repeatability.

  1. Stem Cell Technology in Cardiac Regeneration: A Pluripotent Stem Cell Promise.

    PubMed

    Duelen, Robin; Sampaolesi, Maurilio

    2017-01-27

    Despite advances in cardiovascular biology and medical therapy, heart disorders are the leading cause of death worldwide. Cell-based regenerative therapies become a promising treatment for patients affected by heart failure, but also underline the need for reproducible results in preclinical and clinical studies for safety and efficacy. Enthusiasm has been tempered by poor engraftment, survival and differentiation of the injected adult stem cells. The crucial challenge is identification and selection of the most suitable stem cell type for cardiac regenerative medicine. Human pluripotent stem cells (PSCs) have emerged as attractive cell source to obtain cardiomyocytes (CMs), with potential applications, including drug discovery and toxicity screening, disease modelling and innovative cell therapies. Lessons from embryology offered important insights into the development of stem cell-derived CMs. However, the generation of a CM population, uniform in cardiac subtype, adult maturation and functional properties, is highly recommended. Moreover, hurdles regarding tumorigenesis, graft cell death, immune rejection and arrhythmogenesis need to be overcome in clinical practice. Here we highlight the recent progression in PSC technologies for the regeneration of injured heart. We review novel strategies that might overcome current obstacles in heart regenerative medicine, aiming at improving cell survival and functional integration after cell transplantation.

  2. Separator for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Hoyt, H. W.; Pfluger, H. L.

    1968-01-01

    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane.

  3. Solid Oxide Fuel Cell Technology Stationary Power Application Project

    SciTech Connect

    Joseph Pierre

    2009-03-05

    The objectives of this program were to: (1) Develop a reliable, cost-effective, and production-friendly technique to apply the power-enhancing layer at the interface of the air electrode and electrolyte of the Siemens SOFC; (2) Design, build, install, and operate in the field two 5 kWe SOFC systems fabricated with the state-of-the-art cylindrical, tubular cell and bundle technology and incorporating advanced module design features. Siemens successfully demonstrated, first in a number of single cell tests and subsequently in a 48-cell bundle test, a significant power enhancement by employing a power-enhancing composite interlayer at the interface between the air electrode and electrolyte. While successful from a cell power enhancement perspective, the interlayer application process was not suitable for mass manufacturing. The application process was of inconsistent quality, labor intensive, and did not have an acceptable yield. This program evaluated the technical feasibility of four interlayer application techniques. The candidate techniques were selected based on their potential to achieve the technical requirements of the interlayer, to minimize costs (both labor and material), and suitably for large-scale manufacturing. Preliminary screening, utilizing lessons learned in manufacturing tubular cells, narrowed the candidate processes to two, ink-roller coating (IRC) and dip coating (DC). Prototype fixtures were successfully built and utilized to further evaluate the two candidate processes for applying the interlayer to the high power density Delta8 cell geometry. The electrical performance of interlayer cells manufactured via the candidate processes was validated. Dip coating was eventually selected as the application technique of choice for applying the interlayer to the high power Delta8 cell. The technical readiness of the DC process and product quality was successfully and repeatedly demonstrated, and its throughput and cost are amenable to large scale

  4. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  5. Environmental impacts of energy facilities: fuel cell technology compared with coal and conventional gas technology

    NASA Astrophysics Data System (ADS)

    Seip, Knut L.; Thorstensen, Bernt; Wang, Hagbarth

    We compare the environmental side effects of power plants based on fuel cell technology with the side effects of conventional electric power plants based on coal and natural gas. The environmental impact of a solid oxide fuel cell (SOFC) plant is very much less than that of a coal-fired plant (a factor of {1}/{300} for air pollution and a factor of {1}/{5} for water pollution). Compared with a conventional gas plant, impact is reduced by between 50 and 98%. Damage to cultural monuments and buildings is negligible from a fuel cell plant. Socioeconomic negative impacts are reduced by about 30% relative to conventional gas plants (aesthetics and noise) whereas employment is unaltered. Impact on health and safety is greatly reduced compared with that from coal-fired plants and is about 70% of that from conventional gas plants. Preliminary results suggest that society's willingness to pay (WTP) for clean air, and thereby better health, matches the cost of installing emission-reducing equipment on conventional power plants. There is probably an additional WTP for other benefits (e.g., decreased risk of global warming). Thus, the utility of very small emissions, lower CO 2 discharges, and other benefits from SOFC generators may compensate for the increased cost incurred in producing electricity by SOFC generators.

  6. Application of cell sheet technology to bone marrow stromal cell transplantation for rat brain infarct.

    PubMed

    Ito, Masaki; Shichinohe, Hideo; Houkin, Kiyohiro; Kuroda, Satoshi

    2017-02-01

    Bone marrow stromal cells (BMSC) transplantation enhances functional recovery after cerebral infarct, but the optimal delivery route is undetermined. This study was aimed to assess whether a novel cell-sheet technology non-invasively serves therapeutic benefits to ischemic stroke. First, the monolayered cell sheet was engineered by culturing rat BMSCs on a temperature-responsive dish. The cell sheet was analysed histologically and then transplanted onto the ipsilateral neocortex of rats subjected to permanent middle cerebral artery occlusion at 7 days after the insult. Their behaviours and histology were compared with those in the animals treated with direct injection of BMSCs or vehicle over 4 weeks post-transplantation. The cell sheet was 27.9 ± 8.0 μm thick and was composed of 9.8 ± 2.4 × 10(5) cells. Cell sheet transplantation significantly improved motor function when compared with the vehicle-injected animals. Histological analysis revealed that the BMSCs were densely distributed to the neocortex adjacent to the cerebral infarct and expressed neuronal phenotype in the cell sheet-transplanted animals. These findings were almost equal to those for the animals treated with direct BMSC injection. The attachment of the BMSC sheet to the brain surface did not induce reactive astrocytes in the adjacent neocortex, although direct injection of BMSCs profoundly induced reactive astrocytes around the injection site. These findings suggest that the BMSCs in cell sheets preserve their biological capacity of migration and neural differentiation. Cell-sheet technology may enhance functional recovery after ischaemic stroke, using a less invasive method. Copyright © 2014 John Wiley & Sons, Ltd.

  7. An update of the polymer-augmented alkaline flood at the Isenhour unit, Sublette County, Wyoming

    SciTech Connect

    Doll, T.E.

    1988-05-01

    An Almy sand polymer-augmented alkaline flood at the Isenhour Unit, Sublette County, WY, is reviewed. This paper updates process technology, including the use of clay stabilization, sweep improvement, soda ash alkaline agent (to reduce interfacial tension (IFT) and mobilize residual oil), and anionic-polymer-blend mobility buffer. Oil production has been increasing at 20%/yr since the process start.

  8. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  9. Photovoltaic cell and array technology development for future unique NASA missions

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; Nesmith, B.; Gaddy, E.; Marvin, D.; Kazmerski, L.

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  10. Status of AlGaAs/GaAs heteroface solar cell technology

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.; Anspaugh, B.

    1982-01-01

    This paper reviews the various GaAs solar cell programs that have been and are now ongoing which are directed at bringing this particular technology to fruition. The discussion emphasizes space application - both concentrator and flat plate. The rationale for pursuing GaAs cell technology is given along with the different cell types (concentrator, flat plate), approaches to fabricate the devices, the hybrid cells under investigation and approaches to reduce cell mass are summarized. The outlook for the use of GaAs cell technology is given within the context for space application.

  11. Secondary alkaline batteries

    NASA Astrophysics Data System (ADS)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  12. Single-cell sequencing-based technologies will revolutionize whole-organism science.

    PubMed

    Shapiro, Ehud; Biezuner, Tamir; Linnarsson, Sten

    2013-09-01

    The unabated progress in next-generation sequencing technologies is fostering a wave of new genomics, epigenomics, transcriptomics and proteomics technologies. These sequencing-based technologies are increasingly being targeted to individual cells, which will allow many new and longstanding questions to be addressed. For example, single-cell genomics will help to uncover cell lineage relationships; single-cell transcriptomics will supplant the coarse notion of marker-based cell types; and single-cell epigenomics and proteomics will allow the functional states of individual cells to be analysed. These technologies will become integrated within a decade or so, enabling high-throughput, multi-dimensional analyses of individual cells that will produce detailed knowledge of the cell lineage trees of higher organisms, including humans. Such studies will have important implications for both basic biological research and medicine.

  13. Design considerations for a 10-KW integrated hydrogen-oxygen regenerative fuel cell system

    SciTech Connect

    Hoberecht, M.A.; Gonzalez-Sanabria, O.D.; Miller, T.B.; Rieker, L.L.

    1984-08-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low-earth-orbit (LEO) applications characterized by relatively high overall round-trip electrical efficiency, long life, and high reliability is possible with present state-of-the-art technology. A hypothetical 10-kW system is being computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is being developed under an NASA-LeRC program with United Technologies Corporation (UTC), utilizing advanced cell components and standard Shuttle-Orbiter system hardware. The alkaline electrolysis technology is that of Life Systems, Inc. (LSI), which uses a static water vapor feed technique and scaled-up cell hardware being developed under an NASA-LeRC program. This paper addresses the computeraided study of the performance, operating, and design parameters of the hypothetical system.

  14. Current and Emerging Cell Culture Manufacturing Technologies for Influenza Vaccines

    PubMed Central

    Milián, Ernest; Kamen, Amine A.

    2015-01-01

    Annually, influenza virus infects millions of people worldwide. Vaccination programs against seasonal influenza infections require the production of hundreds of million doses within a very short period of time. The influenza vaccine is currently produced using a technology developed in the 1940s that relies on replicating the virus in embryonated hens' eggs. The monovalent viral preparation is inactivated and purified before being formulated in trivalent or tetravalent influenza vaccines. The production process has depended on a continuous supply of eggs. In the case of pandemic outbreaks, this mode of production might be problematic because of a possible drastic reduction in the egg supply and the low flexibility of the manufacturing process resulting in a lack of supply of the required vaccine doses in a timely fashion. Novel production systems using mammalian or insect cell cultures have emerged to overcome the limitations of the egg-based production system. These industrially well-established production systems have been primarily selected for a faster and more flexible response to pandemic threats. Here, we review the most important cell culture manufacturing processes that have been developed in recent years for mass production of influenza vaccines. PMID:25815321

  15. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  16. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  17. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  18. Using technology to promote mobile learning: engaging students with cell phones in the classroom.

    PubMed

    Robb, Meigan; Shellenbarger, Teresa

    2012-01-01

    Advancements in cell phone technology have impacted every aspect of society. Individuals have instant access to social networks, Web sites, and applications. Faculty need to consider using these mobile devices to enrich the classroom. The authors discuss how they successfully designed and incorporated cell phone learning activities into their classrooms. Teaching-learning strategies using cell phone technology and recommendations for overcoming challenges associated with cell phone use in the classroom are discussed.

  19. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  20. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    PubMed Central

    Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.

    2015-01-01

    Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  1. Characteristics of induced human pluripotent stem cells using DNA microarray technology.

    PubMed

    Medvedev, S P; Smetanina, M A; Shevchenko, A I; Zakharova, I S; Malakhova, A A; Grigor'eva, E V; Dementyeva, E V; Aleksandrova, M A; Poltavtseva, R A; Veriasov, V N; Filipenko, M L; Sukhikh, G T; Pokushalov, E A; Zakian, S M

    2013-05-01

    We performed transcriptome analysis of some human induced pluripotent stem cells, embryonic stem cells, and human somatic cells using DNA microarrays. PluriTest bioinformatic system was used for evaluation of cell pluripotency. Changes in the genome structure and status of X-chromosome gene expression was analyzed using microarray technology.

  2. [Research progress of cell sheet technology and its applications in tissue engineering and regenerative medicine].

    PubMed

    Ma, Dongyang; Ren, Liling; Mao, Tianqiu

    2014-10-01

    Cell sheet engineering is an important technology to harvest the cultured cells in the form of confluent monolayers using a continuous culture method and a physical approach. Avoiding the use of enzymes, expended cells can be harvested together with endogenous extracellular matrix, cell-matrix contacts, and cell-cell contacts. With high efficiency of cell loading ability and without using exogenous scaffolds, cell sheet engineering has several advantages over traditional tissue engineering methods. In this article, we give an overview on cell sheet technology about its applications in the filed of tissue regeneration, including the construction of soft tissues (corneal, mucous membrane, myocardium, blood vessel, pancreas islet, liver, bladder and skin) and hard tissues (bone, cartilage and tooth root). This techonoly is promising to provide a novel strategy for the development of tissue engineering and regenerative medicine. And further works should be carried out on the operability of this technology and its feasibility to construct thick tissues.

  3. Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies

    SciTech Connect

    Burgess, R.; Buttner, W.; Riykin, C.

    2011-12-01

    The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

  4. Fuel Cell Technologies Office FY 2017 Budget At-A-Glance

    SciTech Connect

    2016-03-01

    The Fuel Cell Technologies Office develops technologies to enable fuel cells to be competitive in diverse applications, with a focus on light-duty vehicles (at less than $40/kW) and to enable renewable hydrogen to be cost-competitive with gasoline (at less than $4 per gallon gasoline equivalent (gge), delivered and dispensed).

  5. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  6. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    SciTech Connect

    Not Available

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  7. Design of a regenerative fuel cell system for Space Station

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Rieker, L. L.

    1985-01-01

    The NASA Space Station will employ alkaline regenerative fuel cells (RFCs) as its sole electrochemical energy storage system, in virtue of demonstrated technology readiness and a high degree of system-level design flexibility. NASA Johnson and NASA Lewis are currently engaged in the development of a 10-kW alkaline engineering model system, for 1987 delivery, which will encompass a fully autonomous 120-V system with 55 percent overall electrical efficiency and a 20,000-hr service life.

  8. High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenji; Adachi, Daisuke; Uzu, Hisashi; Ichikawa, Mitsuru; Terashita, Toru; Meguro, Tomomi; Nakanishi, Naoaki; Yoshimi, Masashi; Hernández, José Luis

    2015-08-01

    Thin-film Si technology for solar cells has been developed for over 40 years. Improvements in the conversion efficiency and industrialization of thin-film Si solar cells have been realized through continuous research and development of the thin-film Si technology. The thin-film Si technology covers a wide range of fields such as fundamental understanding of the nature of thin-film Si, cell/module production, simulation, and reliability technologies. These technologies are also significant for solar cells other than the thin-film Si solar cells. Utilizing the highly developed thin-film Si solar cell technology, we have achieved ∼24% efficiency heterojunction crystalline Si solar cells using 6-in. wafers and >26% efficiency solar cells with an optical splitting structure. These results indicate that further improvement of thin-film Si technology and its synergy with crystalline Si solar cell technology will enable further improvement of solar cells with efficiencies above 26%.

  9. Process of treating cellulosic membrane and alkaline with membrane separator

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  10. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    SciTech Connect

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  11. Rechargeable alkaline manganese dioxide/zinc batteries

    NASA Astrophysics Data System (ADS)

    Kordesh, K.; Weissenbacher, M.

    The rechargeable alkaline manganese dioxide/zinc MnO 2/Zn) system, long established commercial as a primay battery, has reached a high level of performance as a secondary battery system. The operating principles are presented and the technological achievements are surveyed by referencing the recent publications and patent literature. A review is also given of the improvements obtained with newly formulated cathodes and anodes and specially designed batteries. Supported by modelling of the cathode and anode processes and by statistical evidence during cycling of parallel/series-connected modules, the envisioned performance of the next generation of these batteries is described. The possibility of extending the practical use of the improved rechargeable MnO 2/Zn system beyond the field of small electronics into the area of power tools, and even to kW-sized power sources, is demonstrated. Finally, the commercial development in comparison with other rechargeable battery systems is examined.

  12. Effect of the alkaline cation size on the conductivity in gel polymer electrolytes and their influence on photo electrochemical solar cells.

    PubMed

    Bandara, T M W J; Fernando, H D N S; Furlani, M; Albinsson, I; Dissanayake, M A K L; Ratnasekera, J L; Mellander, B-E

    2016-04-28

    The nature and concentration of cationic species in the electrolyte exert a profound influence on the efficiency of nanocrystalline dye-sensitized solar cells (DSSCs). A series of DSSCs based on gel electrolytes containing five alkali iodide salts (LiI, NaI, KI, RbI and CsI) and polyacrylonitrile with plasticizers were fabricated and studied, in order to investigate the dependence of solar cell performance on the cation size. The ionic conductivity of electrolytes with relatively large cations, K(+), Rb(+) and Cs(+), was higher and essentially constant, while for the electrolytes containing the two smaller cations, Na(+) and Li(+), the conductivity values were lower. The temperature dependence of conductivity in this series appears to follow the Vogel-Tamman-Fulcher equation. The sample containing the smallest cation shows the lowest conductivity and the highest activation energy of ∼36.5 meV, while K(+), Rb(+) and Cs(+) containing samples show an activation energy of ∼30.5 meV. DSSCs based on the gel electrolyte and a TiO2 double layer with the N719 dye exhibited an enhancement in the open circuit voltage with increasing cation size. This can be attributed to the decrease in the recombination rate of electrons and to the conduction band shift resulting from cation adsorption by TiO2. The maximum efficiency value, 3.48%, was obtained for the CsI containing cell. The efficiencies shown in this study are lower compared to values reported in the literature, and this can be attributed to the use of a single salt and the absence of other additives, since the focus of the present study was to analyze the cation effect. The highest short circuit current density of 9.43 mA cm(-2) was shown by the RbI containing cell. The enhancement of the solar cell performance with increasing size of the cation is discussed in terms of the effect of the cations on the TiO2 anode and ion transport in the electrolyte. In liquid electrolyte based DSSCs, the short circuit current density

  13. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    PubMed

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  14. Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Jakupca, Ian J.

    2011-01-01

    Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.

  15. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  16. Evaluation of the mutagenicity and genotoxic potential of carvacrol and thymol using the Ames Salmonella test and alkaline, Endo III- and FPG-modified comet assays with the human cell line Caco-2.

    PubMed

    LLana-Ruiz-Cabello, Maria; Maisanaba, Sara; Puerto, Maria; Prieto, Ana I; Pichardo, Silvia; Jos, Ángeles; Cameán, Ana M

    2014-10-01

    Currently, direct antimicrobial and antioxidant additives derived from essential oils are used in food packaging and are perceived by consumers as low-health-risk compounds. In this study, we investigated the potential mutagenicity and genotoxicity of carvacrol and thymol, major compounds in several essential oils, using the Ames Salmonella test and the alkaline, Endo III- and formamidopyrimidine glycosylase (FPG)-modified comet assays, respectively. Thymol did not show any mutagenic activity at any concentration assayed (0-250 μM), whereas carvacrol exhibited mutagenic potential, displaying greater activity in presence of the metabolic fraction (29-460 μM). The genotoxic effects were evaluated in the human colon carcinoma cell line Caco-2, and the standard comet assay revealed that neither carvacrol (0-460 μM) nor thymol (0-250 μM) had any affects at 24 and 48 h. The FPG-modified comet assay showed that the highest concentration of carvacrol (460 μM) caused DNA damage, indicating damage to the purine bases. These results should be used to identify the appropriate concentrations of carvacrol and thymol as additives in food packaging. Moreover, further studies are necessary to explore the safety and/or the toxicity mechanisms of these compounds.

  17. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay

    PubMed Central

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter

    2015-01-01

    The food processing contaminants 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), 5‐hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N‐hydroxy‐PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild‐type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N‐hydroxy‐PhIP and HMF in vivo. Environ. Mol. Mutagen. 56:709–714, 2015. © 2015 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26270892

  18. Genotoxicity of three food processing contaminants in transgenic mice expressing human sulfotransferases 1A1 and 1A2 as assessed by the in vivo alkaline single cell gel electrophoresis assay.

    PubMed

    Høie, Anja Hortemo; Svendsen, Camilla; Brunborg, Gunnar; Glatt, Hansruedi; Alexander, Jan; Meinl, Walter; Husøy, Trine

    2015-10-01

    The food processing contaminants 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 5-hydroxymethylfurfural (HMF) and 2,5 dimethylfuran (DMF) are potentially both mutagenic and carcinogenic in vitro and/or in vivo, although data on DMF is lacking. The PHIP metabolite N-hydroxy-PhIP and HMF are bioactivated by sulfotransferases (SULTs). The substrate specificity and tissue distribution of SULTs differs between species. A single oral dose of PhIP, HMF or DMF was administered to wild-type (wt) mice and mice expressing human SULT1A1/1A2 (hSULT mice). DNA damage was studied using the in vivo alkaline single cell gel electrophoresis (SCGE) assay. No effects were detected in wt mice. In the hSULT mice, PhIP and HMF exposure increased the levels of DNA damage in the liver and kidney, respectively. DMF was not found to be genotoxic. The observation of increased DNA damage in hSULT mice compared with wt mice supports the role of human SULTs in the bioactivation of N-hydroxy-PhIP and HMF in vivo.

  19. Rev1, Rev3, or Rev7 siRNA Abolishes Ultraviolet Light-Induced Translesion Replication in HeLa Cells: A Comprehensive Study Using Alkaline Sucrose Density Gradient Sedimentation

    PubMed Central

    Takezawa, Jun; Ishimi, Yukio; Aiba, Naomi; Yamada, Kouichi

    2010-01-01

    When a replicative DNA polymerase stalls upon encountering a lesion on the template strand, it is relieved by other low-processivity polymerase(s), which insert nucleotide(s) opposite the lesion, extend by a few nucleotides, and dissociate from the 3′-OH. The replicative polymerase then resumes DNA synthesis. This process, termed translesion replication (TLS) or replicative bypass, may involve at least five different polymerases in mammals, although the participating polymerases and their roles have not been entirely characterized. Using siRNAs originally designed and an alkaline sucrose density gradient sedimentation technique, we verified the involvement of several polymerases in ultraviolet (UV) light-induced TLS in HeLa cells. First, siRNAs to Rev3 or Rev7 largely abolished UV-TLS, suggesting that these 2 gene products, which comprise Polζ, play a main role in mutagenic TLS. Second, Rev1-targeted siRNA also abrogated UV-TLS, indicating that Rev1 is also indispensable to mutagenic TLS. Third, Polη-targeted siRNA also prevented TLS to a greater extent than our expectations. Forth, although siRNA to Polι had no detectable effect, that to Polκ delayed UV-TLS. To our knowledge, this is the first study reporting apparent evidence for the participation of Polκ in UV-TLS. PMID:21151666

  20. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  1. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  2. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  3. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    Reducing cost and increasing reliability were the technology drivers in both the electric utility and on-site integrated energy system applications. The longstanding barrier to the attainment of these goals was materials. Differences in approaches and their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection, and system design philosophy were discussed.

  4. The Canadian fuel cell R&D program

    SciTech Connect

    Beck, N.R.; Hammerli, M.

    1996-12-31

    This paper gives an overview of the Canadian Fuel Cell R&D Program (CFCP). The program includes both mobile and stationary applications. It is based on Canadian as well as other fuel cell technologies. The Canadian fuel cell technologies comprise the development of the Polymer Electrolyte Fuel Cell (PEFC) of Ballard Power Systems Inc., as well as the Alkaline Fuel Cell of Astris Inc. Materials development issues are an important element of the Program. An outstanding example is the creation of the new BAM3G membrane technology of Ballard Advanced Materials in support of the Canadian PEFC technology. Finally, some system successes will be highlighted.

  5. Physiological aspects of alkaline phosphatase in selected cyanobacteria.

    PubMed

    Doonan, B B; Jensen, T E

    1980-01-01

    The alkaline phosphatase of Plectonema boryanum shows a considerable increase in activity following placement of the cells in a phosphate free medium. Five days of phosphate starvation result in a 14-fold increase of alkaline phosphatase activity. Growth in the presence of inhibitors of transcription and translation indicate that the synthesis of the enzyme is de novo. Orthophosphate causes an immediate inhibition of enzyme activity. Enzyme was extracted from P. boryanum with lysozyme or polymyxin B treatment in order to make comparative studies of cell bound and cell free enzyme. Of several enzyme specific inhibitors tested, mercuric chloride was the most effective. Temperature studies showed that the cell bound enzyme was most active at 40 degrees C while the cell free enzyme was most active at 70 degrees C. The pH optimum was 9 for the cell free enzyme, and 8.8 for the cell bound. The enzyme was tested to determine if it could hydrolyse a number of different organic compounds. It hydrolysed p-nitrophenol phosphate 100%, fructose-6-phosphate 45%, beta-glycerol phosphate 25% and other compounds to a lesser degree. Of seventeen other Cyanobacteria tested for alkaline phosphatase, all were positive, and of these eleven were inducible for the enzyme. Ten of the isolates released some of the enzyme into the culture medium. Michaelis constants for the enzyme were also determined.

  6. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields.

  7. Cell and molecular biology for diagnostic and therapeutic technology

    NASA Astrophysics Data System (ADS)

    Tan, M. I.

    2016-03-01

    Our body contains 100 trillion cells. However, each cell has certain function and structure. For maintaining their integrity, cells will be collaborating with each other and with extracellular matrix surround them to form a tissue. These interactions effect internally on many networks or pathway such as signalling pathway, metabolic pathway and transport network in the cell. These networks interact with each other to maintain cell survival, cell structure and function and moreover the tissue as well as the organ which the cells built. Therefore, as part of a tissue, genetic and epigenetic abnormality of a cell can also alter these networks, and moreover disturb the function of the tissue itself. Hence, condition of genetic and epigenetic of the cell may affect other conditions in omics level such as transcriptomic, proteomic, metabolomics characteristics which can be differentiated by a particular unique molecular profile from each level, which can be used for diagnostic as well as for targeted therapy.

  8. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.

  9. Designing a Highly Active Metal-Free Oxygen Reduction Catalyst in Membrane Electrode Assemblies for Alkaline Fuel Cells: Effects of Pore Size and Doping-Site Position.

    PubMed

    Lee, Seonggyu; Choun, Myounghoon; Ye, Youngjin; Lee, Jaeyoung; Mun, Yeongdong; Kang, Eunae; Hwang, Jongkook; Lee, Young-Ho; Shin, Chae-Ho; Moon, Seung-Hyeon; Kim, Soo-Kil; Lee, Eunsung; Lee, Jinwoo

    2015-08-03

    To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.

  10. Challenges and emerging technologies in the immunoisolation of cells and tissues✰

    PubMed Central

    Wilson, John T.; Chaikof, Elliot L.

    2009-01-01

    Protection of transplanted cells from the host immune system using immunoisolation technology will be important in realizing the full potential of cell-based therapeutics. Microencapsulation of cells and cell aggregates has been the most widely explored immunoisolation strategy, but widespread clinical application of this technology has been limited, in part, by inadequate transport of nutrients, deleterious innate inflammatory responses, and immune recognition of encapsulated cells via indirect antigen presentation pathways. To reduce mass transport limitations and decrease void volume, recent efforts have focused on developing conformal coatings of micron and submicron scale on individual cells or cell aggregates. Additionally, anti-inflammatory and immunomodulatory capabilities are being integrated into immunoisolation devices to generate bioactive barriers that locally modulate host responses to encapsulated cells. Continued exploration of emerging paradigms governed by the inherent challenges associated with immunoisolation will be critical to actualizing the clinical potential of cell-based therapeutics. PMID:18022728

  11. Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics.

    PubMed

    Bandyopadhyay, Arpan A; Khetan, Anurag; Malmberg, Li-Hong; Zhou, Weichang; Hu, Wei-Shou

    2017-02-09

    The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.

  12. 2010 Fuel Cell Technologies Market Report, June 2011

    SciTech Connect

    Not Available

    2011-06-01

    This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

  13. Silicon bulk growth for solar cells: Science and technology

    NASA Astrophysics Data System (ADS)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  14. The NASA Lewis Research Center program in space solar cell research and technology. [efficient silicon solar cell development program

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1979-01-01

    Progress in space solar cell research and technology is reported. An 18 percent-AMO-efficient silicon solar cell, reduction in the radiation damage suffered by silicon solar cells in space, and high efficiency wrap-around contact and thin (50 micrometer) coplanar back contact silicon cells are among the topics discussed. Reduction in the cost of silicon cells for space use, cost effective GaAs solar cells, the feasibility of 30 percent AMO solar energy conversion, and reliable encapsulants for space blankets are also considered.

  15. Imidazolium-functionalized poly(ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoming; Gu, Shuang; He, Gaohong; Wu, Xuemei; Benziger, Jay

    2014-03-01

    A series of imidazolium-functionalized poly(ether ether ketone)s (PEEK-ImOHs) were successfully synthesized by a two-step chloromethylation-Menshutkin reaction followed by hydroxide exchange. PEEK-ImOH membranes with ion exchange capacity (IEC) ranging from 1.56 to 2.24 mmol g-1 were prepared by solution casting. PEEK-ImOHs show selective solubility in aqueous solutions of acetone and tetrahydrofuran, but are insoluble in lower alcohols. PEEK-ImOH membranes with IEC of 2.03 mmol g-1 have high hydroxide conductivity (52 mS cm-1 at 20 °C), acceptable water swelling ratio (51% at 60 °C), and great tensile strength (78 MPa), and surprising flexibility (elongation-to-break of 168%), and high thermal stability (Decomposition temperature: 193 °C). In addition, PEEK-ImOH membranes show low methanol permeability (1.3-6.9 × 10-7 cm2 s-1). PEEK-ImOH membrane was tested in methanol/O2 fuel cell as both the HEM and the ionomer impregnated into the catalyst layer; the open circuit voltage is 0.84 V and the peak power density is 31 mW cm-2.

  16. Status of molten carbonate fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  17. Impact of New Camera Technologies on Discoveries in Cell Biology.

    PubMed

    Stuurman, Nico; Vale, Ronald D

    2016-08-01

    New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy.

  18. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  19. Overview of NASA battery technology program

    NASA Technical Reports Server (NTRS)

    Riebling, R. W.

    1980-01-01

    Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.

  20. Production technology for high efficiency ion implanted solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  1. Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience.

    PubMed

    Mertens, Jerome; Marchetto, Maria C; Bardy, Cedric; Gage, Fred H

    2016-07-01

    The scarcity of live human brain cells for experimental access has for a long time limited our ability to study complex human neurological disorders and elucidate basic neuroscientific mechanisms. A decade ago, the development of methods to reprogramme somatic human cells into induced pluripotent stem cells enabled the in vitro generation of a wide range of neural cells from virtually any human individual. The growth of methods to generate more robust and defined neural cell types through reprogramming and direct conversion into induced neurons has led to the establishment of various human reprogramming-based neural disease models.

  2. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  3. ES cell technology: an introduction to genetic manipulation, differentiation and therapeutic cloning.

    PubMed

    Hook, Lilian; O'Brien, Carmel; Allsopp, Timothy

    2005-12-12

    ES cells are extraordinary cells, capable of proliferating in a pluripotent state indefinitely and of differentiating spontaneously into all cell types in vivo and many in vitro. However, the manipulation and modification of ES cells by processes such as directed differentiation and genetic modification have placed ES cells at the forefront of many biological studies and could lead to their application in biopharmaceutical areas such as cellular therapy and drug screening. Here we describe some of the ES cell based technologies that have lead to this realisation of ES cell potential.

  4. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  5. Cancer Stem Cell Biomarker Discovery Using Antibody Array Technology.

    PubMed

    Burgess, Rob; Huang, Ruo-Pan

    2016-01-01

    Cancer is a complex disease involving hundreds of pathways and numerous levels of disease progression. In addition, there is a growing body of evidence that the origins and growth rates of specific types of cancer may involve "cancer stem cells," which are defined as "cells within a tumor that possess the capacity to self-renew and to cause the development of heterogeneous lineages of cancer cells that comprise the tumor.(1)" Many types of cancer are now thought to harbor cancer stem cells. These cells themselves are thought to be unique in comparison to other cells types present within the tumor and to exhibit characteristics that allow for the promotion of tumorigenesis and in some cases metastasis. In addition, it is speculated that each type of cancer stem cell exhibits a unique set of molecular and biochemical markers. These markers, alone or in combination, may act as a signature for defining not only the type of cancer but also the progressive state. These biomarkers may also double as signaling entities which act autonomously or upon neighboring cancer stem cells or other cells within the local microenvironment to promote tumorigenesis. This review describes the heterogeneic properties of cancer stem cells and outlines the identification and application of biomarkers and signaling molecules defining these cells as they relate to different forms of cancer. Other examples of biomarkers and signaling molecules expressed by neighboring cells in the local tumor microenvironment are also discussed. In addition, biochemical signatures for cancer stem cell autocrine/paracrine signaling, local site recruitment, tumorigenic potential, and conversion to a stem-like phenotype are described.

  6. Recent developments of the in situ wet cell technology for transmission electron microscopies

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Li, Chang; Cao, Hongling

    2015-03-01

    In situ wet cells for transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) allow studying structures and processes in a liquid environment with high temporal and spatial resolutions, and have been attracting increasing research interests in many fields. In this review, we highlight the structural and functional developments of the wet cells for TEM and STEM. One of the key features of the wet cells is the sealing technique used to isolate the liquid sample from the TEM/STEM vacuum environments, thus the existing in situ wet cells are grouped by different sealing methods. In this study, the advantages and shortcomings of each type of in situ wet cells are discussed, the functional developments of different wet cells are presented, and the future trends of the wet cell technology are addressed. It is suggested that in the future the in situ wet cell TEM/STEM technology will have an increasing impact on frontier nanoscale research.

  7. Cell tracking technologies for acute ischemic brain injury

    PubMed Central

    Gavins, Felicity NE; Smith, Helen K

    2015-01-01

    Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging. PMID:25966948

  8. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  9. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    NASA Technical Reports Server (NTRS)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2014-01-01

    On-orbit measurements of new photovoltaic (PV) technologies for space power are an essential step in the development and qualification of advanced solar cells. NASA Glenn Research Center will fly and measure several solar cells attached to NASA Goddards Robotic Refueling Mission (RRM), expected to be launched in 2014. Industry and government partners have provided advanced PV devices for evaluation of performance and environmental durability. The experiment is completely self-contained, providing its own power and internal data storage. Several new cell technologies including Inverted Metamorphic Multi-junction and four-junction cells will be tested.

  10. Commercial development of stem cell technology: lessons from the past, strategies for the future.

    PubMed

    Martin, Paul A; Coveney, Catherine; Kraft, Alison; Brown, Nik; Bath, Philip

    2006-11-01

    This paper presents historical and contemporary survey data on the commercial development of stem cell technology from the 1990s to the present day. We describe the first wave of industrial investment in hematopoietic stem cells during the 1990s and contrast this with the more recent expansion of the sector. In particular, we explore the cell types used, diseases targeted and business models adopted by firms. We conclude, by arguing that the commercial prospects for stem cell technologies remain highly uncertain and that innovative public policies should be adopted to prevent 'market failure'.

  11. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    PubMed

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  12. [Isolation and functional analysis of GsTIFY11b relevant to salt and alkaline stress from Glycine soja].

    PubMed

    Zhu, Dan; Bai, Xi; Zhu, Yan-Ming; Cai, Hua; Li, Yong; Ji, Wei; Chen, Chao; An, Lin; Zhu, Yi

    2012-02-01

    Using homologous cloning and RT-PCR technology, we isolated a novel TIFY family gene, GsTIFY11b, from Glycine soja L. G07256, a species that is tolerant to saline and alkaline environments. Phylogenetic analysis indicated that GsTIFY11b was closely related to AtTIFY11a with 56% similarity in amino acid identity. Protein sequence analysis showed that GsTIFY11b protein also had conserved TIFY domain, N-terminal domain, and a C-terminal Jas motif. Quantitative realtime PCR analysis indicated that the expression of GsTIFY11b was induced by both saline and alkaline stresses. Two homozygous GsTIFY11b over-expressing transgenic Arabidopsis lines were obtained. Phenotypic analysis of the transgenic and wild-type Arabidopsis indicated that over-expressing GsTIFY11b in Arabidopsis did not enhance plant tolerance to saline and alkaline stresses, whereas it showed an increased sensitivity to saline stress during seed germination and seedling development. Expression analysis of saline stress response marker genes in transgenic and wild-type plants under stress condition indicated that GsTIFY11b regulated the expression of RD29B, KIN1, and DREB. The transient expression of a GsTIFY11b-GFP fusion protein in onion epidermal cells showed that GsTIFY11b was localized to the nucleus, suggesting a role as a transcriptional regulator in the saline stress response pathway.

  13. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  14. Low helium permeation cells for atomic microsystems technology.

    PubMed

    Dellis, Argyrios T; Shah, Vishal; Donley, Elizabeth A; Knappe, Svenja; Kitching, John

    2016-06-15

    Laser spectroscopy of atoms confined in vapor cells can be strongly affected by the presence of background gases. A significant source of vacuum contamination is the permeation of gases such as helium (He) through the walls of the cell. Aluminosilicate glass (ASG) is a material with a helium permeation rate that is many orders of magnitude lower than borosilicate glass, which is commonly used for cell fabrication. We have identified a suitable source of ASG that is fabricated in wafer form and can be anodically bonded to silicon. We have fabricated chip-scale alkali vapor cells using this glass for the windows and we have measured the helium permeation rate using the pressure shift of the hyperfine clock transition. We demonstrate micro fabricated cells with He permeation rates at least three orders of magnitude lower than that of cells made with borosilicate glass at room temperature. Such cells may be useful in compact vapor-cell atomic clocks and as a micro fabricated platform suitable for the generation of cold atom samples.

  15. Single Cell Analysis: From Technology to Biology and Medicine.

    PubMed

    Pan, Xinghua

    2014-01-01

    Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.

  16. [Cell technologies in complex treatment of venous trophic ulcers].

    PubMed

    Gavrilenko, A V; Pavlova, O V; Ivanov, A A; Vakhrat'ian, P E; Dashinimaev, É B; Li, R A

    2011-01-01

    Live skin equivalent and fibroblasts in gel were used in complex treatment of venous trophic ulcers to evaluate efficacy of cell transplants. Their efficacy depended on extent of trophic ulcer and time of their existence. Cell culture method is minimally traumatic, can be used in elder patients and seniors and gives positive results in 85% of cases.

  17. The measurement of alkaline phosphatase at nanomolar concentration within 70 s using a disposable microelectrochemical transistor.

    PubMed

    Astier, Y; Bartlett, P N

    2004-08-01

    We report a new approach to the measurement of alkaline phosphatase concentration based on the use of a disposable poly(aniline) microelectrochemical transistor. The measurement is carried out in a two cell configuration in which the poly(aniline) microelectrochemical transistor operates in acid solution and is connected to the alkaline buffer solution containing the analyte by a salt bridge. Disposable microelectrochemical transistors were reproducibly fabricated by electrochemical deposition of poly(aniline) onto photolithographically fabricated gold microband arrays. Using these devices alkaline phosphatase was detected by employing p-aminophenyl phosphate as the substrate for the enzyme and using glucose and glucose oxidase to recycle the p-aminophenol generated upon enzyme catalysed hydrolysis of the phosphate. Recycling the p-aminophenol with glucose and glucose oxidase amplified the detection of alkaline phosphatase approximately tenfold. Using this approach we obtain linear calibration curves for alkaline phosphatase up to 5 nM within 70 s on single use devices.

  18. Development of molten carbonate fuel cell power plant technology

    NASA Astrophysics Data System (ADS)

    1985-10-01

    This report summarizes the work performed to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of a 1990's-competitive, coal-fired, electrical utility central station, or industrial cogeneration power plant. Fabrication of the cell components to be used in the 100-cell stack was completed successfully. Compressive creep of the anode to be used in the 100-cell stack was measured through 720 hours of testing at 1300(0)F. The data continue to support the creep resistance of this component. Anode and bubble barrier pore spectra data obtained after aging at 1300F confirmed the sintering resistance of these components. A parametric study of candidate separator material data obtained from retort corrosion tests was completed. Based on the study, cell testing of treated INCO 825 was begun. A 1000 hour cell test of Ni-201/316SS at accelerated test conditions showed no failure of this separator plate material. Single cell tests to evaluate Co-based and Ti-based alternate cathode materials were conducted. The cell test performance data and post test chemical analysis show both materials are unstable. Cell testing of a doped Fe-based cathode showed a reaction with the matrix used. A repeat test using a different matrix material is planned. Testing of the 20-cell Subscale Stack was completed on schedule following 2000 hours of operation. A post test analysis was begun in order to correlate the diagnostic test data with the physical evidence of component stability, including electrolyte containment.

  19. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  20. Single-Cell Sequencing Technology in Oncology: Applications for Clinical Therapies and Research

    PubMed Central

    Ye, Baixin; Gao, Qingping; Zeng, Zhi; Stary, Creed M.; Jian, Zhihong; Xiong, Xiaoxing; Gu, Lijuan

    2016-01-01

    Cellular heterogeneity is a fundamental characteristic of many cancers. A lack of cellular homogeneity contributes to difficulty in designing targeted oncological therapies. Therefore, the development of novel methods to determine and characterize oncologic cellular heterogeneity is a critical next step in the development of novel cancer therapies. Single-cell sequencing (SCS) technology has been recently employed for analyzing the genetic polymorphisms of individual cells at the genome-wide level. SCS requires (1) precise isolation of the single cell of interest; (2) isolation and amplification of genetic material; and (3) descriptive analysis of genomic, transcriptomic, and epigenomic data. In addition to targeted analysis of single cells isolated from tumor biopsies, SCS technology may be applied to circulating tumor cells, which may aid in predicting tumor progression and metastasis. In this paper, we provide an overview of SCS technology and review the current literature on the potential application of SCS to clinical oncology and research. PMID:27313981