Sample records for alkaline copper quaternary

  1. Characterization of pyrolytic products obtained from fast pyrolysis of chromated copper arsenate (CCA)- and alkaline copper quaternary compounds (ACQ)-treated wood biomasses.

    PubMed

    Kim, Jae-Young; Kim, Tae-Sung; Eom, In-Yong; Kang, Sung Mo; Cho, Tae-Su; Choi, In Gyu; Choi, Joon Weon

    2012-08-15

    In this study, chromated copper arsenate-treated wood (CCA-W) and alkaline copper quaternary compounds-treated wood (ACQ-W) were subjected to fast pyrolysis at 500°C for ca. 2s to produce bio-oil and char. The physicochemical properties of the pyrolytic products as well as the distribution of heavy metals - arsenic, copper and chrome - during fast pyrolysis were investigated. The water content, viscosity, pH and higher heating value (HHV) of bio-oil from CCA-W were 24.8 wt%, 13.5 cSt, 2.1 and 16 MJ/kg, respectively, whereas those of bio-oil from ACQ-W were 27.9 wt%, 16 cSt, 3.0 and 14.1 MJ/kg, respectively. The yields of bio-oil from CCA-W and ACQ-W were 43.3% and 46.6%, respectively, significantly lower than that of control (61.6%). In the pyrolytic products of CCA-W, the concentrations of arsenic, copper and chromium were determined to be 36.4 wt%, 74.0 wt% and 75.4 wt% in char, respectively, 34.5 wt%, 10.3 wt% and 9.0 wt% in bio-oil, respectively, and 29.0 wt%, 15.7 wt% and 15.5 wt% in gas, respectively. In addition, most of the copper appeared in the char (98.8 wt%) and only a trace amount of copper was detected in the bio-oil (0.2 wt%) produced by ACQ-W. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Contemporaneous alkaline and calc-alkaline series in Central Anatolia (Turkey): Spatio-temporal evolution of a post-collisional Quaternary basaltic volcanism

    NASA Astrophysics Data System (ADS)

    Dogan-Kulahci, Gullu Deniz; Temel, Abidin; Gourgaud, Alain; Varol, Elif; Guillou, Hervé; Deniel, Catherine

    2018-05-01

    This study focuses on spatio-temporal evolution of basaltic volcanism in the Central Anatolian post-collisional Quaternary magmatic province which developed along a NE-SW orientation in Turkey. This magmatic province consists of the stratovolcanoes Erciyes (ES) and Hasandag (HS), and the basaltic volcanic fields of Obruk-Zengen (OZ) and Karapınar (KA). The investigated samples range between basic to intermediate in composition (48-56 wt% SiO2), and exhibit calc-alkaline affinity at ES whereas HS, OZ and KA are alkaline in composition. Based on new Ksbnd Ar ages and major element data, the oldest basaltic rock of ES is 1700 ± 40 ka old and exhibits alkaline character, whereas the youngest basaltic trachyandesite is 12 ± 5 ka old and calc-alkaline in composition. Most ES basaltic rocks are younger than 350 ka. All samples dated from HS are alkaline basalts, ranging from 543 ± 12 ka to 2 ± 7 ka old. With the exception of one basalt, all HS basalts are 100 ka or younger in age. Ksbnd Ar ages range from 797 ± 20 ka to 66 ± 7 ka from OZ. All the basalt samples are alkaline in character and are older than the HS alkaline basalts, with the exception of the youngest samples. The oldest and youngest basaltic samples from KA are 280 ± 7 ka and 163 ± 10 ka, respectively, and are calc-alkaline in character. Based on thermobarometric estimates samples from OZ exhibit the highest cpx-liqidus temperature and pressure. For all centers the calculated crystallization depths are between 11 and 28 km and increase from NE to SW. Multistage crystallization in magma chamber(s) located at different depths can explain this range in pressure. Harker variation diagrams coupled with least-squares mass balance calculations support fractional crystallization for ES and, to lesser extend for HS, OZ and KA. All basaltic volcanic rocks of this study are enriched in large-ion lithophile elements (LILE) and light rare earth elements (LREE). The lack of negative anomalies for high field

  3. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  4. Control of New Copper Corrosion in High-Alkalinity Drinking Water using Orthophosphate - article

    EPA Science Inventory

    Research and field experience have shown that high-alkalinity waters can be associated with elevated copper levels in drinking water. The objective of this study was to document the application of orthophosphate to the distribution system of a building with a copper problem asso...

  5. Partial dissolution of ACQ-treated wood in lithium chloride/N-methyl-2-pyrrolidinone: Separation of copper from potential lignocellulosic feedstocks

    Treesearch

    Thomas L. Eberhardt; Stan Lebow; Karen G. Reed

    2012-01-01

    A cellulose solvent system based on lithium chloride (LiCl) in N-methyl-2-pyrrolidinone (NMP) was used to assess the merits of partial dissolutions of coarsely ground wood samples. Alkaline Copper Quaternary (ACQ)-treated pine wood was of particular interest for treatment given the potential to generate a copper- rich stream apart from solid and/or liquid...

  6. Evaluating the corrosiveness of southern pine treated with several wood preservatives using electrochemical techniques

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer; Donald S. Stone

    2009-01-01

    Chromated copper arsenate (CCA), the most widely used wood preservative of the past 50 years, has been replaced for most uses with alkaline-copper systems such as alkaline copper quaternary (ACQ), copper azole (CuAz) and micronized copper quaternary (MCQ). Preliminary research using high-temperature, high-humidity environments have shown that some of these wood...

  7. Corrosion control in water supply systems: effect of pH, alkalinity, and orthophosphate on lead and copper leaching from brass plumbing.

    PubMed

    Tam, Y S; Elefsiniotis, P

    2009-10-01

    This study explored the potential of lead and copper leaching from brass plumbing in the Auckland region of New Zealand. A five-month field investigation, at six representative locations, indicated that Auckland's water can be characterized as soft and potentially corrosive, having low alkalinity and hardness levels and a moderately alkaline pH. More than 90% of the unflushed samples contained lead above the maximum acceptable value (MAV) of 10 microg/L (New Zealand Standards). In contrast, the copper level of unflushed samples remained consistently below the corresponding MAV of 2 mg/L. Flushing however reduced sharply metal concentrations, with lead values well below the MAV limit. Generally, metal leaching patterns showed a limited degree of correlation with the variations in temperature, dissolved oxygen and free chlorine residual at all sampling locations. Furthermore, a series of bench-scale experiments was conducted to evaluate the effectiveness of pH and alkalinity adjustment, as well as orthophosphate addition as corrosion control tools regarding lead and copper dissolution. Results demonstrated that lead and copper leaching was predominant during the first 24 hr of stagnation, but reached an equilibrium state afterwards. Since the soluble fraction of both metals was small (12% for lead, 29% for copper), it is apparent that the non-soluble compounds play a predominant role in the dissolution process. The degree of leaching however was largely affected by the variations in pH and alkalinity. At pH around neutrality, an increase in alkalinity promoted metal dissolution, while at pH 9.0 the effect of alkalinity on leaching was marginal. Lastly, addition of orthophosphate as a corrosion inhibitor was more effective at pH 7.5 or higher, resulting in approximately 70% reduction in both lead and copper concentrations.

  8. Synthesis of Quaternary Ammonium Salts Based on Diketopyrrolopyrroles Skeletons and Their Applications in Copper Electroplating.

    PubMed

    Chen, Biao; Xu, Jie; Wang, Limin; Song, Longfeng; Wu, Shengying

    2017-03-01

    A series of DPP derivatives bearing quaternary ammonium salt centers with different lengths of carbon chains have been designed and synthesized. Their inhibition actions on copper electroplating were first investigated. A total of four diketopyrrolopyrrole (DPP) derivatives showed different inhibition capabilities on copper electroplating. To investigate interactions between metal surface and additives, we used quantum chemical calculations. Static and dynamic surface tension of four DPP derivatives had been measured, and the results showed DPP-10C (1c) with a faster-decreasing rate of dynamic surface tension among the four derivatives, which indicated higher adsorption rate of additive on the cathode surface and gives rise to stronger inhibiting effect of copper electrodeposition. Then, DPP-10C (1c) as the representative additive, was selected for the systematic study of the leveling influence during microvia filling through comprehensive electroplating tests. In addition, field-emission scanning electron microscope images and X-ray diffraction results showed the surface morphology, which indicated that addition of DPP derivative (1c) could lead a fine copper deposit and cause the preferential orientations of copper deposits to change from [220] to [111], which happened in particular at higher concentrations.

  9. Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes

    DTIC Science & Technology

    2012-01-01

    study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with...ammonium anion exchange membranes Report Title ABSTRACT In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer...exchange membranes were prepared from the perfluorinated 3M ionomer with vari- ous quaternary ammonium cations attached with sulfonamide linkage. The

  10. Anion exchange composite membrane based on octa quaternary ammonium Polyhedral Oligomeric Silsesquioxane for alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Elumalai, Vijayakumar; Sangeetha, Dharmalingam

    2018-01-01

    A series of novel composite anion exchange membranes were prepared via simple solution casting method using synthesized quaternary ammonium functionalized Polyhedral Oligomeric Silsesquioxane (QA-POSS) with Quaternary polysulfone (QPSU). QA-POSS was synthesized from prepared Cl-POSS and well characterized by FT-IR, NMR, SEM and TEM analyses to confirm the chemical modifications and cubic morphologies. The QA-POSS nano particles have dual role in the membrane providing additional ion conducting groups and reinforcing the membrane in molecular level for the overall improvement of composite membrane. Additionally, the composite membranes were characterized by XRD, SEM, Ion exchange capacity (IEC), water uptake and conductivity to ensure the suitability of its use as an electrolyte in alkaline fuel cell. Finally, membrane electrode assembly (MEA) was fabricated using Pt anode (0.25 mg/cm2), Ag cathode (0.375 mg/cm2) and various synthesized composite membranes, and then it was tested in real time fuel cell setup. The membrane with 15% QA-POSS showed the maximum power density of 321 mW/cm2. The results showed that QA-POSS possess the ability to enhance the performance of the anion exchange membrane significantly.

  11. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted enones. Construction of all-carbon quaternary chiral centers.

    PubMed

    Martin, David; Kehrli, Stefan; d'Augustin, Magali; Clavier, Hervé; Mauduit, Marc; Alexakis, Alexandre

    2006-07-05

    The copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted cyclic enones affords enantioenriched all-carbon quaternary centers with up to 96% ee. The chiral ligand is a diaminocarbene, directly generated in situ. The combination of Grignard reagent and diaminocarbene is unprecedented in conjugate addition, and the additon of the phenyl group, on such enones, cannot be done by other conjugate addition methods.

  12. C(2) symmetric chiral NHC ligand for asymmetric quaternary carbon constructing copper-catalyzed conjugate addition of grignard reagents to 3-substituted cyclohexenones.

    PubMed

    Matsumoto, Yasumasa; Yamada, Ken-ichi; Tomioka, Kiyoshi

    2008-06-20

    The asymmetric construction of quaternary carbon centers by conjugate addition of Grignard reagents to 3-methyl- and 3-ethylcyclohexenones was realized in a maximum enantioselectivity of 80% by using a C 2 symmetric chiral N-heterocyclic carbene (NHC)-copper catalyst, generated from (4 S,5 S)-1,3-bis(2-methoxyphenyl)-4,5-diphenyl-4,5-dihydro-1 H-imidazol-3-ium tetrafluoroborate and copper(II) triflate. The stereostructures of the NHC-Au complexes were analyzed by X-ray crystallography, which rationalized the good stereocontrolling ability of N-aryl NHCs.

  13. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    PubMed

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  14. Extraction of hexavalent chromium from chromated copper arsenate treated wood under alkaline conditions.

    PubMed

    Radivojevic, Suzana; Cooper, Paul A

    2008-05-15

    Information on chromium (Cr) oxidation states is essential for the assessment of environmental and health risks associated with the overall life-cycle of chromated copper arsenate (CCA) treated wood products because of differences in toxicity between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium compounds. Hypothetical Cr(VI) fixation products were investigated in CCA type C treated sawdust of aspen and red pine during or following preservative fixation by extraction with Cr(VI)-specific extractants. Cr(VI) was found only in alkaline extracts of treated wood. A major source of Cr(VI) was method-induced oxidation of fixed Cr(III) during alkaline extraction, as confirmed by demonstrated oxidation of Cr(III) from CrCl3 treated wood. Oxidation of nontoxic and immobile Cr(III) to toxic and mobile Cr(VI) was facilitated by the presence of wood at pH > 8.5. Thermodynamic equilibrium between Cr(III) and Cr(VI) is affected by pH, temperature, rates of dissolution of CrIII) compounds, and oxygen availability. Results of this study recommend against alkaline extraction protocols for determination of Cr(VI) in treated wood. This Cr oxidation mechanism can act as a previously unrecognized route for generation of hazardous Cr(VI) if CCA treated wood is exposed to alkaline conditions during its production, use, or waste management.

  15. Effect of Ultrasonic on Copper Electroplating from the Non-Cyanide Alkaline Baths

    NASA Astrophysics Data System (ADS)

    Li, Minggang; Hu, Shuangshuang; Yang, Yejiong; Xu, Shuhan; Zhao, Xixi; Wei, Guoying

    2014-06-01

    Effects of the different ultrasonic powers on copper electrodeposition from non-cyanide alkaline baths by using pyrophosphate as complexing agent were investigated by different electrochemical methods. Cyclic voltammetry and current transient measurements were used to characterize the nucleation and growth mechanism. It is very obvious that the reduction potential moves to more positive one as the ultrasonic power increases. The quartz crystal microbalance (QCM) and chronoamperometric method were used to study the relationship between the mass change and the deposition time. It was found that the current efficiency of electrolyte under 0, 60, 80 and 100 W is 91.95%, 92.14%, 89.25% and 96.11%, respectively measured by QCM measurements. The surface morphology of the electrodeposited Cu films is analyzed by scanning electron microscopy (SEM). The morphology of copper films electrodeposited under the power of 60 W and 80 W presents a compact surface and the grains are fine and uniform.

  16. Presidential Green Chemistry Challenge: 2002 Designing Greener Chemicals Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2002 award winner, Chemical Specialties, developed an alkaline copper quaternary wood preservative to replace chromated copper arsenate preservative phased out due to risk to children.

  17. Assessing the release of copper from nanocopper-treated and conventional copper-treated lumber into marine waters I: Concentrations and rates.

    PubMed

    Parks, Ashley N; Cantwell, Mark G; Katz, David R; Cashman, Michaela A; Luxton, Todd P; Ho, Kay T; Burgess, Robert M

    2018-03-25

    Little is known about the release of metal engineered nanomaterials (ENMs) from consumer goods, including lumber treated with micronized copper. Micronized copper is a recent form of antifouling wood preservative containing nanosized copper particles for use in pressure-treated lumber. The present study investigated the concentrations released and the release rate of total copper over the course of 133 d under freshwater, estuarine, and marine salinity conditions (0, 1, 10, and 30‰) for several commercially available pressure-treated lumbers: micronized copper azole (MCA) at 0.96 and 2.4 kg/m 3 , alkaline copper quaternary (ACQ) at 0.30 and 9.6 kg/m 3 , and chromated copper arsenate (CCA) at 40 kg/m 3 . Lumber was tested as blocks and as sawdust. Overall, copper was released from all treated lumber samples. Under leaching conditions, total release ranged from 2 to 55% of the measured copper originally in the lumber, with release rate constants from the blocks of 0.03 to 2.71 (units per day). Generally, measured release and modeled equilibrium concentrations were significantly higher in the estuarine conditions compared with freshwater or marine salinities, whereas rate constants showed very limited differences between salinities. Furthermore, organic carbon was released during the leaching and demonstrated a significant relationship with released copper concentrations as a function of salinity. The results indicate that copper is released into estuarine/marine waters from multiple wood treatments including lumber amended with nanoparticle-sized copper. Environ Toxicol Chem 2018;9999:1-13. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  18. Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities.

    PubMed

    Varcoe, John R

    2007-03-28

    This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm(-1) are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 +/- 0.005 S cm(-1) at 30 degrees C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33-91%); this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH(-) conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2-3 times higher than for H(+) conduction in acidic Nafion-115 at all humidities.

  19. Form and toxicity of copper released into marine systems from ...

    EPA Pesticide Factsheets

    The fate and effects of pristine engineered nanomaterials (ENMs) in simplified systems have been widely studied; however, little is known about the potential release and impact of ENMs from consumer goods, especially lumber that has been treated with micronized copper. Micronized copper solutions contain copper complexes predominately in the 10-700 nm size range, and are used in lumber to prevent microbial degradation and fouling. In this work, the goal was to determine the rate, concentration, and form of copper released from commercially available pressure treated lumber samples (blocks and sawdust) exposed to an aqueous system. Lumber tested included Southern Yellow Pine (SYP) treated with micronized copper azole (MCA) at 0.96 and 2.4 Kg/m3, alkaline copper quaternary (ACQ) at 0.30 and 9.6 Kg/m3, and chromated copper arsenate (CCA) at 40 Kg/m3. Of the different chemical treatments, only MCA included nano- and micro-sized copper complexes. The experimental system included wood cubes cut from the outer 2 cm surface of the lumber or the equivalent mass (4 g) of sawdust submerged in 250 mL of media (0, 1, 10, and 30 ppt filtered natural seawater) in polyethylene bottles, and mixed on a shaker table at 120 rpm. Water samples were taken at 8 hours, and on days 1, 2, 7, 14, and 28 for the blocks and days 1, 2, 3, 7, 17, and 28 for the sawdust. Subsamples included unfiltered water (defined as 0.45 µm - filtered water for the sawdust), and water filtered through a 0.

  20. Copper(II) complexes of methimazole, an anti Grave's disease drug. Synthesis, characterization and its potential biological behavior as alkaline phosphatase inhibitor.

    PubMed

    Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G

    2010-04-01

    Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.

  1. RELATIVE LEACHING AND AQUATIC TOXICITY OF PRESSURE-TREATED WOOD PRODUCTS USING BATCH LEACHING TESTS

    EPA Science Inventory

    Samples of southern yellow pine dimensional lumber, each treated with one of five different waterborne chemical preservatives, were leached using 18-hour batch leaching tests. The wood preservatives included chromated copper arsenate (CCA), alkaline copper quaternary (ACQ), coppe...

  2. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao, Paula; Reis, Mario S; Gai, Zheng

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as wellmore » as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.« less

  3. Use of copper-silver ionization for the control of legionellae in alkaline environments at health care facilities.

    PubMed

    Dziewulski, David M; Ingles, Erin; Codru, Neculai; Strepelis, John; Schoonmaker-Bopp, Dianna

    2015-09-01

    There are multiple treatment options for the control of legionellae in premise hot water systems. Water chemistry plays a role in the efficacy of these treatments and should be considered when selecting a treatment. This study demonstrated the efficacy of copper-silver ionization (CSI) under alkaline water conditions in 2 health care facilities. Monitoring for copper (Cu) and silver (Ag) ions was performed, and the corresponding percentage of positive Legionella cultures was monitored. Low Legionella colony forming units (CFU), with a mean <10 CFU/100 mL, and ≤30% positive culture for each sampling period, along with no recurrent disease, were considered indicative of control. CSI treatment was shown to reduce both the number of CFU found and the percentage of samples found to be culture positive. After treatment was established, culture positivity was, for example, reduced from 70% (>10(3) CFU/100 mL) to consistently <30% (38 CFU/100 mL). Control of legionellae in premise water systems may be a complex process requiring long-term assessments for adequate control. This work found that CSI could be successful in controlling Legionella under alkaline water conditions, and the evidence suggests that Ag ions are responsible for the control of Legionella pneumophila 1, L pneumophila 6, and L anisa. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood

    EPA Science Inventory

    Micronized copper azole (MCA) and micronized copper quaternary are the latest wood preservatives to replace the liquid lkaline copper and chromated copper arsenate preservatives due to concerns over the toxicity or lack of effectiveness of the earlier formulations. Today, the use...

  5. Advances in corrosion testing of metals in contact with treated wood

    Treesearch

    Samuel Zelinka; D.S. Stone

    2010-01-01

    A January 2004 change in the regulation of wood preservatives used in the U.S.has increased the use of newer wood preservatives, such as alkaline copper quaternary (ACQ) and copper azole (CuAz). These preservatives contain high amounts of cupric ions, which may be reduced to copper metal at the expense of less noble steel and galvanized fasteners in the wood....

  6. Effect of 1,2,4-triazole on galvanic corrosion between cobalt and copper in CMP based alkaline slurry

    NASA Astrophysics Data System (ADS)

    Fu, Lei; Liu, Yuling; Wang, Chenwei; Han, Linan

    2018-04-01

    Cobalt has become a new type of barrier material with its unique advantages since the copper-interconnects in the great-large scale integrated circuits (GLSI) into 10 nm and below technical nodes, but cobalt and copper have severe galvanic corrosion during chemical–mechanical flattening. The effect of 1,2,4-triazole on Co/Cu galvanic corrosion in alkaline slurry and the control of rate selectivity of copper and cobalt were investigated in this work. The results of electrochemical experiments and polishing experiments had indicated that a certain concentration of 1,2,4-triazole could form a layer of insoluble and dense passive film on the surface of cobalt and copper, which reduced the corrosion potential difference between cobalt and copper. Meantime, the removal rate of cobalt and copper could be effectively controlled according to demand during the CMP process. When the study optimized slurry was composed of 0.5 wt% colloidal silica, 0.1 %vol. hydrogen peroxide, 0.05 wt% FA/O, 345 ppm 1,2,4-triazole, cobalt had higher corrosion potential than copper and the galvanic corrosion could be reduced effectively when the corrosion potential difference between them decreased to 1 mV and the galvanic corrosion current density reached 0.02 nA/cm2. Meanwhile, the removal rate of Co was 62.396 nm/min, the removal rate of Cu was 47.328 nm/min, so that the removal rate ratio of cobalt and copper was 1.32 : 1, which was a good amendment to the dishing pits. The contact potential corrosion of Co/Cu was very weak, which could be better for meeting the requirements of the barrier CMP. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Outstanding Young Science and Technology Innovation Fund of Hebei University of Technology (No. 2015007).

  7. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  8. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    USGS Publications Warehouse

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  9. Corrosion avoidance with new wood preservatives

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2006-01-01

    The increased use of alkaline copper quaternary (ACQ) and copper azole (CuAz) as wood preservatives for residential construction has led to concerns about the corrosion performance of fasteners. Information on the effects of these preservatives on the corrosion rate is limited, although Simpson Strong Tie has published a technical bulletin indicating that both ACQ and...

  10. Copper toxicity in aquaculture: A practical approach

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate is used as a therapeutant for various applications in aquaculture. There is a great deal of information on the toxicity of copper, especially in low-alkalinity waters; however, much of this information is fragmented, and a comprehensive guide of copper toxicity and safe concentration...

  11. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    PubMed

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P < 0.05). All copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P < 0.05). Although there was no significant impact on yield, copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P < 0.05). This study highlights the discovery that copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  12. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  13. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE PAGES

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    2017-10-05

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  14. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  15. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    NASA Astrophysics Data System (ADS)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  16. Porphyry copper enrichment linked to excess aluminium in plagioclase

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Herrington, R. J.; Morris, A.

    2016-03-01

    Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively. The deposits are mainly centred on calc-alkaline porphyry magmatic systems in subduction zone settings. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing `excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

  17. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    PubMed

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  18. Water vapor sorption isotherms for southern pine treated with several waterborne preservatives

    Treesearch

    Samuel L Zelinka; Samuel V. Glass

    2010-01-01

    Equilibrium moisture content (EMC) was measured over a range of relative humidities at 22.5°C to determine whether certain wood preservatives increase the hygroscopicity of southern pine (Pinus sp.) The treatments studied were alkaline copper quaternary (ACQ) at a retention of 6.6 kg•m−3, chromated copper arsenate (CCA) at 6.9 kg•m

  19. Moisture storage and transport properties of preservative treated and untreated southern pine wood

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman; Dominique Derome

    2016-01-01

    Moisture storage and transport properties of southern pine (Pinus spp.) wood were measured for implementation into hygrothermal models. Specimens were untreated or pressure-treated with alkaline copper quaternary (ACQ) preservative. Moisture storage was characterized with sorption isotherms in the hygroscopic region (high capillary pressures) and...

  20. Late Quaternary tephrostratigraphy of Baegdusan and Ulleung volcanoes using marine sediments in the Japan Sea/East Sea

    NASA Astrophysics Data System (ADS)

    Lim, Chungwan; Toyoda, Kazuhiro; Ikehara, Ken; Peate, David W.

    2013-07-01

    Only Ulleung and Baegdusan volcanoes have produced alkaline tephras in the Japan Sea/East Sea during the Quaternary. Little is known about their detailed tephrostratigraphy, except for the U-Oki and B-Tm tephras. Trace element analysis of bulk sediments can be used to identify alkaline cryptotephra because of the large compositional contrast. Five sediment cores spanning the interval between the rhyolitic AT (29.4 ka) and Aso-4 (87 ka) tephras were analyzed using an INAA scanning method. Source volcanoes for the five detected alkaline cryptotephra were identified from major element analyses of hand-picked glass shards: Ulleung (U-Ym, and the newly identified U-Sado), and Baegdusan (B-J, and the newly identified B-Sado and B-Ym). The eruption ages of the U-Ym, U-Sado, B-J, B-Sado, and B-Ym tephras are estimated to be 38 ka, 61 ka, 26 ka, 51 ka, 68-69 ka, and 86 ka, respectively, based on correlations with regional-scale TL (thinly laminated) layer stratigraphy (produced by basin-wide changes in bottom-water oxygen levels in response to millennium-scale paleoclimate variations). This study has allowed construction of an alkaline tephrostratigraphical framework for the late Quaternary linked to global environmental changes in the Japan Sea/East Sea, and improves our knowledge of the eruptive histories of Ulleung and Baegdusan volcanoes.

  1. Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner

    NASA Astrophysics Data System (ADS)

    Reuther, James F.; Dees, Justine L.; Kolesnichenko, Igor V.; Hernandez, Erik T.; Ukraintsev, Dmitri V.; Guduru, Rusheel; Whiteley, Marvin; Anslyn, Eric V.

    2018-01-01

    Naturally occurring peptides and proteins often use dynamic disulfide bonds to impart defined tertiary/quaternary structures for the formation of binding pockets with uniform size and function. Although peptide synthesis and modification are well established, controlling quaternary structure formation remains a significant challenge. Here, we report the facile incorporation of aryl aldehyde and acyl hydrazide functionalities into peptide oligomers via solid-phase copper-catalysed azide-alkyne cycloaddition (SP-CuAAC) click reactions. When mixed, these complementary functional groups rapidly react in aqueous media at neutral pH to form peptide-peptide intermolecular macrocycles with highly tunable ring sizes. Moreover, sequence-specific figure-of-eight, dumbbell-shaped, zipper-like and multi-loop quaternary structures were formed selectively. Controlling the proportions of reacting peptides with mismatched numbers of complementary reactive groups results in the formation of higher-molecular-weight sequence-defined ladder polymers. This also amplified antimicrobial effectiveness in select cases. This strategy represents a general approach to the creation of complex abiotic peptide quaternary structures.

  2. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    NASA Astrophysics Data System (ADS)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  3. Monitoring copper release in drinking water distribution systems.

    PubMed

    d'Antonio, L; Fabbricino, M; Panico, A

    2008-01-01

    A new procedure, recently proposed for on-line monitoring of copper released from metal pipes in household plumbing system for drinking water distribution during the development of corrosion processes, is tested experimentally. Experiments were carried out in laboratory controlled conditions, using synthetic water and varying the water alkalinity. The possibility of using the corrosion potential as a surrogate measure of copper concentration in stagnating water is shown, verifying, in the meantime, the effect of alkalinity on the development of passivation phenomena, which tend to protect the pipe from corrosion processes. Experimental data are discussed, highlighting the potentiality of the procedure, and recognizing its limitations. Copyright IWA Publishing 2008.

  4. Iron and copper release in drinking-water distribution systems.

    PubMed

    Shi, Baoyou; Taylor, James S

    2007-09-01

    A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. Moisture meter calibrations for untreated and ACQ-treated southern yellow pine lumber and plywood

    Treesearch

    C.R. Boardman; Samuel V. Glass; Charles G. Carll

    2011-01-01

    This study investigates the effects of alkaline copper quaternary (ACQ) preservative treatment and of plywood glue lines on resistance-based moisture content (MC) measurements. Moisture meter readings using stainless steel screws as electrodes were acquired over a range of moisture conditions in Southern Yellow Pine (SYP) lumber and plywood. Calibration equations are...

  8. Moisture meter calibration for untreated and ACQ-treated southern yellow pine plywood

    Treesearch

    Samuel V. Glass; Charles G. Carll

    2009-01-01

    Conductance moisture meter readings using stainless steel screws as electrodes were compared with gravimetric moisture content for 1) southern yellow pine (SYP) dimensioned lumber, 2) untreated (underlayment grade) SYP plywood, and 3) SYP plywood treated with alkaline copper quaternary. Meter readings were taken with the meter set to the manufacturer-provided species...

  9. Geochemical characterization of a Quaternary monogenetic volcano in Erciyes Volcanic Complex: Cora Maar (Central Anatolian Volcanic Province, Turkey)

    NASA Astrophysics Data System (ADS)

    Gencalioglu-Kuscu, Gonca

    2011-11-01

    Central Anatolian Volcanic Province (CAVP) is a fine example of Neogene-Quaternary post-collisional volcanism in the Alpine-Mediterranean region. Volcanism in the Alpine-Mediterranean region comprises tholeiitic, transitional, calc-alkaline, and shoshonitic types with an "orogenic" fingerprint. Following the orogenic volcanism, subordinate, within-plate alkali basalts ( sl) showing little or no orogenic signature are generally reported in the region. CAVP is mainly characterized by widespread calc-alkaline andesitic-dacitic volcanism with orogenic trace element signature, reflecting enrichment of their source regions by subduction-related fluids. Cora Maar (CM) located within the Erciyes pull-apart basin, is an example to numerous Quaternary monogenetic volcanoes of the CAVP, generally considered to be alkaline. Major and trace element geochemical and geochronological data for the CM are presented in comparison with other CAVP monogenetic volcanoes. CM scoria is basaltic andesitic, transitional-calc-alkaline in nature, and characterized by negative Nb-Ta, Ba, P and Ti anomalies in mantle-normalized patterns. Unlike the "alkaline" basalts of the Mediterranean region, other late-stage basalts from the CAVP monogenetic volcanoes are classified as tholeiitic, transitional and mildly alkaline. They display the same negative anomalies and incompatible element ratios as CM samples. In this respect, CM is comparable to other CAVP monogenetic basalts ( sl), but different from the Meditterranean intraplate alkali basalts. Several lines of evidence suggest derivation of CM and other CAVP monogenetic basalts from shallow depths within the lithospheric mantle, that is from a garnet-free source. In a wider regional context, CAVP basalts ( sl) are comparable to Apuseni (Romania) and Big Pine (Western Great Basin, USA) volcanics, except the former have depleted Ba contents. This is a common feature for the CAVP volcanics and might be related to crustal contamination or source

  10. Adhesive bonding of wood treated with ACQ and copper azole preservatives

    Treesearch

    Linda F. Lorenz; Charles Frihart

    2006-01-01

    Treated wood has generally been more difficult to bond than untreated wood for a variety of reasons. Alkaline copper quat (ACQ) and copper azole (CA-B), the most prominent substitutes for chromated copper arsenate (CCA), are difficult to bond consistently. Using a phenol-resorcinol- formaldehyde (PRF) adhesive formulated for bonding to CCA-treated wood, we examined the...

  11. COPPER CORROSION AND SOLUBILITY RESEARCH

    EPA Science Inventory

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  12. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the…

  14. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications.

    PubMed

    Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A

    2010-09-08

    The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.

  15. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally

  16. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  17. Effects of dietary supplementation with vitamin C and vitamin E and their combination on growth performance, some biochemical parameters, and oxidative stress induced by copper toxicity in broilers.

    PubMed

    Cinar, Miyase; Yildirim, Ebru; Yigit, A Arzu; Yalcinkaya, Ilkay; Duru, Ozkan; Kisa, Uçler; Atmaca, Nurgul

    2014-05-01

    This study investigated effects of dietary supplementation with vitamin C, vitamin E on performance, biochemical parameters, and oxidative stress induced by copper toxicity in broilers. A total of 240, 1-day-old, broilers were assigned to eight groups with three replicates of 10 chicks each. The groups were fed on the following diets: control (basal diet), vitamin C (250 mg/kg diet), vitamin E (250 mg/kg diet), vitamin C + vitamin E (250 mg/kg + 250 mg/kg diet), and copper (300 mg/kg diet) alone or in combination with the corresponding vitamins. At the 6th week, the body weights of broilers were decreased in copper, copper + vitamin E, and copper + vitamin C + vitamin E groups compared to control. The feed conversion ratio was poor in copper group. Plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase activities, iron, copper concentrations, and erythrocyte malondialdehyde were increased; plasma vitamin A and C concentrations and erythrocyte superoxide dismutase were decreased in copper group compared to control. Glutathione peroxidase, vitamin C, and iron levels were increased; aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and copper levels were decreased in copper + vitamin C group, while superoxide dismutase, glutathione peroxidase, and vitamin E concentrations were increased; aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were decreased in copper with vitamin E group compared to copper group. The vitamin C concentrations were increased; copper, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and malondialdehyde were decreased in copper + vitamin C + vitamin E group compared to copper group. To conclude, copper caused oxidative stress in broilers. The combination of vitamin C and vitamin E addition might alleviate the harmful effects of copper as demonstrated by decreased lipid peroxidation and hepatic enzymes.

  18. Uncertainties in corrosion rate measurements of fasteners exposed to treated wood at 100% relative humidity

    Treesearch

    Samuel L. Zelinka

    2007-01-01

    This paper evaluates the effect that uncertainties in measurements of time, weight, and surface area have on the determination of the corrosion rate of metal fasteners in contact with wood. Three different types of nails were driven into alkaline copper quaternary (ACQ)-treated wood and exposed to 26.7°C (80°C) at 100 % relative humidity environment for up to 1 year....

  19. Electrostatic occlusion and quaternary structural ion pairing are key determinants of Cu(I)-mediated allostery in the copper-sensing operon repressor (CsoR).

    PubMed

    Chang, Feng-Ming James; Martin, Julia E; Giedroc, David P

    2015-04-21

    The copper-sensing operon repressor (CsoR) is an all-α-helical disc-shaped D2-symmetric homotetramer that forms a 2:1 tetramer/DNA operator complex and represses the expression of copper-resistance genes in a number of bacteria. A previous bioinformatics analysis of CsoR-family repressors distributes Cu(I)-sensing CsoRs in four of seven distinct clades on the basis of global sequence similarity. In this work, we define energetically important determinants of DNA binding in the apo-state (ΔΔGbind), and for allosteric negative coupling of Cu(I) binding to DNA binding (ΔΔGc) in a model clade IV CsoR from Geobacillus thermodenitrificans (Gt) of known structure, by selectively targeting for mutagenesis those charged residues uniquely conserved in clade IV CsoRs. These include a folded N-terminal "tail" and a number of Cu(I)-sensor and clade-specific residues that when mapped onto a model of Cu(I)-bound Gt CsoR define a path across one face of the tetramer. We find that Cu(I)-binding prevents formation of the 2:1 "sandwich" complex rather than DNA binding altogether. Folding of the N-terminal tail (residues R18, E22, R74) upon Cu-binding to the periphery of the tetramer inhibits assembly of the 2:1 apoprotein-DNA complex. In contrast, Ala substitution of residues that surround the central "hole" (R65, K101) in the tetramer, as well R48, impact DNA binding. We also identify a quaternary structural ion-pair, E73-K101″, that crosses the tetramer interface, charge-reversal of which restores DNA binding activity, allosteric regulation by Cu(I), and transcriptional derepression by Cu(I) in cells. These findings suggest an "electrostatic occlusion" model, in which basic residues important for DNA binding and/or allostery become sequestered via ion-pairing specifically in the Cu(I)-bound state, and this aids in copper-dependent disassembly of a repression complex.

  20. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  1. Release of Micronized Copper Particles from Pressure ...

    EPA Pesticide Factsheets

    Micronized copper pressure treated lumber (PTL) has recently been introduced to the consumer market as a replacement for ionized copper PTL. The presence of particulate rather than aqueous copper raises concerns about the exposure of humans as well as the environment to the particles. Two common pathways of exposure, leaching during contact with water and transfer during physical contact, were investigated to gage potential human and environmental risk during intended use of the product. Characterization, leaching tests, and wipe tests were conducted on two representative formulations of micronized copper PTL (micronized copper azole or MCA) to quantify the levels of copper present in the treated material and the amount of copper released during use as well as to determine the form (particle or ion) of the copper after it was released. Additionally, an ionized copper pressure treated wood (alkaline copper azole or ACA) was tested for comparison. The characterization showed that copper carbonate is the primary particle form in the MCA treated wood, but other forms are also present, particularly in the MCA-1 formulation, which contained a large amount of organically complexed copper. Microscopy showed that MCA-1 contained particles roughly half the size of MCA-2. The leaching results indicate that mostly (> ~95%) ionic copper is released from the MCA wood and that the particulate copper that was released is attached to cellulose and not free in solution. A sma

  2. Assessment of the Bioaccessibility of Micronized Copper Wood on Simulated Stomach Fluid

    EPA Pesticide Factsheets

    The widespread use of copper-treated lumber has increased the potential for human exposure. Moreover, there is a lack of information on the fate and behavior of copper-treated wood particles following oral ingestion. In this study, the in vitro bioaccessibility of copper from copper-treated wood dust in simulated stomach fluid and DI water was determined. Three copper-treated wood products, liquid alkali copper quaternary and two micronized copper quarternary from different manufacturers, were incubated in the extraction media then fractionated by centrifugation and filtration through 0.45 ?m and 10 kDa filters. The copper concentrations from isolated fractions were measured using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Total amounts of copper from each wood product were also determined using microwave-assisted acid digestion of dried wood samples and quantification using ICP-OES. The percent in vitro bioaccessible copper was between 83 and 90 % for all treated wood types. However, the percent of copper released in DI water was between 14 and 25 % for all wood products. This data suggests that copper is highly bioaccessible at low pH and may pose a potential human exposure risk upon ingestion. This dataset is associated with the following publication:Santiago-Rodrigues, L., J.L. Griggs, K. Bradham , C. Nelson , T. Luxton , W. Platten , and K. Rogers. Assessment of the bioaccessibility of micronized copper wood in synthetic stomach flu

  3. Quaternary prevention: reviewing the concept.

    PubMed

    Martins, Carlos; Godycki-Cwirko, Maciek; Heleno, Bruno; Brodersen, John

    2018-12-01

    According to the Wonca International Dictionary for General/Family Practice Quaternary Prevention is defined as: 'Action taken to identify patient at risk of overmedicalization, to protect him from new medical invasion, and to suggest to him interventions, which are ethically acceptable.' The concept of quaternary prevention was initially proposed by Marc Jamoulle and the targets were mainly patients with illness but without a disease. The purpose of this opinion article is to open the debate around a new possible definition and a new conceptual model of quaternary prevention based on the belief that quaternary prevention should be present in physicians' minds for every intervention they suggest to a patient. The debate around quaternary prevention is vital in the context of contemporary medicine and has expanded worldwide. The human being may suffer harm from medical interventions from conception, during their childhood, during their entire healthy lifetime as well as during a self-limited disease, a chronic disease, or a terminal disease. The current definition of quaternary prevention has limitations because it excludes patients and medical interventions where a quaternary prevention perspective would be needed and useful to protect patients from harm. In this context, a new definition and conceptual model of quaternary prevention is proposed. In this new proposal, quaternary prevention is defined as an 'action taken to protect individuals (persons/patients) from medical interventions that are likely to cause more harm than good.'

  4. Quaternary prevention: reviewing the concept

    PubMed Central

    Martins, Carlos; Godycki-Cwirko, Maciek; Heleno, Bruno; Brodersen, John

    2018-01-01

    Abstract Background: According to the Wonca International Dictionary for General/Family Practice Quaternary Prevention is defined as: ‘Action taken to identify patient at risk of overmedicalization, to protect him from new medical invasion, and to suggest to him interventions, which are ethically acceptable.’ The concept of quaternary prevention was initially proposed by Marc Jamoulle and the targets were mainly patients with illness but without a disease. Objectives: The purpose of this opinion article is to open the debate around a new possible definition and a new conceptual model of quaternary prevention based on the belief that quaternary prevention should be present in physicians’ minds for every intervention they suggest to a patient. Discussion: The debate around quaternary prevention is vital in the context of contemporary medicine and has expanded worldwide. The human being may suffer harm from medical interventions from conception, during their childhood, during their entire healthy lifetime as well as during a self-limited disease, a chronic disease, or a terminal disease. The current definition of quaternary prevention has limitations because it excludes patients and medical interventions where a quaternary prevention perspective would be needed and useful to protect patients from harm. In this context, a new definition and conceptual model of quaternary prevention is proposed. Conclusion: In this new proposal, quaternary prevention is defined as an ‘action taken to protect individuals (persons/patients) from medical interventions that are likely to cause more harm than good.’ PMID:29384397

  5. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  6. Thermochemical Stability Study of Alkyl-Tethered Quaternary Ammonium Cations for Anion Exchange Membrane Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Angela D.; Tignor, Steven E.; Sturgeon, Matthew R.

    2017-01-01

    The increased interest in the use of anion exchange membranes (AEMs) for applications in electrochemical devices has prompted significant efforts in designing materials with robust stability in alkaline media. Most reported AEMs suffer from polymer backbone degradation as well as cation functional group degradation. In this report, we provide comprehensive experimental investigations for the analysis of cation functional group stability under alkaline media. A silver oxide-mediated ion exchange method and an accelerated stability test in aqueous KOH solutions at elevated temperatures using a Parr reactor were used to evaluate a broad scope of quaternary ammonium (QA) cationic model compound structures,more » particularly focusing on alkyl-tethered cations. Additionally, byproduct analysis was employed to gain better understanding of degradation pathways and trends of alkaline stability. Experimental results under different conditions gave consistent trends in the order of cation stability of various QA small molecule model compounds. Overall, cations that are benzyl-substituted or that are near to electronegative atoms (such as oxygen) degrade faster in alkaline media in comparison to alkyl-tethered QAs. These comprehensive model compound stability studies provide valuable information regarding the relative stability of various cation structures and can help guide researchers towards designing new and promising candidates for AEM materials.« less

  7. Analysis of ambient pH stress response mediated by iron and copper intake in Schizosaccharomyces pombe.

    PubMed

    Higuchi, Yujiro; Mori, Hikari; Kubota, Takeo; Takegawa, Kaoru

    2018-01-01

    The molecular mechanism of tolerance to alkaline pH is well studied in model fungi Aspergillus nidulans and Saccharomyces cerevisiae. However, how fission yeast Schizosaccharomyces pombe survives under alkaline stress remains largely unknown, as the genes involved in the alkaline stress response pathways of A. nidulans and S. cerevisiae were not found in the genome of this organism. Since uptake of iron and copper into cells is important for alkaline tolerance in S. cerevisiae, here we examined whether iron and copper uptake processes were involved in conferring tolerance to alkaline stress in S. pombe. We first revealed that S. pombe wild-type strain could not grow at a pH higher than 6.7. We further found that the growths of mutants harboring disruption in the iron uptake-related gene frp1 + , fio1 + or fip1 + were severely inhibited under ambient pH stress condition. In contrast, derepression of these genes, by deletion of their repressor gene fep1 + , caused cells to acquire resistance to pH stress. Together, these results suggested that uptake of iron is essential for ambient pH tolerance in S. pombe. We also found that copper is required for the pH stress response because disruptants of ctr4 + , ctr5 + , ccc2 + and cuf1 + genes, all of which are needed for regulating intracellular Cu + , displayed ambient pH sensitivity. Furthermore, supplementing Fe 2+ and Cu 2+ ions to the culture media improved growth under ambient pH stress. Taken together, our results suggested that uptake of iron and copper is the crucial factor needed for the adaptation of S. pombe to ambient pH stress. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Benefits and risks of emerging technologies: integrating life cycle assessment and decision analysis to assess lumber treatment alternatives.

    PubMed

    Tsang, Michael P; Bates, Matthew E; Madison, Marcus; Linkov, Igor

    2014-10-07

    Assessing the best options among emerging technologies (e.g., new chemicals, nanotechnologies) is complicated because of trade-offs across benefits and risks that are difficult to quantify given limited and fragmented availability of information. This study demonstrates the integration of multicriteria decision analysis (MCDA) and life cycle assessment (LCA) to address technology alternative selection decisions. As a case study, prioritization of six lumber treatment alternatives [micronized copper quaternary (MCQ); alkaline copper quaternary (ACQ); water-borne copper naphthenate (CN); oil-borne copper naphthenate (CNo); water-borne copper quinolate (CQ); and water-borne zinc naphthenate (ZN)] for military use are considered. Multiattribute value theory (MAVT) is used to derive risk and benefit scores. Risk scores are calculated using a cradle-to-gate LCA. Benefit scores are calculated by scoring of cost, durability, and corrosiveness criteria. Three weighting schemes are used, representing Environmental, Military and Balanced stakeholder perspectives. Aggregated scores from all three perspectives show CQ to be the least favorable alterative. MCQ is identified as the most favorable alternative from the Environmental stakeholder perspective. From the Military stakeholder perspective, ZN is determined to be the most favorable alternative, followed closely by MCQ. This type of scoring and ranking of multiple heterogeneous criteria in a systematic and transparent way facilitates better justification of technology selection and regulation.

  9. SOLVING COPPER CORROSION PROBLEMS WHILE MAINTAINING LEAD CONTROL IN A HIGH ALKALINITY WATER USING ORTHOPHOSPHATE

    EPA Science Inventory

    Lead and Copper Rule sampling in 1992 uncovered high copper levels in many homes in the Indian Hill Water Works, Ohio (IHWW) water system. The 90th percentile copper and lead levels were 1.63 mg/L and 0.012 mg/L, respectively. IHWW supplies water to several suburban communities t...

  10. Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses.

    PubMed

    Yu, Ying; Wu, Guangwen; Yuan, Hongmei; Cheng, Lili; Zhao, Dongsheng; Huang, Wengong; Zhang, Shuquan; Zhang, Liguo; Chen, Hongyu; Zhang, Jian; Guan, Fengzhi

    2016-05-27

    MicroRNAs (miRNAs) play a critical role in responses to biotic and abiotic stress and have been characterized in a large number of plant species. Although flax (Linum usitatissimum L.) is one of the most important fiber and oil crops worldwide, no reports have been published describing flax miRNAs (Lus-miRNAs) induced in response to saline, alkaline, and saline-alkaline stresses. In this work, combined small RNA and degradome deep sequencing was used to analyze flax libraries constructed after alkaline-salt stress (AS2), neutral salt stress (NSS), alkaline stress (AS), and the non-stressed control (CK). From the CK, AS, AS2, and NSS libraries, a total of 118, 119, 122, and 120 known Lus-miRNAs and 233, 213, 211, and 212 novel Lus-miRNAs were isolated, respectively. After assessment of differential expression profiles, 17 known Lus-miRNAs and 36 novel Lus-miRNAs were selected and used to predict putative target genes. Gene ontology term enrichment analysis revealed target genes that were involved in responses to stimuli, including signaling and catalytic activity. Eight Lus-miRNAs were selected for analysis using qRT-PCR to confirm the accuracy and reliability of the miRNA-seq results. The qRT-PCR results showed that changes in stress-induced expression profiles of these miRNAs mirrored expression trends observed using miRNA-seq. Degradome sequencing and transcriptome profiling showed that expression of 29 miRNA-target pairs displayed inverse expression patterns under saline, alkaline, and saline-alkaline stresses. From the target prediction analysis, the miR398a-targeted gene codes for a copper/zinc superoxide dismutase, and the miR530 has been shown to explicitly target WRKY family transcription factors, which suggesting that these two micRNAs and their targets may significant involve in the saline, alkaline, and saline-alkaline stress response in flax. Identification and characterization of flax miRNAs, their target genes, functional annotations, and gene

  11. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    PubMed

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    PubMed

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  13. Evaluating the role of ion composition on the toxicity of copper to Ceriodaphnia dubia in very hard waters.

    PubMed

    Gensemer, Robert W; Naddy, Rami B; Stubblefield, William A; Hockett, J Russell; Santore, Robert; Paquin, Paul

    2002-09-01

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States over the range of 25-400 mgl(-1) (as CaCO(3)). However, waters in the arid west of the US frequently exceed 400 mgl(-1) hardness, and the applicability of hardness-toxicity relationships in these waters is unknown. Acute toxicity tests with Ceriodaphnia dubia were conducted at hardness levels ranging from approximately 300 to 1,200 mgl(-1) using reconstituted waters that mimic two natural waters with elevated hardness: (1) alkaline desert southwest streams (Las Vegas Wash, NV), and (2) low alkalinity waters from a CaSO(4)-treated mining effluent in Colorado. The moderately-alkaline EPA synthetic hard water was also included for comparison. Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g., alkalinity or other correlated factors). The hardness equations used in regulatory criteria, therefore, may not provide an accurate level of protection against copper toxicity in all types of very hard waters. However, the mechanistic Biotic ligand model generally predicted copper toxicity within +/-2X of observed EC(50) values, and thus may be more useful than hardness for modifying water quality criteria.

  14. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  15. Copper sulfate toxicity to various fish: role of alkalinity/hardness

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate has been used in fisheries since the 1890’s. This compound is currently used to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs, and has also been used in the past to control columnaris on fish, although antibiotics are the common treatment now. In our l...

  16. Serial changes in selected serum constituents in low birth weight infants on peripheral parenteral nutrition with different zinc and copper supplements.

    PubMed

    Lockitch, G; Pendray, M R; Godolphin, W J; Quigley, G

    1985-07-01

    One hundred and five infants of birth weight 2000 g or less who received peripherally administered parenteral nutrition for periods of three or more weeks, were randomly assigned to groups receiving different amounts of zinc and copper supplement. The blood concentrations of zinc, copper, retinol-binding protein, prealbumin, alkaline phosphatase and aspartate transaminase were followed weekly. Mean serum zinc, retinol-binding protein and prealbumin declined significantly over time while alkaline phosphatase rose. Only the group receiving the highest zinc supplement maintained a mean serum zinc concentration within the normal range at seven weeks. No difference in the protein or enzyme concentrations was found between the different zinc supplement groups. No difference was seen in serum copper or ceruloplasmin between copper dose groups although one intravenous supplement was double that of the other.

  17. Recovery of copper as zero-valent phase and/or copper oxide nanoparticles from wastewater by ferritization.

    PubMed

    Heuss-Aßbichler, Soraya; John, Melanie; Klapper, Daniel; Bläß, Ulrich W; Kochetov, Gennadii

    2016-10-01

    Recently the focus of interest changed from merely purification of the waste water to recover heavy metals. With the slightly modified ferritization process presented here it is possible to decrease initial Cu(2+) concentrations up to 10 g/l to values <0.3 mg/l. The recovery rates of copper of all experiments are in the rage of 99.98 to almost 100%. Copper can be precipitated as oxide or zero valent metal (almost) free of hydroxide. All precipitates are exclusively of nanoparticle size. The phase assemblage depends strongly on experimental conditions as e.g. reaction temperature, pH-value, initial concentration and ageing time and condition. Three different options were developed depending on the reaction conditions. Option 1.) copper incorporation into the ferrite structure ((Cu,Fe)Fe2O4) and/or precipitation as cuprite (Cu2O) and zero-valent copper, option 2.) copper incorporation into the ferrite structure and/or precipitation as cuprite and/or tenorite (CuO) and option 3.) copper precipitation as tenorite. Ferrite is formed by the oxidation of GR in alkaline solution without additional oxygen supply. The chemistry reaches from pure magnetite up to 45% copper ferrite component. First experiments with wastewater from electroplating industry confirm the results obtained from synthetic solutions. In all cases the volume of the precipitates is extremely low compared to typical wastewater treatment by hydroxide precipitation. Therefore, pollution and further dissipation of copper can be avoided using this simple and economic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  19. Novel Quaternary Quantum Decoder, Multiplexer and Demultiplexer Circuits

    NASA Astrophysics Data System (ADS)

    Haghparast, Majid; Monfared, Asma Taheri

    2017-05-01

    Multiple valued logic is a promising approach to reduce the width of the reversible or quantum circuits, moreover, quaternary logic is considered as being a good choice for future quantum computing technology hence it is very suitable for the encoded realization of binary logic functions through its grouping of 2-bits together into quaternary values. The Quaternary decoder, multiplexer, and demultiplexer are essential units of quaternary digital systems. In this paper, we have initially designed a quantum realization of the quaternary decoder circuit using quaternary 1-qudit gates and quaternary Muthukrishnan-Stroud gates. Then we have presented quantum realization of quaternary multiplexer and demultiplexer circuits using the constructed quaternary decoder circuit and quaternary controlled Feynman gates. The suggested circuits in this paper have a lower quantum cost and hardware complexity than the existing designs that are currently used in quaternary digital systems. All the scales applied in this paper are based on Nanometric area.

  20. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale.

    PubMed

    Włodarczyk, Agnieszka; Szymańska, Agata; Skłodowska, Aleksandra; Matlakowska, Renata

    2016-04-01

    The aim of this study was to investigate the bioweathering of copper minerals present in the alkaline, copper-bearing and organic-rich Kupferschiefer black shale through the action of a consortium of indigenous lithobiontic, heterotrophic, neutrophilic bacteria isolated from this sedimentary rock. The involvement of microorganisms in the direct/enzymatic bioweathering of fossil organic matter of the rock was confirmed. As a result of bacterial activity, a spectrum of various organic compounds such as urea and phosphoric acid tributyl ester were released from the rock. These compounds indirectly act on the copper minerals occurring in the rock and cause them to weather. This process was reflected in the mobilization of copper, iron and sulfur and in changes in the appearance of copper minerals observed under reflected light. The potential role of identified enzymes in biodegradation of fossil organic matter and role of organic compounds released from black shale as a result of this process in copper minerals weathering was discussed. The presented results provide a new insight into the role of chemical compounds released by bacteria during fossil organic matter bioweathering potentially important in the cycling of copper and iron deposited in the sedimentary rock. The originality of the described phenomenon lies in the fact that the bioweathering of fossil organic matter and, consequently, of copper minerals occur simultaneously in the same environment, without any additional sources of energy, electrons and carbon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Copper sulfate controls fungus on mat-spawned largemouth bass eggs

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) is widely used by the catfish and hybrid striped bass industries as an economical treatment to control fungus (Saprolegnia spp.) on eggs; these industries use hatching troughs and McDonald jars, respectively, in moderate alkalinity waters. This study determined the effectivene...

  2. Comparison of GPS and Quaternary slip rates: Insights from a new Quaternary fault database for Central Asia

    NASA Astrophysics Data System (ADS)

    Mohadjer, Solmaz; Ehlers, Todd; Bendick, Rebecca; Mutz, Sebastian

    2016-04-01

    Previous studies related to the kinematics of deformation within the India-Asia collision zone have relied on slip rate data for major active faults to test kinematic models that explain the deformation of the region. The slip rate data, however, are generally disputed for many of the first-order faults in the region (e.g., Altyn Tagh and Karakorum faults). Several studies have also challenged the common assumption that geodetic slip rates are representative of Quaternary slip rates. What has received little attention is the degree to which geodetic slip rates relate to Quaternary slip rates for active faults in the India-Asia collision zone. In this study, we utilize slip rate data from a new Quaternary fault database for Central Asia to determine the overall relationship between Quaternary and GPS-derived slip rates for 18 faults. The preliminary analysis investigating this relationship uses weighted least squares and a re-sampling analysis to test the sensitivity of this relationship to different data point attributes (e.g., faults associated with data points and dating methods used for estimating Quaternary slip rates). The resulting sample subsets of data points yield a maximum possible Pearson correlation coefficient of ~0.6, suggesting moderate correlation between Quaternary and GPS-derived slip rates for some faults (e.g., Kunlun and Longmen Shan faults). Faults with poorly correlated Quaternary and GPS-derived slip rates were identified and dating methods used for the Quaternary slip rates were examined. Results indicate that a poor correlation between Quaternary and GPS-derived slip rates exist for the Karakorum and Chaman faults. Large differences between Quaternary and GPS slip rates for these faults appear to be connected to qualitative dating of landforms used in the estimation of the Quaternary slip rates and errors in the geomorphic and structural reconstruction of offset landforms (e.g., offset terrace riser reconstructions for Altyn Tagh fault

  3. A little copper goes a long way for columnaris disease

    USDA-ARS?s Scientific Manuscript database

    Columnaris disease is a costly bacterial disease of commercially grown channel catfish. Three experiments were conducted to evaluate the effects of pre-exposing channel catfish fingerlings to 0, ½, 1, or 2 times the recommended copper sulfate rate (1 % of the alkalinity which was 210 mg/L CaCO3) for...

  4. Coordinate responses to alkaline pH stress in budding yeast

    PubMed Central

    Serra-Cardona, Albert; Canadell, David; Ariño, Joaquín

    2015-01-01

    Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products. PMID:28357292

  5. Effects of blending of desalinated water with treated surface drinking water on copper and lead release.

    PubMed

    Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi

    2010-07-01

    This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Designing Novel Quaternary Quantum Reversible Subtractor Circuits

    NASA Astrophysics Data System (ADS)

    Haghparast, Majid; Monfared, Asma Taheri

    2018-01-01

    Reversible logic synthesis is an important area of current research because of its ability to reduce energy dissipation. In recent years, multiple valued logic has received great attention due to its ability to reduce the width of the reversible circuit which is a main requirement in quantum technology. Subtractor circuits are between major components used in quantum computers. In this paper, we will discuss the design of a quaternary quantum reversible half subtractor circuit using quaternary 1-qudit, 2-qudit Muthukrishnan-Stroud and 3-qudit controlled gates and a 2-qudit Generalized quaternary gate. Then a design of a quaternary quantum reversible full subtractor circuit based on the quaternary half subtractor will be presenting. The designs shall then be evaluated in terms of quantum cost, constant input, garbage output, and hardware complexity. The proposed quaternary quantum reversible circuits are the first attempt in the designing of the aforementioned subtractor.

  7. Degradation Kinetics Study of Alogliptin Benzoate in Alkaline Medium by Validated Stability-Indicating HPTLC Method.

    PubMed

    Bodiwala, Kunjan Bharatkumar; Shah, Shailesh; Thakor, Jeenal; Marolia, Bhavin; Prajapati, Pintu

    2016-11-01

    A rapid, sensitive, and stability-indicating high-performance thin-layer chromatographic method was developed and validated to study degradation kinetics of Alogliptin benzoate (ALG) in an alkaline medium. ALG was degraded under acidic, alkaline, oxidative, and thermal stress conditions. The degraded samples were chromatographed on silica gel 60F254-TLC plates, developed using a quaternary-solvent system (chloroform-methanol-ethyl acetate-triethyl amine, 9+1+1+0.5, v/v/v/v), and scanned at 278 nm. The developed method was validated per International Conference on Harmonization guidelines using validation parameters such as specificity, linearity and range, precision, accuracy, LOD, and LOQ. The linearity range for ALG was 100-500 ng/band (correlation coefficient = 0.9997) with an average recovery of 99.47%. The LOD and LOQ for ALG were 9.8 and 32.7 ng/band, respectively. The developed method was successfully applied for the quantitative estimation of ALG in its synthetic mixture with common excipients. Degradation kinetics of ALG in an alkaline medium was studied by degrading it under three different temperatures and three different concentrations of alkali. Degradation of ALG in the alkaline medium was found to follow first-order kinetics. Contour plots have been generated to predict degradation rate constant, half-life, and shelf life of ALG in various combinations of temperature and concentration of alkali using Design Expert software.

  8. Evaluation of copper toxicity using site specific algae and water chemistry: Field validation of laboratory bioassays.

    PubMed

    Fawaz, Elyssa G; Salam, Darine A; Kamareddine, Lina

    2018-07-15

    Studies of metal toxicity to microalgae have predominantly been conducted using single non-target algae species and without due regard for the chemistry of the treated waters, leading to ineffective or excessive algaecide treatments. In this study, indigenous multi-algal species (Scenedesmus quadricauda, and Scenedesmus subspicatus and Oscillatoria agardhii) were used in laboratory toxicity bioassays under simulated field water chemistry (pH = 7.2, hardness = 196 mg L -1 as CaCO 3 , and alkalinity = 222 mg L -1 as CaCO 3 ) to determine the optimum copper sulfate treatment dose to control algae growth in an irrigation canal. Toxicity bioassays were conducted using copper sulfate in chelated (with EDTA) and non-chelated (without EDTA) forms to assess the influence of the use of synthetic chelators in toxicity studies. Also, copper toxicity to the indigenous algae species was measured in the non-modified EPA test medium (pH = 7.5, hardness = 92 mg L -1 as CaCO 3 , alkalinity = 10 mg L -1 as CaCO 3 and EDTA= 300 µg L -1 ) to assess the impact of the water chemistry on algae inhibitory algal dosages. Under simulated water chemistry conditions, lower toxicity was measured in the test flasks with the chelated form of copper (96 h- EC 50 = 386.67 µg L -1 as Cu) as compared to those with the non-chelated metal (96 h-EC 50 = 217.17 µg L -1 as Cu). In addition, higher copper toxicity was measured in the test flasks prepared with the non-modified EPA medium using chelated copper (96 h-EC 50 = 65.93 µg L -1 as Cu) as compared to their analogous microcosms with modified water chemistry (96 h-EC 50 = 386.67 µg L -1 as Cu), the increased water hardness and alkalinity in the latter case contributing to the decrease of the metal bioavailability. Results from laboratory experiments showed good correlation with copper dosages used in a small scale field testing to control algae growth, increasing confidence in

  9. Controls on Cyclic Formation of Quaternary Early Diagenetic Dolomite

    NASA Astrophysics Data System (ADS)

    McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.

    2018-04-01

    The origin of sedimentary dolomite and the factors that control its formation within the geological record remain speculative. In most models, dolomite formation is linked to evaporative conditions, high water temperature, increasing Mg/Ca ratio, increasing alkalinity, and high amounts of biomass. Here we challenge these archetypal views, by documenting a case example of Quaternary dolomite which formed in Lake Van at constantly low temperature (<4°C) and without direct control of the latter conditions. Dolomite occurs within highstand sediments related to suborbital climate variability (Dansgaard-Oeschger cycles). We propose that dolomite precipitation is a product of a microbially influenced process, triggered by ecological stress, resulting from reventilation of the water-sediment interface. Independently from the validity of this hypothesis, our results call for a reevaluation of the paleoenvironmental conditions often invoked for early diagenetic dolomite-rich intervals within sedimentary sequences and for caution when interpreting time series of subrecent lacustrine carbonates.

  10. Partitioning the Quaternary

    NASA Astrophysics Data System (ADS)

    Gibbard, Philip L.; Lewin, John

    2016-11-01

    We review the historical purposes and procedures for stratigraphical division and naming within the Quaternary, and summarize the current requirements for formal partitioning through the International Commission on Stratigraphy (ICS). A raft of new data and evidence has impacted traditional approaches: quasi-continuous records from ocean sediments and ice cores, new numerical dating techniques, and alternative macro-models, such as those provided through Sequence Stratigraphy and Earth-System Science. The practical usefulness of division remains, but there is now greater appreciation of complex Quaternary detail and the modelling of time continua, the latter also extending into the future. There are problems both of commission (what is done, but could be done better) and of omission (what gets left out) in partitioning the Quaternary. These include the challenge set by the use of unconformities as stage boundaries, how to deal with multiphase records in ocean and terrestrial sediments, what happened at the 'Early-Mid- (Middle) Pleistocene Transition', dealing with trends that cross phase boundaries, and the current controversial focus on how to subdivide the Holocene and formally define an 'Anthropocene'.

  11. Optical properties of stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohindroo, Jeevan Jyoti; Garg, Umesh Kumar; Sharma, Anshul Kumar

    2016-05-01

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5%solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv)2 and hv vs. (αhv)1/2. The value of Band gap came out to be around 1.98-2.02 eV which is in close agreement with the earlier reported values

  12. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    PubMed

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Influence of alkalinity and hardness on copper sulfate toxicity to various fish

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate treatments are currently used to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs. This compound has also been used in the past to control columnaris on fish, although antibiotics are the common treatment now. In our lab’s efforts to gain an FDA-approval ...

  14. Influence of water chemistry on the acute toxicity of copper and zinc to the cladoceran Ceriodaphnia cf dubia.

    PubMed

    Hyne, Ross V; Pablo, Fleur; Julli, Moreno; Markich, Scott J

    2005-07-01

    This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.

  15. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  17. 21 CFR 172.165 - Quaternary ammonium chloride combination.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Quaternary ammonium chloride combination. 172.165... HUMAN CONSUMPTION Food Preservatives § 172.165 Quaternary ammonium chloride combination. The food additive, quaternary ammonium chloride combination, may be safely used in food in accordance with the...

  18. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U

  19. Optical properties of stabilized copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com; Department of Chemistry, DAV College, Amritsar, Punjab India; Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution wasmore » adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.« less

  20. Effect of Soil Amendments on Microbial Resilience Capacity of Acid Soil Under Copper Stress.

    PubMed

    Mounissamy, Vassanda Coumar; Kundu, Samaresh; Selladurai, Rajendiran; Saha, Jayanta Kumar; Biswas, Ashish Kumar; Adhikari, Tapan; Patra, Ashok Kumar

    2017-11-01

    An incubation study was undertaken to study microbial resilience capacity of acid soil amended with farmyard manure (FYM), charcoal and lime under copper (Cu) perturbation. Copper stress significantly reduced enzymatic activities and microbial biomass carbon (MBC) in soil. Percent reduction in microbial activity of soil due to Cu stress was 74.7% in dehydrogenase activity, 59.9% in MBC, 48.2% in alkaline phosphatase activity and 15.1% in acid phosphatase activity. Soil treated with FYM + charcoal showed highest resistance index for enzymatic activities and MBC. Similarly, the highest resilience index for acid phosphatase activity was observed in soil amended with FYM (0.40), whereas FYM + charcoal-treated soil showed the highest resilience indices for alkaline, dehydrogenase activity and MBC: 0.50, 0.22 and 0.25, respectively. This investigation showed that FYM and charcoal application, either alone or in combination, proved to be better than lime with respect to microbial functional resistance and resilience of acid soil under Cu perturbation.

  1. Development of a test method against hot alkaline chemical splashes.

    PubMed

    Mäkinen, Helena; Nieminen, Kalevi; Mäki, Susanna; Siiskonen, Sirkku

    2008-01-01

    High temperature alkaline chemical liquids have caused injuries and hazardous situations in Finnish pulp manufacturing mills. There are no requirements and/or test method standards concerning protection against high temperature alkaline chemical splashes. This paper describes the test method development process to test and identify materials appropriate for hot liquid chemical hazard protection. In the first phase, the liquid was spilled through a stainless steel funnel and the protection performance was evaluated using a polyvinyl chloride (PVC) film under the test material. After several tentative improvements, a graphite crucible was used for heating and spilling the chemical, and a copper-coated K-type thermometer with 4 independent measuring areas was designed to measure the temperature under the material samples. The thermometer was designed to respond quickly so that peak temperatures could be measured. The main problem was to keep the spilled amount of chemical constant, which unfortunately resulted in significant variability in data.

  2. FIELD-SCALE LEACHING OF ARSENIC, CHROMIUM AND COPPER FROM WEATHERED TREATED WOOD

    PubMed Central

    Hasan, A. Rasem; Hu, Ligang; Solo-Gabriele, Helena M.; Fieber, Lynne; Cai, Yong; Townsend, Timothy G.

    2010-01-01

    Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals’ leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers. PMID:20053493

  3. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  4. Pitting Corrosion of Copper in Waters with High pH and Low Alkalinity

    EPA Science Inventory

    Localized or pitting corrosion of copper pipes used in household drinking-water plumbing is a problem for many water utilities and their customers. Extreme attack can lead to pinhole water leaks that may result in water damage, mold growth, and costly repairs. Water quality has b...

  5. [Effects of bio-crust on soil microbial biomass and enzyme activities in copper mine tailings].

    PubMed

    Chen, Zheng; Yang, Gui-de; Sun, Qing-ye

    2009-09-01

    Bio-crust is the initial stage of natural primary succession in copper mine tailings. With the Yangshanchong and Tongguanshan copper mine tailings in Tongling City of Anhui Province as test objects, this paper studied the soil microbial biomass C and N and the activities of dehydrogenase, catalase, alkaline phosphatase, and urease under different types of bio-crust. The bio-crusts improved the soil microbial biomass and enzyme activities in the upper layer of the tailings markedly. Algal crust had the best effect in improving soil microbial biomass C and N, followed by moss-algal crust, and moss crust. Soil microflora also varied with the type of bio-crust. No'significant difference was observed in the soil enzyme activities under the three types of bio-crust. Soil alkaline phosphatase activity was significantly positively correlated with soil microbial biomass and dehydrogenase and urease activities, but negatively correlated with soil pH. In addition, moss rhizoid could markedly enhance the soil microbial biomass and enzyme activities in moss crust rhizoid.

  6. Brazing Inconel 625 Using the Copper Foil

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Wang, Cheng-Yen; Shiue, Ren-Kae

    2013-12-01

    Brazing Inconel 625 (IN-625) using the copper foil has been investigated in this research. The brazed joint is composed of nanosized CrNi3 precipitates and Cr/Mo/Nb/Ni quaternary compound in the Cu/Ni-rich matrix. The copper filler 50 μm in thickness is enough for the joint filling. However, the application of Cu foil 100 μm in thickness has little effect on the shear strength of the brazed joint. The specimen brazed at 1433 K (1160 °C) for 1800 seconds demonstrates the best shear strength of 470 MPa, and its fractograph is dominated by ductile dimple fracture with sliding marks. Decreasing the brazing temperature slightly decreases the shear strength of the brazed joint due to the presence of a few isolated solidification shrinkage voids smaller than 15 μm. Increasing the brazing temperature, especially for the specimen brazed at 1473 K (1200 °C), significantly deteriorates the shear strength of the joint below 260 MPa because of coalescence of isothermal solidification shrinkage voids in the joint. The Cu foil demonstrates potential in brazing IN-625 for industrial application.

  7. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation.

    PubMed

    Zhang, Peili; Li, Lin; Nordlund, Dennis; Chen, Hong; Fan, Lizhou; Zhang, Biaobiao; Sheng, Xia; Daniel, Quentin; Sun, Licheng

    2018-01-26

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2 . The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

  8. Recovery of copper and cyanide from waste cyanide solutions using emulsion liquid membrane with LIX 7950 as the carrier.

    PubMed

    Xie, Feng; Wang, Wei

    2017-08-01

    The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.

  9. Investigation of the degradation of different nickel anode types for alkaline fuel cells (AFCs)

    NASA Astrophysics Data System (ADS)

    Gülzow, E.; Schulze, M.; Steinhilber, G.

    Alkaline fuel cells (AFCs) have the opportunity of becoming important for mobile energy systems as, in contrast to other low temperature fuel cells, the alkaline type requires neither noble metal catalysts nor an expensive polymer electrolyte. In AFCs, nickel is used as anode catalyst in gas diffusion electrodes. The metal catalyst was mixed with polytetraflourethylene (PTFE) as organic binder in a knife mile and rolled onto a metal web in a calendar to prepare the electrode. After an activation process with hydrogen evolution at 5 mA/cm 2 for 18 h, the electrodes were stressed at constant loading in a half cell equipment. During the fuel cell operation, the electrochemical performance decreased due to changes of the polymer (PTFE) and of the metal particles in the electrode, which is described in detail in another paper. In this study, three types of electrodes were investigated. The first type of electrode is composed of pure Raney-nickel and PTFE powder, the nickel particles in the second electrode type were selected according to particle size and in the third electrode copper powder was added to the nickel powder not selected by size. The size selected nickel particles show a better electrochemical performance related to the non-selected catalyst, but due to the electrochemically induced disintegration of the nickel particles the electrochemical performance decreases stronger. The copper powder in the third electrode is added to improve the electronic conductivity of the nickel catalyst, but the copper is not stable under the electrochemical conditions in fuel cell operation. With all three anode types long-term experiments have been performed. The electrodes have been characterized after the electrochemical stressing to investigate the degradation processes.

  10. Factors affecting catalysis of copper corrosion products in NDMA formation from DMA in simulated premise plumbing.

    PubMed

    Zhang, Hong; Andrews, Susan A

    2013-11-01

    This study investigated the effects of corrosion products of copper, a metal commonly employed in household plumbing systems, on N-nitrosodimethylamine (NDMA) formation from a known NDMA precursor, dimethylamine (DMA). Copper-catalyzed NDMA formation increased with increasing copper concentrations, DMA concentrations, alkalinity and hardness, but decreased with increasing natural organic matter (NOM) concentration. pH influenced the speciation of chloramine and the interactions of copper with DMA. The transformation of monochloramine (NH2Cl) to dichloramine and complexation of copper with DMA were involved in elevating the formation of NDMA by copper at pH 7.0. The inhibiting effect of NOM on copper catalysis was attributed to the rapid consumption of NH2Cl by NOM and/or the competitive complexation of NOM with copper to limit the formation of DMA-copper complexes. Hardness ions, as represented by Ca(2+), also competed with copper for binding sites on NOM, thereby weakening the inhibitory effect of NOM on NDMA formation. Common copper corrosion products also participated in these reactions but in different ways. Aqueous copper released from malachite [Cu2CO3(OH)2] was shown to promote NDMA formation while NDMA formation decreased in the presence of CuO, most likely due to the adsorption of DMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE PAGES

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.; ...

    2018-04-26

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  12. Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindelholz, Eric John; Cong, Hongbo; Jove-Colon, Carlos F.

    Here, this study describes the evolving state of electrolyte and corrosion processes associated with sodium chloride on copper at the initial stage of corrosion and the critical implications of this behavior on controlling kinetics and damage distributions. Sodium chloride droplets were placed on copper in humid conditions and the resulting electrolyte properties, corrosion products and damage were characterized over time using time-lapse imaging, micro Raman spectroscopy, TOF-SIMS and optical profilometry. Within minutes of NaCl droplet placement, NaOH-rich films resultant from oxygen reduction advanced stepwise from the droplets, leaving behind concentric trenching attack patterns suggestive of moving anode-cathode pairs at themore » alkaline film front. Corrosion attack under these spreading alkaline films was up to 10x greater than under the original NaCl drops. Furthermore, solid Cu 2Cl(OH) 3 shells formed over the surface of the NaCl drops within hours of exposure. Thermodynamic modeling along with immersed electrochemical experiments in simulated droplet and films electrolytes were used to rationalize this behavior and build a description of the rapidly evolving corroding system.« less

  13. EVALUATING THE ROLE OF ION COMPOSITION ON THE TOXICITY OF COPPER TO CERIODAPHNIA DUBIA IN VERY HARD WATERS

    EPA Science Inventory

    The mitigating effect of increasing hardness on metal toxicity is reflected in water quality criteria in the United States. - - - Copper toxicity did not consistently vary as a function of hardness, but likely as a function of other water quality characteristics (e.g. alkalinity ...

  14. Effects of chronic copper exposure during early life in rhesus monkeys.

    PubMed

    Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo

    2005-05-01

    Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.

  15. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    PubMed

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  16. Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Qimei; Chen, Yingying; Wang, Lingli; Ai, Shasha; Ding, Hanming

    2017-12-01

    Alkalinized graphitic carbon nitride (CNK-OH) has been synthesized by one-step thermal poly-condensation method, and Cu-modified alkalinized g-C3N4 (Cu-CNK-OH) has been prepared by impregnation approach over CNK-OH. These copper species in Cu-CNK-OH are embedded in the frame of CNK-OH mostly via the Cu-N bonds. Cu-CNK-OH has been employed as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB). Both the production efficiency of hydroxyl radicals and the transformation rate of Cu(II)/Cu(I) redox pair increase under visible-light irradiation. As a result, Cu-CNK-OH exhibits improved Fenton-like catalytic activity on the degradation of RhB. The synergetic interaction between Fenton-like process and photocatalytic process also contributes such improvement. The hydroxyl radicals and holes are the major reactive species in the photocatalytically assisted Fenton-like process. This study provides a valuable strategy for metal modification of alkalinized g-C3N4 with enhanced Fenton-like catalytic performance for the degradation of organic contaminants.

  17. PRN 88-2: Clustering of Quaternary Ammonium Compounds

    EPA Pesticide Factsheets

    This Notice announces that EPA has clustered the Quaternary Ammonium Compounds into four groups for the purpose of testing chemicals to build a database that will support continued registration of the entire family of quaternary ammonium compounds

  18. Determination of an organic-acid analog of DOC for use in copper toxicity studies on salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacRae, R.K.; Meyer, J.S.; Hansen, J.A.

    1995-12-31

    Concentrations of dissolved copper in streams draining mine sites often exceed concentrations shown to cause acute and chronic mortality in salmonids. However, toxicity and impaired behaviors may be modified by dissolved organic carbon (DOC) and other inorganic components present in the site water. The effects of DOC on copper speciation, and thus bioavailability and toxicity, were determined by titrating stream waters with copper, using a cupric ion-specific electrode to detect free copper concentrations. Effects of various competing cations (e.g., Ca{sup +2}, Co{sup +2}) on copper-DOC binding were also evaluated. Titration results were evaluated using Scatchard and non-linear regression analyses tomore » quantify the strength and capacity of copper-DOC binding. Inorganic speciation was determined using the geochemical model MINEQL{sup +}. Results of these titrations indicated the presence of two or three distinct copper binding components in site water DOC. Three commercially available organic acids where then chosen to mimic the binding characteristics of natural DOC. This DOC-analog was used successfully in fish toxicity studies to evaluate the influence of DOC on copper bioavailability. Geochemical models were developed to predict copper speciation in both laboratory test waters and site waters, for any typical combination of water chemistry parameters (pH, alkalinity, [DOC], etc.). A combined interpretation of fish toxicity and modeling results indicate that some DOC-bound copper was bioavailable.« less

  19. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peili; Li, Lin; Nordlund, Dennis

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less

  20. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation

    DOE PAGES

    Zhang, Peili; Li, Lin; Nordlund, Dennis; ...

    2018-01-26

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here in this paper, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm -2. The core-shell NiFeCu electrode exhibits pH-dependent oxygenmore » evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.« less

  1. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.

    PubMed

    Sudha, Govindarajan; Srinivasan, Narayanaswamy

    2016-09-01

    A comprehensive analysis of the quaternary features of distantly related homo-oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo-oligomeric proteins have the same quaternary state. Considering these homologous homo-oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo-oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as "Russian doll effect." The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo-oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo-oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo-oligomers. Proteins 2016; 84:1190-1202. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. A study of low-dimensional quaternary mixed-transition metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Oledzka, Magdalena Agata

    New quaternary alkali metal mixed-transition metal sulfides: ACuMSsb2 (A = K, Rb, Cs; M = Mn, Fe, Co) and KCosb{2-x}Cusb{x}Ssb2 (0.5 ≤ x ≤ 1.5) were prepared by CSsb2/Nsb2 sulfurization of a mixture of oxide or sulfide and carbonate precursors of the corresponding metals. All of the phases form in the tetragonal ThCrsb2Sisb2-type structure in space group I4/mmm. The ACoCuSsb2 phases are semiconducting, with room temperature resistivities rhosbRT˜ 10sp{-2}Omega {*}cm;\\ KCosb{0.5}CUsb{1.5}Ssb2 is metallic with a metal-to-nonmetal transition at ˜120 K. Seebeck measurements indicate that the majority of charge carriers are holes. The temperature dependence of magnetic susceptibility shows an anomalous transition to the ferromagnetic state in the ACoCuSsb2 phases. The electrical and magnetic properties of the new quaternary phases are compared to those of ternary ACosb2Ssb2 (A = K, Rb, Cs). The quaternary sulfides ACuFeSsb2 show semiconducting behavior. Magnetic susceptibility data indicate the presence of localized magnetic moment arising from the di- and trivalent iron ions. The semiconducting properties observed in this system are in contrast to the metallic behavior predicted by theoretical calculations. Investigations of the electrical properties of the sulfides ACuMnSsb2 revealed semiconducting behavior with a broad anomaly at ≈70 K. In the temperature range 100-300 K, the molar magnetic susceptibility of all the samples shows a weak maximum consistent with localized antiferromagnetic exchange of isolated two-dimensional manganese cluster nets. The divergence of the FC and ZFC molar susceptibilities at low temperatures, for all the samples, suggests spin-glass-type behavior with a well defined freezing temperature of ≈35 K. Single phase polycrystalline quaternary selenides ACuMnSesb2 (A = K, Rb, Cs) were prepared for the first time by the reduction of the mixture containing corresponding alkali metal carbonates, copper oxide, manganese and selenium

  3. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    NASA Technical Reports Server (NTRS)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  4. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  5. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si.

    PubMed

    Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong

    2018-02-21

    The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.

  6. A novel route to recognizing quaternary ammonium cations using electrospray mass spectrometry.

    PubMed

    Shackman, Holly M; Ding, Wei; Bolgar, Mark S

    2015-01-01

    Characterizing and elucidating structures is a commonplace and necessary activity in the pharmaceutical industry with mass spectrometry and NMR being the primary tools for analysis. Although many functional groups are readily identifiable, quaternary ammonium cations have proven to be difficult to unequivocally identify using these techniques. Due to the lack of an N-H bond, quaternary ammonium groups can only be detected in the (1)H NMR spectra by weak signals generated from long-range (14)N-H coupling, which by themselves are inconclusive evidence of a quaternary ammonium functional group. Due to their low intensity, these signals are frequently not detected. Additionally, ions cannot be differentiated in a mass spectrum as an M(+) or [M + H](+) ion without prior knowledge of the compound's structure. In order to utilize mass spectrometry as a tool for determining this functionality, ion cluster formation of quaternary ammonium cations and non-quaternary amines was studied using electrospray ionization. Several mobile phase modifiers were compared; however, the addition of small amounts of trifluoroacetic acid proved superior in producing characteristic and intense [M +2TFA](-) clusters for compounds containing quaternary ammonium cations when using negative electrospray. By fragmenting this characteristic ion using CID, nearly all compounds studied could be unambiguously identified as containing a quaternary ammonium cation or a non-quaternary amine attributable to the presence (non-quaternary amine) or absence (quaternary ammonium cation) of the resulting [2TFA + H](-) ion in the product spectra. This method of analysis provides a rapid, novel, and reliable technique for indicating the presence of quaternary ammonium cations in order to aid in structural elucidation.

  7. Quaternary Geologic Map of Connecticut and Long Island Sound Basin

    USGS Publications Warehouse

    Stone, Janet Radway; Schafer, John P.; London, Elizabeth Haley; DiGiacomo-Cohen, Mary L.; Lewis, Ralph S.; Thompson, Woodrow B.

    2005-01-01

    The Quaternary geologic map (sheet 1) and explanatory figures and cross sections (sheet 2) portray the geologic features formed in Connecticut during the Quaternary Period, which includes the Pleistocene (glacial) and Holocene (postglacial) Epochs. The Quaternary Period has been a time of development of many details of the landscape and of all the surficial deposits. At least twice in the late Pleistocene, continental ice sheets swept across Connecticut. Their effects are of pervasive importance to the present occupants of the land. The Quaternary geologic map illustrates the geologic history and the distribution of depositional environments during the emplacement of glacial and postglacial surficial deposits and the landforms resulting from those events.

  8. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    PubMed Central

    Xue, Yan; Xiao, Huining; Zhang, Yi

    2015-01-01

    Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers. PMID:25667977

  9. Extensive Quaternary glaciations in eastern Turkey

    NASA Astrophysics Data System (ADS)

    Yeşilyurt, Serdar; Akçar, Naki; Doǧan, Uǧur; Yavuz, Vural; Ivy-Ochs, Susan; Vockenhuber, Christof; Schlunegger, Fritz; Schlüchter, Christian

    2016-04-01

    During cold periods in the Quaternary, global ice volume increased and as a result valley glaciers advanced and the vice versa occurred during the warm periods. Quaternary glacier fluctuations had been also recorded in the Turkish mountains. Recently, the chronology of Late Quaternary advances in the northern and western Turkish mountains was reconstructed by surface exposure dating. However, these advances in the eastern Turkey are not dated yet. In this study, we investigated paleoglaciations in Kavuşşahap Mountains, which is located to the south of Lake Van in eastern Turkey. These mountains are one of the extensively glaciated areas in Turkey. Glacial activity is evidenced by more than 20 U-shaped valleys. For instance, one of the prominent and well-preserved glacial landscapes of Turkey is situated in the Narlıca valley system. Lateral and terminal moraines in the valley system indicate more than 10 glacial advances. To build their chronology, 39 erratic carbonaceous boulders were sampled for surface exposure dating with cosmogenic 36Cl. We also reconstructed the ice margin reconstruction of the Narlıca paleoglacier using the accumulation area ratio and area-altitude balance ratio approaches. We estimated an equilibrium line altitude (ELA) of ca. 2900 m above sea level based on the maximum ice extend, which implied ca. 800 m decrease in the ELA during the Late Quaternary in comparison to the lower bound of the modern ELA estimate. The first results of the surface exposure dating will be presented.

  10. Synthesis and anticoagulant activity of the quaternary ammonium chitosan sulfates.

    PubMed

    Fan, Lihong; Wu, Penghui; Zhang, Jinrong; Gao, Song; Wang, Libo; Li, Mingjia; Sha, Mingming; Xie, Weiguo; Nie, Min

    2012-01-01

    Quaternary ammonium chitosan sulfates with diverse degrees of substitution (DS) ascribed to sulfate groups between 0.52 and 1.55 were synthesized by reacting quaternary ammonium chitosan with an uncommon sulfating agent (N(SO(3)Na)(3)) that was prepared from sodium bisulfite (NaHSO(3)) through reaction with sodium nitrite (NaNO(2)) in the aqueous system homogeneous. The structures of the derivatives were characterized by FTIR, (1)H NMR and (13)C NMR. The factors affecting DS of quaternary ammonium chitosan sulfates which included the molar ratio of NaNO(2) to quaternary ammonium chitosan, sulfated temperature, sulfated time and pH of sulfated reaction solution were investigated in detail. Its anticoagulation activity in vitro was determined by an activated partial thromboplastin time (APTT) assay, a thrombin time (TT) assay and a prothrombin time (PT) assay. Results of anticoagulation assays showed quaternary ammonium chitosan sulfates significantly prolonged APTT and TT, but not PT, and demonstrated that the introduction of sulfate groups into the quaternary ammonium chitosan structure improved its anticoagulant activity obviously. The study showed its anticoagulant properties strongly depended on its DS, concentration and molecular weight. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad

    2018-04-01

    Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the

  12. High Performance Heteroatoms Quaternary-doped Carbon Catalysts Derived from Shewanella Bacteria for Oxygen Reduction.

    PubMed

    Guo, Zhaoyan; Ren, Guangyuan; Jiang, Congcong; Lu, Xianyong; Zhu, Ying; Jiang, Lei; Dai, Liming

    2015-11-25

    A novel heteroatoms (N, P, S and Fe) quaternary-doped carbon (HQDC-X, X refers to the pyrolysis temperature) can be fabricated by directly pyrolyzing a gram-negative bacteria, S. oneidensis MR-1 as precursors at 800 °C, 900 °C and 1000 °C under argon atmosphere. These HQDC-X catalysts maintain the cylindrical shape of bacteria after pyrolysis under high temperatures, while heteroatoms including N, P, S and Fe distribute homogeneously on the carbon frameworks. As a result, HQDC-X catalysts exhibit excellent electrocatalytic activity for ORR via a dominant four-electron oxygen reduction pathway in alkaline medium, which is comparable with that of commercial Pt/C. More importantly, HQDC-X catalysts show better tolerance for methanol crossover and CO poisoning effects, long-term durability than commercial Pt/C, which could be promising alternatives to costly Pt-based electrocatalysts for ORR. The method may provide a promising avenue to develop cheap ORR catalysts from inexpensive, scalable and biological recursors.

  13. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Kazi, Tasneem Gul; Soylak, Mustafa; Hazer, Baki

    2014-01-01

    A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 μg L(-1) and 1.82 μg L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Characterization and modeling of microstructural evolution of near-eutectic tin-silver-copper solder joints

    NASA Astrophysics Data System (ADS)

    Zbrzezny, Adam R.

    Near-eutectic Sn-Ag-Cu (SAC) solders are currently considered as major lead-free replacement candidates for Sn-Pb eutectic alloys in microelectronics applications. In this thesis, the microstructural thermal stability including recrystallization, grain growth behavior, Pb and Au contamination effects and interaction of the SAC solder with Cu and Ni substrates were investigated. The true eutectic composition of the Sn-Ag-Cu alloy was verified to be Sn3.5Ag0.9Cu wt.%, and the eutectic melting temperature was determined to be 217.4 +/- 0.8°C. The system was classified as belonging to faceting (Cu6Sn5)-faceting (Ag3Sn)-nonfaceting (Sn matrix) ternary eutectic. The most significant consequence of Pb contamination was the formation of a quaternary eutectic phase (Sn-Ag-Cu-Pb) with a melting point at 176°C. Similarly, the presence of gold in the SAC alloy led to a development of a new quaternary phase (Sn-Ag-Cu-Au) melting at 204°C. Prolonged aging of SAC-4 wt.% Au on nickel resulted in the deposition of a new, previously unreported, intermetallic (IMC) layer, ((Au1-xCUx)6Sn 5, 15 wt.% of Au) on top of the existing (Cu1-yNi y)6Sn5 layer. The interfacial products that formed during soldering to copper were Cu6Sn5 and Cu3Sn. Soldering to nickel resulted in the formation of one layer, (Cu1-yNiy) 6Sn5, which was different from the expected Ni3Sn 4 layer. A small copper content in the SAC solder (0.7 wt.%) was sufficient to promote this thermodynamic shift. Intermetallic growth on Cu during solid state aging was established to be bulk diffusion controlled. The IMC layers in the SAC system grew at a slower rate than in the Sn-Pb system. It was found that the reliability of SAC solder joints on copper was considerably better than on nickel due to copper enrichment during reflow and subsequent Cu6Sn5 intermetallic precipitation. Enhanced copper and silver diffusion followed by tin recrystallization and grain growth, cavity nucleation and subsequent micro-crack linkage formed

  15. Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7.

    PubMed

    Zhao, Xu; Zhang, Juanjuan; Qiao, Meng; Liu, Huijuan; Qu, Jiuhui

    2015-04-07

    Simultaneous photoelectrocatalytic (PEC) oxidation of cyanides and recovery of copper in a PEC reactor with a Bi(2)MoO(6) photoanode was investigated at alkaline conditions under visible light irradiation. The surface variation of the Bi(2)MoO(6) photoanode and titanium cathode was characterized. The Cu mass distribution onto the anode, in the solution, and onto the cathode was fully investigated. In the individual PEC oxidation of copper cyanides, the formation of a black copper oxide on the anode occurred. By keeping the initial cyanide concentration at 0.01 mM, the effect of EDTA/K(4)P(2)O(7) was examined at different molar ratios of EDTA/K(4)P(2)O(7) to cyanide. It was indicated that the oxidation of cyanides increased and simultaneous copper electrodeposition with zero value onto the cathode was feasible at pH 11. Under the optimal conditions, the total cyanide concentration was lowered from 250 to 5.0 mg/L, and the Cu recovery efficiency deposited onto the cathode was higher than 90%. Cyanate was the only product. The role of the photogenerated hole in the oxidation of cyanide ions was confirmed.

  16. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  17. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruckeberg, A.L.; Wu, L.

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less

  18. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    PubMed

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  19. Three modified activated carbons by different ligands for the solid phase extraction of copper and lead.

    PubMed

    Ghaedi, M; Ahmadi, F; Tavakoli, Z; Montazerozohori, M; Khanmohammadi, A; Soylak, M

    2008-04-15

    In the presented work, 5,5-diphenylimidazolidine-2,4-dione (phenytoin) (DFTD), 5,5-diphenylimidazolidine-2-thione-,4-one (thiophenytoin) (DFID) and 2-(4'-methoxy-benzylidenimine) thiophenole (MBIP) modified activated carbons have been used for the solid phase extraction of copper and lead ions prior to their flame atomic absorption spectrometric determinations. The influences of the various analytical parameters including pH, amounts of reagent, sample volume and eluent type, etc. on the recovery efficiencies of copper and lead ions were investigated. The influences of alkaline, earth alkaline and some transition metals on the adsorption of the analytes were also examined. The detection limits by three sigma for analyte ions were 0.65 and 0.42 microg L(-1) using activated carbon modified with DFID; 0.52 and 0.37 microg L(-1) using activated carbon modified with DFTD and 0.46 and 0.31 microg L(-1) using activated carbon modified with MBIP for Pb(II) and Cu(II), respectively. The procedure was applied to the determination of analytes in natural waters, soil, and blood samples with satisfactory results (recoveries greater than 95%, R.S.D.'s lower than 4%).

  20. Why is quaternary prevention important in prevention?

    PubMed Central

    Tesser, Charles Dalcanale

    2017-01-01

    ABSTRACT Quaternary prevention consists in the identification of persons at risk of excessive medicalization and their protection against new unnecessary interventions, avoiding iatrogenic damages. Here, we argue about the importance of quaternary prevention in specific primary and secondary prevention. The recent great development of preventive medicine, biomedicalization of risks and their treatment as if they were diseases, and the powerful influence of the commercial interests of pharmaceutical industries on the production of medical-sanitary knowledge alter classifications, create diseases and pre-diseases, lower cutoff points, and erase the distinction between prevention and healing. This situation converts larger amounts of asymptomatic persons into sick individuals and diverts clinical attention and resources from sick persons to the healthy, from older adults to young persons, and from the poor to the rich. Quaternary prevention facilitates and induces the development and systematization of operational knowledge and guidelines to contain hypermedicalization and the damages of preventive actions in professional care, especially in primary health care. PMID:29211199

  1. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H 2O 2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H 2O 2 was added batch-wise overmore » the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H 2O 2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H 2O 2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  2. Recovery of copper from PVC multiwire cable waste by steam gasification.

    PubMed

    Zabłocka-Malicka, Monika; Rutkowski, Piotr; Szczepaniak, Włodzimierz

    2015-12-01

    Screened multiwire, PVC insulated tinned copper cable was gasified with steam at high temperature (HTSG) under atmospheric pressure for recovery of cooper. Gases from the process were additionally equilibrated at 850°C on the bed of calcined clay granules and more than 98% of C+H content in the cable was transformed to non-condensing species. Granules prepared from local clay were generally resistant for chlorination, there was also almost no deposition of metals, Cu and Sn, on the catalytic bed. It was found that 28% of chlorine reacted to form CaCl2, 71% was retained in aqueous condensate and only 0.6% was absorbed in alkaline scrubber. More than 99% of calcium existed in the process solid residue as a mixture of calcium chloride and calcium oxide/hydroxide. PVC and other hydrocarbon constituents were completely removed from the cable sample. Copper was preserved in original form and volatilization of copper species appeared insignificant. Tin was alloying with copper and its volatilization was less than 1%. Fractionation and speciation of metals, chlorine and calcium were discussed on the basis of equilibrium model calculated with HSC Chemistry software. High temperature steam gasification prevents direct use of the air and steam/water is in the process simultaneously gaseous carrier and reagent, which may be recycled together with hydrocarbon condensates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Classification of protein quaternary structure by functional domain composition

    PubMed Central

    Yu, Xiaojing; Wang, Chuan; Li, Yixue

    2006-01-01

    Background The number and the arrangement of subunits that form a protein are referred to as quaternary structure. Quaternary structure is an important protein attribute that is closely related to its function. Proteins with quaternary structure are called oligomeric proteins. Oligomeric proteins are involved in various biological processes, such as metabolism, signal transduction, and chromosome replication. Thus, it is highly desirable to develop some computational methods to automatically classify the quaternary structure of proteins from their sequences. Results To explore this problem, we adopted an approach based on the functional domain composition of proteins. Every protein was represented by a vector calculated from the domains in the PFAM database. The nearest neighbor algorithm (NNA) was used for classifying the quaternary structure of proteins from this information. The jackknife cross-validation test was performed on the non-redundant protein dataset in which the sequence identity was less than 25%. The overall success rate obtained is 75.17%. Additionally, to demonstrate the effectiveness of this method, we predicted the proteins in an independent dataset and achieved an overall success rate of 84.11% Conclusion Compared with the amino acid composition method and Blast, the results indicate that the domain composition approach may be a more effective and promising high-throughput method in dealing with this complicated problem in bioinformatics. PMID:16584572

  4. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  5. The Hasan Dagi stratovolcano (Central Anatolia, Turkey): evolution from calc-alkaline to alkaline magmatism in a collision zone

    NASA Astrophysics Data System (ADS)

    Deniel, Catherine; Aydar, Erkan; Gourgaud, Alain

    1998-12-01

    The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na 2O but enriched in K 2O compared to younger lavas. There is an evolution through time towards higher TiO 2, Fe 2O 3*, MgO, Na 2O and K 2O and lower Al 2O 3 and SiO 2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6-7 m

  6. Catalytic Enantioselective Synthesis of Quaternary Carbon Stereocenters

    PubMed Central

    Quasdorf, Kyle W.; Overman, Larry E.

    2015-01-01

    Preface Quaternary carbon stereocenters–carbon atoms to which four distinct carbon substituents are attached–are common features of molecules found in nature. However, prior to recent advances in chemical catalysis, there were few methods available for constructing single stereoisomers of this important structural motif. Here we discuss the many catalytic enantioselective reactions developed during the past decade for synthesizing organic molecules containing such carbon atoms. This progress now makes it possible to selectively incorporate quaternary stereocenters in many high-value organic molecules for use in medicine, agriculture, and other areas. PMID:25503231

  7. Sequential character of low-energy ternary and quaternary nuclear fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O.

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collectivemore » deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.« less

  8. Copper speciation in the gill microenvironment of carp (Cyprinus carpio) at various levels of pH.

    PubMed

    Tao, Shu; Long, Aimin; Xu, Fuliu; Dawson, R W

    2002-07-01

    The fish gill microenvironment of Cyprinus carpio under stress of copper exposure was investigated. pH and other parameters including free copper activity, alkalinity, and inorganic and organic carbons in the surrounding water (inspired water) and in the gill microenvironment (expired water) were measured or calculated at various levels of pH and varying total copper concentrations. The chemical equilibrium calculation (from MINEQA2) and complexation modeling (mucus-copper) were coupled to calculate both species distribution. The results indicate that the pH in the fish gill microenvironment was different from that in the surrounding water with a balance point around 6.9. The secretion of both CO(2) and mucus was affected in both linear and nonlinear ways when the fish were exposed to elevated concentrations of copper. The complexation capacity of the gill mucus was characterized by a conditional stability constant (logk(Cu-mucus)) of 5.37 along with a complexation equivalent concentration (L(Cu-mucus)) of 0.96 mmol Cu/mg C. For both the fish microenvironment and the surrounding water, the dominant copper species shifted from Cu(2+) to CuCO(3)(0) and to Cu(OH)(2)(0) when the pH of the surrounding water changed from 6.12 to 8.11. The change in copper speciation in the gill microenvironment is smaller than that in the surrounding water due to the pH buffering capacity of the fish gills.

  9. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    NASA Astrophysics Data System (ADS)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  10. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  11. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  12. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  13. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  14. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells.

    PubMed

    Yen, Hui-Ju; Young, Yen-An; Tsai, Tsung-Neng; Cheng, Kuang-Ming; Chen, Xin-An; Chen, Ying-Chuan; Chen, Cheng-Cheung; Young, Jenn-Jong; Hong, Po-da

    2018-03-01

    In this study, we synthesized various quaternary chitosan derivatives and used them to stabilize gold nanoparticles (AuNPs). These chitosan derivatives comprised N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), folate-HTCC, galactosyl-HTCC, and their fluorescein isothiocyanate-conjugated derivatives. Various positively surface-charged AuNPs were prepared under alkaline conditions using glucose as a reducing agent in the presence of the HTCC derivatives (HTCCs). The effects of the concentration of NaOH, glucose, and HTCCs on the particles size, zeta potential, and stability were studied in detail. Cell cycle assays verify that none of the HTCCs or HTCCs-AuNPs was cytotoxic to human umbilical vein endothelial cells. Flow cytometry analysis showed that the folate HTCC-AuNPs were internalized in Caco-2, HepG2, and HeLa cancer cells to a significantly greater extent than AuNPs without folate. But, galactosyl HTCC-AuNPs only showed high cell uptake by HepG2 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Regulation of extracellular copper-binding proteins in copper-resistant and copper-sensitive mutants of Vibrio alginolyticus.

    PubMed Central

    Harwood, V J; Gordon, A S

    1994-01-01

    Extracellular proteins of wild-type Vibrio alginolyticus were compared with those of copper-resistant and copper-sensitive mutants. One copper-resistant mutant (Cu40B3) constitutively produced an extracellular protein with the same apparent molecular mass (21 kDa) and chromatographic behavior as copper-binding protein (CuBP), a copper-induced supernatant protein which has been implicated in copper detoxification in wild-type V. alginolyticus. Copper-sensitive V. alginolyticus mutants displayed a range of alterations in supernatant protein profiles. CuBP was not detected in supernatants of one copper-sensitive mutant after cultures had been stressed with 50 microM copper. Increased resistance to copper was not induced by preincubation with subinhibitory levels of copper in the wild type or in the copper-resistant mutant Cu40B3. Copper-resistant mutants maintained the ability to grow on copper-amended agar after 10 or more subcultures on nonselective agar, demonstrating the stability of the phenotype. A derivative of Cu40B3 with wild-type sensitivity to copper which no longer constitutively expressed CuBP was isolated. The simultaneous loss of both constitutive CuBP production and copper resistance in Cu40B3 indicates that constitutive CuBP production is necessary for copper resistance in this mutant. These data support the hypothesis that the extracellular, ca. 20-kDa protein(s) of V. alginolyticus is an important factor in survival and growth of the organism at elevated copper concentrations. The range of phenotypes observed in copper-resistant and copper-sensitive V. alginolyticus indicate that altered sensitivity to copper was mediated by a variety of physiological changes. Images PMID:8031076

  16. The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (˜45°S, Chile)

    NASA Astrophysics Data System (ADS)

    D'Orazio, M.; Innocenti, F.; Manetti, P.; Tamponi, M.; Tonarini, S.; González-Ferrán, O.; Lahsen, A.; Omarini, R.

    2003-08-01

    Major- and trace-element, Sr-Nd isotopes, and mineral chemistry data were obtained for a collection of volcanic rock samples erupted by the Cay and Maca Quaternary volcanoes, Patagonian Andes (˜45°S, Chile). Cay and Maca are two large, adjacent stratovolcanoes that rise from the Chiloe block at the southern end of the southern volcanic zone (SVZ) of the Andes. Samples from the two volcanoes are typical medium-K, calc-alkaline rocks that form two roughly continuous, largely overlapping series from subalkaline basalt to dacite. The overall geochemistry of the samples studied is very similar to that observed for most volcanoes from the southern SVZ. The narrow range of Sr-Nd isotope compositions ( 87Sr/ 86Sr=0.70389-0.70431 and 143Nd/ 144Nd=0.51277-0.51284) and the major- and trace-element distributions indicate that the Cay and Maca magmas differentiated by crystal fractionation without significant contribution by crustal contamination. This is in accordance with the thin (<30 km), relatively young (Paleozoic or more recent) continental crust beneath the volcanoes. The nature of the subduction-derived materials involved in the genesis of the Cay and Maca magmas is investigated by means of the relative concentration of fluid mobile (e.g. Ba) and fluid immobile (e.g. Nb, Ta, Zr, Y) elements and other relevant trace-element ratios (e.g. Sr/Y). The results indicate that small amounts (<1 wt%) of both subducted sediments and slab-released fluids were added to the mantle sources of the Cay and Maca volcanoes and that, despite the very young age (<10 Ma) of the oceanic lithosphere subducted beneath the volcanoes, slab melts were not involved in the magma genesis. Notwithstanding the proximity of the Cay and Maca magma sources to the northern edge of the slab window generated by the subduction of the Chile ridge under the South American plate, we did not find any geochemical evidence for a contribution of a subslab asthenospheric mantle. However, this mantle has been used

  17. Surveying the Alentejo continental shelf for minerals and Quaternary environmental changes: preliminary results of the MINEPLAT project survey

    NASA Astrophysics Data System (ADS)

    Noiva, João; Ribeiro, Carlos; Terrinha, Pedro; Brito, Pedro; Neres, Marta

    2017-04-01

    The tectonic uplift of South Portugal in the last 5 Million years (My) was firstly identified on the basis of morphologic criteria by Mariano Feio (1952, "The evolution of the relief of Baixo Alentejo and Algarve", transl.). However, the assessment of continental vertical movements off Portugal and its relation with tectonics was only initiated in the 1990-ies. This work was carried out in the framework of FP6 and FP7 in the domains of Natural Hazards funded by the European Community. The swath bathymetry cartography of the southwest part of the Iberian Peninsula resulted from the effort of European and national projects, of 19 oceanographic surveys, a total of 200 ship time days executed from 2000 to 2006, involving 14 research institutions from 7 European countries. As a result of this effort together with acquisition and interpretation of thousands of km of seismic reflection profiles, the Pliocene-Quaternary uplift of the Alentejo continental margin (SW Portugal) is now widely accepted by the scientific community. This uplift has not been yet quantified but it is possible that can have contributed to erosion and deposition of metallic ores as placers in the continental shelf. This argues in favor of the potential existence of placers in the continental shelf and the need for the detailed investigation that will allow determination of ideal location for placers deposition in the past Pliocene-Quaternary (5 My). The source for metals can arguably be associated to the Iberian Pyrite Belt ores hosted in the Alentejo Paleozoic formations and to the hyper-alkaline intrusions of Sines and Monchique of Late Cretaceous age. Artificial renourishment of beaches with offshore sand has not been assessed for the Alentejo littoral, despite that the coast located to the south of the Sines segment shows high susceptibility to erosion. This has been observed on a regular basis as the beaches are frequently devoid of sand, thus jeopardizing their touristic potential. The detailed

  18. Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge.

    PubMed

    Huang, Zhiyuan; Xie, Fengchun; Ma, Yang

    2011-01-15

    A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Tertiary and Quaternary Research with Remote Sensing Methods

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Problems encountered in mapping the Quaternary section of the Wind River Region using remote sensing methods are discussed. Analysis of the stratigraphic section is a fundamental aspect of the geologic study of sedimentary basins. Stratigraphic analysis of post-Cretaceous rocks in the Wind River Basin encounters problems of a distinctly different character from those involved in studying the pre-Cretaceous section. The interior of the basin is predominantly covered by Tertiary and Quaternary sediments. These rocks, except on the basin margin to the north, are mostly flat lying or gently dipping. The Tertiary section consists of sandstones, siltstones, and tuffaceous sediments, some variegated, but in general poorly bedded and of great lithologic similarity. The Quaternary sediments consist of terrace, fan, and debris tongue deposits, unconsolidated alluvium occupying the bottoms of modern watercourses, deposits of eolian origin and tufa. Terrace and fan deposits are compositionally diverse and reflect the lithologic diversity of the source terranes.

  20. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    NASA Technical Reports Server (NTRS)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  1. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    PubMed

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  2. Is Quaternary geology ready for the future?

    NASA Astrophysics Data System (ADS)

    Ritter, Dale F.

    1996-07-01

    Armed with a better understanding of process and an array of developing dating techniques, Quaternary geology is poised to achieve greater recognition in the general scientific community. This recognition however, will require some thought adjustment. Quaternary geologists will have to convince government, industry and a variety of scientific groups that they possess unique training and expertise that is needed as part of the thrust to fully understand and/or resolve major scientific problems. Therefore, future research and education efforts should not focus on developing a rigidly defined identity within geoscience, but instead should seek ways to be integrated with interdisciplinary teams that will investigate complex environmental and climate change problems. Such a scenaria creates and enermous dilemma for Quaternary geologists because they will derive greater intellectual stimulation from scientists working in discplines other than geology, and their scientific collaboratiors will most likely not be their academic colleagues. This outward expansion of our scientific network will require the development of interdsciplinary research collaboration and/or degree-granting programs at the graduate level. To accomplish such goals, universities must resist "turf protection", and funding agencies muts become more efficient at facilitating interdisciplinary research.

  3. Origin of bonebeds in Quaternary tank deposits

    NASA Astrophysics Data System (ADS)

    Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli

    2017-07-01

    Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.

  4. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  5. DNA Barcoding through Quaternary LDPC Codes.

    PubMed

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).

  6. Late Cenozoic alkaline volcanism in the northwestern Caribbean - Tectonic setting and Sr isotopic characteristics

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Wooden, J. L.

    1982-01-01

    The northwestern corner of the Caribbean plate has at least sixteen centers of alkalic volcanism, most of which is Quaternary in age. Sr-87/Sr-86 ratios of the rocks in these centers are used to distinguish three geographical groups: a low-ratio group (0.7026-0.7031) at the Nicaraguan Rise, an intermediate-ratio group (0.7036-0.7038) in northeastern Costa Rica, and a high-ratio group (0.7047-0.7063) in Hispaniola. It is suggested that the increased radiogenic strontium in both Costa Rica and Hispaniola may have come from volatile-rich fluids escaping from adjacent subducting slabs of oceanic crust. The isotopic differences between the two areas is explained by the relative longevity and high rate of subduction in Costa Rica compared to that in Hispaniola. The Costa Rican alkaline rocks cover a segment of the Cocos plate which is being subducted at a smaller angle (about 35 deg) than at the rest of the Central American arc.

  7. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention.

    PubMed

    Arif, Hussain; Sohail, Aamir; Farhan, Mohd; Rehman, Ahmed Abdur; Ahmad, Aamir; Hadi, S M

    2018-01-01

    Flavonoids, a class of polyphenols are known to be effective inducers of apoptosis and cytotoxicity in cancer cells. It is believed that antioxidant activity of polyphenols cannot fully account for induction of apoptosis and chemotherapeutic prevention in various cancers. In this article, by employing single cell alkaline gel electrophoresis (comet assay), we established that antioxidants, flavonoids such as (myricetin=MN, fisetin=FN, quercetin=QN, kaempferol=KL and galangin=GN) can cause cellular DNA breakage, also act as pro-oxidant in presence of transition metal ion such as copper. It was observed that the extent of cellular DNA breakage was found significantly higher in presence of copper. Hydroxyl radicals are generated as a sign of flavonoids' pro-oxidant nature through redox recycling of copper ions. Further, a dose-dependent inhibition of proliferation of breast cancer cells MDA-MB-231 by MN was found leading to pro-oxidant cell death, as assessed by MTT assay. Since levels of copper are considerably elevated in tissue, cell and serum during various malignancies, suggesting that cancer cells would be more subject to copper induced oxidative DNA breakage. Such a copper dependent pro-oxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline-oxidative pretreatment of hybrid poplar.

    PubMed

    Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A; Assad, Aline E; Stoklosa, Ryan J; Bansal, Namita; Semaan, Rachel; Saffron, Christopher M; Hodge, David B; Hegg, Eric L

    2018-01-01

    When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2 O 2 ) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2 O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2 O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2 O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2 O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as

  9. Origin and late quaternary tectonism of a western Canadian continental shelf trough

    NASA Astrophysics Data System (ADS)

    Moslow, Thomas F.; Luternauer, John L.; Rohr, Kristin

    1991-08-01

    Analyses of high resolution and multi-channel seismic profiles from the central continental shelf of western Canada ascribe a late Quaternary glacial origin to large-scale troughs. Along the margins of Moresby Trough, one of three large-scale cross-shelf bathymetric depressions in Queen Charlotte Sound, seismic profiles within Quaternary sediments show a divergence of reflectors, thickening and folding of seismic units, and concavity of reflectors suggestive of drag. Compactional subsidence, growth faulting, and compaction faulting are also observed. Fault traces commonly terminate below the seabed. Deformation of Quaternary sediments due to faulting is plastic in nature and maximum offset of reflectors is 2.5 m. The observed Quaternary deformation appears to be a product of rapid deposition, loading and subsidence of late Quaternary sediment, which is unrelated to seismic activity. In addition, Quaternary faulting was probably activated by post-glacial loading and isostatic rebound of consolidated Tertiary strata along the margins of continental shelf troughs. The presence of mass movement (slump or debris flow) deposits overlying lithified Tertiary strata along the flanks of Moresby Trough provides the only evidence of seismic activity in the study area. The lack of a mud drape over these deposits implies a late Holocene age for the timing of their emplacement. The Quaternary troughs are incised into Tertiary-aged sedimentary fill of the Queen Charlotte basin. Previous workers had interpreted seafloor escarpments paralleling the trough margins to indicate that the location of Moresby Trough was controlled by renewed or continued activity on Tertiary-aged faults. A multi-channel seismic line across Moresby Trough shows that such an escarpment on the seafloor does not correlate to faults either in the Tertiary basin fill or the underlying basement. Tertiary reflectors are continuous underneath Moresby Trough; the seafloor escarpment is an erosional feature and was

  10. Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation.

    PubMed

    Stepniowski, Wojciech J; Misiolek, Wojciech Z

    2018-05-29

    Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO) or cupric oxide (Cu₂O), bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH) diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu₂O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu₂O) and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D) nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the strict

  11. Quaternary tectonic faulting in the Eastern United States

    USGS Publications Warehouse

    Wheeler, R.L.

    2006-01-01

    Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York

  12. Magmatic context of Bou Skour copper deposit (Eastern Anti-Atlas, Morocco): Petrogrography, geochemistry and alterations

    NASA Astrophysics Data System (ADS)

    EL Azmi, Daoud; Aissa, M.; Ouguir, H.; Mahdoudi, M. L.; El Azmi, M.; Ouadjo, A.; Zouhair, M.

    2014-09-01

    The Bou Skour copper deposit is located in the western part of the Saghro massif (Eastern Anti-Atlas), about 50 km East of the city of Ouarzazate. It is subdivided into several areas that are, from North to South: “Panthère”, “Chaigne”, “Anne Marie”, “Chapeau de fer” and “Patte d'Oie”. The latter is economically the most important and is the object of this study. The “Patte d'Oie” district consists mainly of extrusive and intrusive igneous rocks. The extrusive rocks are represented by andesites spatially associated with pyroclastic terms (ignimbrites and pyroclastic breccias). This volcanic unit is intruded by a pink granite pluton and a I-type granodiorite with equigranular texture (Bou Skour granodiorite) showing to the border a microgranular facies (microgranodiorite). All these magmatic formations are intersected by rhyolitic dykes (NNE-SSW) and doleritic dykes (WNW-ESE to NW-SE). The granodiorite and andesite have undergone a polyphase hydrothermal alteration: (i) potassic alteration, (ii) phyllitic alteration, (iii) silicification, (iv) argillic alteration and (v) propylitic alteration. The analysis of geochemical data of granodiorite, granite, andesite and dolerite confirmed: (i) their petrographic natures, (ii) the medium-K calc-alkaline affiliation of andesite and granodiorite, which would have been set up into an active geotectonic environment, probably of island arc or collision, during the Pan-African orogeny, (iii) The high-K calc-alkaline character of granite indicating a post-collision development during the Pan-African orogeny and (iv) The alkaline affinity of the dolerite which is linked to an extensive post-orogenic setting (post-Pan-African). The copper mineralization of “Patte d'Oie” area is hosted, exclusively, in the andesitic and granodioritic facies. It is represented, essentially, by chalcopyrite and bornite minerals and is, probably, related to a porphyry system (disseminated and stockwork mineralization

  13. Viscosities of nonelectrolyte liquid mixtures. III. Selected binary and quaternary mixtures

    NASA Astrophysics Data System (ADS)

    Wakefield, D. L.

    1988-05-01

    This paper is the final in a series of three viscosity and density studies of pure n-alkanes and selected binary and quaternary mixtures. A standard U-tube viscometer was used for viscosity measurements, and a Pyrex flask-type pycnometer was used for density determinations. Results are given here for pure alkane and selected binary mixtures of n-tetradecane + n-octane, for selected quaternary mixtures of n-hexadecane + n-dodecane + n-decane + n-hexane, and for pure and selected quaternary mixtures of n-hexadecane + n-dodecane + n-nonane + n-heptane at 303.16 and 308.16 K. The principle of congruence was tested, as was the Grunberg and Nissan equation, as they have been shown to be useful as prediction techniques for other n-alkane binary mixtures. Comparisons were made between the two groups of quaternary alkane mixtures and the binary n-tetradecane + n-octane mixtures of the same “pseudo” composition to understand better the dependence of mixture viscosities on the composition parameter.

  14. Evaluation of chitosan quaternary ammonium salt-modified resin denture base material.

    PubMed

    Song, Rong; Zhong, Zhaohua; Lin, Lexun

    2016-04-01

    Chitosan quaternary ammonium salt displays good antioxidant and antibacterial characteristics and it shows appreciable solubility in water. When added to the traditional denture material to form a resin base, it could promote good oral health by improving the oral environment. In this study, chitosan quaternary ammonium salt was added to the denture material following two different methods. After three months of immersion in artificial saliva, the specimens were tested for tensile strength and were scanned by electron microscope. The murine fibroblast cytotoxicity and antibacterial properties were also tested. The result showed no significant differences in the tensile strength and in the proliferation of murine L929 fibroblast cells. The two structures of chitosan quaternary ammonium salt-modified denture material had different degrees of corrosion resistance and antimicrobial properties. These results indicate that chitosan quaternary ammonium salt-modified resin denture base material has the potential to become a new generation oral denture composite material. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.

    PubMed

    Nagatomo, Shigenori; Okumura, Miki; Saito, Kazuya; Ogura, Takashi; Kitagawa, Teizo; Nagai, Masako

    2017-03-07

    Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O 2 affinity changes were investigated via 1 H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O 2 to the α subunits is forbidden in the mutant Hbs, the O 2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O 2 affinity. It was found in this study that the quaternary structure of α(Fe 3+ )β(Fe 2+ -CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α 1 -β 2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.

  16. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  17. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  18. Thiol-based copper handling by the copper chaperone Atox1.

    PubMed

    Hatori, Yuta; Inouye, Sachiye; Akagi, Reiko

    2017-04-01

    Human antioxidant protein 1 (Atox1) plays a crucial role in cellular copper homeostasis. Atox1 captures cytosolic copper for subsequent transfer to copper pumps in trans Golgi network, thereby facilitating copper supply to various copper-dependent oxidereductases matured within the secretory vesicles. Atox1 and other copper chaperones handle cytosolic copper using Cys thiols which are ideal ligands for coordinating Cu(I). Recent studies demonstrated reversible oxidation of these Cys residues in copper chaperones, linking cellular redox state to copper homeostasis. Highlighted in this review are unique redox properties of Atox1 and other copper chaperones. Also, summarized are the redox nodes in the cytosol which potentially play dominant roles in the redox regulation of copper chaperones. © 2016 IUBMB Life, 69(4):246-254, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  19. Poly(ethylene imine)-based granular sorbents by a new process of templated gel-filling. High capacity and selectivity of copper sorption in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanda, M.; Rempel, G.L.

    A new process has been developed for making granular gel-type sorbents from chelating resins using metal ion as template. Named as templated gel-filling, the process uses the chosen metal as templating host ion on high-surface-area silica to build a templated gel layer from a solution of the chelating resin in a suitable solvent in which the resin is soluble but its metal complex is insoluble. After cross-linking the templated gel layer, the silica support is removed by alkali to produce a hollow shell of the templated gel. The shells are then soaked in a concentrated aqueous solution of the samemore » metal ion and suspended in the same resin solution to afford gel-filling. The shells thus filled with metal-templated gel are treated with cross-linking agent, followed by acid to remove the template ion and activate the resin for metal sorption. Poly(ethyleneimine) and its partially ethylated derivative have been used to produce granular gel-type sorbents by this process, with Cu(II) as the template ion. These sorbents are found to offer high capacity and selectivity for copper over nickel, cobalt, and zinc in both acidic and alkaline media. Containing a relatively high fraction of imbibed water, the sorbents exhibit markedly enhanced rate behavior, in both sorption and stripping.« less

  20. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  1. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  2. The ichthyofauna of limnic systems in Quaternary deposits of extreme southern Brazil

    PubMed Central

    Assumpção, Cindy M.; Quintela, Fernando M.; Corrêa, Fabiano; Loebmann, Daniel

    2016-01-01

    Abstract The Quaternary in the state of Rio Grande do Sul (RS), southern Brazil, is geologically represented by the coastal plain and was originated by successive events of Pleistocene-Holocene marine transgressions and the occurrence of alluvial deposits. This paper aimed to characterize the fish assemblage occurring in a swampy Quaternary area adjacent to Lagoa Pequena, a lacustrine system connected to the west margin of the Laguna dos Patos estuary. A checklist is also provided of the ichthyofauna so far recorded in limnic systems of Quaternary deposits in the state of Rio Grande do Sul. A total of 42 species was recorded, distributed in nine orders, 18 families and 31 genera. Characidae and Cichlidae were the most representative families, comprising 15 and 4 species respectively. A bibliographic revision associated to our sample data revealed the occurrence of 156 species in limnic systems inserted in RS Quaternary deposits (114 limnic, 15 marine/estuarine/limnic, ten marine/estuarine, nine estuarine/limnic and eight marine). Characiformes and Siluriformes are the most diverse orders, corroborating the Neotropical pattern. Seven species can be considered endemic to RS Quaternary deposits. PMID:28174498

  3. Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling

    USGS Publications Warehouse

    Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.

    2013-01-01

    We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.

  4. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  5. Aleksis Dreimanis: a legacy in Quaternary science

    NASA Astrophysics Data System (ADS)

    Hicock, Stephen R.; Menzies, John

    2000-12-01

    Aleksis Dreimanis was born and raised in Latvia. His interest in Quaternary and glacial geology began early and developed into a career that has spanned 7 decades. At age 20 he published his first paper in glacial geology and soon after began teaching at the University of Latvia. Teaching and research were interrupted by World War II but resumed at the Baltic University (Pinneberg, Germany), then at the University of Western Ontario where he has been ever since. Throughout his career, Dreimanis has successfully balanced the twin disciplines of Quaternary history and glacial geology. He was among the first to study quantitatively the relationship between till lithology and till formation and to study how glacial transport and dynamics affect till texture and deformation. With co-workers he developed the well-known stratigraphic scheme of the last glaciation in the Great Lakes region of North America. Aleksis became world-renowned through his committee work, especially as President of the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits. His diplomacy, enthusiasm, and passion for his subject have inspired students and colleagues around the globe and resulted in remarkable international dialogue, cooperation, and consensus. Professor Aleksis Dreimanis is an honest scientist, a gentleman, and a true scholar who has left a rich legacy for future Quaternarists.

  6. Process for the recycling of alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  7. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  8. Neogene-Quaternary Volcanic forms in the Carpathian-Pannonian Region: a review

    NASA Astrophysics Data System (ADS)

    Lexa, Jaroslav; Seghedi, Ioan; Németh, Karoly; Szakács, Alexandru; Koneĉny, Vlastimil; Pécskay, Zoltan; Fülöp, Alexandrina; Kovacs, Marinel

    2010-09-01

    Neogene to Quaternary volcanic/magmatic activity in the Carpathian-Pannonian Region (CPR) occurred between 21 and 0.1 Ma with a distinct migration in time from west to east. It shows a diverse compositional variation in response to a complex interplay of subduction with rollback, back-arc extension, collision, slab break-off, delamination, strike-slip tectonics and microplate rotations, as well as in response to further evolution of magmas in the crustal environment by processes of differentiation, crustal contamination, anatexis and magma mixing. Since most of the primary volcanic forms have been affected by erosion, especially in areas of post-volcanic uplift, based on the level of erosion we distinguish: (1) areas eroded to the basement level, where paleovolcanic reconstruction is not possible; (2) deeply eroded volcanic forms with secondary morphology and possible paleovolcanic reconstruction; (3) eroded volcanic forms with remnants of original morphology preserved; and (4) the least eroded volcanic forms with original morphology quite well preserved. The large variety of volcanic forms present in the area can be grouped in a) monogenetic volcanoes and b) polygenetic volcanoes and their subsurface/intrusive counterparts that belong to various rock series found in the CPR such as calc-alkaline magmatic rock-types (felsic, intermediate and mafic varieties) and alkalic types including K-alkalic, shoshonitic, ultrapotassic and Na-alkalic. The following volcanic/subvolcanic forms have been identified: (i) domes, shield volcanoes, effusive cones, pyroclastic cones, stratovolcanoes and calderas with associated intrusive bodies for intermediate and basic calclkaline volcanism; (ii) domes, calderas and ignimbrite/ash-flow fields for felsic calc-alkaline volcanism and (iii) dome flows, shield volcanoes, maars, tuffcone/tuff-rings, scoria-cones with or without related lava flow/field and their erosional or subsurface forms (necks/ plugs, dykes, shallow intrusions

  9. Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against Pseudomonas aeruginosa▿

    PubMed Central

    Harrison, Joe J.; Turner, Raymond J.; Joo, Daniel A.; Stan, Michelle A.; Chan, Catherine S.; Allan, Nick D.; Vrionis, Helen A.; Olson, Merle E.; Ceri, Howard

    2008-01-01

    Biofilms are slimy aggregates of microbes that are likely responsible for many chronic infections as well as for contamination of clinical and industrial environments. Pseudomonas aeruginosa is a prevalent hospital pathogen that is well known for its ability to form biofilms that are recalcitrant to many different antimicrobial treatments. We have devised a high-throughput method for testing combinations of antimicrobials for synergistic activity against biofilms, including those formed by P. aeruginosa. This approach was used to look for changes in biofilm susceptibility to various biocides when these agents were combined with metal ions. This process identified that Cu2+ works synergistically with quaternary ammonium compounds (QACs; specifically benzalkonium chloride, cetalkonium chloride, cetylpyridinium chloride, myristalkonium chloride, and Polycide) to kill P. aeruginosa biofilms. In some cases, adding Cu2+ to QACs resulted in a 128-fold decrease in the biofilm minimum bactericidal concentration compared to that for single-agent treatments. In combination, these agents retained broad-spectrum antimicrobial activity that also eradicated biofilms of Escherichia coli, Staphylococcus aureus, Salmonella enterica serovar Cholerasuis, and Pseudomonas fluorescens. To investigate the mechanism of action, isothermal titration calorimetry was used to show that Cu2+ and QACs do not interact in aqueous solutions, suggesting that each agent exerts microbiological toxicity through independent biochemical routes. Additionally, Cu2+ and QACs, both alone and in combination, reduced the activity of nitrate reductases, which are enzymes that are important for normal biofilm growth. Collectively, the results of this study indicate that Cu2+ and QACs are effective combinations of antimicrobials that may be used to kill bacterial biofilms. PMID:18519726

  10. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  11. Quaternary extensional and compressional tectonics revealed from Quaternary landforms along Kosi River valley, outer Kumaun Lesser Himalaya, Uttarakhand

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Kothyari, Girish Ch.; Tripathi, Kavita; Pant, P. D.

    2016-04-01

    A portion of the Kosi River in the outer Kumaun Lesser Himalaya is characterized by wide river course situated south of the Ramgarh Thrust, where huge thickness (~200 m) of the landslide deposits and two to three levels of unpaired fan terraces are present. Brittle normal faults, suggesting extensional tectonics, are recognized in the Quaternary deposits and bedrocks as further supported by surface morphology. Trending E-W, these faults measure from 3 to 5 km in length and are traced as discontinuous linear mini-horst and fault scarps (sackungen) exposed due to cutting across by streams. Active normal faults have displaced the coarsely laminated debris fan deposits at two sites located 550 m apart. At one of the sites, the faults look like bookshelf faulting with the maximum displacement of ~2 m and rotation of the Quaternary boulders along the fault plane is observed. At another site, the maximum displacement measures about 0.60 cm. Thick mud units deposited due to blocking of the streams by landslides are observed within and above the fan deposit. Landslide debris fans and terrace landforms are widely developed; the highest level of fan is observed ~1240 m above mean sea level. At some places, the reworking of the debris fans by streams is characterized by thick laminated sand body. Along the South Almora Thrust and Ramgarh Thrust zones, the valleys are narrow and V-shaped where Quaternary deposits are sparse due to relatively rapid uplift across these thrusts. Along the South Almora Thrust zone, three to four levels of fluvial terraces are observed and have been incised by river exposing the bedrocks due to recent movement along the RT and SAT. Abandoned channel, tilted mud deposits, incised meandering, deep-cut V-shaped valleys and strath terraces indicate rapid uplift of the area. Thick mud sequences in the Quaternary columns indicate damming of streams. A ~10-km-long north-south trending transverse Garampani Fault has offset the Ramgarh Thrust producing

  12. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  13. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region

    USGS Publications Warehouse

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.

    2003-01-01

    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  14. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  15. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.

    2015-12-01

    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  16. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  17. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  18. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    PubMed

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  19. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  20. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  1. Deformation and Quaternary Faulting in Southeast Missouri across the Commerce Geophysical Lineament

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.K.; Williams, R.A.; Pratt, T.L.; Harrison, R.W.; Hoffman, D.

    1999-01-01

    High-resolution seismic-reflection data acquired at three sites along the surface projection of the Commerce geophysical lineament in southeast Missouri reveal a complex history of post-Cretaceous faulting that has continued into the Quaternary. Near Qulin, Missouri, approximately 20 m of apparent vertical fault displacement has occurred in the Quaternary. Reflection data collected at Idalia Hill, about 45 km to the northeast, reveal a series of reverse and possibly right-lateral strike-slip faults with Quaternary displacement. In the Benton Hills, 45 km northeast of Idalia Hill, seismic data image a complicated series of anticlinal and synclinal fault-bounded blocks immediately north of the Commerce fault. We infer that most of the deformation imaged in the upper 400 m of these three data sets occurred since post-Cretaceous time, and a significant portion of it occurred during Quaternary time. Collectively, these seismic data along with geomorphic and surface-geologic evidence suggest (1) the existence of at least one potential seismogenic structure in southeastern Missouri outside the main zones of New Madrid seismicity, and (2) these structures have been active during the Quaternary. The geographic location of the imaged deformation suggests it is related to structures along with the Commerce geophysical lineament.

  2. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution.

    PubMed

    Denoyer, Delphine; Pearson, Helen B; Clatworthy, Sharnel A S; Smith, Zoe M; Francis, Paul S; Llanos, Roxana M; Volitakis, Irene; Phillips, Wayne A; Meggyesy, Peter M; Masaldan, Shashank; Cater, Michael A

    2016-06-14

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed.

  3. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    PubMed Central

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  4. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  5. Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution

    PubMed Central

    Marsh, Joseph A.; Teichmann, Sarah A.

    2014-01-01

    The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. PMID:24866000

  6. From middle Miocene to late Quaternary spatial and temporal evolution of Cappadocian Volcanism

    NASA Astrophysics Data System (ADS)

    Aydar, E.; Cubukcu, E.; Ersoy, O.; Kabadayı, E.; Duncan, R.

    2009-04-01

    Cappadocian Volcanism, Central Turkey was active from Miocene to upper Holocene, originating from varying sources and presents various dynamics. Central Anatolia constitutes a plateau reaching to 1100-1200 meters from the sea level. From Miocene to Quaternary, the volcanism and/or its relationships with local tectonic targeted in numerous works. Those works can be classified as follows: (i) volcanism-tectonic relationship (Pasquare et al, 1988; Toprak and Goncuoglu, 1993; Toprak, 1998, Dhont et al, 1998; Froger et al, 1998), (ii) volcanological, petrological, geochemical works on stratovolcanoes, monogenetic vents, ignimbrites (Batum, 1978; Ercan, 1985; Aydar, 1992; Aydar and Gourgaud, 1993; Aydar et al, 1994; Aydar et al, 1995; Le Pennec et al, 1994; Druitt et al, 1995; Aydar and Gourgaud, 1998; Deniel et al, 1998, Temel, 1998; Kuzucuoglu et al, 1998; Mouralis et al, 2002; Sen et al, 2003) (iii) Geophysical works on the missing calderas (Ongur, 1978; Ekingen, 1982; Froger et al,1998). Cappadocian landscape is made principally of eroded ignimbirites forming fair chimneys. Apart from the ignimbrites, Cappadocia bears several stratovolcanoes (Mt Erciyes, Mt. Hasan) and numerous monogenetic vents (cinder cones, maars, domes) and some andesitic dacitic relicts of lava fields intercalated within the ignimbritic sequence. Although the stratovolcanoes have some historical activities, their initial eruptions occured in Miocene (Kecikalesi stage of Mt Hasan- 13 My), Pliocene (Kocdag stage of Mt Erciyes). The monogenetic vents demonstrate interestingly bi-modal character which is typically found in rifted regions of the world. Origin of this young volcanism is proposed as collision related transitional alkaline-calcalkaline association (Aydar, 1992, Deniel et al, 1998), is also linked to the subduction (Olanca, 1994). Our preliminary data on the Quaternary rhyolitic glass combined with chemical analysis of the Miocene volcanics exhibit that a slight transition from

  7. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  8. The role of Quaternary environmental change in plant macroevolution: the exception or the rule?

    PubMed Central

    Willis, Katherine J; Niklas, Karl J

    2004-01-01

    The Quaternary has been described as an important time for genetic diversification and speciation. This is based on the premise that Quaternary climatic conditions fostered the isolation of populations and, in some instances, allopatric speciation. However, the 'Quaternary Ice-Age speciation model' rests on two key assumptions: (i) that biotic responses to climate change during the Quaternary were significantly different from those of other periods in Earth's history; and (ii) that the mechanisms of isolation during the Quaternary were sufficient in time and space for genetic diversification to foster speciation. These assumptions are addressed by examining the plant fossil record for the Quaternary (in detail) and for the past 410 Myr, which encompasses previous intervals of icehouse Earth. Our examination of the Quaternary record indicates that floristic responses to climate changes during the past 1.8 Myr were complex and that a distinction has to be made between those plants that were able to withstand the extremes of glacial conditions and those that could not. Generation times are also important as are different growth forms (e.g. herbaceous annuals and arborescent perennials), resulting in different responses in terms of genetic divergence rates during isolation. Because of these variations in the duration of isolation of populations and genomic diversification rates, no canonical statement about the predominant floristic response to climatic changes during the Quaternary (i.e. elevated rates of speciation or extinction, or stasis) is currently possible. This is especially true because of a sampling bias in terms of the fossil record of tree species over that of species with non-arborescent growth forms. Nevertheless, based on the available information, it appears that the dominant response of arborescent species during the Quaternary was extinction rather than speciation or stasis. By contrast, our examination of the fossil record of vascular plants for the

  9. Generation and Evolution of Quaternary Magmas Beneath Tengchong: Sr-Nd-Pb-Hf Isotope and Zircon U-series Age Constraints

    NASA Astrophysics Data System (ADS)

    Zou, H.; Ma, M.; Fan, Q.; Xu, B.; Li, S. Q.; Zhao, Y.; King, D. T., Jr.

    2017-12-01

    The Tengchong volcanic field on the southeastern margin of the Tibetan Plateau represents rare Quaternary volcanic eruptions on the plateau. The Quaternary Tengchong volcanic field formed high-potassium calc-alkaline volcanic rocks that include trachybasalts, basaltic trachyandesites, trachyandesites, and dacites. Herein, we present comprehensive Nd-Sr-Pb-Hf isotopic and elemental data for trachybasalts, basaltic trachyandesites, and trachyandesites from four young Tengchong volcanoes at Maanshan, Dayingshan, Heikongshan, and Laoguipo, in order to understand their magma genesis and evolution. Nd-Sr-Pb-Hf isotopes for the primitive Tengchong magma (trachybasalts with SiO2 <52.5 wt. % and MgO >5.5% wt. %) reflect a heterogeneous enriched mantle source. High Th/U, Th/Ta, and Rb/Nb ratios and Nd-Sr-Pb-Hf isotope characteristics of the primitive magmas suggest that the enriched mantle beneath Tengchong formed as a result of subduction of clay-rich sediments, which probably came from the Indian continental plate. Partial melting of the enriched mantle was generated by deep continental subduction coupled with recent regional extension in the Tengchong area. With regard to the evolved magmas (basaltic trachyandesites and trachyandesites), good correlations between SiO2 content and the ratios 87Sr/86Sr, 143Nd/144Nd, 206Pb/204Pb, and 177Hf/176Hf strongly suggest that the combined assimilation and fractional crystallization (AFC) was an important process during magma evolution to form these basaltic trachyandesites and trachyandesites. Uranium-series zircon dating on these evolved lavas from Tengchong is used to constrain their magma evolution and residence timescales.

  10. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  12. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  13. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  14. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  15. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids

    PubMed Central

    Cativiela, Carlos; Ordóñez, Mario

    2010-01-01

    The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton. PMID:20300486

  16. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  17. Carbon nitride supported copper nanoparticles: light-induced electronic effect of the support for triazole synthesis

    NASA Astrophysics Data System (ADS)

    Nandi, Debkumar; Taher, Abu; Ul Islam, Rafique; Siwal, Samarjeet; Choudhary, Meenakshi; Mallick, Kaushik

    2016-11-01

    The composite framework of graphitic carbon nitride (gCN) supported copper nanoparticle can act as a high-performance photoreactor for the synthesis of 1,2,3-triazole derivatives under light irradiation in the absence of alkaline condition. The photoactivity of gCN originates from an electron transition from the valence band to the conduction band, in the presence of photon energy, and the hot electron acts as a scavenger of the terminal proton of the alkyne molecule to facilitate the formation of copper acetanilide complex. In this study, we have performed the experiment under a different photonic environment, including dark condition, and in the presence and absence of base. A comparative study was also executed using Cu-TiO2 system, as a reference material, in the support of our proposed mechanism. The recycling performance and the photocorrosion effect of the catalyst have also been reported in this study.

  18. Algicidal Activity of a Surface-Bonded Organosilicon Quaternary Ammonium Chloride

    PubMed Central

    Walters, P. A.; Abbott, E. A.; Isquith, A. J.

    1973-01-01

    The hydrolysis product of a quaternary amine-containing organosilicon salt, 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride, was found to exhibit algicidal activity while chemically bonded to a variety of substrates. Six representative species of Chlorophyta, Cyanophyta, and Chrysophyta were used to evaluate the algicidal activity. Substrate-bonded 14C-labeled organosilicon quaternary ammonium salt when attached to nonwoven fibers was durable to repeated washings, and algicidal activity could not be attributed to slow release of the chemical. Images PMID:4632852

  19. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Anticholinesterase inhibitory activity of quaternary alkaloids from Tinospora crispa.

    PubMed

    Yusoff, Mashitah; Hamid, Hazrulrizawati; Houghton, Peter

    2014-01-20

    Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.

  1. Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution

    PubMed Central

    Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.

    2017-01-01

    Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367

  2. OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.

    We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.

  3. Ecological impacts of the late Quaternary megaherbivore extinctions.

    PubMed

    Gill, Jacquelyn L

    2014-03-01

    As a result of the late Quaternary megafaunal extinctions (50,000-10,000 before present (BP)), most continents today are depauperate of megaherbivores. These extinctions were time-transgressive, size- and taxonomically selective, and were caused by climate change, human hunting, or both. The surviving megaherbivores often act as ecological keystones, which was likely true in the past. In spite of this and extensive research on the causes of the Late Quaternary Extinctions, the long-term ecological consequences of the loss of the Pleistocene megafauna remained unknown until recently, due to difficulties in linking changes in flora and fauna in paleorecords. The quantification of Sporormiella and other dung fungi have recently allowed for explicit tests of the ecological consequences of megafaunal extirpations in the fossil pollen record. In this paper, I review the impacts of the loss of keystone megaherbivores on vegetation in several paleorecords. A growing number of studies support the hypothesis that the loss of the Pleistocene megafauna resulted in cascading effects on plant community composition, vegetation structure and ecosystem function, including increased fire activity, novel communities and shifts in biomes. Holocene biota thus exist outside the broader evolutionary context of the Cenozoic, and the Late Quaternary Extinctions represent a regime shift for surviving plant and animal species.

  4. A study of Quaternary structures in the Qom region, West Central Iran

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Safaei, H.; Yassaghi, A.; Vafa, H.; Naeimi, A.; Madanipour, S.; Ahmadi, M.

    2010-12-01

    West Central Iran comprises numerous Quaternary faults. Having either strike-slip or thrust mechanisms, these faults are potentially active and therefore capable of creating destructive earthquakes. In this paper, we use satellite images as well as field trips to identify these active faults in the Qom region. The Qom and Indes faults are the main NW-trending faults along which a Quaternary restraining step-over zone has formed. Kamarkuh, Mohsen Abad, and Ferdows anticlines are potentially active structures that formed in this restraining step-over zone. There are some thrusts and anticlines, such as the Alborz anticline and Alborz fault, which are parallel to strike-slip faults such as the Qom fault, indicating deformation partitioning in the area. In addition to NW-trending structures, there is an important NE-trending fault known as the Qomrud fault that has deformed Quaternary deposits and affected Kushk-e-Nosrat fault, Alborz anticline, and Qomrud River. The results of this study imply that the major Quaternary faults of West Central Iran and their restraining step-over zones are potentially active.

  5. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    PubMed

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  6. Copper-zinc electrodeposition in alkaline-sorbitol medium: Electrochemical studies and structural, morphological and chemical composition characterization

    NASA Astrophysics Data System (ADS)

    de Almeida, M. R. H.; Barbano, E. P.; de Carvalho, M. F.; Tulio, P. C.; Carlos, I. A.

    2015-04-01

    The galvanostatic technique was used to analyze the electrodeposition of Cu-Zn on to AISI 1010 steel electrode from an alkaline-sorbitol bath with various proportions of the metal ions in the bath: Cu70/Zn30, Cu50/Zn50 and Cu30/Zn70. Coloration of Cu-Zn films were whitish golden, light golden, golden/gray depending on the Cu2+/Zn2+ ratios in the electrodeposition bath, deposition current density (jdep) and charge density (qdep). The highest current efficiency was ∼54.0%, at jdep -1.0 mA cm-2 and qdep 0.40 C cm-2 in the Cu70/Zn30 bath. Energy dispersive spectroscopy indicated that electrodeposits produced from the bath Cu70/Zn30 showed higher Cu content at lower jdep. Also, for same jdep the Cu content increased with qdep. Scanning electron microscopy showed that Cu-Zn electrodeposits of high quality were obtained from the Cu70/Zn30 bath, since the films were fine-grained, except the obtained at jdep -20.0 mA cm-2 and qdep 10.0 C cm-2. Also, these electrodeposits did not present cracks. X-ray analysis of the Cu-Zn electrodeposits obtained at jdep -8.0, -20.0 and -40.0 mA cm-2, in each case, with qdep 2.0 and 10.0 C cm-2, in the Cu70/Zn30 bath, suggested the occurrence of a mixture of the following phases, CuZn, CuZn5 and Cu5Zn8. Galvanostatic electrodeposits of Cu-Zn obtained from sorbitol-alkaline baths exhibited whitish golden color, with good prospects for industrial applications, especially for decorative purposes.

  7. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  8. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  9. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  10. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  11. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  12. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant.

    PubMed

    Fu, Fenglian; Zeng, Haiyan; Cai, Qinhong; Qiu, Rongliang; Yu, Jimmy; Xiong, Ya

    2007-11-01

    A new dithiocarbamate-type heavy metal precipitant, sodium 1,3,5-hexahydrotriazinedithiocarbamate (HTDC), was prepared and used to remove coordinated copper from wastewater. In the reported dithiocarbamate-type precipitants, HTDC possesses the highest percentage of the effective functional groups. It could effectively precipitate copper to less than 0.5mgl(-1) from both synthetic and actual industrial wastewater containing CuEDTA in the range of pH 3-9. UV-vis spectral investigation and elemental analysis suggested that the precipitate was a kind of coordination supramolecular compound, [Cu(3)(HTDC)(2)](n). The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the supramolecular precipitate was non-hazardous and stable in weak acid and alkaline conditions. Tests of an anion exchange resin D231 provided a clue to simultaneously remove excess HTDC and residual CuEDTA in practical process of wastewater treatment.

  13. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  14. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  15. Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Reed, P.

    2010-12-01

    The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my

  16. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  17. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP.

    PubMed

    Chaudhuri, Gouri; Chatterjee, Saswata; Venu-Babu, P; Ramasamy, K; Thilagaraj, W Richard

    2013-02-01

    The hydrolysis of p-nitrophenyl phosphate (pNPP) by calf intestinal alkaline phosphatase (CIAP) was investigated with respect to kinetic parameters such as V(max), K(m) and K(cat) under varying pH, buffers, substrate concentration, temperature and period of incubation. Highest activity was obtained with Tris-HCl at pH 11, while in the case of glycine-NaOH buffer the peak activity was recorded at pH 9.5. The enzyme showed the following kinetic characteristics with pNPP in 50 mM Tris-HCl at pH 11 and 100 mM glycine-NaOH at pH 9.5 at an incubation temperature of 37 degrees C: V(max), 3.12 and 1.6 micromoles min(-1) unit(-1); K(m), 7.6 x 10(-4) M and 4 x 10(-4) M; and K(cat), 82.98 s(-1) and 42.55 s(-1), respectively. CIAP displayed a high temperature optimum of 45 degrees C at pH 11. The kinetic behaviour of the enzyme under different parameters suggested that the enzyme might undergo subtle conformational changes in response to the buffers displaying unique characteristics. Bioprecipitation of Cu2+ from 50 ppm of CuCl2 solution was studied where 64.3% of precipitation was obtained. P(i) generated from CIAP-mediated hydrolysis of pNPP was found to bind with copper and precipitated as copper-phosphate. Thus, CIAP could be used as a test candidate in bioremediation of heavy metals from industrial wastes through generation of metal-phosphate complexes.

  18. Recyclable cross-linked anion exchange membrane for alkaline fuel cell application

    NASA Astrophysics Data System (ADS)

    Hou, Jianqiu; Liu, Yazhi; Ge, Qianqian; Yang, Zhengjin; Wu, Liang; Xu, Tongwen

    2018-01-01

    Cross-linking can effectively solve the conductivity-swelling dilemma in anion exchange membranes (AEMs) but will generate solid wastes. To address this, we developed an AEM cross-linked via disulfide bonds, bearing quaternary ammonium groups, which can be easily recycled. The membrane (RC-QPPO) with IEC of 1.78 mmol g-1, when cross-linked, showed enhanced mechanical properties and good hydroxide conductivity (24.6 mS cm-1 at 30 °C). Even at higher IEC value (2.13 mmol g-1), it still has low water uptake, low swelling ratio and delivers a peak power density of 150 mW cm-2 at 65 °C. Exploiting the formation of disulfide bonds from -SH groups, the membrane can be readily cross-linked in alkaline condition and recycled by reversibly breaking disulfide bonds with dithiothreitol (DTT). The recycled membrane solution can be directly utilized to cast a brand-new AEM. By washing away the residual DTT with water and exposure to air, it can be cross-linked again and this process is repeatable. During the recycling and cross-linking processes, the membrane showed a slight IEC decrease of 5% due to functional group degradation. The strategy presented here is promising in enhancing AEM properties and reducing the impact of artificial polymers on the environment.

  19. Quaternary Tectonic and Climatic Processes shaping the Central Andean hyperarid forearc (southern Peru)

    NASA Astrophysics Data System (ADS)

    Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.

    2015-04-01

    Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets…) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and

  20. Thermodynamic Description of the Quaternary Ag-Bi-Cu-Sn System

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech

    2018-01-01

    Lead-free soldering is an important part of electronic devices production. New lead-free solders that replace classical Sn-37Pb solder are still under development. Thermodynamic modeling makes the development process faster, cheaper and more environmentally friendly due to predictions of phases stabilities and phases transformations. In this work, the thermodynamic description of quaternary Ag-Bi-Cu-Sn system is presented. The thermodynamic assessment of promising lead-free quaternary solder was prepared using the Calphad approach. A good agreement between available experimental data and calculation was found.

  1. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  2. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  3. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Potassium sodium copper chlorophyllin... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and specifications. The color additive potassium sodium copper chlorophyllin shall conform in identity and...

  4. Data without Frontiers - the International Quaternary Map of Europe (IQUAME 2500)

    NASA Astrophysics Data System (ADS)

    Asch, Kristine

    2017-04-01

    The Federal German Geological Survey (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR) is leading the review of the International Quaternary Map of Europe (IQUAME 2500) and its transformation into a geographical information system (GIS) under the umbrella of the CGMW and INQUA. It is a long-standing policy of BGR to lead international cooperation of European geological survey mapping projects. These particularly include projects under the umbrella of organisations including CGMW, UNESCO, INQUA, EGU and IUGS. The aim of IQUAME 2500 is to build a geological information system (GIS) of Europe's Quaternary geology where relevant information can be retrieved, combined and applied across international boundaries. Cross-border mapping poses specific challenges, in particular data harmonisation, for the presentation of regional geology. Overcoming these obstacles demands international cooperation with national geological survey organisations. Based on the previous BGR & UNESCO co-produced International Quaternary Map of Europe (at a 1 : 2,5 million scale; completed in 1995), revision was begun by BGR in 2011 to review the information available from an international group of experts from European geological survey organisations. This group is supported by an international academic Advisory Board. The work requires re-evaluation and digitization of the 14 paper sheets. For this purpose BGR developed a pragmatic procedure to classify, deliver and combine the reviewed Quaternary data in a harmonized and uniform manner. The project is applying the vocabularies and data model of the EC Directive INSPIRE Directive and is creating additional vocabularies and definitions for necessary features such as geomorphology (with the EMODnet project) and glaciogenic elements. An academic scientific advisory board is overseeing the process. Subjects of the map include: geological boundaries and classifications of Quaternary rocks, extension and boundaries of permafrost, last glacial

  5. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chloropyhllin....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll by...

  6. A digital image method of spot tests for determination of copper in sugar cane spirits

    NASA Astrophysics Data System (ADS)

    Pessoa, Kenia Dias; Suarez, Willian Toito; dos Reis, Marina Ferreira; de Oliveira Krambeck Franco, Mathews; Moreira, Renata Pereira Lopes; dos Santos, Vagner Bezerra

    2017-10-01

    In this work the development and validation of analytical methodology for determination of copper in sugarcane spirit samples is carried out. The digital image based (DIB) method was applied along with spot test from the colorimetric reaction employing the RGB color model. For the determination of copper concentration, it was used the cuprizone - a bidentate organic reagent - which forms with copper a blue chelate in an alkaline medium. A linear calibration curve over the concentration range from 0.75 to 5.00 mg L- 1 (r2 = 0.9988) was obtained and limits of detection and quantification of 0.078 mg L- 1 and 0.26 mg L- 1 were acquired, respectively. For the accuracy studies, recovery percentages ranged from 98 to 104% were obtained. The comparison of cooper concentration results in sugar cane spirits using the DIB method and Flame Atomic Absorption Spectrometry as reference method showed no significant differences between both methods, which were performed using the paired t-test in 95% of confidence level. Thus, the spot test method associated with DIB allows the use of devices as digital cameras and smartphones to evaluate colorimetric reaction with low waste generation, practicality, quickness, accuracy, precision, high portability and low-cost.

  7. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  8. Petrology and geochemistry of the Tasse mantle xenoliths of the Canadian Cordillera: A record of Archean to Quaternary mantle growth, metasomatism, removal, and melting

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Thorkelson, Derek J.; Friedman, Eyal

    2018-07-01

    Mantle xenoliths hosted by the Quaternary Tasse alkaline basalts in the Canadian Cordillera, southeastern British Columbia, are mostly spinel lherzolite originating from subcontinental lithospheric mantle. The xenoliths contain abundant feldspar veins, melt pockets and spongy clinopyroxene, recording extensive alkaline metasomatism and partial melting. Feldspar occurs as veins and interstitial crystal in melt pockets. Melt pockets occur mainly at triple junctions, along grain boundaries, and consist mainly of olivine, cpx, opx and spinel surrounded by interstitial feldspar. The Nd, Sr and Pb isotopic compositions of the xenoliths indicate that their sources are characterized by variable mixtures of depleted MORB mantle and EM1 and EM2 mantle components. Large variations in εNd values (-8.2 to +9.6) and Nd depleted mantle model ages (TDM = 66 to 3380 Ma) are consistent with multiple sources and melt extraction events, and long-term (>3300 Ma) isolation of some source regions from the convecting mantle. Samples with Archean and Paleoproterozoic Nd model ages are interpreted as either have been derived from relict Laurentian mantle pieces beneath the Cordillera or have been eroded from the root of the Laurentian craton to the east and transported to the base of the Cordilleran lithosphere by edge-driven convection currents. The oxygen isotope compositions of the xenoliths (average δ18O = +5.1 ± 0.5‰) are similar to those of depleted mantle. The average δ18O values of olivine (+5.0 ± 0.2‰), opx (+5.9 ± 0.6‰), cpx (+6.0 ± 0.6‰) and spinel (+4.5 ± 0.2‰) are similar to mantle values. Large fractionations for olivine-opx, olivine-cpx and opx-cpx pairs, however, reflect disequilibrium stemming from metasomatism and partial melting. Whole-rock trace element, Nd, Sr, Pb and O isotope compositions of the xenoliths and host alkaline basalts indicate different mantle sources for these two suites of rocks. The xenoliths were derived from shallow lithospheric

  9. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  10. Progress report. Task 1 - quaternary tectonics, 1 October 1991--30 September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-09-30

    Progress is reported on a study concerned with the quaternary tectonics of Yucca Mountain, the proposed site for an underground disposal facility for high-level radioactive wastes. Refinement and revision of crater Flat Quaternary stratigraphy continued and consisted of several activities: revision of rock varnish cation leaching curve; sample comparison of RV manganese;,iron microlaminations;and correlation of Crater Flat allostratigraphic units with regional chronologies.

  11. Advances in the synthesis of α-quaternary α-ethynyl α-amino acids.

    PubMed

    Boibessot, Thibaut; Bénimélis, David; Meffre, Patrick; Benfodda, Zohra

    2016-09-01

    α-Quaternary α-ethynyl α-amino acids are an important class of non-proteinogenic amino acids that play an important role in the development of peptides and peptidomimetics as therapeutic agents and in the inhibition of enzyme activities. This review provides an overview of the literature concerning synthesis and applications of α-quaternary α-ethynyl α-amino acids covering the period from 1977 to 2015.

  12. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  13. Migration of copper and some other metals from copper tableware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, H.; Inoue, T.; Yoshihira, K.

    Intake of heavy metals is an important problem in human health. Certain heavy metals are avoided with regard to their use for utensils or tableware coming into contact with food, although copper is widely used in food processing factories or at home. The use of copper products for the processing, cooking or serving of foods and beverages is considered to be a cause of a copper contamination. Although copper is essential element, its excess ingestion is undesirable. In this study, the migration of copper from tin-plated or non-plated copperware under several experimental conditions was investigated using food-simulating solvents.

  14. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  15. Digital release of the Alaska Quaternary fault and fold database

    NASA Astrophysics Data System (ADS)

    Koehler, R. D.; Farrell, R.; Burns, P.; Combellick, R. A.; Weakland, J. R.

    2011-12-01

    The Alaska Division of Geological & Geophysical Surveys (DGGS) has designed a Quaternary fault and fold database for Alaska in conformance with standards defined by the U.S. Geological Survey for the National Quaternary fault and fold database. Alaska is the most seismically active region of the United States, however little information exists on the location, style of deformation, and slip rates of Quaternary faults. Thus, to provide an accurate, user-friendly, reference-based fault inventory to the public, we are producing a digital GIS shapefile of Quaternary fault traces and compiling summary information on each fault. Here, we present relevant information pertaining to the digital GIS shape file and online access and availability of the Alaska database. This database will be useful for engineering geologic studies, geologic, geodetic, and seismic research, and policy planning. The data will also contribute to the fault source database being constructed by the Global Earthquake Model (GEM), Faulted Earth project, which is developing tools to better assess earthquake risk. We derived the initial list of Quaternary active structures from The Neotectonic Map of Alaska (Plafker et al., 1994) and supplemented it with more recent data where available. Due to the limited level of knowledge on Quaternary faults in Alaska, pre-Quaternary fault traces from the Plafker map are shown as a layer in our digital database so users may view a more accurate distribution of mapped faults and to suggest the possibility that some older traces may be active yet un-studied. The database will be updated as new information is developed. We selected each fault by reviewing the literature and georegistered the faults from 1:250,000-scale paper maps contained in 1970's vintage and earlier bedrock maps. However, paper map scales range from 1:20,000 to 1:500,000. Fault parameters in our GIS fault attribute tables include fault name, age, slip rate, slip sense, dip direction, fault line type

  16. New quantum codes constructed from quaternary BCH codes

    NASA Astrophysics Data System (ADS)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  17. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    PubMed

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and <6% (n=5, 2µM glucose), respectively. Newly devised sparked Cu/Ni graphite SPEs enable glucose sensing with distinct advantages over existing glucose chemical sensors in terms of cost, fabrication simplicity, disposability, and adaptation of green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Non-enzymatic glucose sensing on copper-nickel thin film alloy

    NASA Astrophysics Data System (ADS)

    Pötzelberger, Isabella; Mardare, Andrei Ionut; Hassel, Achim Walter

    2017-09-01

    A simple and cost efficient glucose sensor was constructed using 3D printing having as active material a copper-15 at.% nickel thin film thermally co-evaporated on copper plated circuit boards. The glucose detection in alkaline solution was studied in detail by cyclic voltammetric and chronoamperometric measurements. The sensor suitability for being used in both quantitative and qualitative glucose detection was demonstrated and calibration of its response to various amounts of glucose revealed two linear regimes with different sensitivities. Glucose levels between 0 and 10 mM are most efficiently quantified as indicated by an amperometric signal increase of 240 μA cm-2 for each 1 mM increase of glucose concentration. The potentiostatic stability of the sensor was evaluated and its complete insensitivity after 7 h was solely attributed to the irreversible transformation of glucose into gluconolactone. A sensor life time of 20 cycles was demonstrated during potentiodynamic cycling when the sensor response remains constant at its maximum level. The magnitude of possible glucose quantification errors were evaluated as interferences induced by additions of ascorbic and uric acids. A worst case scenario of 96 % accuracy of glucose levels quantification was demonstrated using 25 times higher concentrations of interfering substances as compared to the glucose level.

  19. Copper toxicity in the crab, Scylla serrata, copper levels in tissues and regulation after exposure to a copper-rich medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugam, M.; Ravindranath, M.H.

    1987-10-01

    In the decapod crustaceans copper is distributed in various tissues. In these animals the tissue copper generally exists in four forms; ionic, bound to proteins, lipids and membrane. In the estuarine crab Scylla serrata, the haemolymph copper exists only in association with proteins, whereas in the hepatopancreas it exists in all the four forms and in gills it exists in all the forms except in combination with lipids. Although food is the major source of copper in decapod crustaceans evidence indicate that copper may be directly obtained from the environment. It was postulated earlier that in Scylla serrata the haemolymphmore » and hepatopancreas may be involved in copper regulation. In the present work the authors have studied the nature and levels of copper in different tissues after exposing the crabs to copper-rich medium. The results indicate the relative importance of various tissues in accumulation an the possible mechanisms of regulation of the environmental copper. Besides, as a pre-requisite for studies of this kind, the toxic levels for different forms of copper were estimated since the form of toxicant is known to influence the toxicity to the decapod crustaceans.« less

  20. Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS.

    PubMed

    Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2011-06-01

    A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  1. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  2. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    PubMed

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  3. Resistance of alpha-crystallin quaternary structure to UV irradiation.

    PubMed

    Krivandin, A V; Muranov, K O; Yakovlev, F Yu; Poliansky, N B; Wasserman, L A; Ostrovsky, M A

    2009-06-01

    The damaging effect of UV radiation (lambda > 260 nm) on bovine alpha-crystallin in solution was studied by small-angle X-ray scattering, gel permeation chromatography, electrophoresis, absorption and fluorescence spectroscopy, and differential scanning calorimetry. The results obtained show that damage to even a large number of subunits within an alpha-crystallin oligomer does not cause significant rearrangement of its quaternary structure, aggregation of oligomers, or the loss of their solubility. Due to the high resistance of its quaternary structure, alpha-crystallin is able to prevent aggregation of destabilized proteins (especially of gamma- and beta-crystallins) and so to maintain lens transparency throughout the life of an animal (the chaperone-like function of alpha-crystallin).

  4. Quaternary laser devices: history and state of the art

    NASA Astrophysics Data System (ADS)

    Eliseev, Petr G.

    1993-05-01

    Quaternary alloys of semiconductor compounds are suitable materials for wide-spectrum optoelectronic applications. The most important property of these efficient luminescent materials is the opportunity to fit the lattice parameter in some range to a given value corresponding to another crystalline material. This leads to the method to construct defect-free and stress-free heterojunctions, which was used for the preparation of a number of laser and LED devices. Quaternaries of InGaAsP, InGaSbAs, InSbAsP, PbSnTeSe, and other alloys were introduced into practical usage particularly in diode laser devices. The alloy InGaAsP appears to be one of the most widely used in optoelectronic applications at present as it covers ranges near 1.3 and 1.55 micrometers wavelengths of fiber-optic communication. For the spectral range near 2 micrometers the alloy InGaSbAs seems to be most attractive, and cw-operating diode lasers at room temperature were demonstrated at 2.0 - 2.4 micrometers . The alloy PbSnTeSe was used to obtain a longest wave of diode laser emission 46 micrometers . Quaternaries played an important role in the development of the semiconductor optoelectronics during the last two decades.

  5. Tear copper and its association with liver copper concentrations in six adult ewes.

    PubMed Central

    Schoster, J V; Stuhr, C; Kiorpes, A

    1995-01-01

    Tear and liver copper concentrations from 6 clinically healthy adult mixed-breed ewes were measured by Atomic Absorption Electrothermal Atomization (graphite furnace) Spectrometry and Flame Absorption Spectrometry, respectively, 7 times over 227 d to determine if their tears contained copper and if so, whether tear copper concentrations could reliably predict liver copper concentrations. To produce changes in liver copper concentration, the diet was supplemented with copper at concentrations that increased from 23 mg to 45 mg Cu/kg feed/day/sheep during the study. This regimen raised liver copper for all sheep to potentially toxic hepatic tissue concentration of greater than 500 mg/kg dry (DM) matter (tissue). The results of the study showed that copper was present in the tears of all sheep. The mean tear copper concentration showed a positive correlation with liver copper concentration (P = 0.003), increasing from 0.07 mg/kg DM at the start to 0.44 mg/kg DM at the end of the study, but could not reliably predict liver copper concentration (R2 = 0.222). PMID:7648525

  6. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast,more » treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.« less

  7. Increased river alkalinization in the Eastern U.S.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  8. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China

    NASA Astrophysics Data System (ADS)

    Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron

    2017-12-01

    The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.

  9. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  10. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  11. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability.

    PubMed

    Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B

    2014-04-03

    A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for

  12. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  13. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less

  14. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  15. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  16. ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion.

    PubMed

    Cater, Michael A; La Fontaine, Sharon; Shield, Kristy; Deal, Yolanda; Mercer, Julian F B

    2006-02-01

    The Wilson protein (ATP7B) regulates levels of systemic copper by excreting excess copper into bile. It is not clear whether ATP7B translocates excess intrahepatic copper directly across the canalicular membrane or sequesters this copper into exocytic vesicles, which subsequently fuse with canalicular membrane to expel their contents into bile. The aim of this study was to clarify the mechanism underlying ATP7B-mediated copper detoxification by investigating endogenous ATP7B localization in the HepG2 hepatoma cell line and its ability to mediate vesicular sequestration of excess intracellular copper. Immunofluorescence microscopy was used to investigate the effect of copper concentration on the localization of endogenous ATP7B in HepG2 cells. Copper accumulation studies to determine whether ATP7B can mediate vesicular sequestration of excess intracellular copper were performed using Chinese hamster ovary cells that exogenously expressed wild-type and mutant ATP7B proteins. In HepG2 cells, elevated copper levels stimulated trafficking of ATP7B to pericanalicular vesicles and not to the canalicular membrane as previously reported. Mutation of an endocytic retrieval signal in ATP7B caused the protein to constitutively localize to vesicles and not to the plasma membrane, suggesting that a vesicular compartment(s) is the final trafficking destination for ATP7B. Expression of wild-type and mutant ATP7B caused Chinese hamster ovary cells to accumulate copper in vesicles, which subsequently undergo exocytosis, releasing copper across the plasma membrane. This report provides compelling evidence that the primary mechanism of biliary copper excretion involves ATP7B-mediated vesicular sequestration of copper rather than direct copper translocation across the canalicular membrane.

  17. First principles study on Fe based ferromagnetic quaternary Heusler alloys

    NASA Astrophysics Data System (ADS)

    Amudhavalli, A.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2017-11-01

    The study of stable half-metallic ferromagnetic materials is important from various fundamental and application points of view in condensed matter Physics. Structural phase stability, electronic structure, mechanical and magnetic properties of Fe-based quaternary Heusler alloys XX‧YZ (X = Co, Ni; X‧ = Fe; Y = Ti; Z = Si, Ge, As) for three different phases namely α, β and γ phases of LiMgPdSn crystal structure have been studied by density functional theory with generalized gradient approximation formulated by Perdew, Burke and Ernzerhof (GGA-PBE) and the Hubbard formalism (GGA-PBE + U). This work aims to identify the ferromagnetic and half-metallic properties of XX‧YZ (X = Co, Ni, X‧ = Fe; Y = Ti; Z = Si, Ge, As) quaternary Heusler alloys. The predicted phase stability shows that α-phase is found to be the lowest energy phase at ambient pressure. A pressure-induced structural phase transition is observed in CoFeTiSi, CoFeTiGe, CoFeTiAs, NiFeTiSi, NiFeTiGe and NiFeTiAs at the pressures of 151.6 GPa, 33.7 GPa, 76.4 GPa, 85.3 GPa, 87.7 GPa and 96.5 GPa respectively. The electronic structure reveals that these materials are half metals at normal pressure whereas metals at high pressure. The investigation of electronic structure and magnetic properties are performed to reveal the underlying mechanism of half metallicity. The spin polarized calculations concede that these quaternary Heusler compounds may exhibit the potential candidate in spintronics application. The magnetic moments for these quaternary Heusler alloys in all the three different phases (α, β and γ) are estimated.

  18. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    PubMed

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  20. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    PubMed Central

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  1. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  2. Putting copper into action: copper-impregnated products with potent biocidal activities.

    PubMed

    Borkow, Gadi; Gabbay, Jeffrey

    2004-11-01

    Copper ions, either alone or in copper complexes, have been used for centuries to disinfect liquids, solids, and human tissue. Today copper is used as a water purifier, algaecide, fungicide, nematocide, molluscicide, and antibacterial and antifouling agent. Copper also displays potent antiviral activity. We hypothesized that introducing copper into clothing, bedding, and other articles would provide them with biocidal properties. A durable platform technology has been developed that introduces copper into cotton fibers, latex, and other polymeric materials. This study demonstrates the broad-spectrum antimicrobial (antibacterial, antiviral, antifungal) and antimite activities of copper-impregnated fibers and polyester products. This technology enabled the production of antiviral gloves and filters (which deactivate HIV-1 and other viruses), antibacterial self-sterilizing fabrics (which kill antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci), antifungal socks (which alleviate symptoms of athlete's foot), and anti-dust mite mattress covers (which reduce mite-related allergies). These products did not have skin-sensitizing properties, as determined by guine pig maximization and rabbit skin irritation tests. Our study demonstrates the potential use of copper in new applications. These applications address medical issues of the greatest importance, such as viral transmissions; nosocomial, or healthcare-associated, infections; and the spread of antibiotic-resistant bacteria.

  3. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy.

    PubMed

    Jensen, Kim D; Tymoczko, Jakub; Rossmeisl, Jan; Bandarenka, Aliaksandr S; Chorkendorff, Ib; Escudero-Escribano, María; Stephens, Ifan E L

    2018-03-05

    The relationship between the binding of the reaction intermediates and oxygen reduction activity in alkaline media was experimentally explored. By introducing Cu into the 2nd surface layer of a Pt(111) single crystal, the surface reactivity was tuned. In both 0.1 m NaOH and 0.1 m KOH, the optimal catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits a maximum activity of 101±8 mA cm -2 at 0.9 V vs. a reversible hydrogen electrode (RHE). This activity constitutes a circa 60-fold increase over Pt(111) in 0.1 m HClO 4 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans.

    PubMed

    Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun

    2017-01-06

    Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Solubility limits in quaternary SnTe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Ortiz, Brenden R.

    2017-01-01

    A combined theoretical and experimental approach was used to determine the equilibrium as well as non-equilibrium solubility lines in the quaternary Sn 1-yMn yTe 1-xSe xalloy space, revealing a large area of accessible metastable phase space.

  6. Variation in Inflammatory/Regulatory Cytokines in Secondary, Tertiary, and Quaternary Challenges with Dengue Virus

    PubMed Central

    Sierra, Beatriz; Pérez, Ana B.; Alvarez, Mayling; García, Gissel; Vogt, Katrin; Aguirre, Eglys; Schmolke, Kathrin; Volk, Hans-Dieter; Guzmán, María G.

    2012-01-01

    Secondary heterologous dengue infection is a risk factor for severe disease manifestations because of the immune-enhancement phenomenon. Succeeding clinical infections are seldom reported, and the clinical course of tertiary and quaternary dengue infections is not clear. Cuba represents a unique environment to study tertiary/quaternary dengue infections in a population with known clinical and serologic dengue markers and no dengue endemicity. We took advantage of this exceptional epidemiologic condition to study the effect of primary, secondary, tertiary, and quaternary dengue infection exposure on the expression of pro-inflammatory and regulatory cytokines, critical in dengue infection pathogenesis, by using a dengue infection ex vivo model. Whereas secondary exposure induced a high cytokine response, we found a significantly lower expression of tumor necrosis factor-α, interferon-γ, interleukin-10, and tumor growth factor-β after tertiary and quaternary infectious challenge. Significant differences in expression of the cytokines were seen between the dengue immune profiles, suggesting that the sequence in which the immune system encounters serotypes may be important in determining the nature of the immune response to subsequent infections. PMID:22802438

  7. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, G.J.; de Goeij, J.J.; Bock, I.

    1991-08-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (less than 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver, anemia, low plasma ceruloplasmin oxidase activity and increased 64Cu whole-body retention. Freshly isolated liver parenchymal cells from copper-deficient rats showed a higher 64Cu influx, which was associated with a higher apparent Vmax of 45 {plus minus} 4 pmol Cu.mg protein-1.min-1 as compared with 30 {plus minus} 3 pmol Cu.mg protein-1.min-1 for cells isolated from copper-sufficientmore » rats. No significant difference in the apparent Km (approximately 30 mumol/L) was observed. Relative 64Cu efflux from cells from copper-deficient rats was significantly smaller than the efflux from cells from copper-sufficient rats after prelabeling as determined by 2-h efflux experiments. Analysis of the medium after efflux from cells from copper-deficient rats showed elevated protein-associated 64Cu, suggesting a higher incorporation of radioactive copper during metalloprotein synthesis. Effects of copper deficiency persist in primary cultures of parenchymal cells derived from copper-deficient rats, and short-term cultures of these cells offer a prospect for the study of cell biological aspects of the metabolic adaptation of the liver to copper deficiency.« less

  8. [The action of quaternary ammonium derivatives on respiration and nitrate reduction in Pseudomonas aeruginosa].

    PubMed

    Bievskiĭ, A N

    1994-01-01

    It was revealed that the same dosages of quaternary ammonium derivatives, such as decamethoxin and cetyltrimethylammonium bromide, inhibited the respiratory chains and caused destruction of Pseudomonas aeruginosa under aerobic conditions more effectively than under anaerobic ones when anions of nitric acid were the terminal acceptors of electrons. It was also registered that Pseudomonas were able to dissimilatory nitrate reduction in the media under the polysaccharide layer that was produced by these bacteria: this fact possibly proves the possibility of survival of denitrifying bacteria in solutions with high concentrations of quaternary ammonium salts. The data obtained permit supposing that inhibitors of respiratory chains and oxidizers may be used as potentiators of the antimicrobial action of quaternary ammonium derivatives.

  9. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    PubMed

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. COPPER CORROSION RESEARCH UPDATE

    EPA Science Inventory

    Copper release and corrosion related issues continue to be important to many water systems. The objective of this presentation is to discuss the current state of copper research at the USEPA. Specifically, the role of aging on copper release, use of phosphates for copper corrosio...

  11. Essentiality of copper in humans.

    PubMed

    Uauy, R; Olivares, M; Gonzalez, M

    1998-05-01

    The biochemical basis for the essentiality of copper, the adequacy of the dietary copper supply, factors that condition deficiency, and the special conditions of copper nutriture in early infancy are reviewed. New biochemical and crystallographic evidence define copper as being necessary for structural and catalytic properties of cuproenzymes. Mechanisms responsible for the control of cuproprotein gene expression are not known in mammals; however, studies using yeast as a eukaryote model support the existence of a copper-dependent gene regulatory element. Diets in Western countries provide copper below or in the low range of the estimated safe and adequate daily dietary intake. Copper deficiency is usually the consequence of decreased copper stores at birth, inadequate dietary copper intake, poor absorption, elevated requirements induced by rapid growth, or increased copper losses. The most frequent clinical manifestations of copper deficiency are anemia, neutropenia, and bone abnormalities. Recommendations for dietary copper intake and total copper exposure, including that from potable water, should consider that copper is an essential nutrient with potential toxicity if the load exceeds tolerance. A range of safe intakes should be defined for the general population, including a lower safe intake and an upper safe intake, to prevent deficiency as well as toxicity for most of the population.

  12. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  13. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Stephen F.

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  14. Francisella DnaK Inhibits Tissue-nonspecific Alkaline Phosphatase*

    PubMed Central

    Arulanandam, Bernard P.; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J.; Chambers, James P.

    2012-01-01

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related Gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella. PMID:22923614

  15. Francisella DnaK inhibits tissue-nonspecific alkaline phosphatase.

    PubMed

    Arulanandam, Bernard P; Chetty, Senthilnath Lakshmana; Yu, Jieh-Juen; Leonard, Sean; Klose, Karl; Seshu, Janakiram; Cap, Andrew; Valdes, James J; Chambers, James P

    2012-10-26

    Following pulmonary infection with Francisella tularensis, we observed an unexpected but significant reduction of alkaline phosphatase, an enzyme normally up-regulated following inflammation. However, no reduction was observed in mice infected with a closely related gram-negative pneumonic organism (Klebsiella pneumoniae) suggesting the inhibition may be Francisella-specific. In similar fashion to in vivo observations, addition of Francisella lysate to exogenous alkaline phosphatase (tissue-nonspecific isozyme) was inhibitory. Partial purification and subsequent proteomic analysis indicated the inhibitory factor to be the heat shock protein DnaK. Incubation with increasing amounts of anti-DnaK antibody reduced the inhibitory effect in a dose-dependent manner. Furthermore, DnaK contains an adenosine triphosphate binding domain at its N terminus, and addition of adenosine triphosphate enhances dissociation of DnaK with its target protein, e.g. alkaline phosphatase. Addition of adenosine triphosphate resulted in decreased DnaK co-immunoprecipitated with alkaline phosphatase as well as reduction of Francisella-mediated alkaline phosphatase inhibition further supporting the binding of Francisella DnaK to alkaline phosphatase. Release of DnaK via secretion and/or bacterial cell lysis into the extracellular milieu and inhibition of plasma alkaline phosphatase could promote an orchestrated, inflammatory response advantageous to Francisella.

  16. Plio-quaternary deposits in the Eastern Rharb (Nw Morocco): Electrosequential characterization

    NASA Astrophysics Data System (ADS)

    Al Mazini, Imane; Mridekh, Abdelaziz; Kili, Malika; El Mansouri, Bouâbid; El Bouhaddioui, Mohamed; Magrane, Bouchaib

    2018-02-01

    The Rharb basin, of which our study area is part, is located at the western extremity of the south Rif corridor. It corresponds to a subsiding zone that appeared in the Upper Miocene, between two major structural domains: the Rif to the north and east and the Meseta domain to the south. The eastern part of this basin is characterized by a Plio-Quaternary continental fill. Its geographical position and its structural and paleo-environmental contexts are reflected by a great facies heterogeneity. This work aims to image the subsurface structure and to characterize the distribution mode of Plio-Quaternary deposits of the eastern Rharb. The use of a database consisting of geo-electrical cross sections, hydrogeological drilling and wireline logging integrated in a Geographic Information System (GIS) allowed us to establish a new three-dimensional model of the top of the Mio-Pliocene substratum, new geo-electrical cross sections, as well as the isopach maps of lower, intermediate, upper and superficial geo-electric interval. This approach allowed us to characterize the Plio-Quaternary deposits of the study area and to highlight the effects of the tectonic regime and the relative sea level fluctuations on the sequential organization of these deposits. Our new model shows the development of prograding, aggrading and retrograding parasequences denoting the existence of autogenic mechanisms in the organization of plio-quaternary deposits of the eastern part of the Rharb basin. Therefore, it opens new perspectives for the exploration of water resources and monitoring their quality throughout the basin.

  17. Let's think in alkaline phosphatase at heart function.

    PubMed

    Martins, Maria João; Azevedo, Isabel

    2010-10-08

    In their recent paper, Cheung et al [B.M. Cheung, K.L. Ong, L.Y. Wong, Elevated serum alkaline phosphatase and peripheral arterial disease in the United States National Health and Nutrition Examination Survey 1999-2004. Int J Cardiol 2008 (Electronic publication ahead of print)] described a significant association between serum alkaline phosphatase levels and low ankle-brachial blood pressure index, a risk factor for cardiovascular pathology. We had verified that alkaline phosphatase is present at the rat heart, showing a distribution compatible with cardiomyocyte sarcoplasmic reticulum. Moreover, several drugs with cardiac effect were shown to interfere with heart alkaline phosphatase activity. We therefore propose that alkaline phosphatase may be a local regulator at heart function and a putative target for therapeutic interventions. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Mammoth Mountain and its mafic periphery—A late Quaternary volcanic field in eastern California

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judith; Champion, Duane E.; Calvert, Andrew T.

    2014-01-01

    The trachydacite complex of Mammoth Mountain and an array of contemporaneous mafic volcanoes in its periphery together form a discrete late Pleistocene magmatic system that is thermally and compositionally independent of the adjacent subalkaline Long Valley system (California, USA). The Mammoth system first erupted ca. 230 ka, last erupted ca. 8 ka, and remains restless and potentially active. Magmas of the Mammoth system extruded through Mesozoic plutonic rocks of the Sierra Nevada batholith and extensive remnants of its prebatholith wall rocks. All of the many mafic and silicic vents of the Mammoth system are west or southwest of the structural boundary of Long Valley caldera; none is inboard of the caldera’s buried ring-fault zone, and only one Mammoth-related vent is within the zone. Mammoth Mountain has sometimes been called part of the Inyo volcanic chain, an ascription we regard inappropriate and misleading. The scattered vent array of the Mammoth system, 10 × 20 km wide, is unrelated to the range-front fault zone, and its broad nonlinear footprint ignores both Long Valley caldera and the younger Mono-Inyo range-front vent alignment. Moreover, the Mammoth Mountain dome complex (63%–71% SiO2; 8.0%–10.5% alkalies) ended its period of eruptive activity (100–50 ka) long before Holocene inception of Inyo volcanism. Here we describe 25 silicic eruptive units that built Mammoth Mountain and 37 peripheral units, which include 13 basalts, 15 mafic andesites, 6 andesites, and 3 dacites. Chemical data are appended for nearly 900 samples, as are paleomagnetic data for ∼150 sites drilled. The 40Ar/39Ar dates (230–16 ka) are given for most units, and all exposed units are younger than ca. 190 ka. Nearly all are mildly alkaline, in contrast to the voluminous subalkaline rhyolites of the contiguous long-lived Long Valley magma system. Glaciated remnants of Neogene mafic and trachydacitic lavas (9.1–2.6 Ma) are scattered near Mammoth Mountain, but Quaternary

  19. Alkaline transition of pseudoazurin Met16X mutant proteins: protein stability influenced by the substitution of Met16 in the second sphere coordination.

    PubMed

    Abdelhamid, Rehab F; Obara, Yuji; Kohzuma, Takamitsu

    2008-01-01

    Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH approximately 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH>11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu-S(Cys) stretching frequency was shifted to higher frequency region at pH approximately 11. The higher frequency shift of Cu-S(Cys) bond is implied the stronger Cu-S(Cys) bond at alkaline transition pH approximately 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH>11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH>11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine -SCH3 part and coordinated histidine imidazole moiety. The introduction of pi-pi interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.

  20. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  1. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  2. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  3. Quaternary dinoflagellate cysts in the Arctic Ocean: Potential and limitations for stratigraphy and paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Matthiessen, Jens; Schreck, Michael; De Schepper, Stijn; Zorzi, Coralie; de Vernal, Anne

    2018-07-01

    The Arctic Ocean is a siliciclastic depositional environment which lacks any rock-forming biogenic calcareous and siliceous components during large parts of its Quaternary history. These hemipelagic sediments are nevertheless suitable for the study of organic-walled microfossils of which the fossil remains of dinoflagellates - dinoflagellate cysts - are the most important group. Dinoflagellate cysts have become an important tool in paleoceanography of the high northern latitudes, but their potential for Quaternary biostratigraphy has remained largely unexplored. Dinoflagellate cysts are the dominant marine palynomorph group which is more continuously present in the marginal seas (e.g. Barents Sea, Bering Sea) than in the Arctic Ocean itself throughout the Quaternary. Most species have long stratigraphic ranges, are temporary absent and show abundance variations on glacial-interglacial timescales. Of the more than 30 taxa recorded, only Habibacysta tectata and Filisphaera filifera became extinct in the Pleistocene. The highest persistent occurrence of H. tectata at ca. 2.0 Ma and the top of F. filifera acme at ca. 1.8 Ma can be used for supra-regional stratigraphic correlation between the Arctic Ocean and adjacent basins. These events corroborate a slow sedimentation rate model for the Quaternary section on the central Lomonosov Ridge, but a combination of different methods will have to be applied to provide a detailed chronostratigraphy. The occurrence of cysts of phototrophic dinoflagellates in certain stratigraphic intervals on Lomonosov Ridge supports published evidence of episodic opening of the multiyear Arctic sea ice cover during the Quaternary probably related to a stronger inflow of Atlantic water. This contradicts the hypothesis of a permanently ice covered central Arctic Ocean in the Quaternary.

  4. Oil recovery by alkaline waterflooding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, C.E. Jr.; Williams, R.E.; Kolodzie, P.A.

    1974-01-01

    Flooding of oil containing organic acids with alkaline water under favorable conditions can result in recovery of around 50% of the residual oil left in a watered-out model. A high recovery efficiency results from the formation of a bank of viscous water-in-oil emulsion as surface active agents (soaps) are created by reactions of base in the water with the organic acids in the oil. The type and amount of organic acids in the oil, the pH and salt content of the water, and the amount of fines in the porous medium are the primary factors which determine the amount ofmore » additional oil recovered by this method. Interaction of alkaline water with reservoir rock largely determines the amount of chemical needed to flood a reservoir. Laboratory investigations using synthetic oils and crude oils show the importance of oil-water and liquid-solid interfacial properties to the results of an alkaline waterflood. A small field test demonstrated that emulsion banks can be formed in the reservoir and that chemical costs can be reasonable in selected reservoirs. Although studies have provided many qualitative guide lines for evaluating the feasibility of alkaline waterflooding, the economic attractiveness of the process must be considered on an individual reservoir.« less

  5. Community ecology in a changing environment: Perspectives from the Quaternary

    NASA Astrophysics Data System (ADS)

    Jackson, Stephen T.; Blois, Jessica L.

    2015-04-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  6. Community ecology in a changing environment: Perspectives from the Quaternary.

    PubMed

    Jackson, Stephen T; Blois, Jessica L

    2015-04-21

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  7. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

    PubMed

    Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A

    2018-06-01

    Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.

  8. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles wasmore » confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.« less

  9. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans*♦

    PubMed Central

    Chun, Haarin; Sharma, Anuj Kumar; Lee, Jaekwon; Chan, Jefferson; Jia, Shang; Kim, Byung-Eun

    2017-01-01

    Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans. Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways. PMID:27881675

  10. Compression behavior of quaternary and higher order solid-solution L1(2) trialuminides

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Brown, S. A.

    1992-01-01

    Results from preliminary studies undertaken to evaluate the existence of single-phase L1(2) solid solutions between pairs of ternary L1(2) trialuminides are presented. Two-kilogram ingots of selected quaternary compositions were cast, homogenized and forged into pancakes; compression specimens were machined from the forgings and tested as a function of temperature. The results are compared against existing data for the ternary alloys. The ternary L1(2) trialuminides Al66Ti25Mn9, Al67Ti25Cr8, and Al22Ti8Fe3 were found to exhibit continuous solubility in one another. The quaternary Cr-Mn composition does not indicate any strength advantage over its ternary counterparts. The continuous replacement of Mn with Fe enhances the strength of the quaternary compound over the ternary Al66Ti25 Mn9.

  11. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  12. On copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    The action of hydrogen superoxide on copper salts in alcoholic solutions is studied. The action of hydrogen peroxide on copper hydroxide in alcoholic suspensions, and the action of ethereal hydrogen peroxide on copper hydroxide are discussed. It is concluded that using the procedure proposed excludes almost entirely the harmful effect of hydrolysis.

  13. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    PubMed Central

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  14. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    PubMed

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  15. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that ~125,895 porphyrycopper deposits were formed during Phanerozoic time, that only~47,789 of these remain at various crustal depths, and that thesecontain ~1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, ~0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  16. Alkaline Phosphatase: MedlinePlus Lab Test Information

    MedlinePlus

    ... Test Information → Alkaline Phosphatase URL of this page: https://medlineplus.gov/labtests/alkalinephosphatase.html Alkaline Phosphatase To ... 2017 Mar 13]; [about 3 screens]. Available from: http://www.liverfoundation.org/abouttheliver/info/liverfunctiontests/ Centers for ...

  17. Polarized Infrared Reflectance Studies of Quaternary In0.04Al0.06Ga0.90N

    NASA Astrophysics Data System (ADS)

    Bakhori, S. K. Mohd; Lee, S. C.; Ahmad, M. A.; Ng, S. S.; Hassan, H. Abu

    2010-07-01

    Group III-nitride has re-gained considerable interest recently as wide direct band gap semiconductor materials for opto-electronic and high power devices. The quaternary InAlGaN have great flexibility in tailoring their band gap profile while maintaining their lattice-matching and structural integrity. In this study, we report for the first time the polarized infrared (IR) reflectance studies of quaternary In0.04Al0.06Ga0.90N by using Fourier transform infrared spectroscopy of Perkin-Elmer. The quaternary In0.04Al0.06Ga0.90N epilayers was grown on sapphire by molecular beam epitaxy. The polarized IR reflectance spectra obtained at incident angle of 15° were then compared with modeling spectrum of damped harmonic oscillator. Through this study, the transverse and longitudinal optical phonon modes of quaternary In0.04Al0.06Ga0.90N epilayers were obtained.

  18. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  19. Influence of gold content on copper oxidation from silver-gold-copper alloys

    NASA Astrophysics Data System (ADS)

    Swinbourne, D. R.; Barbante, G. G.; Strahan, A.

    1996-10-01

    In the final stages of the smelting of copper anode slimes, a silver alloy, known as “doré,” is produced. Oxidation refining is used to remove copper since this element interferes with subsequent electroparting of the small amounts of gold and platinum group metals in the doré. The gold content of doré can be greatly increased by gold scrap additions and this may affect the minimum achievable copper content of doré. In this work, silver-gold-copper alloys were oxidized by injecting pure oxygen at 1100 °C in the absence of any slag cover. For the gold contents expected in practice, the equilibrium copper content of the doré did not increase significantly as the gold content increased. However, at the other extreme of composition, the equilibrium copper content was a very strong function of the silver content of the gold bullion. The activity coefficient of copper in silver-gold alloys was calculated and compared to those predicted from a ternary subregular solution model of the system Ag-Au-Cu. Satisfactory agreement was found.

  20. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    PubMed

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  1. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  2. 40 CFR 471.55 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface treated Copper 15.5 7.38 Nickel 6.66 4.48 Fluoride 720 320 Molybdenum 60.9 27.0 (n) Alkaline... monthly average mg/off-kg (pounds per million off-pounds) of refractory metals alkaline cleaned Copper 0.428 0.204 Nickel 0.184 0.124 Fluoride 19.9 8.82 Molybdenum 1.68 0.745 (o) Alkaline cleaning rinse...

  3. 40 CFR 471.55 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface treated Copper 15.5 7.38 Nickel 6.66 4.48 Fluoride 720 320 Molybdenum 60.9 27.0 (n) Alkaline... monthly average mg/off-kg (pounds per million off-pounds) of refractory metals alkaline cleaned Copper 0.428 0.204 Nickel 0.184 0.124 Fluoride 19.9 8.82 Molybdenum 1.68 0.745 (o) Alkaline cleaning rinse...

  4. 40 CFR 471.85 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Copper 0.459 0.219 Cyanide 0.072 0.029 Zinc 0.365 0.151 (j) Alkaline cleaning spent baths. Subpart H—PSNS... million off-pounds) of zinc alkaline cleaned Chromium 0.002 0.0006 Copper 0.005 0.002 Cyanide 0.0007 0.0003 Zinc 0.004 0.002 (k) Alkaline cleaning rinse. Subpart H—PSNS Pollutant or pollutant property...

  5. 40 CFR 471.55 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface treated Copper 15.5 7.38 Nickel 6.66 4.48 Fluoride 720 320 Molybdenum 60.9 27.0 (n) Alkaline... monthly average mg/off-kg (pounds per million off-pounds) of refractory metals alkaline cleaned Copper 0.428 0.204 Nickel 0.184 0.124 Fluoride 19.9 8.82 Molybdenum 1.68 0.745 (o) Alkaline cleaning rinse...

  6. 40 CFR 471.55 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface treated Copper 15.5 7.38 Nickel 6.66 4.48 Fluoride 720 320 Molybdenum 60.9 27.0 (n) Alkaline... monthly average mg/off-kg (pounds per million off-pounds) of refractory metals alkaline cleaned Copper 0.428 0.204 Nickel 0.184 0.124 Fluoride 19.9 8.82 Molybdenum 1.68 0.745 (o) Alkaline cleaning rinse...

  7. 40 CFR 471.55 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface treated Copper 15.5 7.38 Nickel 6.66 4.48 Fluoride 720 320 Molybdenum 60.9 27.0 (n) Alkaline... monthly average mg/off-kg (pounds per million off-pounds) of refractory metals alkaline cleaned Copper 0.428 0.204 Nickel 0.184 0.124 Fluoride 19.9 8.82 Molybdenum 1.68 0.745 (o) Alkaline cleaning rinse...

  8. 40 CFR 471.85 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Copper 0.459 0.219 Cyanide 0.072 0.029 Zinc 0.365 0.151 (j) Alkaline cleaning spent baths. Subpart H—PSNS... million off-pounds) of zinc alkaline cleaned Chromium 0.002 0.0006 Copper 0.005 0.002 Cyanide 0.0007 0.0003 Zinc 0.004 0.002 (k) Alkaline cleaning rinse. Subpart H—PSNS Pollutant or pollutant property...

  9. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  10. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    PubMed

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  11. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  12. Luminescence dating of quaternary deposits in geology in Brazil.

    PubMed

    Tatumi, Sonia Hatsue; Gozzi, Giuliano; Yee, Márcio; de Oliveira, Victor Inácio; Sallun, Alethéa Ernandes Martins; Suguio, Kenitiro

    2006-01-01

    In the present work, systematic dating by luminescence methods has been done on 50 Quaternary geological samples within the study area of São Paulo State, Brazil. Bleaching experiments showed that residual TL intensity of 375 degrees C peak, of the quartz, was obtained after 10 h of sunlight exposition. Intensities decays of the 325 and 375 degrees C TL peaks can be fitted using second order exponential equation. Paleodose values were evaluated using regeneration methods with multiple aliquots. Samples dated indicate preliminary ages varying from 9 +/- 1 to 935 +/- 130 ka for colluvio-elluvial deposits, and from 17 +/- 2 to 215 +/- 30 ka for alluvial deposits of the study area. They cover four peneplained surfaces shaped during the Quaternary: I (1000-400 ka), II (400-120 ka), III (120-10 ka) and IV (10 ka until today), in decreasing order.

  13. Late Quaternary transgressive large dunes on the sediment-starved Adriatic shelf

    USGS Publications Warehouse

    Correggiari, A.; Field, M.E.; Trincardi, F.

    1996-01-01

    The Adriatic epicontinental basin is a low-gradient shelf where the late-Quaternary transgressive systems tract (TST) is composed of thin parasequences of backbarrier, shoreface and offshore deposits. The facies and internal architecture of the late-Quaternary TST in the Adriatic epicontinental basin changed consistently from early transgression to late transgression reflecting: (1) fluctuations in the balance between sediment supply and accommodation increase, and (2) a progressive intensification of the oceanographic regime, driven by the transgressive widening of the basin to as much as seven times its lowstand extent. One of the consequences of this trend is that high-energy marine bedforms such as sand ridges and sand waves characterize only areas that were flooded close to the end of the late-Quaternary sea-level rise, when the wind fetch was maximum and bigger waves and stronger storm currents could form. We studied the morphology, sediment composition and sequence-stratigraphical setting of a field of asymmetric bedforms (typically 3 m high and 600 m in wavelength) in 20-24 m water depth offshore the Venice Lagoon in the sediment-starved North Adriatic shelf. The sand that forms these large dunes derived from a drowned transgressive coastal deposit reworked by marine processes. Early cementation took place over most of the dune crests limiting their activity and preventing their destruction. Both the formation and deactivation of this field of sand dunes occurred over a short time interval close to the turn-around point that separates the late-Quaternary sea-level rise and the following highstand and reflect rapid changes in the oceanographic regime of the basin.

  14. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  15. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  16. Multiphase separation of copper nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Lan, Pui Ching; Olson, Tammy

    Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  17. Multiphase separation of copper nanowires

    DOE PAGES

    Qian, Fang; Lan, Pui Ching; Olson, Tammy; ...

    2016-09-01

    Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  18. Pollen preservation and Quaternary environmental history in the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcourt, P.A.; Delcourt, H.R.

    Reconstructions of Quaternary environmental history based upon modern pollen/vegetation/climate calibrations are more tenable if the factors responsible for variation in pollen assemblages are evaluated. Examination of the state of preservation of Quaternary palynomorphs provides quantitative data concerning the degree of information loss due to alteration of pollen assemblages by syndepositional and post-depositional deterioration. The percentage, concentration, and influx values for total indeterminable pollen are useful criteria in providing an objective and quantitative basis for evaluating the comparability of pollen spectra within and between sites. Supporting data concerning sediment particle-size distribution, organic matter content, and concentration, influx, and taxonomic composition ofmore » both determinable pollen and plant macrofossils aid in reconstructing past depositional environments. The potential is high for deterioration of pollen in sediments from the southeastern United States, although considerable variation is found in both kind and degree of deterioration between lacustrine and alluvial sites of different ages and in different latitudes. Modern analogs are a basis for late Quaternary environmental reconstructions when pollen deterioration has not significantly biased the information content of fossil pollen assemblages.« less

  19. Quaternary of Himalaya

    NASA Astrophysics Data System (ADS)

    Srivastava, Pradeep; Singh, Vimal

    2017-05-01

    Tectonically active Himalayan mountains evolves via feedbacks from deep earth and surface processes; the complex interaction of various processes results into the landscape which is dynamic both at longer and shorter time scales. The extreme hydrological events that possibly ride over a long term climate cycle bring the changes in the landscape that impact human societies more closely. These events in the Himalaya frequently cause huge damage to economy and human lives. The geologist community under the umbrella of Himalaya-Karakorum-Tibet (HKT) workshop in its 30th edition convened a special session and deliberated on the subject. This special issue "Quaternary of Himalaya" is an outcome of papers presented and discussion held during this session; it consists of 18 papers in three sub-themes (i) Extreme Events in Himalaya (ii) Paleoglaciation in Himalaya and (iii) Expressions of climate and neotectonics in Himalaya.

  20. Community ecology in a changing environment: Perspectives from the Quaternary

    PubMed Central

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit. PMID:25901314

  1. Community ecology in a changing environment: Perspectives from the Quaternary

    USGS Publications Warehouse

    Jackson, Stephen T.; Blois, Jessica L.

    2015-01-01

    Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.

  2. Temperature Dependence of Mineral Solubility in Water. Part 3. Alkaline and Alkaline Earth Sulfates

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-06-01

    The databases of alkaline and alkaline earth sulfate solubilities in water at various temperatures were created using experimental data from the publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperatures and represented by polynomial expressions.

  3. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    NASA Astrophysics Data System (ADS)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  4. The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Dominique Derome

    2014-01-01

    This paper characterizes the corrosion rate of embedded fasteners as a function of wood moisture content using gravimetric and electrochemical measurements. The results indicated that the corrosion rate increased with moisture content before reaching a plateau. The phases present in the corrosion products, as analyzed using X-ray diffraction, are generally consistent...

  5. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  6. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  7. Versatile methods for synthesizing organic acid salts of quaternary berberine-type alkaloids as anti-ulcerative colitis agents.

    PubMed

    Zhang, Zhi-Hui; Li, Jing; Zhang, Hai-Jing; Deng, An-Jun; Wu, Lian-Qiu; Li, Zhi-Hong; Song, Hong-Rui; Wang, Wen-Jie; Qin, Hai-Lin

    2016-06-01

    Two versatile methods to synthesize kinds of organic acid salts of quaternary berberine-type alkaloids were investigated in order to determine which is more efficient to improve the liposolubility of the target compounds and to explore the efficacy of the target compounds as anti-ulcerative colitis (UC) agents. Overall evaluation according to the reaction results and yields of the final products indicated that the synthetic method using tertiary (±)-8-acylmethyldihydroberberine-type alkaloids as key intermediates is superior to that of using tertiary dihydroberberine-type alkaloids as intermediates. Ten target compounds were synthesized using quaternary berberine chloride and quaternary coptisine chloride as starting materials, respectively, and the anti-UC activity of some target compounds was evaluated in an in vitro x-box-binding protein 1 (XBP1) transcriptional activity assay using dual luciferase reporter detection. At 10 μM, the tested compounds were found to activate the transcription of XBP1 target at almost the same level as that of quaternary coptisine chloride. The synthesized target compounds were also found to share higher liposolubility than the inorganic acid salts of quaternary berberine-type alkaloid.

  8. Map showing thickness of saturated Quaternary deposits, Sugar House quadrangle, Salt Lake County, Utah, February 1972

    USGS Publications Warehouse

    Mower, R.W.

    1973-01-01

    Saturated Quaternary deposits in the Sugar Horse quadrangle supply significant quantities of water to wells from which water is withdrawn for domestic, municipal, industrial, and irrigation uses. The deposits consist of clay, silt, sand, and gravel; individual beds range from a few inches to several tens of feet thick. The principal aquifer, which is almost completely within the Quaternary deposits, supplied about 4 percent, or 9,000 acre-feet, of the municipal and industrial water used annually in Salt Lake County during 1964-68.As a general rule, more water is stored and more water will be yielded to a well where aquifers are thicker. This map can be used as a general guide to those areas where greatest amounts of water are stored in the aquifer, and where yields to wells may be greater. Local variations in the ability of saturated deposits to transmit water can alter the general relationship between aquifer thickness and yield of wells.The thickness of saturated Quaternary deposits within the area of the Sugar Horse quadrangle ranges from zero to about 650 feet, as shown on the map. The thickest section of these deposits is near the southwestern corner of the quadrangle, and the thinnest section is along the mountain front adjacent to the approximate eastern limit of saturated Quaternary deposits.The thickness of saturated Quaternary deposits shown on this map is based on drillers’ logs for 55 deep wells (which show the thickness of the Quaternary deposits) and on water-level measurements made in February 1972 in wells in unconfined shallow aquifers.Reports in the following list of selected references contain other information about the saturated Quaternary deposits in this and adjacent parts of Jordan Valley, Utah. The basic-data reports and releases contain well logs, water-level measurements, and other types of basic ground-water data. The interpretive repots contain discussions of the occurrence of ground water, tests to determine hydraulic properties of

  9. A major change in precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary

    NASA Astrophysics Data System (ADS)

    Peng, Wenbin; Nie, Junsheng; Wang, Zhao; Qiang, Xiaoke; Garzanti, Eduardo; Pfaff, Katharina; Song, Yougui; Stevens, Thomas

    2018-04-01

    Spatiotemporal variations in East Asian Monsoon (EAM) precipitation during the Quaternary have been intensively studied. However, spatial variations in pre-Quaternary EAM precipitation remain largely uninvestigated, preventing a clear understanding of monsoon dynamics during a warmer climatic period. Here we compare the spatial differences in heavy mineral assemblages between Quaternary loess and pre-Quaternary Red Clay on the Chinese Loess Plateau (CLP) to analyze spatial patterns in weathering. Prior studies have revealed that unstable hornblende is the dominant (∼50%) heavy mineral in Chinese loess deposited over the past 500 ka, whereas hornblende content decreases to <10% in strata older than ∼1 Ma in the central CLP because of diagenesis. In the present study we found that hornblende is the dominant heavy mineral in 2-2.7 Ma loess on the northeastern CLP (at Jiaxian), which today receives little precipitation. Conversely, hornblende content in the upper Miocene-Pliocene Red Clay at Jiaxian is <10%, as in the central CLP. The early Quaternary abundance of hornblende at Jiaxian indicates that the current northwestward-decreasing precipitation pattern and consequent dry climate at Jiaxian must have been initiated since ∼2.7 Ma, preventing hornblende dissolution to amounts <10% as observed in the central CLP. By contrast, the 7 Ma and 3 Ma Jiaxian Red Clay hornblende content is significantly less than that of the Xifeng samples, despite the fact that today Xifeng receives more precipitation than Jiaxian, with expected enhanced hornblende weathering. This suggests that the northeastern CLP received more precipitation during the Late Miocene-Pliocene than at Xifeng, indicating that the precipitation gradient on the CLP was more east-west during the Late Miocene-Pliocene rather than northwest-southeast as it was in the Quaternary. A comparison of magnetic susceptibility records for these sections confirms this inference. We attribute this major change in

  10. Efficiency improvement of green light-emitting diodes by employing all-quaternary active region and electron-blocking layer

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad; Saba, Kiran; Han, Dong-Pyo; Muhammad, Nazeer

    2018-01-01

    High efficiency of green GaAlInN-based light-emitting diode (LED) has been proposed with peak emission wavelength of ∼510 nm. By introducing quaternary quantum well (QW) along with the quaternary barrier (QB) and quaternary electron blocking layer (EBL) in a single structure, an efficiency droop reduction of up to 29% has been achieved in comparison to the conventional GaN-based LED. The proposed structure has significantly reduced electrostatic field in the active region. As a result, carrier leakage has been minimized and spontaneous emission rate has been doubled.

  11. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    PubMed

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  12. Evaluation of Sintering Behaviors of Saprolitic Nickeliferous Laterite Based on Quaternary Basicity

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Li, Guanghui; Rao, Mingjun; Zhang, Yuanbo; Peng, Zhiwei; Zhi, Qian; Jiang, Tao

    2015-09-01

    The sintering behaviors of saprolitic nickeliferous laterite with various quaternary basicities [(CaO + MgO)/(SiO2 + Al2O3) mass ratio] in a reductive atmosphere are investigated by simulative sintering and validated by sintering pot tests. The simulative sintering results show that the generation of diopside (CaMgSi2O6) with low melting point is the key reason for the decrease in characteristic fusion temperatures when the quaternary basicity increases from 0.5 to 0.8-1.0. Continuous increase of basicity leads to transformation of diopside (CaMgSi2O6) into akermanite (Ca2MgSi2O7), which adversely increases the characteristic fusion temperatures. These findings are confirmed by the sinter pot tests, which demonstrate that the sintering indexes including vertical sintering velocity (VSV), yield ( Y), and productivity ( P), can be improved by optimizing quaternary basicity. At basicity of 1.0, the VSV, Y, P, and ISO tumbling index reach 49.2 mm/min, 80.5%, 1.0 t/(h m2), and 66.5%, respectively.

  13. Map and database of Quaternary faults in Venezuela and its offshore regions

    USGS Publications Warehouse

    Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.

    2000-01-01

    As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.

  14. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    USGS Publications Warehouse

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  15. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  16. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  17. 40 CFR 471.85 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Chromium 0.133 0.054 Copper 0.459 0.219 Cyanide 0.072 0.029 Zinc 0.365 0.151 (j) Alkaline cleaning spent... mg/off-kg (pounds per million off-pounds) of zinc alkaline cleaned Chromium 0.002 0.0006 Copper 0.005 0.002 Cyanide 0.0007 0.0003 Zinc 0.004 0.002 (k) Alkaline cleaning rinse. Subpart H—PSNS Pollutant...

  18. 40 CFR 471.85 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Chromium 0.133 0.054 Copper 0.459 0.219 Cyanide 0.072 0.029 Zinc 0.365 0.151 (j) Alkaline cleaning spent... mg/off-kg (pounds per million off-pounds) of zinc alkaline cleaned Chromium 0.002 0.0006 Copper 0.005 0.002 Cyanide 0.0007 0.0003 Zinc 0.004 0.002 (k) Alkaline cleaning rinse. Subpart H—PSNS Pollutant...

  19. 40 CFR 471.85 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Chromium 0.133 0.054 Copper 0.459 0.219 Cyanide 0.072 0.029 Zinc 0.365 0.151 (j) Alkaline cleaning spent... mg/off-kg (pounds per million off-pounds) of zinc alkaline cleaned Chromium 0.002 0.0006 Copper 0.005 0.002 Cyanide 0.0007 0.0003 Zinc 0.004 0.002 (k) Alkaline cleaning rinse. Subpart H—PSNS Pollutant...

  20. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  1. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  2. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    PubMed

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  3. The copper rush of the nineties.

    PubMed

    Solioz, Marc

    2016-09-01

    The nineties witnessed the discovery of the copper ATPases, enzymes which transport copper across the cytoplasmic membranes of bacteria and eukaryotes. In the same decade, several other key components of copper homeostasis have also been discovered, like copper chaperones and plasma membrane copper transporters. This has finally led to a molecular understanding of two inherited human diseases related to copper: Menkes disease, manifested by systemic copper deficiency, and Wilson disease, caused by defective secretion of excess copper. A historic perspective and untold stories of the events leading up to these discoveries are presented here.

  4. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  5. The copper metallome in eukaryotic cells.

    PubMed

    Vest, Katherine E; Hashemi, Hayaa F; Cobine, Paul A

    2013-01-01

    Copper is an element that is both essential and toxic. It is a required micronutrient for energy production in aerobic eukaryotes, from unicellular yeast to plants and mammals. Copper is also required for the acquisition and systemic distribution of the essential metal iron, and so copper deficiency results in iron deficiency. Copper enzymes have been identified that explain the wide variety of symptoms suffered by copper deficient subjects. The cloning of the genes encoding transport proteins responsible for copper-related Menkes and Wilson diseases inspired and coincided with the discovery of copper chaperones that stimulated the copper homeostasis field. Copper continues to be implicated in new array of proteins, notably those involved in a variety of neurodegenerative diseases. Here we will describe the cadre of important historical copper proteins and survey the major metallochaperones and transporters responsible for mobilization and sequestration of copper in yeast, mammals and plants.

  6. EVALUATING ACQ AS AN ALTERNATIVE WOOD PRESERVATIVE SYSTEM

    EPA Science Inventory

    This evaluation addresses the waste reduction/pollution prevention and economic issues involved in replacing chromated copper arsenate (CCA) with ammoniacal copper/quaternary ammonium (ACQ) as a way to preserve wood. The most obvious pollution prevention benefit gained by using A...

  7. Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.

    2017-11-01

    Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.

  8. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  9. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  10. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  11. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  12. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  13. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  14. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-ion resistant bacteria

    PubMed Central

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2013-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951

  15. Tertiary and Quaternary tectonic faulting in southernmost Illinois

    USGS Publications Warehouse

    Nelson, W.J.; Denny, F.B.; Devera, J.A.; Follmer, L.R.; Masters, J.M.

    1997-01-01

    Tertiary and/or Quaternary tectonic faulting is documented in three areas of southernmost Illinois: the Fluorspar Area Fault Complex (FAFC) in Pope and Massac Counties, the Ste. Genevieve Fault Zone (SGFZ) in Alexander and Union Counties, and the Commerce Fault Zone (CFZ) in Alexander County. In the FAFC, faults that strike NE and NNE displace Mounds Gravel (late Miocene to early Pleistocene) and, locally, the Metropolis terrace gravel (Pleistocene; pre-Woodfordian). No Woodfordian or younger deposits are deformed. Faults typically outline narrow, linear grabens that formed under tension with a component of strike slip. North-south to NW-trending vertical faults near the southeast end of the SGFZ displace Eocene sediments. Again, faults outline narrow grabens and show indications of strike slip. Deformed Quaternary sediments have not been observed. The CFZ, which trends northeast, displaces Mounds Gravel in Illinois and units as young as Peoria Silt (Woodfordian) in Missouri. Quaternary movement has been interpreted as right-lateral strike-slip. The CFZ coincides with a subtle gravity and magnetic lineament and seems to reflect a major feature in the basement. Surface expression in Illinois is subtle, but mafic and ultramafic intrusions, hydrothermal alteration and small faults align with the Commerce geophysical lineament. Earthquake foci in Missouri and Illinois lie on or close to the CFZ; some focal mechanisms fit the fault trend. Among these structures, only the CFZ exhibits slip that conforms to the current stress field (principal compressive stress axis E-W to ENE-WSW). Possibly, the stress field changed during Neogene time. Alternatively, high fluid pressures or local stress concentrations may have induced slip on less favorably oriented fractures. Tighter constraints are needed on timing, magnitude, and direction of Neogene displacement. ?? 1997 Elsevier Science B.V.

  16. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  17. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  18. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  19. Curare-Like Activity of Mono-Quaternary Salts Containing Adamantyl Residue at the Nitrogen Atom

    DTIC Science & Technology

    As shown in previous works, mono-quaternary salts of alkamine esters of benzoic and cinnamic acids types and exhibit a pronounced curare like action...A series of methiodides of alkamine esters of benzoic and cinnamic acids were synthesized, containing at the quaternary nitrogen atom a 1-adamantyl...adamantyl causes a change of the substance’s mechanism of action, this applying both to the benzoic acid derivatives and to the cinnamic acid derivatives

  20. Mineral resources of the Little Black Peak and Carrizozo Lava Flow wilderness study areas, Lincoln County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeser, D.B.; Senterfit, M.K.; Zelten, J.E.

    1989-01-01

    This book discusses the Little Black Peak and Carrizozo Lava Flow Wilderness Study Areas in east-central New Mexico (24,249 acres) which are underlain by Quaternary basaltic lava flows and upper Paleozoic to Mesozoic sedimentary rocks. The only identified resource is lava from the basalt flows, which is used for road metal, construction materials, and decorative stone. The basalt is classed as an inferred subeconomic resource. Both areas have low resource potential for sediment-hosted uranium and copper oil, gas, coal, and geothermal energy and moderate potential for gypsum and salt. The Little Black Peak area also has low potential for uraniummore » associated with Tertiary alkaline intrusive rocks. Two aeromagnetic anomalies occur beneath the northern part of the Carrizozo lava flow area and the southern part of the Little Black Peak area; the resource potential for these rocks is unknown.« less

  1. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1

    PubMed Central

    Wang, Lin; Ge, Yan

    2016-01-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267

  2. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    PubMed

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  3. The influence of climate on species distribution over time and space during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Carotenuto, F.; Di Febbraro, M.; Melchionna, M.; Castiglione, S.; Saggese, F.; Serio, C.; Mondanaro, A.; Passaro, F.; Loy, A.; Raia, P.

    2016-10-01

    Understanding the effect of climate on the composition of communities and its change over time and space is one of the major aims in ecology and paleoecology. Herein, we tackled on this issue by studying late Quaternary large mammal paleocommunities of Eurasia. The late Quaternary was a period of strong environmental instability, especially characterized by the occurrence of the last glacial maximum (LGM). We used community phylogenetics and joint species distribution models in order to understand the factors determining paleocommunity composition in the late Quaternary. Our results support the existence of strong climatic selection operating on the LGM fauna, both through the disappearance of warm-adapted species such as Elephas antiquus, Hippopothamus amphibious, and Stephanorhinus hemitoechus, and by setting the stage for the existence of a community characterized by cold-adapted large mammals. Patterns of abundance in the fossil record, co-occurrence between species pairs, and the extent of climatic forcing on faunal composition, differ between paleocommunities, but not between extinct and extant species, which is consistent with the idea that climate change, rather than the presence of humans, exerted a major effect on the survival of the late Quaternary megafauna.

  4. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Treesearch

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  5. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).

    PubMed

    Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L

    2016-11-01

    An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    PubMed

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  7. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  8. Ancient dna from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research

    NASA Astrophysics Data System (ADS)

    Yang, Hong

    Until recently, recovery and analysis of genetic information encoded in ancient DNA sequences from Pleistocene fossils were impossible. Recent advances in molecular biology offered technical tools to obtain ancient DNA sequences from well-preserved Quaternary fossils and opened the possibilities to directly study genetic changes in fossil species to address various biological and paleontological questions. Ancient DNA studies involving Pleistocene fossil material and ancient DNA degradation and preservation in Quaternary deposits are reviewed. The molecular technology applied to isolate, amplify, and sequence ancient DNA is also presented. Authentication of ancient DNA sequences and technical problems associated with modern and ancient DNA contamination are discussed. As illustrated in recent studies on ancient DNA from proboscideans, it is apparent that fossil DNA sequence data can shed light on many aspects of Quaternary research such as systematics and phylogeny. conservation biology, evolutionary theory, molecular taphonomy, and forensic sciences. Improvement of molecular techniques and a better understanding of DNA degradation during fossilization are likely to build on current strengths and to overcome existing problems, making fossil DNA data a unique source of information for Quaternary scientists.

  9. Copper-complexing ligands produced by an intact estuarine microbial community in response to copper stress.

    NASA Astrophysics Data System (ADS)

    Bingham, J.; Dryden, C.; Gordon, A.

    2002-12-01

    Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.

  10. Impact of copper ligand mutations on a cupredoxin with a green copper center.

    PubMed

    Roger, Magali; Sciara, Giuliano; Biaso, Frédéric; Lojou, Elisabeth; Wang, Xie; Bauzan, Marielle; Giudici-Orticoni, Marie-Thérèse; Vila, Alejandro J; Ilbert, Marianne

    2017-05-01

    Mononuclear cupredoxins contain a type 1 copper center with a trigonal or tetragonal geometry usually maintained by four ligands, a cystein, two histidines and a methionine. The recent discovery of new members of this family with unusual properties demonstrates, however, the versatility of this class of proteins. Changes in their ligand set lead to drastic variation in their metal site geometry and in the resulting spectroscopic and redox features. In our work, we report the identification of the copper ligands in the recently discovered cupredoxin AcoP. We show that even though AcoP possesses a classical copper ligand set, it has a highly perturbed copper center. In depth studies of mutant's properties suggest a high degree of constraint existing in the copper center of the wild type protein and even the addition of exogenous ligands does not lead to the reconstitution of the initial copper center. Not only the chemical nature of the axial ligand but also constraints brought by its covalent binding to the protein backbone might be critical to maintain a green copper site with high redox potential. This work illustrates the importance of experimentally dissecting the molecular diversity of cupredoxins to determine the molecular determinants responsible for their copper center geometry and redox potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Palladium-catalyzed asymmetric quaternary stereocenter formation.

    PubMed

    Gottumukkala, Aditya L; Matcha, Kiran; Lutz, Martin; de Vries, Johannes G; Minnaard, Adriaan J

    2012-05-29

    An efficient palladium catalyst is presented for the formation of benzylic quaternary stereocenters by conjugate addition of arylboronic acids to a variety of β,β-disubstituted carbocyclic, heterocyclic, and acyclic enones. The catalyst is readily prepared from PdCl(2), PhBOX, and AgSbF(6), and provides products in up to 99% enantiomeric excess, with good yields. Based on this strategy, (-)-α-cuparenone has been prepared in only two steps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  13. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  14. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  15. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  16. Low Sensitivity of Listeria monocytogenes to Quaternary Ammonium Compounds

    PubMed Central

    Mereghetti, L.; Quentin, R.; Marquet-Van Der Mee, N.; Audurier, A.

    2000-01-01

    Ninety-seven epidemiologically unrelated strains of Listeria monocytogenes were investigated for their sensitivities to quaternary ammonium compounds (benzalkonium chloride and cetrimide). The MICs for seven serogroup 1/2 strains were high. Three came from the environment and four came from food; none were isolated from human or animal samples. All 97 strains carried the mdrL gene, which encodes a multidrug efflux pump, and the orfA gene, a putative transcriptional repressor of mdrL. The absence of plasmids in four of the seven resistant strains and the conservation of resistance after plasmid curing suggested that the resistance genes are not plasmid borne. Moreover, PCR amplification and Southern blot hybridization experiments failed to find genes phylogenetically related to the qacA and smr genes, encoding multidrug efflux systems previously described for the genus Staphylococcus. The high association between nontypeability by phages and the loss of sensitivity to quaternary ammonium compounds are suggestive of an intrinsic resistance due to modifications in the cell wall. PMID:11055967

  17. The Heidelberg Basin Drilling Project - Sedimentology and Stratigraphy of the Quaternary succession

    NASA Astrophysics Data System (ADS)

    Ellwanger, Dietrich; Gabriel, Gerald; Hahne, Jürgen; Hoselmann, Christian; Menzies, John; Simon, Theo; Weidenfeller, Michael; Wielandt-Schuster, Ulrike

    2010-05-01

    Within the context of the Heidelberg Basin Drilling Project (Gabriel et al. 2008), a detailed sediment succession is presented here based upon deep drillings taken at Heidelberg UniNord and Mannheim Käfertal. Sediment structures, and micromorphological and pollen analyses were conducted and used to reconsider some of the climate transitions within the lower Pleistocene. A new and novel scenario is postulated regarding the preservation of Quaternary sediment packages within the Cenozoic Graben environment of the Heidelberg basin. The palynological evidence comprises the periods of warm climate of the Holsteinian (mainly Abies (fir), some Fagus (beech), Pterocarya & Azolla); the Cromerian (Pinus-Picea-QM (pine-spruce-QM)); the Bavelian (Abies, Tsuga (hemlock fir), QM & phases of increased NAP including Pinus); the Waalian (Abies, Tsuga, QM); and the Tiglian (Fagus & early Pleistocene taxa especially Sciadopytis, downward increasing Tertiary taxa). The sediment package was studied both macroscopically and microscopically. Both techniques provide evidence of fluvial, lacustrine and mass movement sedimentary processes. Some include evidence of periglacial processes (silt droplets within fine grained sands indicative of frozen ground conditions). The periglacial structures are often, not always, accompanied by pollen spectra dominated by pine and NAP. E.g. the Tiglian part of the succession shows periglacial sediment structures at its base and top but not in its middle sections. I.e. it appears not as a series of warm and cold phases but rather as a constant warm period with warm-cold-alternations at its bottom and top. All results illustrate sediment preservation in the Heidelberg basin almost throughout the Quaternary. This may be due to tectonic subsidence, but also to compaction by sediment loading of underlying fine sediments (Oligocene to Quaternary) leading to incomplete but virtually continuous sediment preservation (Tanner et al. 2009). References Gabriel, G

  18. Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.

    2017-12-01

    This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of

  19. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    NASA Astrophysics Data System (ADS)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  20. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  1. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  2. Impaired copper and iron metabolism in blood cells and muscles of patients affected by copper deficiency myeloneuropathy.

    PubMed

    Spinazzi, Marco; Sghirlanzoni, Angelo; Salviati, Leonardo; Angelini, Corrado

    2014-12-01

    Severe copper deficiency leads in humans to a treatable multisystem disease characterized by anaemia and degeneration of spinal cord and nerves, but its mechanisms have not been investigated. We tested whether copper deficit leads to alterations in fundamental copper-dependent proteins and in iron metabolism in blood and muscles of patients affected by copper deficiency myeloneuropathy, and if these metabolic abnormalities are associated with compensatory mechanisms for copper maintenance. We evaluated the expression of critical copper enzymes, of iron-related proteins, and copper chaperones and transporters in blood and muscles from five copper-deficient patients presenting with subacute sensory ataxia, muscle paralysis, liver steatosis and variable anaemia. Severe copper deficiency was caused by chronic zinc intoxication in all of the patients, with an additional history of gastrectomy in two cases. The antioxidant enzyme SOD1 and subunit 2 of cytochrome c oxidase were significantly decreased in blood cells and in muscles of copper-deficient patients compared with controls. In muscle, the iron storage protein ferritin was dramatically reduced despite normal serum ferritin, and the expression of the haem-proteins cytochrome c and myoglobin was impaired. Muscle expression of the copper transporter CTR1 and of the copper chaperone CCS, was strikingly increased, while antioxidant protein 1 was diminished. copper-dependent enzymes with critical functions in antioxidant defences, in mitochondrial energy production, and in iron metabolism are affected in blood and muscles of patients with profound copper deficiency leading to myeloneuropathy. Homeostatic mechanisms are strongly activated to increase intracellular copper retention. © 2013 British Neuropathological Society.

  3. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity.

    PubMed

    Chen, Yuan; Tan, Wenqiang; Li, Qing; Dong, Fang; Gu, Guodong; Guo, Zhanyong

    2018-07-01

    Inulin is a kind of renewable and biodegradable carbohydrate with good water solubility and numerous physiological functions. For further utilization of inulin, chemical modification can be applied to improve its bioactivities. In this paper, five novel inulin derivatives were synthesized via chemical modification with quaternary phosphonium salt. Their antifungal activity against three kinds of plant pathogens including Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum was assessed with radial growth assay in vitro. Results revealed that all the inulin derivatives exhibited improved antifungal activity compared with inulin. Particularly, inulin modified with triphenylphosphine (TPhPAIL) exhibited the best antifungal activity with inhibitory indices of 80.0%, 78.8%, and 87.4% against Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum at 1.0mg/mL respectively. The results clearly showed that chemical modification of inulin with quaternary phosphonium salt could efficiently improve derivatives' antifungal activity. Further analysis of results indicated that the antifungal activity was influenced by alkyl chain length or electron-withdrawing ability of the grafted quaternary phosphonium salts. Longer alkyl chain lengths or the stronger electron-withdrawing groups would lead to enhanced antifungal efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Quaternary schematics for property engineering of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.

    2017-12-01

    The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.

  5. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract.

    PubMed

    DeAlba-Montero, I; Guajardo-Pacheco, Jesús; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene; Loredo-Becerra, G M; Martínez-Castañón, Gabriel-Alejandro; Ruiz, Facundo; Compeán Jasso, M E

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli , Staphylococcus aureus , and Enterococcus faecalis . These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis . Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used.

  6. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    PubMed Central

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  7. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  8. Quaternary complexes composed of plasmid DNA/protamine/fish sperm DNA/stearic acid grafted chitosan oligosaccharide micelles for gene delivery.

    PubMed

    Du, Yong-Zhong; Lu, Ping; Yuan, Hong; Zhou, Jian-Ping; Hu, Fu-Qiang

    2011-01-01

    Quaternary complexes with condensed core of plasmid DNA, protamine, fish sperm DNA and shell of stearic acid grafted chitosan oligosaccharide (CSO-SA), were prepared. The CSO-SA could self-assemble to form nano-sized micelles in aqueous solution and demonstrated excellent internalization ability of tumor cells. Dynamic light scattering (DLS) measurement and transmission electrostatic microscope (TEM) images showed that quaternary complexes had spherical shape with about 25 nm number average diameter, and the size of quaternary complexes was smaller than that of CSO-SA micelles and CSO-SA micelles/plasmid DNA binary complexes. The transfection efficiencies of quaternary complexes on HEK293 and MCF-7 cells increased with incubation time, and were significantly higher than that of CSO-SA micelles/plasmid DNA binary complexes. The optimal transfection efficiency of quaternary complexes on HEK293 and MCF-7 cells measured by flow cytometer after 96 h was 23.82% and 41.43%, respectively. Whereas, the transfection efficiency of Lipofectamine™ 2000 on HEK293 and MCF-7 cells after 96 h was 32.45% and 33.23%, respectively. The data of luciferease activity measurement showed that the optimal ratio of plasmid DNA:fish sperm DNA:protamine:CSO-SA was 1:1:5:5. The results indicated that the present quaternary complexes were potential non-viral gene delivery system. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. A novel assay to measure tertiary and quaternary amines in wastewater: An indicator for NDMA wastewater precursors.

    PubMed

    Woods-Chabane, Gwen C; Glover, Caitlin M; Marti, Erica J; Dickenson, Eric R V

    2017-07-01

    This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R 2  = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2018-01-01

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H 2 O 2 ) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H 2 O 2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa

    NASA Astrophysics Data System (ADS)

    Ridolfi, Filippo; Renzulli, Alberto

    2012-05-01

    The following article presents constraints of the stability of Mg-rich (Mg/(Mg + Fe2+) > 0.5) calcic amphibole in both calc-alkaline and alkaline magmas, testing of previous thermobarometers, and formulation of new empirical equations that take into consideration a large amount of literature data (e.g. more than one thousand amphibole compositions among experimental and natural crystals). Particular care has been taken in choosing a large number of natural amphiboles and selecting quality experimental data from literature. The final database of experimental data, composed of 61 amphiboles synthesized in the ranges of 800-1,130°C and 130-2,200 MPa, indicates that amphibole crystallization occurs in a horn-like P- T stability field limited by two increasing curves (i.e. the thermal stability and an upper limit), which should start to bend back to higher pressures. Among calcic amphiboles, magnesiohornblendes and tschermakitic pargasites are only found in equilibrium with calc-alkaline melts and crystallize at relatively shallow conditions ( P up to ~1 GPa). Kaersutite and pargasite are species almost exclusively found in alkaline igneous products, while magnesiohastingsite is equally distributed in calc-alkaline and alkaline rocks. The reliability of previous amphibole applications was checked using the selected experimental database. The results of this testing indicate that none of the previous thermobarometers can be successfully used to estimate the P, T and fO2 in a wide range of amphibole crystallization conditions. Multivariate least-square analyses of experimental amphibole compositions and physico-chemical parameters allowed us to achieve a new thermobarometric model that gives reasonably low uncertainties ( T ± 23.5°C, P ± 11.5%, H2Omelt ± 0.78wt%) for calc-alkaline and alkaline magmas in a wide range of P- T conditions (up to 1,130°C and 2,200 MPa) and ΔNNO values (±0.37 log units) up to 500 MPa. The AK-[4]Al relation in amphibole can be readily

  12. The Quaternary thrust system of the northern Alaska Range

    USGS Publications Warehouse

    Bemis, Sean P.; Carver, Gary A.; Koehler, Richard D.

    2012-01-01

    The framework of Quaternary faults in Alaska remains poorly constrained. Recent studies in the Alaska Range north of the Denali fault add significantly to the recognition of Quaternary deformation in this active orogen. Faults and folds active during the Quaternary occur over a length of ∼500 km along the northern flank of the Alaska Range, extending from Mount McKinley (Denali) eastward to the Tok River valley. These faults exist as a continuous system of active structures, but we divide the system into four regions based on east-west changes in structural style. At the western end, the Kantishna Hills have only two known faults but the highest rate of shallow crustal seismicity. The western northern foothills fold-thrust belt consists of a 50-km-wide zone of subparallel thrust and reverse faults. This broad zone of deformation narrows to the east in a transition zone where the range-bounding fault of the western northern foothills fold-thrust belt terminates and displacement occurs on thrust and/or reverse faults closer to the Denali fault. The eastern northern foothills fold-thrust belt is characterized by ∼40-km-long thrust fault segments separated across left-steps by NNE-trending left-lateral faults. Altogether, these faults accommodate much of the topographic growth of the northern flank of the Alaska Range.Recognition of this thrust fault system represents a significant concern in addition to the Denali fault for infrastructure adjacent to and transecting the Alaska Range. Although additional work is required to characterize these faults sufficiently for seismic hazard analysis, the regional extent and structural character should require the consideration of the northern Alaska Range thrust system in regional tectonic models.

  13. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    PubMed

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl 2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC 50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10 6 and 3.73×10 6 M -1 , respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  15. Aberrant expression of copper associated genes after copper accumulation in COMMD1-deficient dogs.

    PubMed

    Favier, Robert P; Spee, Bart; Fieten, Hille; van den Ingh, Ted S G A M; Schotanus, Baukje A; Brinkhof, Bas; Rothuizen, Jan; Penning, Louis C

    2015-01-01

    COMMD1-deficient dogs progressively develop copper-induced chronic hepatitis. Since high copper leads to oxidative damage, we measured copper metabolism and oxidative stress related gene products during development of the disease. Five COMMD1-deficient dogs were studied from 6 months of age over a period of five years. Every 6 months blood was analysed and liver biopsies were taken for routine histological evaluation (grading of hepatitis), rubeanic acid copper staining and quantitative copper analysis. Expression of genes involved in copper metabolism (COX17, CCS, ATOX1, MT1A, CP, ATP7A, ATP7B, ) and oxidative stress (SOD1, catalase, GPX1 ) was measured by qPCR. Due to a sudden death of two animals, the remaining three dogs were treated with d-penicillamine from 43 months of age till the end of the study. Presented data for time points 48, 54, and 60 months was descriptive only. A progressive trend from slight to marked hepatitis was observed at histology, which was clearly preceded by an increase in semi-quantitative copper levels starting at 12 months until 42 months of age. During the progression of hepatitis most gene products measured were transiently increased. Most prominent was the rapid increase in the copper binding gene product MT1A mRNA levels. This was followed by a transient increase in ATP7A and ATP7B mRNA levels. In the sequence of events, copper accumulation induced progressive hepatitis followed by a transient increase in gene products associated with intracellular copper trafficking and temporal activation of anti-oxidative stress mechanisms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    PubMed

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Quaternary isoquinoline alkaloids from Xylopia parviflora.

    PubMed

    Nishiyama, Yumi; Moriyasu, Masataka; Ichimaru, Momoyo; Iwasa, Kinuko; Kato, Atsushi; Mathenge, Simon G; Chalo Mutiso, Patrick B; Juma, Francis D

    2004-04-01

    From the quaternary alkaloidal fraction of the bark and the root of Xylopia parviflora (Annonaceae), four isoquinoline alkaloids, xylopinidine, dehydrocoreximine, N, N-dimethylanomurine and N-methylphoebine were isolated along with the known compounds, pycnarrhine, lotusine, 6,7-dimethoxy-2-methyl-isoquinolinium salt, 1,2-dehydroreticuline, (-)-phellodendrine, (+)-tembetarine, (-)-litcubine, (+)-magnoflorine, tetradehydroreticuline, (-)-oblongine, (+)-menisperine, (+)-N-methylcorydine, stepharanine, (+)-xanthoplanine, dehydrodiscretine, jatrorrhizine and palmatine. 3,4-Dihydro-6,7-dimethoxy-2-methyl-isoquinolinium and N-methylpurpuerine were isolated as natural products for the first time. Their structures were determined on the basis of spectroscopic evidence.

  18. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil.

  19. Copper in diet

    MedlinePlus

    Diet - copper ... yeast are also sources of copper in the diet. ... day 9 to 13 years: 700 mcg/day Adolescents and adults Males and ... eat a balanced diet that contains a variety of foods from the ...

  20. Discomfort from an Alkaline Formulation Delivered Subcutaneously in Humans

    PubMed Central

    Ward, W. Kenneth; Castle, Jessica R.; Branigan, Deborah L.; Massoud, Ryan G.; Youssef, Joseph El

    2013-01-01

    Background and Objective There is a paucity of data regarding tolerability of alkaline drugs administered subcutaneously. The aim of this study was to assess the tolerability of alkaline preparations of human albumin delivered subcutaneously to healthy humans. Methods We compared the tolerability of neutral versus alkaline (pH 10) formulations of human albumin in ten volunteers. With an intent to minimize the time required to reach physiological pH after injection, the alkaline formulation was buffered with a low concentration of glycine (20 mmol/L). Each formulation was given at two rates: over 5 seconds and over 60 seconds. A six-point scale was used to assess discomfort. Results For slow injections, there was a significant difference between pH 7.4 and pH 10 injections (0.4 ± 0.2 vs 1.1 ± 0.2, mean ± SEM; p = 0.025), though the degree of discomfort at pH 10 injections was only ‘mild or slight’. For fast injections, the difference between neutral and alkaline formulations was of borderline significance. Inflammation and oedema, as judged by a physician, were very minimal for all injections, irrespective of pH. Conclusion For subcutaneous drug administration (especially when delivered slowly), there was more discomfort associated with alkaline versus neutral formulations of albumin, though the discomfort was mild. This study suggests that there is little discomfort and inflammation resulting from subcutaneous administration of protein drugs formulated with weak buffers at alkaline pH. PMID:22568666

  1. Safety of an alkalinizing buffer designed for inhaled medications in humans.

    PubMed

    Davis, Michael D; Walsh, Brian K; Dwyer, Scott T; Combs, Casey; Vehse, Nico; Paget-Brown, Alix; Pajewski, Thomas; Hunt, John F

    2013-07-01

    Airway acidification plays a role in disorders of the pulmonary tract. We hypothesized that the inhalation of alkalinized glycine buffer would measurably alkalinize the airways without compromising lung function or causing adverse events. We evaluated the safety of an inhaled alkaline glycine buffer in both healthy subjects and in subjects with stable obstructive airway disease. This work includes 2 open-label safety studies. The healthy controls were part of a phase 1 safety study of multiple inhalations of low-dose alkaline glycine buffer; nebulized saline was used as a comparator in 8 of the healthy controls. Subsequently, a phase 2 study in subjects with stable obstructive airway disease was completed using a single nebulized higher-dose strategy of the alkaline inhalation. We studied 20 non-smoking adults (10 healthy controls and 10 subjects with obstructive airway disease), both at baseline and after inhalation of alkaline buffer. We used spirometry and vital signs as markers of clinical safety. We used changes in fraction of exhaled nitric oxide (NO) and exhaled breath condensate (EBC) pH as surrogate markers of airway pH modification. Alkaline glycine inhalation was tolerated by all subjects in both studies, with no adverse effects on spirometric parameters or vital signs. Airway alkalinization was confirmed by a median increase in EBC pH of 0.235 pH units (IQR 0.56-0.03, P = .03) in subjects after inhalation of the higher-dose alkaline buffer (2.5 mL of 100 mmol/L glycine). Alkalinization of airway lining fluid is accomplished with inhalation of alkaline glycine buffer and causes no adverse effects on pulmonary function or vital signs.

  2. Recharge sources and geochemical evolution of groundwater in the Quaternary aquifer at Atfih area, the northeastern Nile Valley, Egypt

    NASA Astrophysics Data System (ADS)

    El-Sayed, Salah Abdelwahab; Morsy, Samah M.; Zakaria, Khalid M.

    2018-06-01

    This study addresses the topic of recharge sources and evolution of groundwater in the Atfih area situated in the northeastern part of the Nile Valley, Egypt. Inventory of water wells and collection of groundwater and surface water samples have been achieved. Water samples are analyzed for major ions according to the American Society for Testing and Materials and for the environmental isotopes analysis (oxygen-18 and deuterium) by using a Triple Liquid Isotopic Water Analyzer (Los Gatos). The groundwater is available from the Quaternary aquifer formed mainly of graded sand and gravel interbedded with clay lenses. The hydrogeologic, hydrogeochemical and isotopic investigations indicate the hydrodynamic nature of the aquifer, where different flow paths, recharge sources and evolution mechanisms are distinguished. The directions of groundwater flow are from E, W and S directions suggesting the contribution from Nile River, the Eocene aquifer and the Nile basin, respectively. The groundwater altitudes range from 13 m (MSL) to 44 m (MSL). The hydraulic gradient varies between 0.025 and 0.0015. The groundwater is alkaline (pH > 7) and has salinity ranging from fresh to brackish water (TDS between 528 mg/l and 6070 mg/l). The observed wide range in the ionic composition and water types reflects the effect of different environmental and geological conditions through which the water has flowed. The isotopic compositions of groundwater samples vary between -14.13‰ and +23.56 for δD and between - 2.91‰ and +3.10 for δ18O. The isotopic data indicates that the Quaternary aquifer receive recharge from different sources including the Recent Nile water, surplus irrigation water, old Nile water before the construction of Aswan High Dam, surface runoff of local rains and Eocene aquifer. Evaporation, water rock interaction and mixing between different types of waters are the main processes in the groundwater evolution. Major suggestions are presented to develop the aquifer

  3. Ternary and Quaternary Composition Diagrams: An Overview of the Subject.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1983-01-01

    Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)

  4. Copper atomic-scale transistors.

    PubMed

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  5. Copper atomic-scale transistors

    PubMed Central

    Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (U bias) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G 0 (G 0 = 2e2/h; with e being the electron charge, and h being Planck’s constant) or 2G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors. PMID:28382242

  6. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride.

    PubMed

    Wang, Jingyun; Zhou, Mingdong; Yuan, Yuguo; Zhang, Quan; Fang, Xiangchen; Zang, Shuliang

    2015-12-01

    Quaternary ammonium perrhenates were applied as catalyst to promote the hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The quaternary ammonium perrhenates displayed good catalytic performance for cellulose hydrolysis. Water was also proven to be effective to promote cellulose hydrolysis. Accordingly, 97% of total reduced sugar (TRS) and 42% of glucose yields could be obtained under the condition of using 5mol% of tetramethyl ammonium perrhenate as catalyst, 70μL of water, ca. 0.6mmol of microcrystalline cellulose (MCC) and 2.0g of [Amim]Cl as solvent under microwave irradiation for 30min at 150°C (optimal conditions). The influence of quaternary ammonium cation on the efficiency of cellulose hydrolysis was examined based on different cation structures of perrhenates. The mechanism on perrhenate catalyzed cellulose hydrolysis is also discussed, whereas hydrogen bonding between ReO4 anion and hydroxyl groups of cellulose is assumed to be the key step for depolymerization of cellulose. Copyright © 2015. Published by Elsevier Ltd.

  7. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Treesearch

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  8. TMC-1 mediates alkaline sensation in C. elegans through nociceptive neurons

    PubMed Central

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X.Z. Shawn

    2016-01-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation has been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins, whose functions are largely unknown. Here, we characterize C. elegans TMC-1 which was suggested to form a Na+-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9 which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  9. Origin of Bermuda's clay-rich Quaternary paleosols and their paleoclimatic significance

    USGS Publications Warehouse

    Herwitz, S.R.; Muhs, D.R.; Prospero, J.M.; Mahan, S.; Vaughn, B.

    1996-01-01

    Red clayey paleosols that are chiefly the product of aerosolic dust deposition are interbedded in the Quaternary carbonate formations of the Bermuda oceanic island system. These paleosols provide a basis for reconstructing Quaternary atmospheric circulation patterns in the northwestern Atlantic. Geochemical analyses were performed on representative paleosol samples to identify their parent dust source. Fine-grained fractions were analyzed by energy-dispersive X ray fluorescence to determine trace element (Zr, Y, La, Ti, and Nb) concentrations and to derive geochemical signatures based on immobile element ratios. These ratios were compared with geochemical signatures determined for three possible sources of airborne dust: (1) Great Plains loess, (2) Mississippi River Valley loess, and (3) Saharan dust. The Zr/Y and Zr/La ratios provided the clearest distinction between the hypothesized dust sources. The low ratios in the paleosol B horizons most closely resemble Saharan dust in the <2-??m size class fraction. Contributions from the two North American loessial source areas could not be clearly detected. Thus Bermuda paleosols have a predominantly Saharan aerosolic dust signature. Saharan dust deposition on Bermuda during successive Quaternary glacial periods is consistent with patterns of general circulation models, which indicate that during glacial maxima the northeast summer trade winds were stronger than at present and reached latitudes higher than 30 ?? N despite lower-than-present sea surface temperatures in the North Atlantic.

  10. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    PubMed

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  11. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  12. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  13. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  14. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  15. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...

  16. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  17. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  18. Can dryland geoproxy data generate Quaternary palaeoclimate and palaeoenvironmental records?

    NASA Astrophysics Data System (ADS)

    Thomas, David S. G.

    2017-04-01

    Dryland regions present many challenges for robustly reconstructing late Quaternary palaeoenvironments and palaeoclimates, not least a common deficit, or considerable spatial variability, in the availability of high resolution biological proxy data sources. Substantial advances have been made in some regions in recent years, through the exploitation of new high resolution biomarker and isotope records, for example from hyrax middens (e.g. Chase et al., 2012) and from offshore sediments (e.g. Collins et al., 2014). In others however, suitable data sources for these approaches are absent, so these approaches are not available or if data are applied from distant sources, subject to risks of excessive spatial extrapolation of records in environmental contexts where environmental gradients are steep and variability is common (Thomas and Burrough, 2012, Thomas et al., 2013). In these contexts, geoproxy records, derived from the analysis of landforms and their associated sediments, are often utilised in dryland Quaternary research (e.g. Burrough and Thomas 2009, Stone and Thomas, 2013, Thomas, 2013, Lancaster et al., 2015), but with a number of associated difficulties (e.g. Chase, 2009). This paper examines these difficulties and then explores different approaches to the analysis of Quaternary landform records. It is argued that geoproxies with chronometric control, usually provided by OSL dating, have considerable potential to improve data on Quaternary environmental and climate dynamics, if records are interpreted effectively and appropriately (e.g. Bailey and Thomas, 2014, Thomas and Burrough, 2016). Examples of challenges and new approaches will be drawn from aeolian and fluvial domains, and from research in Africa, Australia and Arabia. Bailey RM, Thomas DSG 2014 Earth Surf. Proc. Landf. 39, 614-631. Burrough SL, Thomas DSG 2009. Geomorphology 103, 285-298. Chase, B 2009. Earth-Sci Rev. 93, 31-45. Chase BM et al. 2010 Quat. Sci. Rev. 56, 107-125. Collins JA et al

  19. Alkaline β-fructofuranosidases of tuberous roots: Possible physiological function.

    PubMed

    Ricardo, C P

    1974-12-01

    Alkaline invertase of roots of carrot (Daucus carota L.) did not hydrolyze raffinose while the acid invertase from the same tissue showed with this sugar ca. 60% of the activity found with sucrose. The activity of the two invertases was inhibited by fructose to a different extent, the K i value being ca. 4×10(-2) M and 3×10(-1)M, respectively, for the alkaline and the acid invertases from the roots of both carrot and turnip (Brassica rapa L.). It is proposed that fructose inhibition of acid invertase is of no physiological significance but that, in contrast, hexoses might regulate the activity of alkaline invertase.Comparing several species and cultivars, it was found that the content of reducing sugars and the activity of alkaline invertase of mature tuberous roots showed a positive correlation. This indicates that alkaline invertase may participate in the regulation of the hexose level of the cell, as was previously suggested for sugar-cane. A scheme is presented which proposes a way of participation of alkaline invertase in such a regulation, assuming that this enzyme is located in the cytoplasm and acid invertase is membrane-bound and mainly located at the cell surface.

  20. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  1. 24-hour urine copper test

    MedlinePlus

    ... medlineplus.gov/ency/article/003604.htm 24-hour urine copper test To use the sharing features on this page, please enable JavaScript. The 24-hour urine copper test measures the amount of copper in ...

  2. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    USGS Publications Warehouse

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium

  3. Changes in Quaternary Structure in the Signaling Mechanisms of PAS Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Rebecca A.; Moffat, Keith

    2008-12-15

    FixL from Bradyrhizobium japonicum is a PAS sensor protein in which two PAS domains covalently linked to a histidine kinase domain are responsible for regulating nitrogen fixation in an oxygen-dependent manner. The more C-terminal PAS domain, denoted bjFixLH, contains a heme cofactor that binds diatomic molecules such as carbon monoxide and oxygen and regulates the activity of the FixL histidine kinase as part of a two-component signaling system. We present the structures of ferric, deoxy, and carbon monoxide-bound bjFixLH in a new space group (P1) and at resolutions (1.5--1.8 {angstrom}) higher than the resolutions of those previously obtained. Interestingly, bjFixLHmore » can form two different dimers (in P1 and R32 crystal forms) in the same crystallization solution, where the monomers in one dimer are rotated {approx}175 deg. relative to the second. This suggests that PAS monomers are plastic and that two quite distinct quaternary structures are closely similar in free energy. We use screw rotation analysis to carry out a quantitative pairwise comparison of PAS quaternary structures, which identifies five different relative orientations adopted by isolated PAS monomers. We conclude that PAS monomer arrangement is context-dependent and could differ depending on whether the PAS domains are isolated or are part of a full-length protein. Structurally homologous residues comprise a conserved dimer interface. Using network analysis, we find that the architecture of the PAS dimer interface is continuous rather than modular; the network of residues comprising the interface is strongly connected. A continuous dimer interface is consistent with the low dimer-monomer dissociation equilibrium constant. Finally, we quantitate quaternary structural changes induced by carbon monoxide binding to a bjFixLH dimer, in which monomers rotate by up to 2 deg. relative to each other. We relate these changes to those in other dimeric PAS domains and discuss the role of quaternary

  4. Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source

    NASA Astrophysics Data System (ADS)

    Carrasco-Núñez, Gerardo; Righter, Kevin; Chesley, John; Siebert, Lee; Aranda-Gómez, José Jorge

    2005-11-01

    Nearly contemporaneous eruption of alkaline and calc-alkaline lavas occurred about 900 years BP from El Volcancillo paired vent, located behind the volcanic front in the Mexican Volcanic Belt (MVB). Emission of hawaiite (Toxtlacuaya) was immediately followed by calc-alkaline basalt (Río Naolinco). Hawaiites contain olivine microphenocrysts (Fo67-72), plagioclase (An56-60) phenocrysts, have 4-5 wt% MgO and 49.6-50.9 wt% SiO2. In contrast, calc-alkaline lavas contain plagioclase (An64-72) and olivine phenocrysts (Fo81-84) with spinel inclusions, and have 8-9 wt% MgO and 48.4-49.4 wt% SiO2. The most primitive lavas in the region (Río Naolinco and Cerro Colorado) are not as primitive as parental melts in other arcs, and could represent either (a) variable degrees of melting of a subduction modified, garnet-bearing depleted mantle source, followed by AFC process, or (b) melting of two distinct mantle sources followed by AFC processes. These two hypotheses are evaluated using REE, HFSE, and Sr, Os and Pb isotopic data. The Toxtlacuaya flow and the Y & I lavas can be generated by combined fractional crystallization and assimilation of gabbroic granulite, starting with a parental liquid similar to the Cerro Colorado basalt. Although calc-alkaline and alkaline magmas commonly occur together in other areas of the MVB, evidence for subduction component in El Volcancillo magmas is minimal and limited to <1%, which is a unique feature in this region further from the trench. El Volcancillo lavas were produced from two different magma batches: we surmise that the injection of calc-alkaline magma into an alkaline magma chamber triggered the eruption of hawaiites. Our results suggest that the subalkaline and hawaiitic lavas were formed by different degrees of partial melting of a similar, largely depleted mantle source, followed by later AFC processes. This model is unusual for arcs, where such diversity is usually explained by melting of heterogeneous (enriched and depleted) and

  5. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  6. Map and data for Quaternary faults and folds in Washington state

    USGS Publications Warehouse

    Lidke, David J.; Johnson, Samuel Y.; McCrory, Patricia A.; Personius, Stephen F.; Nelson, Alan R.; Dart, Richard L.; Bradley, Lee-Ann; Haller, Kathleen M.; Machette, Michael N.

    2004-01-01

    The map shows faults and folds in Washington State that exhibit evidence of Quaternary deformation and includes data on timing of most recent movement, sense of movement, slip rate, and continuity of surface expression.

  7. Porins Increase Copper Susceptibility of Mycobacterium tuberculosis

    PubMed Central

    Speer, Alexander; Rowland, Jennifer L.; Haeili, Mehri; Niederweis, Michael

    2013-01-01

    Copper resistance mechanisms are crucial for many pathogenic bacteria, including Mycobacterium tuberculosis, during infection because the innate immune system utilizes copper ions to kill bacterial intruders. Despite several studies detailing responses of mycobacteria to copper, the pathways by which copper ions cross the mycobacterial cell envelope are unknown. Deletion of porin genes in Mycobacterium smegmatis leads to a severe growth defect on trace copper medium but simultaneously increases tolerance for copper at elevated concentrations, indicating that porins mediate copper uptake across the outer membrane. Heterologous expression of the mycobacterial porin gene mspA reduced growth of M. tuberculosis in the presence of 2.5 μM copper by 40% and completely suppressed growth at 15 μM copper, while wild-type M. tuberculosis reached its normal cell density at that copper concentration. Moreover, the polyamine spermine, a known inhibitor of porin activity in Gram-negative bacteria, enhanced tolerance of M. tuberculosis for copper, suggesting that copper ions utilize endogenous outer membrane channel proteins of M. tuberculosis to gain access to interior cellular compartments. In summary, these findings highlight the outer membrane as the first barrier against copper ions and the role of porins in mediating copper uptake in M. smegmatis and M. tuberculosis. PMID:24013632

  8. Microtitration of various anions with quaternary ammonium halides using solid-state electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, W.

    1980-01-01

    Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less

  9. Analysis of multiple quaternary ammonium compounds in the brain using tandem capillary column separation and high resolution mass spectrometric detection.

    PubMed

    Falasca, Sara; Petruzziello, Filomena; Kretz, Robert; Rainer, Gregor; Zhang, Xiaozhe

    2012-06-08

    Endogenous quaternary ammonium compounds are involved in various physiological processes in the central nervous system. In the present study, eleven quaternary ammonium compounds, including acetylcholine, choline, carnitine, acetylcarnitine and seven other acylcarnitines of low polarity, were analyzed from brain extracts using a two dimension capillary liquid chromatography-Fourier transform mass spectrometry method. To deal with their large difference in hydrophobicities, tandem coupling between reversed phase and hydrophilic interaction chromatography columns was used to separate all the targeted quaternary ammonium compounds. Using high accuracy mass spectrometry in selected ion monitoring mode, all the compounds could be detected from each brain sample with high selectivity. The developed method was applied for the relative quantification of these quaternary ammonium compounds in three different brain regions of tree shrews: prefrontal cortex, striatum, and hippocampus. The comparative analysis showed that quaternary ammonium compounds were differentially distributed across the three brain areas. The analytical method proved to be highly sensitive and reliable for simultaneous determination of all the targeted analytes from brain samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    PubMed

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  11. Bacterial copper storage proteins.

    PubMed

    Dennison, Christopher; David, Sholto; Lee, Jaeick

    2018-03-30

    Copper is essential for most organisms as a cofactor for key enzymes involved in fundamental processes such as respiration and photosynthesis. However, copper also has toxic effects in cells, which is why eukaryotes and prokaryotes have evolved mechanisms for safe copper handling. A new family of bacterial proteins uses a Cys-rich four-helix bundle to safely store large quantities of Cu(I). The work leading to the discovery of these proteins, their properties and physiological functions, and how their presence potentially impacts the current views of bacterial copper handling and use are discussed in this review. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Ratiometric detection of copper ions and alkaline phosphatase activity based on semiconducting polymer dots assembled with rhodamine B hydrazide.

    PubMed

    Sun, Junyong; Mei, Han; Gao, Feng

    2017-05-15

    The rational surface functionalization of semiconducting polymer dots (Pdots) has attracted much attention to extend their applications in fabricating chemo/biosensing platform. In this study, a novel ratiometric fluorescent sensing platform using functionalized Pdots as probes for fluorescence signal transmission has been designed for sensing Cu(Ⅱ) and activity of alkaline phosphatase (ALP) with high selectivity and enhanced sensitivity. The highly fluorescent Pdots were firstly prepared with Poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT) via nanoprecipitation method, and then assembled with non-fluorescent rhodamine B hydrazide (RB-hy), which shows special binding activity to Cu(Ⅱ), through adsorption process to obtain functionalized nanohybrids, Pdots@RB-hy. As thus, a FRET donors/acceptors pair, in which PFBT Pdots act as energy donors while RB-hy-Cu(II) complexes act as energy acceptors were constructed. On the basis of the varies in fluorescence intensities of donors/acceptors in the presence of different amounts of Cu(II), a ratiometric method for sensing Cu(II) has been proposed. The proposed ratiometric Cu(II) sensor shows a good linear detection range from 0.05 to 5μM with a detection limit of 15nM. Furthermore, using the Pdots@RB-hy-Cu(II) system as signal transducer, a ratiometric sensing for alkaline phosphatase (ALP) activity has also been established with pyrophosphate (PPi) as substrates. The constructed ratiometric sensor of ALP activity displays a linear detection range from 0.005 to 15UL -1 with a detection limit of 0.0018UL -1 . The sensor was further successfully used for ALP activity detection in human serum with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-05-22

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm -2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH - ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Copper tolerance and virulence in bacteria

    PubMed Central

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  15. New insights into the earliest Quaternary environments in the Central North Sea from 3D seismic

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    In the past the transition between an unconformable surface in the south to a conformable horizon towards the north has made identification and mapping the base-Quaternary in the central North Sea difficult (Sejrup et al 1991; Gatliff et al 1994). However recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) has allowed greater confidence in the correlation to the region 3D seismic datasets and thus has allowed the base-Quaternary to be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The revised base-Quaternary surface reaches a depth of 1248 ms TWT with an elongate basin shape which is significantly deeper than the traditionally mapped surface. Using RMS amplitudes and other seismic attributes the revised base-Quaternary has been investigated along the horizon and in time slice to interpret the environments of the earliest Quaternary prior to the onset of glaciation. Combined with analysis of aligned elongate furrows over 10 km long, 100 m wide and 100 m deep suggest a deep marine environment in an almost enclosed basin with persistent strong NW-SE bottom currents in the deepest parts. Pockmarks were formed by the escape of shallow gas on the sides of a small delta in the eastern part of the basin. The progradation of large deltas from both the north and south into the basin make up the majority of the deposition of sediment into the basin. Key Words: base-Quaternary; seismic interpretation; paleoenvironments References: Gatliff, R.W, Richards, P.C, Smith, K, Graham, C.C, McCormac, M, Smith, N.J.P, Long, D, Cameron, T.D.J, Evans, D, Stevenson, A.G, Bulat, J, Ritchie, J.D, (1994) 'United Kingdom offshore regional

  16. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  17. Late Quaternary climate change shapes island biodiversity.

    PubMed

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  18. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    PubMed Central

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-01-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers. PMID:28230088

  19. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

    NASA Astrophysics Data System (ADS)

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-01

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  20. A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique.

    PubMed

    Yoon, Seokhyun; Kim, Si Joon; Tak, Young Jun; Kim, Hyun Jae

    2017-02-23

    We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures (280 °C). Compared to conventional IGZO and ternary In-Zn-O (IZO) thin films, VDT IGZO thin film had higher density of the metal-oxide bonds and lower density of the oxygen vacancies. The field-effect mobility of VDT IGZO TFT increased three times with an improved stability under positive bias stress than IZO TFT due to the reduction in oxygen vacancies. Therefore, the VDT process is a simple method that reduces the processing temperature without any additional treatment for quaternary oxide semiconductors with uniform layers.

  1. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  2. High adherence copper plating process

    DOEpatents

    Nignardot, Henry

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  3. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  4. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation

    PubMed Central

    2014-01-01

    Background Heart disease is the leading cause of death in diabetic patients, and defective copper metabolism may play important roles in the pathogenesis of diabetic cardiomyopathy (DCM). The present study sought to determine how myocardial copper status and key copper-proteins might become impaired by diabetes, and how they respond to treatment with the Cu (II)-selective chelator triethylenetetramine (TETA) in DCM. Methods Experiments were performed in Wistar rats with streptozotocin (STZ)-induced diabetes with or without TETA treatment. Cardiac function was analyzed in isolated-perfused working hearts, and myocardial total copper content measured by particle-induced x-ray emission spectroscopy (PIXE) coupled with Rutherford backscattering spectrometry (RBS). Quantitative expression (mRNA and protein) and/or activity of key proteins that mediate LV-tissue-copper binding and transport, were analyzed by combined RT-qPCR, western blotting, immunofluorescence microscopy, and enzyme activity assays. Statistical analysis was performed using Student’s t-tests or ANOVA and p-values of < 0.05 have been considered significant. Results Left-ventricular (LV) copper levels and function were severely depressed in rats following 16-weeks’ diabetes, but both were unexpectedly normalized 8-weeks after treatment with TETA was instituted. Localized myocardial copper deficiency was accompanied by decreased expression and increased polymerization of the copper-responsive transition-metal-binding metallothionein proteins (MT1/MT2), consistent with impaired anti-oxidant defences and elevated susceptibility to pro-oxidant stress. Levels of the high-affinity copper transporter-1 (CTR1) were depressed in diabetes, consistent with impaired membrane copper uptake, and were not modified by TETA which, contrastingly, renormalized myocardial copper and increased levels and cell-membrane localization of the low-affinity copper transporter-2 (CTR2). Diabetes also lowered indexes of

  5. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    NASA Astrophysics Data System (ADS)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  6. Canine Models for Copper Homeostasis Disorders.

    PubMed

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-02-04

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  7. Canine Models for Copper Homeostasis Disorders

    PubMed Central

    Wu, Xiaoyan; Leegwater, Peter A. J.; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted. PMID:26861285

  8. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    NASA Astrophysics Data System (ADS)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  9. Late quaternary environments, Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Elias, S.A.; Short, S.K.; Waythomas, C.F.

    1996-01-01

    Late Quaternary pollen, plant macrofossils, and insect fossils were studied from sites along three rivers in the foothills north of the Alaska Range in Denali National Park and Preserve. The aim was to carry out a reconaissance of late Quaternary organic sediments in the region, emphasizing the mid-Wisconsin, or Boutellier interstadial interval. Samples of probable early- to mid-Boutellier age (ca. 60 000 to 40 000 B.P.) from Unit 2 at the Toklat High Bluffs site indicate open boreal woodland with dense alder shrub vegetation. Organic Unit 1 at the Foraker River Slump site indicates open taiga with shrubs of probable Boutellier age. Fossil evidence from the youngest horizon in this unit indicates graminoid tundra environments, marking the transition from interstadial to late Wisconsin glacial environments. Early Holocene samples from the Foraker exposures suggest birch shrub tundra; coniferous forest apparently became established only alter 6500 B.P. Local variations in forest composition at the Foraker and Sushana sites were probably the result of disturbances, such as fire.

  10. [Diagnostic and therapeutic activity moderation. Quaternary and genetic prevention].

    PubMed

    Gérvas, Juan

    2006-03-01

    Medical activities have more positive than negative outcomes. Because this balance, medicine has a great social recognition. But with new technology and more aggressive diagnostic and therapeutic interventions, there is a decreasing gap in between benefits and harms. Risk increases because more interventions, and because placing patients in more technology environments. As a consecuence, patient safety decreases. Quantity becomes as important as quality, and the place of care is crucial for patient safety. Medical activities should be of , performed in the low level of care possible. Then, quaternary prevention (to avoid unnecessary use and risk of medical interventions) should be a continuous parallel clinical activity. I consider four examples of needed quaternary prevention, with Spanish data: 1) cardiovascular prevention (where there is an inverse use of resources, as patients who need more receive less); 2) use of new antidepressants (which has provoke an artificial epidemic of

  11. Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA

    USGS Publications Warehouse

    Wehmiller, John F.; Thieler, E. Robert; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.

    2010-01-01

    The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ∼90 m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided

  12. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  13. Joining of alumina via copper/niobium/copper interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less

  14. 49 CFR 192.279 - Copper pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or...

  15. Molecular Mediators Governing Iron-Copper Interactions

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2015-01-01

    Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690

  16. Copper Regulates Cyclic AMP-Dependent Lipolysis

    PubMed Central

    Krishnamoorthy, Lakshmi; Cotruvo, Joseph A.; Chan, Jefferson; Kaluarachchi, Harini; Muchenditsi, Abigael; Pendyala, Venkata S.; Jia, Shang; Aron, Allegra T.; Ackerman, Cheri M.; Vander Wal, Mark N.; Guan, Timothy; Smaga, Lukas P.; Farhi, Samouil L.; New, Elizabeth J.; Lutsenko, Svetlana; Chang, Christopher J.

    2016-01-01

    Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium, and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining the body's weight and energy stores. Utilizing a murine model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we demonstrate that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue within a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype. PMID:27272565

  17. [Newly leaching method of copper from waste print circuit board using hydrochloric acid/n-butylamine/copper sulfate].

    PubMed

    Wang, Hong-Yan; Cui, Zhao-Jie; Yao, Ya-Wei

    2010-12-01

    A newly leaching method of copper from waste print circuit board was established by using hydrochloric acid-n-butylamine-copper sulfate mixed solution. The conditions of leaching were optimized by changing the hydrochloric acid, n-butylamine, copper sulfate,temperature and other conditions using copper as target mimics. The results indicated that copper could be leached completely after 8 h at 50 degrees C, hydrochloric acid concentration of 1.75 mol/L, n-butylamine concentration of 0.25 mol/L, and copper sulfate mass of 0.96 g. Under the conditions, copper leaching rates in waste print circuit board samples was up to 95.31% after 9 h. It has many advantages such as better effects, low cost, mild reaction conditions, leaching solution recycling.

  18. Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase.

    PubMed

    Jafary, F; Hanachi, P; Gorjipour, K

    2017-01-01

    In tissue engineering, scaffold characteristics play an important role in the biological interactions between cells and the scaffold. Cell adhesion, proliferation, and activation depend on material properties used for the fabrication of scaffolds. In the present investigation, we used collagen with proper characteristics including mechanically stability, biodegradability and low antigenicity. Optimization of the scaffold was done by immobilization of alkaline phosphatase on the collagen surface via cross-linking method, because this enzyme is one of the most important markers of osteoblast, which increases inorganic phosphate concentration and promote mineralization of bone formation. Alkaline phosphatase was immobilized on a collagen surface by 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, as a reagent. Then, rat mesenchymal stem cells were cultured in osteogenic medium in control and treated groups. The osteogenesis-related genes were compared between treatments (differentiated cells with immobilized alkaline phosphatase/collagen scaffold) and control groups (differentiated cells on collagen surface without alkaline phosphatase) on days 3 and 7 by quantitative real-time PCR (QIAGEN software). Several genes, including alkaline phosphatase, collagen type I and osteocalcine associated with calcium binding and mineralization, showed upregulation in expression during the first 3 days, whereas tumor necrosis factor-α, acting as an inhibitor of differentiation, was down-regulated during osteogenesis. Collagen scaffold with immobilized alkaline phosphatase can be utilized as a good candidate for enhancing the differentiation of osteoblasts from mesenchymal stem cells.

  19. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  20. Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity.

    PubMed

    Morkaew, Tirut; Pinyakong, Onruthai; Tachaboonyakiat, Wanpen

    2017-08-01

    The effect of the quaternary ammonium chitin structure on the bactericidal activity and specificity against Escherichia coli and Staphylococcus aureus was investigated. Quaternary ammonium chitins were synthesized by the separate acylation of chitin (CT) with carboxymethyl trimethylammonium chloride (CMA), 3-carboxypropyl trimethylammonium chloride (CPA) and N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB). The successful acylation was confirmed by newly formed ester linkage. All three derivatives had a higher surface charge than chitin due to the additional positively charged quaternary ammonium groups. The N-short alkyl substituent (methyl) of CTCMA and CTCPA increased the hydrophilicity whilst the N-long alkyl substituent (dodecyl) of CTDDMAB increased the hydrophobicity compared to chitin. Chitin did not exhibit any bactericidal activity, while CTCMA and CTCPA completely killed E. coli and S. aureus in 30 and 60min, respectively, and CTDDMAB completely killed S. aureus in 10min but did not kill E. coli after a 2-h exposure. Therefore, the N-short alkyl substituent was more effective for killing E. coli and the N-long alkyl substituent conferred specific bactericidal activity against S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rheological study of copper and copper grapheme feedstock for powder injection molding

    NASA Astrophysics Data System (ADS)

    Azaman, N. Emira Binti; Rafi Raza, M.; Muhamad, N.; Niaz Akhtar, M.; Bakar Sulong, A.

    2017-01-01

    Heatsink is one of the solution to optimize the performance of smart electronic devices. Copper and its composites are helping the electronic industry to solve the heating problem. Copper-graphene heat sink material with enhanced thermal conductivity is the ultimate goal.Powder injection molding (PIM) has advantages of high precision and production rate, complex shape, low cost and suitabality for metal and cremics.PIM consists of four sub sequential steps; feedstock preparation, molding, debinding and sintering. Feedstock preparation is a critical step in PIM process. Any deficiency at this stage cannot be recovered at latter stages. Therefore, this research was carried out to investigate the injectability of copper and copper graphene composite using PIM. PEG based multicomponent binder system was used and the powder loading was upto 7vol.% less than the critical powder loading was used to provide the wettability of the copper powder and graphene nanoplatelets (GNps). Corpper-graphene feedstock contained 0.5vol.% of GNps . To ensure the homogeneity of GNps within feedstock a unique technique was addopted. The microscopic results showed that the feedstock is homogeneous and ready for injection. The viscosity-shear rate relationship was determined and results showed that the addition of 0.5vol.% of GNps in copper has increased the viscosity upto 64.9% at 140˚C than that of pure copper feedstock. This attribute may be due to the large surface area of GNps. On the other hand, by increasing the temperature, viscosity of the feedstock was decreased, which was recommended for PIM. The overall viscosity and share rate lies within the range recommended for PIM process. It is clear that both feedstocks showed pseudo plastic behaviour which is suitable for PIM process. In the pseudo plastic behaviour, the viscosity decreases with the shear rate. It may be due to change in the structure of the solid particles or the binder. The molding results showed that both copper

  2. Adsorption of aqueous copper on peanut hulls

    NASA Astrophysics Data System (ADS)

    Davis, Kanika Octavia

    A method was established for measuring the adsorption of Cu(II) from aqueous solution to unmodified and modified peanut hulls at constant temperature and pH. Modification of the hulls was performed by oxidation with alkaline hydrogen peroxide. During the modification process, the hydrogen peroxide solubilizes the lignin component, making the surface more porous which increases the availability of binding sites, while simultaneously oxidizing the cellulose. The oxidation of alcohol groups creates more binding sites by creating functional groups such as COO-, which increases chelation to metal ions. Fourier transform infrared spectroscopy confirms delignification of the peanut hulls by the disappearance of carboxyl peaks of the modified hulls, which were originally produced from the lignin content. Although, oxidation is not fully confirmed, it is not ruled out because the expected carboxylate peak (1680 cm-1) maybe overshadowed by a broad peak due to OH bending of water adsorbed to the hulls. Hulls adsorbed copper from solutions in the concentration range of 50-1000 ppm of CuCl2. Concentrations of pre- and post-adsorption solutions were determined using inductively coupled plasma optical emission spectroscopy. The adsorption isotherms were fit to known two and three-parameter models, evaluated and the binding mechanism was inferred. Maximum surface coverage was 3.5 +/- 0.6 mg Cu2+ /g hull for unmodified hulls and 11 +/- 1 mg Cu2+/g hull for modified hulls. The adsorption for the hulls is best described by the Langmuir model, suggesting monolayer, homogeneous adsorption. With a free energy of adsorption of 10.5 +/- 0.9 kJ/mol for unmodified hulls and 14.5 +/-0.4 kJ/mol for modified hulls, the process is categorized as chemisorption for both types of hulls. The adsorption for both hulls is also described by the Redlich-Peterson model, giving beta nearer to 1 than 0, which further suggests homogeneous adsorption described by the Langmuir model. After rinsing the hulls

  3. Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    PubMed Central

    Zhao, Yueju; Zhang, Yunhua; Cao, Yang; Qi, Jianxun; Mao, Liangwei; Xue, Yanfen; Gao, Feng; Peng, Hao; Wang, Xiaowei; Gao, George F.; Ma, Yanhe

    2011-01-01

    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pK a calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline

  4. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  5. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation.

    PubMed

    Soo, I; Madsen, K L; Tejpar, Q; Sydora, B C; Sherbaniuk, R; Cinque, B; Di Marzio, L; Cifone, M Grazia; Desimone, C; Fedorak, R N

    2008-03-01

    Alkaline sphingomyelinase, an enzyme found exclusively in bile and the intestinal brush border, hydrolyzes sphingomyelin into ceramide, sphingosine and sphingosine-1-phosphate, thereby inducing epithelial apoptosis. Reduced levels of alkaline sphingomyelinase have been found in premalignant and malignant intestinal epithelia and in ulcerative colitis tissue. Probiotic bacteria can be a source of sphingomyelinase. To determine the effect of VSL#3 probiotic therapy on mucosal levels of alkaline sphingomyelinase, both in a mouse model of colitis and in patients with ulcerative colitis. Interleukin-10 gene-deficient (IL10KO) and wild type control mice were treated with VSL#3 (10(9) colony-forming units per day) for three weeks, after which alkaline sphingomyelinase activity was measured in ileal and colonic tissue. As well, 15 patients with ulcerative colitis were treated with VSL#3 (900 billion bacteria two times per day for five weeks). Alkaline sphingomyelinase activity was measured through biopsies and comparison of ulcerative colitis disease activity index scores obtained before and after treatment. Lowered alkaline sphingomyelinase levels were seen in the colon (P=0.02) and ileum (P=0.04) of IL10KO mice, as compared with controls. Treatment of these mice with VSL#3 resulted in upregulation of mucosal alkaline sphingomyelinase activity in both the colon (P=0.04) and the ileum (P=0.01). VSL#3 treatment of human patients who had ulcerative colitis decreased mean (+/- SEM) ulcerative colitis disease activity index scores from 5.3+/-1.8946 to 0.70+/-0.34 (P=0.02) and increased mucosal alkaline sphingomyelinase activity. Mucosal alkaline sphingomyelinase activity is reduced in the intestine of IL10KO mice with colitis and in humans with ulcerative colitis. VSL#3 probiotic therapy upregulates mucosal alkaline sphingomyelinase activity.

  6. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  7. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  8. U.S. Quaternary Fault and Fold Database Released

    NASA Astrophysics Data System (ADS)

    Haller, Kathleen M.; Machette, Michael N.; Dart, Richard L.; Rhea, B. Susan

    2004-06-01

    A comprehensive online compilation of Quaternary-age faults and folds throughout the United States was recently released by the U.S. Geological Survey, with cooperation from state geological surveys, academia, and the private sector. The Web site at http://Qfaults.cr.usgs.gov/ contains searchable databases and related geo-spatial data that characterize earthquake-related structures that could be potential seismic sources for large-magnitude (M > 6) earthquakes.

  9. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    PubMed

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. High adherence copper plating process

    DOEpatents

    Nignardot, H.

    1993-09-21

    A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.

  11. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    PubMed

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei

    2015-12-01

    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (P<0.05). In addition, copper supplementation tended to increase feed intake during the first 35 days (P<0.10). Diets supplemented with 200 mg/kg zinc did not affect body gain (P>0.10) and feed intake (P>0.10) but improved feed conversion (P<0.05) compared with those supplemented 40 mg/kg zinc throughout the experiment. No copper×zinc interaction was observed for growth performance except that a tendency (P=0.09) was found for feed intake in the first 35 days. Supplementation of copper or zinc improved crude fat digestibility (P<0.01) but had no effects on the digestibility of other nutrients. Fecal copper was increased with both copper (P<0.01) and zinc addition (P<0.05). However, fecal zinc was affected only by dietary zinc addition (P<0.01). Mineral contents in serum and kidney were not affected by dietary treatments (P>0.05). However, the level of copper in the liver was increased with copper supplementation (P<0.05) and tended to decrease with zinc supplementation (P=0.08). Dietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover

  12. Human Dispersals Along the African Rift Valley in the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Tryon, C. A.; Faith, J. T.; Peppe, D. J.

    2014-12-01

    Climate- and tectonic-driven environmental dynamics of the East African Rift System (EARS) during the Quaternary played an important role in the demographic history of early Homo sapiens, including expansions of modern humans across and out of Africa. Human forager population size, geographic range, and behaviors such as hunting strategies and residential mobility likely varied in response to changes in the local and regional environment. Throughout the Quaternary, floral and faunal change was linked at least in part to variations in moisture availability, temperature, and atmospheric CO2, which in addition to uplift and faulting, contributed to the expansion and contraction of a number of large lakes that served as biogeographic barriers to many taxa. This is particularly clear for the Lake Victoria basin, where biogeographic, geological, and paleontological evidence documents repeated expansion and contraction of the ranges of species in response to lake level and vegetation change. Across much of eastern Africa, the topography of the rift facilitated north-south dispersals, the timing of which may have depended in part on the expansion and contraction of the equatorial forest belt. Dispersal potential likely increased during the more arid periods of the late Quaternary, when the roles of lakes and forests as dispersal barriers was reduced and the extent of low net primary productivity dry grasslands increased, the latter requiring large home ranges for human foragers, conditions suitable for range expansions within H. sapiens.

  13. Hydrolysis of p-nitrophenyl esters promoted by semifluorinated quaternary ammonium polymer latexes and films.

    PubMed

    Kaur, Baljinder; McBride, Sean P; Paul, Abhijit; Ford, Warren T

    2010-10-19

    Semifluorinated polymer latexes were prepared by emulsion polymerization of 2.5-25% of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In aqueous dispersions at particle concentrations of less than 1 mg mL(-1) the quaternary ammonium ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 °C with half-lives of less than 10 min. Thin 0.7-2 μm films of the latexes on glass promoted fast hydrolysis of Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary ammonium ion polymer films at temperatures well above their glass transition temperatures, AFM images of the film surfaces had textures of particles. Contact angle measurements of the annealed films against water and against hexadecane showed that the surfaces were not highly fluorinated.

  14. Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation.

    PubMed

    Hub, Jochen S; Kubitzki, Marcus B; de Groot, Bert L

    2010-05-06

    We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(beta)146, and they sum up to a total length of 5.6 micros. We observe spontaneous and reproducible T-->R quaternary transitions of the Hb tetramer and tertiary transitions of the alpha and beta subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the alpha and beta subunits. Using the mutual information as correlation measure, we find that the beta subunits are substantially more strongly linked to the quaternary transition than the alpha subunits. In addition, the tertiary populations of the alpha and beta subunits differ substantially, with the beta subunits showing a tendency towards R, and the alpha subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb.

  15. Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation

    PubMed Central

    de Groot, Bert L.

    2010-01-01

    We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(β)146, and they sum up to a total length of 5.6µs. We observe spontaneous and reproducible T→R quaternary transitions of the Hb tetramer and tertiary transitions of the α and β subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the α and β subunits. Using the mutual information as correlation measure, we find that the β subunits are substantially more strongly linked to the quaternary transition than the α subunits. In addition, the tertiary populations of the α and β subunits differ substantially, with the β subunits showing a tendency towards R, and the α subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb. PMID:20463873

  16. Biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) exposed to in vivo sub-lethal copper concentrations

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Gu, Zhongqi; Liu, Hong; Shen, Heding; Yang, Jinglong

    2012-09-01

    Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LC50 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 mg/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development

  17. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm

  18. Reduction of the "burst release" of copper ions from copper-based intrauterine devices by organic inhibitors.

    PubMed

    Alvarez, Florencia; Schilardi, Patricia L; de Mele, Monica Fernández Lorenzo

    2012-01-01

    The copper intrauterine device is a contraceptive method that is based on the release of copper ions from a copper wire. Immediately after insertion, the dissolution of copper in the uterine fluid is markedly higher ("burst release") than that necessary for contraception action, leading to a variety of harmful effects. Pretreatments with organic compounds [thiourea (TU) and purine (PU), 10(-4)-10(-2) M concentration range, 1- and 3-h immersion times] were tested. The dissolution of copper with and without pretreatments in TU and PU solutions was analyzed by conventional electrochemical techniques and surface analysis. Pretreatments in PU solutions reduced the initial corrosion rate of copper in simulated uterine solutions, with inhibitory efficiencies that depend on the PU concentration and on the immersion time assayed. Inhibitory efficiency values higher than 98% for pretreatments with ≥10(-3) M PU were found. Conversely, after TU pretreatments, a high copper release was measured. It was concluded that 10(-3) M PU pretreatment is a promising strategy able to reduce the "burst release" of copper and to ensure contraceptive action. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...

  20. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics...