Science.gov

Sample records for alkaline earth carbonates

  1. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    NASA Astrophysics Data System (ADS)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  2. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  3. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  4. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg

    NASA Astrophysics Data System (ADS)

    De Visscher, Alex; Vanderdeelen, Jan; Königsberger, Erich; Churagulov, Bulat R.; Ichikuni, Masami; Tsurumi, Makoto

    2012-03-01

    The alkaline earth carbonates are an important class of minerals. This volume compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO3), nesquehonite (MgCO3.3H2O), and lansfordite (MgCO3.5H2O), a critical evaluation is presented based on curve fits to empirical and/or thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO2(aq) and the stability constant of the ion pair MCO30(aq) (M = alkaline earth metal). Thermodynamic data of the alkaline earth carbonates consistent with two thermodynamic model variants are proposed. The model variant that describes the Mg2+-HCO3- ion interaction with Pitzer parameters was more consistent with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.

  5. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  6. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  7. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  8. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  9. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  10. Photolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  11. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  12. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  13. Carbon electrochemistry in alkaline systems

    SciTech Connect

    Berk, L.; Zuckerbrod, D.

    1983-08-01

    The electrochemical activity of a high surface area furnace black, Black Pearls 2000 and an acetylene black, Shawinigan Black, were studied in 25% KOH at temperatures from 45/sup 0/C to -15/sup 0/C. A relationship was found between the graphitic character of the carbons and their activities for oxygen formation and surface oxide formation, the furnace black being more active for surface oxide formation and the acetylene black being more active for oxygen generation. The carbons behaved similarly in the cathodic region, exhibiting two distinct peaks apparently related to the reduction of oxygen or of surface oxides.

  14. The mechanism of radiolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Anan'ev, V.; Kriger, L.; Miklin, M.

    2015-04-01

    The formation of peroxynitrite and nitrite in crystalline alkaline-earth nitrates under γ-irradiation at 310 K by optical reflectance spectroscopy has been studied. The radiolysis of Sr(NO3)2 and Ba(NO3)2 results in nitrite and peroxynitrite, Mg(NO3)2·6H2O and Ca(NO3)2·4H2O - nitrite. The mechanism for nitrite and peroxynitrite formation under γ-irradiation of crystalline alkaline-earth nitrates has been discussed.

  15. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  16. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  17. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  18. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  19. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  20. Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.

    PubMed

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493

  1. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  2. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  3. Molecular mechanics (MM3) calculations on benzocrown ether complexes of the alkali and alkaline earth cations

    SciTech Connect

    Yang, Linrong R.; Hay, B.P.

    1997-12-31

    The new metal-ligand feature of MM3 has been extended to benzocrown ether complexes of alkali and alkaline earth cations. Over 50 complexes were compared with the crystal structures retrieved from Cambridge Crystal Database. The results agree with experimental data. The averages of absolute deviations between experimental and calculated structural features are: metal-oxygen bond length, 0.03 {angstrom}; Metal-oxygen-carbon angles, 4.1{degrees}; and Metal-oxygen-carbon-carbon angles: 5.1{degrees}. Development of structure-function relationships is in progress.

  4. Improved alkaline earth-oxyhalide electrochemical cell for low-temperature use

    SciTech Connect

    Binder, M.; Walker, C.W.

    1988-05-20

    This invention relates in general to an alkaline earth-oxyhalide electrochemical cell and in particular, to an improved alkaline earth oxyhalide electrochemical cell for low temperature use. A typical cell includes a calcium anode, 1M Ca(AlCl/sub 4/)/sub 2/ thionyl chloride/75% Shawinigan - 25% acetone washed Black Pearls 2000 carbon black cathode. The improvement to this cell involves the addition of 10 vol. % bromine to the electrolyte. During discharge at about -30 C, cathode potential is raised by about 0.5 volt providing a cell voltage well above the 2.0 volt minimum which is a standard military specification. Without bromine, cell capacity is about one minute. With the addition of bromine, load voltage is initially 2.5 volts, then slowly decreases to 2.0 volts over about twelve minutes.

  5. Gas phase salt clusters from electrosprayed alkaline earth colloids

    NASA Astrophysics Data System (ADS)

    Pope, R. Marshall; Shen, Nanzhu; Nicoll, Jeremy; Tarnawiecki, Boris; Dejsupa, Chadin; Dearden, David V.

    1997-03-01

    Several distributions of small polynuclear ions of general form [nM + mA + pS]q+ (where M represents an alkaline earth cation (Mg, Ca, Sr or Ba), n = 2-10, A represents a halide, acetate or nitrate counterion originating in the divalent salt, and S represents an acetic acid or methanol adduct) are detected by FTICR when water/methanol solutions of alkaline earth salts are electrosprayed. For example, the largest cluster ion derived from 6.3 mM solutions of calcium acetate acidified with 2%x acetic acid have n= 10, m = 18, p = 5 and q = 2. Characteristics of these solutions suggest the presence of colloidal dispersions. These characteristics include stability upon aging, light scattering response and the requisite pre-etching of the glass containers. Aqueous mixtures of two group II salts produce mixed-salt cluster ions. For instance, from a mixture of calcium and magnesium acetate we trap mixed-cation clusters characterized by a complete set of binary partitions of n, for n = 2-6. Specifically, the manifold of clusters with four cations contains 4:0, 3:1, 2:2, 1:3 and 0:4 ratios of magnesium to calcium. Isolated alkaline earth clusters react with a low-pressure background of 18-crown-6 (C6) by salt abstraction exclusively. In general, the more facile abstraction from a mixed cluster produces a pair of products in which the neutral conforms to the hard-soft acid-base principle. The reactions of C6 with [MgSr(OAc)3]+ provide evidence for the existence of isomeric clusters at m/z 289. This is supported by bimodal kinetics and preliminary results of ab initio calculations.

  6. Dynamical Correlation In Some Liquid Alkaline Earth Metals Near Melting

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Jani, A. R.

    2010-12-01

    The study of dynamical variables: velocity autocorrelation function (VACF) and power spectrum of liquid alkaline earth metals (Ca, Sr, and Ba) have been presented based on the static harmonic well approximation. The effective interatomic potential for liquid metals is computed using our well recognized model potential with the exchange correlation functions due to Hartree, Taylor, Ichimaru and Utsumi, Farid et al. and Sarkar et al. It is observed that the VACF computed using Sarkar et al. gives the good agreement with available molecular dynamics simulation (MD) results [Phys Rev. B 62, 14818 (2000)]. The shoulder of the power spectrum depends upon the type of local field correlation function used.

  7. Ground state properties of alkali and alkaline-earth hydrides

    NASA Astrophysics Data System (ADS)

    Fuentealba, P.; Reyes, O.; Stoll, H.; Preuss, H.

    1987-11-01

    The ground state potential energy curves of alkali (LiH to CsH) and alkaline-earth monohydrides (BeH to BaH) have been calculated. A pseudopotential formalism including a core-polarization potential has been used. For the valence correlation energy, two different methods, the local spin-density functional and the configuration interaction with single and double excitations, have been employed. Dissociation energies, bond lengths, vibrational frequencies, anharmonicity constants, and dipole moments are reported. The agreement with experimental values, where available, is very good. A discussion and a comparison with other theoretical values, at different levels of approximation, are also included.

  8. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney Member transition zone

    NASA Astrophysics Data System (ADS)

    Murphy, John T.; Lowenstein, Tim K.; Pietras, Jeffrey T.

    2014-12-01

    Significant changes in carbonate mineralogy, texture, and stable isotope composition occur at the transition from the Wilkins Peak Member to the Laney Member in the Eocene Green River Formation, Bridger Basin, Wyoming, which reflect evolution of inflow waters, lake waters, and paleoenvironments. The top of the Wilkins Peak Member contains heterogeneous laminae of calcite and dolomite. Evaporites associated with these layers suggest deposition in hypersaline lakes. Diagenetic carbonate mineral textures include euhedral cement overgrowths and interlocking mosaics of calcite and dolomite crystals, 20-70 μm in size. Electron microprobe analyses indicate diagenetic overgrowth of Fe-rich dolomite on cloudy Fe-poor cores. δ18O values of carbonate laminae in the upper Wilkins Peak Member vary by ~ 6‰ with no depth dependent or mineralogic trends, which also suggests diagenetic overprinting. Alternating organic-rich and primary aragonite, calcite, and dolomite laminae were identified from the lower Laney Member. Primary lacustrine aragonite consists of well sorted, prismatic crystals 5-10 μm in length, with micro-lamination defined by crystal size variation. Primary precipitated calcite and dolomite laminae are monominerallic, with well sorted polyhedral crystals, ~ 10 μm in size. Primary mineralogy of the lower Laney Member changes from calcite to aragonite and dolomite stratigraphically upward. Along the same 15 m thick stratigraphic interval, δ18O values decrease upward by ~ 3‰, all of which suggests (1) lake waters underwent evaporative concentration, which together with calcite precipitation increased the lake water Mg/Ca ratios and led to formation of aragonite and dolomite, (2) source waters became lower in δ18O, possibly as inflow changed to higher altitude foreland rivers. The results from this study show that understanding the primary lacustrine versus diagenetic origin of Green River carbonate minerals is essential for paleoenvironmental and

  9. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  10. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  12. Alkaline earths as main group reagents in molecular catalysis.

    PubMed

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  13. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  14. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  15. Deep optical trap for cold alkaline-Earth atoms.

    PubMed

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  16. Phisicochemistry of alkaline-earth metals oxides surface

    NASA Astrophysics Data System (ADS)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  17. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  18. Isotopic fractionation of alkali earth metals during carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Yotsuya, T.; Ohno, T.; Muramatsu, Y.; Shimoda, G.; Goto, K. T.

    2014-12-01

    The alkaline earth metals such as magnesium, calcium and strontium play an important role in a variety of geochemical and biological processes. The element ratios (Mg/Ca and Sr/Ca) in marine carbonates have been used as proxies for reconstruction of the past environment. Recently several studies suggested that the study for the isotopic fractionation of the alkaline earth metals in marine carbonates has a potentially significant influence in geochemical research fields (e.g. Eisenhauer et al., 2009). The aim of this study is to explore the influence of carbonate polymorphs (Calcite and Aragonite) and environmental factors (e.g., temperature, precipitation rate) on the level of isotopic fractionation of the alkaline earth metals. We also examined possible correlations between the level of isotopic fractionation of Ca and that of other alkaline earth metals during carbonate precipitation. In order to determine the isotope fractionation factor of Mg, Ca and Sr during carbonate precipitation, calcite and aragonite were synthesized from calcium bicarbonate solution in which the amount of magnesium was controlled based on Kitano method. Calcium carbonates were also prepared from the mixture of calcium chlorite and sodium hydrogen carbonate solutions. The isotope fractionation factors were measured by MC-ICPMS. Results suggested that the level of isotopic fractionation of Mg during carbonate precipitation was correlated with that of Sr and that the change of the carbonate crystal structure could make differences of isotopic fractionations of Mg and Ca, however no difference was found in the case of Sr. In this presentation, the possible mechanism will be discussed.

  19. Degradation of halogenated carbons in alkaline alcohol

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko; Shimokawa, Toshinari

    2002-02-01

    1,1,2-Trichloro-trifluoroethane, 1,2-dibromo-tetrafluoroethane, 2,3,4,6-tetrachlorophenol, 1,2,4-trichlorobenzene, and 2,4,6-trichloroanisole were dissolved in alkaline isopropyl alcohol and irradiated with 60Co gamma rays after purged with pure nitrogen gas. The concentration of the hydroxide ions and the parent molecules decreased with the dose, while that of the halide ions and the organic products, with less halogen atoms than the parent, increased. Chain degradation will occur in alkaline isopropyl alcohol.

  20. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  1. Improvement of thermoelectric properties of alkaline-earth hexaborides

    SciTech Connect

    Takeda, Masatoshi . E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu; Takahashi, Norihito; Ueda, Noriyoshi

    2006-09-15

    Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

  2. Ionic conductivity of alkaline (Li 2O, Na 2O) and alkaline-earth (BaO) borates in crystallization (vitrification) region

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Davydov, A. V.

    2011-11-01

    In this paper we report the existence of abnormal behavior of electric properties of alkaline (Li 2O,Na 2O) and alkaline-earth (BaO) borate in the melt—a crystal (glass) transition region. Results of measurement of conductivity in the mentioned interval evidence the existence of a strong variation of electric properties depending on the concentration of alkaline and alkaline-earth ions. The reasons of such behavior are discussed.

  3. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  4. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  5. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  6. Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?

    NASA Astrophysics Data System (ADS)

    Kempe, Stephan; Kazmierczak, Jozef

    2002-03-01

    Recent discoveries about Europa - the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface - suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  7. Assessing the Effectiveness and Side-Effects of Ocean Alkalinity Enhancement in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ridgwell, A. J.

    2013-12-01

    At present, the potential to decrease atmospheric carbon dioxide concentrations by manipulating the carbon cycle (carbon geoengineering) is being considered as a fourth possible option for addressing anthropogenic climate change, alongside emissions reductions, adaptation and solar geoengineering. This study sets out to assess the effectiveness and potential side-effects of ocean alkalinity enhancement, or ';liming the ocean', as a means to slow the current increase in atmospheric CO2. In order to achieve this, an Earth system model (cGENIE) was used to run both individual simulations as well as a number of 934-member ensembles, to assess each surface ocean grid cell individually, for effectiveness and side-effects of ocean alkalinity enhancement. Effectiveness and side-effects were considered both temporally and spatially and under both steady-state scenarios (of 1x, 2x and 4x pre-industrial pCO2), and using RCP scenarios 4.5 and 8.5. Some consideration of the amount of lime potentially required to have a useful impact on atmospheric CO2 concentration and ocean acidification has also been carried out and compared to current mining capabilities, as an initial step towards considering the feasibility of such an intervention. This research aims to inform the emerging debate around geoengineering by providing an initial insight into where, when and how frequently lime could be used to most efficiently contribute to efforts to slow the rate of increasing atmospheric CO2 concentrations, as well as insights into the caveats and side-effects that may accompany ocean alkalinity enhancement interventions.

  8. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Copello, Julio A

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  9. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    PubMed Central

    Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  10. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  11. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  12. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    NASA Astrophysics Data System (ADS)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal

  13. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  14. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  15. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  16. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. PMID:25912910

  17. Chemical trend of pressure-induced metallization in alkaline earth hydrides

    SciTech Connect

    Zhang, Sijia; Chen, Xiao-Jia; Zhang, Rui-Qin; Lin, Hai-Qing

    2010-09-02

    The pressure-induced metallization of alkaline earth hydrides was systematically investigated using ab initio methods. While BeH{sub 2} and MgH{sub 2} present different semimetallic phases, CaH{sub 2}, SrH{sub 2}, and BaH{sub 2} share the same metallic phase (P6/mmm). The metallization pressure shows an attractive decrease with each increment of metal radius, and this trend is well correlated with both the electronegativity of alkaline earth metals and the band gap of alkaline earth hydrides at ambient pressure. Our results are consistent with current experimental data, and the obtained trend has significant implications for designing and engineering metallic hydrides for energy applications.

  18. Pressure studies of alkali, alkaline earth and rare earth doped C{sub 60} superconductors

    SciTech Connect

    Schirber, J.E.; Bayless, W.R.; Kortan, A.R.; Ozdas, E.; Zhou, O.; Murphy, D.; Fischer, J.E.

    1994-06-01

    Pressure studies of the superconducting transition temperature T{sub c} of the alkali metal doped C{sub 60} compounds helped to establish a universal curve of T{sub c} versus lattice constant upon which nearly all of these materials lie. Various theoretical schemes incorporate this finding and suggest that only the lattice parameter and not the details of the dopant determine T{sub c}. Ca{sub 5}C{sub 60}, the highest T{sub c} member of the alkaline earth doped C{sub 60} superconductor has a T{sub c} which lies on this universal curve so this material, from these considerations, should have the same large negative pressure derivative as the alkali doped superconductors. We have measured dT{sub c}/dP for Ca{sub 5}C{sub 60} and for Yb{sub x}C{sub 60} (x near 3) and find small and positive values indicating that the theoretical models must be expanded to include band structure effects.

  19. Alkylation of imidazole under ultrasound irradiation over alkaline carbons

    NASA Astrophysics Data System (ADS)

    Costarrosa, L.; Calvino-Casilda, V.; Ferrera-Escudero, S.; Durán-Valle, C. J.; Martín-Aranda, R. M.

    2006-06-01

    N-Alkyl-imidazole has been synthesized by sonochemical irradiation of imidazole and 1-bromobutane using alkaline-promoted carbons (exchanged with the binary combinations of Na, K and Cs). The catalysts were characterized by X-ray photoelectron spectroscopy, thermal analysis and N 2 adsorption isotherms. Under the experimental conditions, N-alkyl-imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing the basicity of the catalyst. The influence of the alkaline promoter, the reaction temperature, and the amount of catalyst on the catalytic activity has been studied. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  20. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  1. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  2. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  3. Phosphate glass electrode with good selectivity for alkaline-earth cations

    USGS Publications Warehouse

    Truesdell, A.H.; Pommer, A.M.

    1963-01-01

    A phosphate glass has been found to have a significant electrode specificity toward alkaline-earth ions. The order of selectivity is 2H + > Ba++ > Sr++ > Ca++ > 2K+ > 2Na+ > Mg++. Exchange properties are discussed in relation to possible structure. Its use to determine activity of Ca++ in natural systems containing Mg++ is suggested.

  4. Alkaline-Earth-Promoted CO Homologation and Reductive Catalysis

    PubMed Central

    Anker, Mathew D; Hill, Michael S; Lowe, John P; Mahon, Mary F

    2015-01-01

    Reaction between a β-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3, an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond. PMID:26220407

  5. Alkaline-Earth-Promoted CO Homologation and Reductive Catalysis.

    PubMed

    Anker, Mathew D; Hill, Michael S; Lowe, John P; Mahon, Mary F

    2015-08-17

    Reaction between a β-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3 , an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond. PMID:26220407

  6. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  7. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  8. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  9. Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle

    SciTech Connect

    Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob

    2012-05-22

    An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

  10. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  12. Complex formation of alkaline-earth cations with crown ethers and cryptands in methanol solutions

    SciTech Connect

    Buschman, H.J.

    1986-06-01

    The complexation of alkaline-earth cations by different crown ethers, azacrown ethers, and cryptands has been studied in methanol solutions by means of calorimetric and potentiometric titrations. The smallest monocyclic ligands examined from 2:1 complexes (ratio of ligand to cation) with cations which are too large to fit into the ligand cavity. With the smallest cryptand, only Sr/sup 2 +/ and Ba/sup 2 +/ ions are able to form exclusive complexes. In the case of the reaction of cryptand (211) with Ca/sup 2 +/, a separate estimation of stability constants for the formation of exclusive and inclusive complexes was possible for the first time. Higher values for stability constants are found for the reaction of alkaline-earth cations with cryptands compared to the reaction with alkali ions. This increase is only caused by favorable entropic contributions.

  13. Bose-Einstein Condensation of Alkaline Earth Atoms: {sup 40}Ca

    SciTech Connect

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of {sup 40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of {sup 40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2x10{sup 4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the {sup 1}S-{sup 3}P asymptotes.

  14. Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Zhang, Deping; Cheng, Yanting; Chen, Wei; Zhang, Peng; Zhai, Hui

    2016-04-01

    Alkaline-earth-metal atoms have a long-lived electronic excited state, and when atoms in this excited state are localized in the Fermi sea of ground-state atoms by an external potential, they serve as magnetic impurities, due to the spin-exchange interaction between the excited- and the ground-state atoms. This can give rise to the Kondo effect. However, in order to achieve this effect in current atomic gas experiments, it requires the Kondo temperature to be increased to a sizable portion of the Fermi temperature. In this paper we calculate the confinement-induced resonance (CIR) for the spin-exchanging interaction between the ground and the excited states of the alkaline-earth-metal atoms and propose that the spin-exchange interaction can be strongly enhanced by utilizing the CIR. We analyze this system by the renormalization-group approach and show that near a CIR, the Kondo temperature can be significantly enhanced.

  15. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  16. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    PubMed

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  17. Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Nørskov, Jens K.; Vojvodic, Aleksandra

    2015-04-01

    We present a systematic theoretical investigation of the surface properties, stability, and reactivity of rocksalt type alkaline-earth metal oxides including MgO, CaO, SrO, and BaO. The accuracy of commonly used exchange-correlation density functionals (LDA, PBE, RPBE, PBEsol, BEEF-vdW, and hybrid HSE) and random-phase approximation (RPA) is evaluated and compared to existing experimental values. Calculated surface energies of the four most stable surface facets under vacuum conditions, the (100) surface, the metal and oxygen terminated octopolar (111), and the (110) surfaces, exhibit a monotonic increase in stability from MgO to BaO. On the MgO(100) surface, adsorption of CO, NO, and CH4 is characterized by physisorption while H2O chemisorbs, which is in agreement with experimental findings. We further use the on-top metal adsorption of CO and NO molecules to map out the surface energetics of each alkaline-earth metal oxide surface. The considered functionals all qualitatively predict similar adsorption energy trends. The ordering between the adsorption energies on different surface facets can be attributed to differences in the local geometrical surface structure and the electronic structure of the metal constituent of the alkaline-earth metal oxide. The striking observation that CO adsorption strength is weaker than NO adsorption on the (100) terraces as the period of the alkaline-earth metal in the oxide increases is analyzed in detail in terms of charge redistribution within the σ and π channels of adsorbates. Finally, we also present oxygen adsorption and oxygen vacancy formation energies in these oxide systems.

  18. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  19. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  20. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  1. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  2. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.

    PubMed

    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar

    2004-06-01

    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  3. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    SciTech Connect

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  4. Carbon Dioxide Removal and Conversion to Ocean Alkalinity: Why and How

    NASA Astrophysics Data System (ADS)

    Rau, G. H.

    2014-12-01

    Drastic reduction in anthropogenic CO2 emissions is the most obvious way to stabilize atmospheric CO2. However, there is growing risk that effective emissions reduction policies and technologies will not engage soon enough to avoid significant CO2-induced climate and ocean acidification impacts. This realization has lead to increased interest (e.g., IPCC AR5, 2014; NRC/NAS, 2014) in the possibility of pro-actively increasing CO2 removal (CDR) from the atmosphere above the 55% of our emissions that are already removed from air by natural land and ocean processes. While a variety of biotic, abiotic, and hybrid CDR methods have been proposed, those involving geochemistry have much to recommend them. These methods employ the same geochemical reactions that naturally and effectively remove excess planetary CO2 and neutralize ocean acidity on geologic time scales. These reactions proceed when the hydrosphere, acidified by excess air CO2, contacts and reacts with carbonate and silicate minerals (>90% of the Earth's crust), producing dissolved bicarbonates and carbonates, i.e., ocean alkalinity. This alkalinity is eventually removed and the excess carbon stored via carbonate precipitation. So while the importance and global effectiveness of such reactions are not in question, it remains to be seen if this very slow, natural CDR could be safely and cost-effectively accelerated to help manage air CO2 levels on human rather than geologic time scales. Various terrestrial and marine, geochemistry-based CDR methods will be reviewed including: 1) the addition of minerals to soils and the ocean, 2) removal of CO2 from waste streams, esp. from biomass energy, via wet mineral contacting, and 3) the production and use of mineral derivatives, e.g. oxides or hydroxides, as CDR agents. The additional potential environmental benefits (e.g., reversal of ocean carbonate saturation loss) and impacts (e.g., increased mineral extraction), as well as potential economics will also be discussed.

  5. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    PubMed

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  6. Intermolecular hydroamination of vinylarenes by iminoanilide alkaline-earth catalysts: a computational scrutiny of mechanistic pathways.

    PubMed

    Tobisch, Sven

    2014-07-14

    A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide [{N^N}Ae{N(SiMe3)2}⋅(THF)n] alkaline-earth amido compounds (Ae = Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline-earth and rare-earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton-assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ-insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae-C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ-insertive pathway that involves fast and reversible migratory C=C bond insertion into the polar Ae-N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four-centre transition state (TS) structure, linked to irreversible intramolecular Ae-C bond aminolysis of the alkaline-earth alkyl intermediate as the energetically favourable mechanism. Turnover-limiting aminolysis is consistent with the significant KIE measured; the DFT-derived effective barrier matches the Eyring parameter empirically determined for the best-performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca

  7. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  8. Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri A.

    2006-05-01

    Despite the fact that the bulk compositions of most low temperature natural surface waters, groundwaters, and porewaters are heavily influenced by alkaline earths, an understanding of the development of proton surface charge in the presence of alkaline earth adsorption on the surfaces of minerals is lacking. In particular, models of speciation at the mineral-water interface in systems involving alkaline earths need to be established for a range of different minerals. In the present study, X-ray standing wave results for Sr 2+ adsorption on rutile as a tetranuclear complex [Fenter, P., Cheng, L., Rihs, S., Machesky, M., Bedyzk, M.D., Sturchio, N.C., 2000. Electrical double-layer structure at the rutile-water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci.225, 154-165] are used as constraints for all the alkaline earths in surface complexation simulations of proton surface charge, metal adsorption, and electrokinetic experiments referring to wide ranges of pH, ionic strength, surface coverage, and type of oxide. The tetranuclear reaction 4>SOH+M+H2O=(>SOH)2(>SO-)2_M(OH)++3H+ predominates for the large cations Sr 2+ and Ba 2+ (and presumably Ra 2+), consistent with X-ray results. In contrast, the mononuclear reaction >SOH+M+H2O=>SO-_M(OH)++2H+ predominates for the much smaller Mg 2+ (and presumably Be 2+), with minor amounts of the tetranuclear reaction. Both reaction types appear to be important for the intermediate size Ca 2+. For all the alkaline earths on all oxides, the proportions of the different reaction types vary systematically as a function of pH, ionic strength, and surface coverage. The application of Born solvation and crystal-chemical theory enables estimation of the equilibrium constants of adsorption of all the alkaline earths on all oxides. On high dielectric constant solids (rutile, magnetite, manganese dioxide), where the solvation contribution is negligable, ion adsorption correlates with crystal

  9. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Ren, Yanfei; Kresin, Vitaly V.

    2007-10-01

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free He4 nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  10. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  11. The potential of trees to record aluminum mobilization and changes in alkaline earth availability

    SciTech Connect

    Bondietti, E.A.; Baes, C.F. III; McLaughlin, S.B.

    1988-01-01

    The mobilization of exchangeable soil cations by atmospheric depositions of mineral acid anions and the distribution of polyvalent cations in the xylem are described to provide the basis for interpreting both radial concentration and concentration ratio patterns of polyvalent cations in annual growth rings of trees. There is strong circumstantial evidence that increases in Al:Ca ratios in annual rings are related to aluminum mobilization, and that changes in the availability of alkaline earth elements and radial growth rated may also be related to cation mobilization. Suggestions for further research are presented.

  12. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  13. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  14. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    SciTech Connect

    Brunson, R.J.; Deane, B.C.; Epperly, W.R.

    1982-06-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  15. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    SciTech Connect

    Ren Yanfei; Kresin, Vitaly V.

    2007-10-15

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free {sup 4}He nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  16. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  17. Moving Carbon, Changing Earth: Bringing the Carbon Cycle to Life

    NASA Astrophysics Data System (ADS)

    Zabel, I.; Duggan-Haas, D.; Ross, R. M.; Stricker, B.; Mahowald, N. M.

    2014-12-01

    The carbon cycle presents challenges to researchers - in how to understand the complex interactions of fluxes, reservoirs, and systems - and to outreach professionals - in how to get across the complexity of the carbon cycle and still make it accessible to the public. At Cornell University and the Museum of the Earth in Ithaca, NY, researchers and outreach staff tackled these challenges together through a 2013 temporary museum exhibition: Moving Carbon, Changing Earth. Moving Carbon, Changing Earth introduced visitors to the world of carbon and its effect on every part of our lives. The exhibit was the result of the broader impacts portion of an NSF grant awarded to Natalie Mahowald, Professor in the Department of Earth and Atmospheric Sciences at Cornell University, who has been working with a team to improve simulations of regional and decadal variability in the carbon cycle. Within the exhibition, visitors used systems thinking to understand the distribution of carbon in and among Earth's systems, learning how (and how quickly or slowly) carbon moves between and within these systems, the relative scale of different reservoirs, and how carbon's movement changes climate and other environmental dynamics. Five interactive stations represented the oceans, lithosphere, atmosphere, biosphere, and a mystery reservoir. Puzzles, videos, real specimens, and an interview with Mahowald clarified and communicated the complexities of the carbon cycle. In this talk we'll present background information on Mahowald's research as well as photos of the exhibition and discussion of the components and motivations behind them, showing examples of innovative ways to bring a complex topic to life for museum visitors.

  18. Inhibited Carbonate Precipitation in Seawater Allows Carbon Dioxide Storage as Carbonate Alkalinity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Caldeira, K.

    2005-12-01

    As we have previously described, contacting flue gas (from fossil fuel combustion) with water and limestone presents a simple way of spontaneously reacting CO2 out of point-source waste gas streams to form a bicarbonate-rich solution via the reaction: CO2 + CaCO3 + H2O <--> Ca2+ + 2HCO3-. This process, we term Accelerated Weathering of Limestone (AWL), can provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 capture and sequestration technology in locations where limestone and abundant water are in close proximity to CO2 sources. Coastal locations are especially attractive because the ocean provides a source of water as well as a receptacle for the resulting bicarbonate solution. However, as evident in the preceding equation, the reaction will be driven to the right and hence excess bicarbonate will theoretically remain in solution only so long as excess CO2 is present. If the solution's excess CO2 is allowed to contact and thus degas to the atmosphere, carbonate ions will become supersaturated and solid carbonate will precipitate, thus reversing the original reaction and the CO2 mitigation potential of the process. Yet in the case of seawater, an important caveat is that carbonate precipitation is chemically hindered by the presence of phosphate, organic compounds, magnesium ions, and possibly other solutes. Indeed, the surface ocean is typically 6X supersaturated in calcite and 4X in aragonite, and it has been experimentally shown that seawater can tolerate >18X supersaturation before carbonate precipitation is chemically initiated. This means that: i) a substantial fraction of AWL-captured and -converted carbon will stay in solution in the form of carbonate alkalinity even if the solution's CO2 is fully equilibrated with the atmosphere, ii) significant CO2 mitigation can be achieved regardless of depth or location of solution disposal in the ocean, and iii) the resulting elevation in solution pH following CO2 degassing would be helpful in

  19. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  20. Tetrahedrally coordinated carbonates in Earth's lower mantle.

    PubMed

    Boulard, Eglantine; Pan, Ding; Galli, Giulia; Liu, Zhenxian; Mao, Wendy L

    2015-01-01

    Carbonates are the main species that bring carbon deep into our planet through subduction. They are an important rock-forming mineral group, fundamentally distinct from silicates in the Earth's crust in that carbon binds to three oxygen atoms, while silicon is bonded to four oxygens. Here we present experimental evidence that under the sufficiently high pressures and high temperatures existing in the lower mantle, ferromagnesian carbonates transform to a phase with tetrahedrally coordinated carbons. Above 80 GPa, in situ synchrotron infrared experiments show the unequivocal spectroscopic signature of the high-pressure phase of (Mg,Fe)CO3. Using ab-initio calculations, we assign the new infrared signature to C-O bands associated with tetrahedrally coordinated carbon with asymmetric C-O bonds. Tetrahedrally coordinated carbonates are expected to exhibit substantially different reactivity than low-pressure threefold coordinated carbonates, as well as different chemical properties in the liquid state. Hence, this may have significant implications for carbon reservoirs and fluxes, and the global geodynamic carbon cycle. PMID:25692448

  1. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  2. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    PubMed

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  3. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  4. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  5. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui

    2016-05-01

    Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.

  6. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  7. Development of flexible secondary alkaline battery with carbon nanotube enhanced electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqian; Mitra, Somenath

    2014-11-01

    We present the development of flexible secondary alkaline battery with rechargeability similar to that of conventional secondary alkaline batteries. Multiwalled carbon nanotubes (MWCNTs) were added to both electrodes to reduce internal resistance, and a cathode containing carbon black and purified MWCNTs was found to be most effective. A polyvinyl alcohol-poly (acrylic acid) copolymer separator served the dual functions of electrolyte storage and enhancing flexibility. Additives to the anode and cathode were effective in reducing capacity fades and improving rechargeability.

  8. Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.

  9. Solid / solution interaction: The effect of carbonate alkalinity on adsorbed thorium

    NASA Astrophysics Data System (ADS)

    LaFlamme, Brian D.; Murray, James W.

    1987-02-01

    Elevated activities of dissolved Th have been found in Soap Lake, an alkaline lake in Eastern Washington. Dissolved 232Th ranges from less than 0.001 to 4.9 dpm/L compared to about 1.3 × 10 -5 dpm/ L in sea water. The enhanced activity in the lake coincides with an increase in carbonate alkalinity. Experiments were conducted to evaluate the effect of pH, ionic strength and carbonate alkalinity on Th adsorption on goethite. Thorium (10 -13 M total) in the presence of 5.22 mg/L α-FeOOH and 0.1 M NaNO 3 has an adsorption edge from pH 2-5. At pH 9.0 ± 0.6 the percent Th absorbed on the solid began to decrease from 100% at 100 meq/L carbonate alkalinity and exhibited no adsorption above 300 meq/L. The experimental data were modeled to obtain the intrinsic adsorption equilibrium constants for Th hydrolysis species. These adsorption constants were incorporated in the model to interpret the observed effect of carbonate alkalinity on Th adsorption. There are two main effects of the alkalinity. To a significant degree the decrease in Th adsorption is due to competition of HCO -3 and CO 2-3 ions for surface sites. Dissolved Th carbonate complexes also contribute to the increase of Th in solution.

  10. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  11. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  12. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  13. Subduction of Organic Carbon into the Earth

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Malinverno, A.

    2015-12-01

    Seafloor sediments approach active subduction zones with small amounts (generally < 1 dry weight %) of organic carbon, but this small concentration nonetheless constitutes a significant flux over geological time with respect to the size, isotopic composition and electron balance of the carbosphere. In order to quantify the flux of organic carbon into subduction zones, we have examined carbon concentration and density measurements provided by successive drilling programs (DSDP, ODP, IODP) for cores that sample complete sediment sections to basement near deep sea trenches. An interpolation scheme compensates for sparse or non-uniform analyses, and a weighted bulk concentration is calculated for organic carbon (OC) and inorganic carbonate (IC) for each site. When multiplied by the sediment thickness, the trench length and the convergence velocity, a subducted mass flux can be obtained. Sites with the greatest concentration of OC include those that pass beneath regions of high biological productivity (such as the Eastern Equatorial Pacific) and those that receive terrigenous turbidites (e.g., Indus and Begal Fans, Gulf of Alaska, Cascadia, etc). Together, terrigenous turbidites make up about 60% of the global subducted sediment (GLOSS), and thus have a strong control on the concentration of OC in GLOSS. Sites dominated by terrigenous turbidites have 0.4 wt% OC on average (1sd = 0.1 wt%), and GLOSS is very similar, yielding about 6 MtC/yr OC subducted globally. This flux is enough to subduct the entire surface pool of OC every 2.6 Ga, which if not returned, or returned in a more oxidized form, could contribute to a significant rise in oxygen at the surface of the Earth. Seemingly fortuitously, the OC/total carbon fraction in GLOSS is 20%, very near the long term average required to maintain the isotopic composition of marine carbonates at ~ 0 per mil d13C over much of Earth history.

  14. Capillary electrophoresis of alkali and alkaline-earth cations with imidazole or benzylamine buffers

    SciTech Connect

    Morin, P.; Francois, C.; Dreux, M. . Lab. de Chimie Bioorganique et Analytique)

    1994-01-01

    The separation of alkali, alkaline earth, and ammonium cations in several samples of water was achieved by capillary electrophoresis with indirect UV detection. A solution of imidazole (10[sup [minus]2] M, pH 4.5) was used as a buffer to resolve a mixture of six cations (K[sup +], Na[sup +], Ca[sup 2+], Ba[sup 2+], Li[sup +] and Mg[sup 2+]) by capillary electrophoresis at 214 nm in less than 10 min. The addition of potassium cation to the running buffer has an influence on the resolution of Ca[sup 2+]/Na[sup +] and Na[sup +]/Mg[sup 2+] peaks. A linear relationship between the corrected peak area and concentration was obtained in the 1--10 ppm range for these cations using a hydrodynamic injector. This electrophoretic system permitted the separation of these inorganic cations at a 50 ppb-level concentration with a hydrodynamic injection, thus making it possible to quantitatively determine their presence in mineral waters by capillary electrophoresis. At pH 4.5, potassium and ammonium unfortunately have identical ionic mobilities causing them to comigrate in an imidazole buffer. Using an alkaline solution of benzylamine as carrier electrolyte, their separation can be successfully achieved with excellent resolution at 204 nm. The analyses of tap water and several mineral waters have been achieved by capillary electrophoresis.

  15. Liquids in multiorbital SU(N) magnets made up of ultracold alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Xu, Cenke

    2010-04-01

    In this work we study one family of liquid states of k -orbital SU(N) spin systems, focusing on the case of k=2 which can be realized by ultracold alkaline-earth atoms trapped in optical lattices, with N as large as 10. Five different algebraic liquid states with selectively coupled charge, spin, and orbital quantum fluctuations are considered. The algebraic liquid states can be stabilized with large enough N and the scaling dimension of physical order parameters is calculated using a systematic 1/N expansion. The phase transitions between these liquid states are also studied and all the algebraic liquid states discussed in this work can be obtained from one “mother” state with SU(2)×U(1) gauge symmetry.

  16. Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    SciTech Connect

    Santra, Robin; Christ, Kevin V.; Greene, Chris H.

    2004-04-01

    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp){sup 3}P{sub J}{sup o}(J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.

  17. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  18. Processing and electrical properties of alkaline earth-doped lanthanum gallate

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Pederson, L.R.; Weber, W.J.

    1997-10-01

    Oxides exhibiting substantial oxygen ion conductivity are utilized in a number of high-temperature applications, including solid oxide fuel cells, oxygen separation membranes, membrane reactors, and oxygen sensors. Alkaline earth-doped lanthanum gallate powders were prepared by glycine/nitrate combustion synthesis. Compacts of powders synthesized under fuel-rich conditions were sintered to densities greater than 97% of theoretical. Appropriate doping with Sr or Ba on the A-site of the perovskite structure, and Mg on the B-site, resulted in oxygen ion conductivity higher than that of yttria-stabilized zirconia (YSZ), and high ionic transference numbers. Doping with Ca and Mg resulted in lower conductivity than YSZ. Thermal expansion coefficients of the doped gallates were higher than that of YSZ.

  19. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  20. Magnetic crystals and helical liquids in alkaline-earth fermionic gases.

    PubMed

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  1. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  2. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  3. Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects

    NASA Astrophysics Data System (ADS)

    Prasannaa, V. S.; Sreerekha, S.; Abe, M.; Bannur, V. M.; Das, B. P.

    2016-04-01

    The interplay of the relativistic and correlation effects in the permanent electric dipole moments of the X 2Σ+ electronic ground states of the alkaline-earth-metal monofluorides (BeF, MgF, CaF, SrF, and BaF) has been studied using a relativistic coupled cluster method. The calculations were carried out using double, triple, and quadruple zeta basis sets, and with no core orbitals frozen. The results are compared with those of other calculations available in the literature and with experiments. The correlation trends in the permanent electric dipole moments of these molecules are discussed in detail. This information will be useful in throwing light on the interplay between relativistic and correlation effects of other properties that are relevant to fundamental physics.

  4. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1995-05-01

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  5. Theoretical study of the dipole moments of selected alkaline-earth halides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  6. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  7. Calculation of the lowest electronic excitations of the alkaline earth metals using the relativistic polarization propagator

    NASA Astrophysics Data System (ADS)

    Brandt, Sven; Pernpointner, Markus

    2015-07-01

    In this work we use the recently implemented four-component polarization propagator for accurate single excitation calculations of alkaline earth metals and compare our results to experimental data. Various approximations to the Dirac-Coulomb Hamiltonian are additionally tested. In Ca spin-orbit coupling already leads to noticeable zero field splitting, which gradually increases for the heavier homologs finally invalidating the singlet and triplet state characterizations. For all systems we observe a very good agreement with experimental transition energies in the considered energy range. For Sr, Ba and Ra non-relativistic approaches already exhibit unacceptable deviations in the reproduction of transition energies and spectral structure. The obtained excited final states are analyzed in terms of atomic donor and acceptor orbital contributions. Our results stress the necessity to use relativistic implementations of the polarization propagator for an accurate description of both electron correlation and relativistic effects contributing to excitation spectra of heavy systems.

  8. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  9. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  10. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Dove, Patricia M.; Craven, Colin M.

    2005-11-01

    The surface charge density of colloidal SiO 2 (Aerosil 380) was measured in alkali chloride (0.067 and 0.20 M LiCl, NaCl, and KCl) and alkaline earth chloride (0.067 M MgCl 2, CaCl 2, SrCl 2, BaCl 2) solutions. Measurements were conducted at 25°C by potentiometric titrations using the constant ionic medium method in a CO 2-free system. The experimental design measured surface charge for solutions with constant ionic strength as well as constant cation concentration. Alkali chloride solutions promote negative surface charge density in the order LiCl < NaCl < KCl to give the "regular" lyotropic behavior previously reported. In contrast, the alkaline earth chloride solutions exhibit a reversed lyotropic trend with increasing crystallographic radius where increasing negative charge is promoted in the order BaCl 2 < SrCl 2 < CaCl 2 < MgCl 2. The origin of the opposing affinity trends is probed by testing the hypothesis that this reversal is rooted in the differing solvent structuring characteristics of the IA and IIA cations at the silica-water interface. This idea arises from earlier postulations that solvent structuring effects increase entropy through solvent disordering and these gains must be much greater than the small, positive enthalpy associated with electrostatic interactions. By correlating measured charge density with a proxy for the solvent-structuring ability of cations, this study shows that silica surface charge density is maximized by those electrolytes that have the strongest effects on solvent structuring. We suggest that for a given solid material, solvation entropy has a role in determining the ionic specificity of electrostatic interactions and reiterate the idea that the concept of lyotropy is rooted in the solvent-structuring ability of cations at the interface.

  11. Thermal poling of alkaline earth boroaluminosilicate glasses with intrinsically high dielectric breakdown strength

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas J.; Lanagan, Michael T.; Pantano, Carlo G.

    2012-04-01

    Per the rectification model of thermal poling, it has been proposed that intrinsic breakdown strength plays a strong limiting role in the internal DC fields supported by the glass from the poling process. One might therefore hypothesize proportionately larger second-order nonlinearity (SON) in glasses with intrinsically high dielectric breakdown strength. We test these ideas by thermal poling of two different commercial alkali-free alkaline-earth boroaluminosilicate display glasses—one with barium only (AF45 from Schott), and the other with a mixture of alkaline-earth ions (OA-10 G from NEG). Not only are such compositions relevant from a commercial standpoint, they are also interesting in that they have been recently shown to exhibit remarkably high intrinsic dielectric breakdown strengths of 11-14 MV/cm. Quantitative Maker fringe and stack Maker-fringe measurements provide an accurate evaluation of the poling-induced SON susceptibilities, and indicate maximum χ(2) values of 0.44 and 0.26 pm/V in these glasses. These values are comparable to those reported for silica and other multicomponent glasses. Thus, the hypothesis that higher χ(2) would be observed in high intrinsic breakdown strength glasses was not validated. Based on our application of the rectification model, internal fields of the order 2-4 MV/cm were calculated, which are well below the measured intrinsic breakdown strengths at room temperature. The most plausible explanation for these observations is nonlinear electronic conduction effects taking place within the depletion region at the poling temperature, limiting internal fields to a fraction of the breakdown field.

  12. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  13. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    PubMed

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  14. Correlation of XANES features with the scintillation efficiencies of Ce doped alkaline earth lithium silicate glasses

    SciTech Connect

    Blanchard, D.L.; Sunberg, D.S.; Craig, R.A.; Bliss, M.; Weber, M.J.

    1994-11-01

    Cerium-activated, lithium-silicate glasses are widely used as thermal neutron detectors because of their versatility, robustness and low cost. The glasses convert the energy of the neutrons to visible light pulses that may be counted. This process, scintillation, is generally thought to be composed of three steps: ionization, energy transfer, and luminescence. If defects are present, they can trap the excitations, altering the scintillation output. These features have been discussed previously. The presence of magnesium in these glasses increases scintillation efficiency, but as previously observed the effect drops by a factor greater than 2.5 with substitution through the series of alkaline earths. Here, cerium activated glasses of composition 20Li{sub 2}O{center_dot}15MO{center_dot}64.4SiO{sub 2}{center_dot}0.6Ce{sub 3}O{sub 3} (where m is Mg, Ca, Sr, or Ba) exhibit scintillation efficiencies that vary by more than a factor of 2.5 with the alkaline earth. Previous work has suggested a correlation between the microstructure of these glasses and scintillation efficiency. Measurements of the Ce L{sub III} x-ray absorption edge in the Mg, Ca and Sr glasses display a feature near the absorption edge that is suggestive of the presence of Ce{sup 4+}. The area of this peak is, in fact, correlated with the scintillation efficiency of the glass. The amount of Ce{sup 4+} indicated by the intensity of this feature is, however, too high to be a permanent population. The authors suspect that the feature is a transient phenomenon related to creation of Ce{sup 4+} and trapped electrons due to photoionization by the x-ray beam.

  15. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  16. Alkali metal, alkaline earth metal, and ammonium ion selectivities of dibenzo-16-crown-5 compounds with functional side arms in ion-selective electrodes

    SciTech Connect

    Ohki, Akira; Lu, J.P.; Huang, X.; Bartsch, R.A. )

    1994-12-01

    Potentiometric selectivities of 11 dibenzo-16-crown-5 compounds for alkali metal, alkaline earth metal, and ammonium ions have been determined in solvent polymeric membrane electrodes. The ionophores bear one or two pendent groups on the central carbon of the three-carbon bridge in the polyether ring. Side-arm variation includes OCH[sub 3], OCH[sub 2]CH[sub 2]OCH[sub 3], OCH[sub 2]CO[sub 2]C[sub 2]H[sub 5], OCH[sub 2]C(O)N(C[sub 2]H[sub 5])[sub 2], and OCH[sub 2]C(O)N(C[sub 5]H[sub 11])[sub 2] units. Attachment of a propyl group to the ring carbon that bears an extended, oxygen-containing side arm increases the selectivity for Na[sup +] relative to larger alkali metal and alkaline earth metal cations. For a given side arm, a linear relationship is obtained when the enhancement in Na[sup +] selectivity produced by attachment of a geminal propyl group is plotted against the diameter of the interference ion. Potentiometric responses of the dibenzo-16-crown-5 compounds are rationalized in terms of the crown ether ring size and the oxygen basicity, conformational positioning, and rigidity of the side arm. 22 refs., 3 figs., 2 tabs.

  17. Soil carbon cycle of different saline and alkaline soils under cotton fields in Tarim River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Zhao, Chengyi; Stahr, Karl; Kuzyakov, Yakov

    2015-04-01

    Calcium carbonate is the most common form of carbon (C) in semiarid and arid soils. Depending on pH and salinity changes, soils can act as sink or source of atmospheric CO2 as well as contribute to C exchange between CO2 and CaCO3 leading to formation of pedogenic carbonates. However, the rates of these processes and the effects of environmental factors remains unknown. 14CO2 was used to assess carbonate recrystallization in 4 saline and alkaline soils (Aksu alkaline, Aksu saline, Yingbazar alkaline, Yingbazar saline) (EC = 0.32, 1.35, 1.72, 3.67 (1:20) mS cm-1, pH = 8.5, 8.2, 8.9, 7.9 respectively) and to trace the C exchange in the soils of the Tarim River basin depending on CO2 concentrations in soils (0.02%, 0.04%, 0.2%, 0.4% and 4%). 14C was traced in soil water and air as well as in carbonates. The highest 14C in 14CO2 (95% of the 14C input) was observed in Aksu alkaline soil and the highest 14C incorporation in CaCO3 (54%) was observed in Yingbazar saline soil. There were close negative linear relationships between initial CO2 concentrations (0.04%, 0.4% and 4%) and the 14C in Ca14CO3 and in 14CO2. The carbonate recrystallization rate increased with the CO2 concentration and were depended on the recrystalliztion period. The average carbonate recrystallization rate was highest at 4% CO2 concentration for Yingbazar saline soil (6.59×10-4 % per day) and the lowest at 0.04% CO2 concentration for Aksu alkaline soil (0.03×10-4 % per day). The carbonate recrystallization rate linearly increased with the soil EC and with 0.04% and 0.4% CO2 concentration , whereas the carbonate recrystallization rate decreased with pH. The highest CO2 concentration of 4% can 10 to 100 times shorten the full carbonate recrystallization of the remaining primary carbonates compared to lower CO2 concentrations 0.4% and 0.04% for complete (95%) recrystallization of soil carbonate. We conclude that microbial and root respiration affecting CO2 concentration in soil is the most important

  18. Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media.

    PubMed

    Morozan, Adina; Donck, Simon; Artero, Vincent; Gravel, Edmond; Doris, Eric

    2015-11-01

    A carbon nanotube-gold nanohybrid was used as catalyst for the reduction of molecular oxygen in acidic and alkaline media, the relevant cathode reaction in fuel cells. In alkaline medium, the nanohybrid exhibits excellent activity with a dominant 4e(-) reduction of O2 and low overpotential requirement compared to previously reported nano-gold materials. This property is linked to its capability to efficiently mediate HO2(-) dismutation. PMID:26439282

  19. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  20. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  1. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yipu; Li, Guo-Dong; Yuan, Long; Ge, Lei; Ding, Hong; Wang, Dejun; Zou, Xiaoxin

    2015-02-01

    The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient noble metal-free electrocatalysts for alkaline HER. The catalyst affords a current density of 10 mA cm-2 at a low overpotential of 73 mV, which is close to that (33 mV) required by Pt/C to obtain the same current density. In addition, this catalyst operates stably at large current densities (>30 mA cm-1) for as long as 18 h, and gives nearly 100% Faradaic yield during alkaline HER. The excellent catalytic performance (activity and stability) of this nanocomposite material is attributed to the cooperative effect between nanosized bimetallic carbide and the carbon protection layer outside the metal carbide. The results presented herein offer the exciting possibility of using carbon-armoured metal carbides for an efficient alkaline HER, although pristine metal carbides are not, generally, chemically stable enough under such strong alkaline conditions.The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient noble metal-free electrocatalysts for alkaline HER. The catalyst affords a current density of 10 mA cm-2 at a low overpotential of 73 mV, which is close to that (33 mV) required by Pt/C to obtain the same current density. In addition, this catalyst operates stably at large current densities (>30 mA cm-1) for as long as 18 h, and gives nearly

  2. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  3. Carbon cycles on super-Earth exoplanets

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin; Pierrehumbert, Raymond; Hébrard, Eric

    2013-04-01

    On Earth, the long-term global carbon cycle primarily consists of a balance between volcanic emissions of CO2 and the formation and burial of carbonate rocks (the carbonate-silicate weathering 'thermostat'), with important modifications due to the biosphere. On gas giant planets, the carbon cycle is driven by photolysis in the upper atmosphere: methane is converted to longer-chain hydrocarbons such as acetylene, ethane and soot particles, which are then dissociated by thermolysis lower in the atmosphere where the temperature and pressure are much higher. Hydrogen escape rates on terrestrial exoplanets are predicted to be a strong function of their orbital distances, ages and masses. In particular, larger exoplanets around stars with lower extreme ultraviolet (XUV) emissions may have significant difficulties in losing their hydrogen to space, and hence may retain H2 envelopes of varying mass. It is therefore interesting to investigate what happens in the transition between the terrestrial and hydrogen-dominated regimes. Here we present a first attempt to investigate the range of scenarios that occur for terrestrial mass (~1-10 ME) planets with varying hydrogen escape rates. We are developing climate evolution simulations for a range of cases that account for surface processes (primarily outgassing and weathering), hydrogen escape to space, and simple atmospheric chemistry. We discuss various feedbacks that may occur as a result of the influences of CO2, CH4 and H2 on atmospheric and surface temperatures. Finally, we discuss the implications of our results for future observations, with a particular emphasis on the search for biosignatures on exoplanets similar to the Earth.

  4. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure. PMID:11541253

  5. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  6. Computational mechanistic elucidation of the intramolecular aminoalkene hydroamination catalysed by iminoanilide alkaline-earth compounds.

    PubMed

    Tobisch, Sven

    2015-04-27

    A comprehensive computational exploration of plausible alternative mechanistic pathways for the intramolecular hydroamination (HA) of aminoalkenes by a recently reported class of kinetically stabilised iminoanilide alkaline-earth silylamido compounds [{N^N}Ae{N(SiMe3)2}⋅(thf)n] ({N^N} = iminoanilide; Ae = Ca, Sr, Ba) is presented. On the one hand, a proton-assisted concerted N-C/C-H bond-forming pathway to afford the cycloamine in a single step can be invoked and on the other hand, a stepwise σ-insertive pathway that involves a fast, reversible migratory olefin 1,2-insertion step linked to a less rapid, irreversible metal-C azacycle tether σ-bond aminolysis. Notably, these alternative mechanistic avenues are equally consistent with reported key experimental features. The present study, which employs a thoroughly benchmarked and reliable DFT methodology, supports the prevailing mechanism to be a stepwise σ-insertive pathway that sees an initial conversion of the {N^N}Ae silylamido into the catalytically competent {N^N}Ae amidoalkene compound and involves thereafter facile and reversible insertive N-C bond-forming ring closure, linked to irreversible intramolecular Ae-C tether σ-bond aminolysis at the transient {N^N}Ae alkyl intermediate. Turnover-limiting protonolysis accounts for the substantial primary kinetic isotope effect observed; its DFT-derived barrier satisfactorily matches the empirically determined Eyring parameter and predicts the decrease in rate observed across the series Ca>Sr>Ba correctly. Non-competitive kinetic demands militate against the operation of the concerted proton-assisted pathway, which describes N-C bond-forming ring closure triggered by concomitant amino proton delivery at the C=C linkage evolving through a multi-centre TS structure. Valuable insights into the catalytic structure-activity relationships are unveiled by a detailed comparison of [{N^N}Ae(NHR)] catalysts. Moreover, the intriguingly opposite trends in reactivity

  7. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    PubMed Central

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García

    2016-01-01

    Summary Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  8. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions.

    PubMed

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV-vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  9. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  10. Carbon-protected bimetallic carbide nanoparticles for a highly efficient alkaline hydrogen evolution reaction.

    PubMed

    Liu, Yipu; Li, Guo-Dong; Yuan, Long; Ge, Lei; Ding, Hong; Wang, Dejun; Zou, Xiaoxin

    2015-02-21

    The hydrogen evolution reaction (HER) is one of the two important half reactions in current water-alkali and chlor-alkali electrolyzers. To make this reaction energy-efficient, development of highly active and durable catalytic materials in an alkaline environment is required. Herein we report the synthesis of carbon-coated cobalt-tungsten carbide nanoparticles that have proven to be efficient noble metal-free electrocatalysts for alkaline HER. The catalyst affords a current density of 10 mA cm(-2) at a low overpotential of 73 mV, which is close to that (33 mV) required by Pt/C to obtain the same current density. In addition, this catalyst operates stably at large current densities (>30 mA cm(-1)) for as long as 18 h, and gives nearly 100% Faradaic yield during alkaline HER. The excellent catalytic performance (activity and stability) of this nanocomposite material is attributed to the cooperative effect between nanosized bimetallic carbide and the carbon protection layer outside the metal carbide. The results presented herein offer the exciting possibility of using carbon-armoured metal carbides for an efficient alkaline HER, although pristine metal carbides are not, generally, chemically stable enough under such strong alkaline conditions. PMID:25611887

  11. The Characterization of Eu2+-Doped Mixed Alkaline-Earth Iodide Scintillator Crystals

    SciTech Connect

    Neal, John S; Boatner, Lynn A; Ramey, Joanne Oxendine; Wisniewski, D.; Kolopus, James A; Cherepy, Nerine; Payne, Stephen A.

    2011-01-01

    The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3 to 6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for Sr ions. Specifically, europium-doped single crystals have been grown in which up to 30 at % of the strontium ions have been substituted for either by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, there are three other column IIA elements that are obvious choices for investigations whose purpose is to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with either Mg2+, Ca2+, or Ba2+. Light yields of up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 keV gamma-rays) have been observed in the case of a partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 s, while the peak emission wavelengths ranged from 432 to 438 nm.

  12. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  13. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  14. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  15. Structural investigation of Eu{sup 2+} emissions from alkaline earth zirconium phosphate

    SciTech Connect

    Hirayama, Masaaki; Sonoyama, Noriyuki; Yamada, Atsuo; Kanno, Ryoji

    2009-04-15

    Eu{sup 2+} doped A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) phosphors with the NASICON structure were synthesized by a co-precipitation method. Their photoluminescent and structural properties were investigated by photoluminescent spectroscopy and powder X-ray Rietveld analysis, which determined two sites for Eu{sup 2+} ions in the host structure, 3a and 3b. The Eu-O bond lengths were increased by changing alkaline earth ions from Ca to Ba, causing Eu{sup 2+} emission bands to shift from blue-green to blue. A correlation was observed between the peak wavelength positions and the Eu-O bond length. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect, and a schematic diagram of Eu{sup 2+} emissions is proposed for the Eu{sup 2+} doped NASICON phosphor. - Graphical abstract: Eu{sup 2+} doped NASICON structured A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) showed the blue and blue-green colored emissions attributed to 4f{sup 6}5d{sup 1}-4f{sup 7} transitions. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect using powder X-ray Rietveld analysis.

  16. Quantitative parameters for the sequestering capacity of polyacrylates towards alkaline earth metal ions.

    PubMed

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2003-10-17

    The complex formation constants of polyacrylic (PAA) ligands (1.4alkaline earth metal complexes is discussed in the light of sequestering effects in natural waters. PMID:18969177

  17. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar.

    PubMed

    Li, Mi; Lou, Zhenjun; Wang, Yang; Liu, Qiang; Zhang, Yaping; Zhou, Jizhi; Qian, Guangren

    2015-01-01

    Alkali and alkaline earth metallic (AAEM) species water leaching and Cu(II) sorption by biochar prepared from two invasive plants, Spartina alterniflora (SA) and water hyacinth (WH), were explored in this work. Significant amounts of Na and K can be released (maximum leaching for Na 59.0 mg g(-1) and K 79.9 mg g(-1)) from SA and WH biochar when they are exposed to contact with water. Cu(II) removal by biochar is highly related with pyrolysis temperature and environmental pH with 600-700 °C and pH of 6 showing best performance (29.4 and 28.2 mg g(-1) for SA and WH biochar). Cu(II) sorption exerts negligible influence on Na/K/Mg leaching but clearly promotes the release of Ca. Biochars from these two plant species provide multiple benefits, including nutrient release (K), heavy metal immobilization as well as promoting the aggregation of soil particles (Ca) for soil amelioration. AAEM and Cu(II) equilibrium concentrations in sorption were analyzed by positive matrix factorization (PMF) to examine the factors underlying the leaching and sorption behavior of biochar. The identified factors can provide insightful understanding on experimental phenomena. PMID:25194478

  18. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  19. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2015-05-01

    We study quantum magnetism in strongly interacting fermionic alkaline-earth atoms (AEAs). Due to the decoupling of electronic and nuclear degrees of freedom, AEAs in two lowest electronic states (1S0 and 3P0) obey an accurate SU(N 2 I + 1) symmetry in their two-body collisions (I is the nuclear spin). We consider a system that realizes the simplest SU(2) case (for atoms prepared in two nuclear-spin states) in an optical lattice with two bands: one localized and one itinerant. For the fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the local ground state degeneracy due to mixing of spin and orbital two-body states. We derive an effective low-energy model that includes this magnetic-field effect as well as atomic interactions in the two optical lattice bands, and show that it exhibits a peculiar phenomenon of a magnetic field-induced Kondo effect, so far observed only in Coulomb blockaded quantum dots. We expect that our results can be tested with ultracold 173 Yb or 87 Sr atoms. Supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  20. Fermionic superfluidity with repulsive alkaline-earth atoms in optical superlattices

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2016-05-01

    We propose a novel route to superfluidity in fermionic alkaline-earth atoms with repulsive interactions, that uses local kinetic-energy fluctuations as a ``pairing glue'' between the fermions. We exploit different polarizabilities of electronic 1S0 (g) and 3P0 (e) states of the atoms to confine the e- and g- species in different optical superlattices. For example, in a one-dimensional case the e-lattice can be implemented as an array of weakly-coupled double-wells (DWs) with large intra-DW tunneling, and contain one localized e-atom in each DW to avoid losses due to e- e collisions. On the contrary, the shallow g-lattice has a large bandwidth and an arbitrary filling. We consider a nuclear-spin polarized system and demonstrate how kinetic-energy fluctuations of the localized e-atoms mediate an attractive interaction between the g-fermions, thus leading to a p-wave superfluid. We derive a low-energy model and determine the stability of this state against charge-density wave formation and phase separation. Our results can be tested with Yb or Sr fermionic atoms and have a direct relevance for the physics of high-temperature superconductor materials. Work supported by NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  1. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    We study quantum magnetism and emergent Kondo physics in strongly interacting fermionic alkaline-earth atoms in an optical lattice with two Bloch bands: one localized and one itinerant. For a fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the ground state degeneracy due to the field-induced crossing of singlet and triplet state of the localized atomic pairs. We exploit this singlet-triplet resonance, as well as magnetically tunable interactions of atoms in different electronic states via the recently-discovered inter-orbital Feshbach resonance, and demonstrate that the system exhibits a magnetic field-induced Kondo phase characterized by delocalization of local singlets and a large Fermi surface. We also determine the phase diagram of the system within an effective low-energy model that incorporates the above magnetic-field effect as well as atomic interactions in the two optical lattice bands. Our results can be tested with ultracold 173 Yb , and provide a model for the magnetic field-induced heavy-fermion state in filled skutterudites such as PrOs4Sb12 . This work was supported by the NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  2. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1976-01-01

    Results are reported for measurements of the critical-field anisotropy and temperature dependence of group-VIB semiconductor MoS2 intercalated with the alkali and alkaline-earth metals Na, K, Rb, Cs, and Sr. The temperature dependences are compared with present theories on the relation between critical field and transition temperature in the clean and dirty limits over the reduced-temperature range from 1 to 0.1. The critical-field anisotropy data are compared with predictions based on coupled-layers and thin-film ('independent-layers') models. It is found that the critical-field boundaries are steep in all cases, that the fields are greater than theoretical predictions at low temperatures, and that an unusual positive curvature in the temperature dependence appears which may be related to the high anisotropy of the layer structure. The results show that materials with the largest ionic intercalate atom diameters and hexagonal structures (K, Rb, and Cs compounds) have the highest critical temperatures, critical fields, and critical-boundary slopes; the critical fields of these materials are observed to exceed the paramagnetic limiting fields.

  3. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator.

    PubMed

    Wang, Zhiqian; Wu, Zheqiong; Bramnik, Natalia; Mitra, Somenath

    2014-02-12

    A flexible alkaline battery with multiwalled carbon nanotube (MWCNT) enhanced composite electrodes and polyvinyl alcohol (PVA)-poly (acrylic acid) (PAA) copolymer separator has been developed. Purified MWCNTs appear to be the most effective conductive additive, while the flexible copolymer separator not only enhances flexibility but also serves as electrolyte storage. PMID:24510667

  4. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-01

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources. PMID:23738892

  5. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  6. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  7. Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard soft acid base approach

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch; Kinkar Roy, Ram; Hirao, Kimihiko

    2000-12-01

    The basicity of framework oxygen atoms of alkali and alkaline earth-exchanged zeolites has been studied using reactivity descriptors based on a local hard-soft acid-base (HSAB) concept. We have calculated the `local softness' and the `relative nucleophilicity' values of the framework oxygen atoms of zeolite clusters as the measure of basicity. The local softness and relative nucleophilicity appear to be more reliable descriptors to predict the experimental basicity trend, compared to the negative charge on the oxygen atom.

  8. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  9. Properties of Alkaline Earth Filled Skutterudite Antimonides: Ae(Fe,Ni)4Sb12, Ae=Ca,Sr,Ba

    SciTech Connect

    Singh, David J; Du, Mao-Hua

    2010-01-01

    Properties of alkaline-earth-filled skutterudite antimonides based on Fe and Ni are studied using first-principles calculations and Boltzmann transport theory. We find heavy conduction bands and a light-band-heavy-band mixture in the valence bands. The thermopower at high temperature is high for high carrier concentrations up to 0.2 per unit cell for both p type and n type. The results suggest experimental investigation of these materials as potential thermoelectrics.

  10. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    PubMed

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  11. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F

    2013-01-01

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.

  12. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    SciTech Connect

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  13. Enhancement of palladium-porphyrin room temperature phosphorescence by alkaline earth metal in deoxycholate aggregates solution.

    PubMed

    Wang, Ying-Te; Wang, Xiang-Wei; Zhang, Yong

    2011-01-01

    Room temperature phosphorescence (RTP) of three palladium (Pd)-phorphyrins in air-saturated solution of sodium deoxycholate (NaDC) aggregates was measured. RTP of Pd-meso-tetrakis (4-carboxyphenyl) porphyrin (Pd-TCPP) was obviously enhanced in NaDC-aggregates mediated by alkaline earth metal (AEM). Under the same experimental conditions, Ca(2+), Ba(2+) and Mg(2+) induced 200, 90 and 24 times greater enhancement in RTP of Pd-TCPP, respectively. It is ascribed to form the complex of NaDC-aggregate/AEM/Pd-TCPP in the system. The positively charged AEM has a strong capability of co-ordination with negatively charged carboxyl groups of NaDC and Pd-TCPP. The phosphor Pd-TCPP is confined in rigid NaDC-aggregates/AEM system by the coordination which decreases the probability of collision of phosphor with quenchers such as dissolved oxygen molecules and prolongs the lifetime of the phosphor on the triplet state. Long excited-state lifetimes resulted in great enhancement of Pd-TCPP phosphorescence. Observations by optical microscope showed that specific fan-like structures of NaDC were formed under the influence of AEM. Surface tension measurements supported a close interaction between Ca(2+) ions and anion aggregates of NaDC with 1:1 stoichiometric ratio. Due to its outstanding RTP behavior in NaDC-aggregates induced by Ca(2+), Pd-TCPP was used as a RTP probe to detect bovine serum albumin (BSA). A broad linear range from 1.0 × 10(-9) to 9.0 × 10(-7) g mL(-1) was obtained. Detection limit is 2.6 × 10(-11) g mL(-1), the relative standard deviation (n = 6) is 2.3% for 2.0 × 10(-9) g mL(-1) BSA. PMID:21438880

  14. Density Measurement of Molten Alkaline-Earth Fluorides Using Archimedean Dual-Sinker Method

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Yanagase, Kei-ichi; Anbo, Yusuke; Aono, Masahiro; Hoshino, Yosuke; Sato, Yuzuru

    2015-11-01

    The densities of molten alkaline-earth fluorides ({MgF}2, {CaF}2, {SrF}2, and {BaF}2) were measured over the temperature range from 1526 K to 1873 K at ambient pressure using an Archimedean dual-sinker densitometer designed and set up by the authors. The volume difference between two sinkers was precisely determined by considering the wetting conditions between tungsten sinkers and water; appropriate experimental techniques were developed. The wetting condition became unstable when the sinkers were being moved for immersion in water, because the sinkers were moved in a direction that increased the contact angle. The wetting condition became stable when the sinkers were pulled up from the water, because the sinkers were moved in a direction that decreased the contact angle. The force exerted by the surface tension was efficiently canceled, and the volume difference became constant when the sinkers were pulled up. In this study, the total uncertainty was about 0.3 % at a maximum. The densities measured at high temperatures showed good linearity, with small scatter, over a wide temperature range. The densities and molar volumes increased in the following order: {MgF}2, {CaF}2, {SrF}2, and {BaF}2. The thermal-expansion coefficients showed anomalous behavior. The large thermal-expansion coefficient of {MgF}2 is attributed to a decrease in the cohesive force as a result of a partial loss of the coulombic force, because of the high charge density.

  15. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima. PMID:25744028

  16. Radiative properties of few F- and Cl- like alkali and alkaline-earth metal ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.; Singh, Sukhjit; Sahoo, B. K.

    2015-09-01

    We present high-accuracy calculations of radiative properties such as oscillator strengths and transition probabilities, of the allowed ns 2S1/2 → np 2P1/2, 3/2 transitions and of the forbidden np 2P1/2 → np 2P3/2 transitions in the F- and Cl-like alkali and alkaline-earth ions with the ground state principal quantum number n of the respective ion. For this purpose, we have employed the Dirac-Fock, relativistic second-order many-body perturbation theory and an all-order perturbative relativistic method in the coupled-cluster (CC) theory framework. To test the validity of these methods for giving accurate results, we first evaluated the ionization potentials in the creation processes of these ions and compare them with their experimental values listed in the National Institute of Science and Technology data base. Moreover, both the allowed and forbidden transition amplitudes are estimated using the above three methods and a comparative analysis is made to follow-up the electron correlation trends in order to demonstrate the need of using a sophisticated method like the CC theory for their precise determination. For astrophysical use, we provide the most precise values of the transition properties by combining the experimental energies, which suppresses uncertainties from the calculated energies, using the transition amplitudes from the CC method. These data will be useful in the abundance analysis of the considered ions in the astronomical objects and for the diagnostic processes of astrophysical plasmas.

  17. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  18. LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.

    1961-07-18

    A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.

  19. Application of flowing stream techniques to water analysis Part III. Metal ions: alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis.

    PubMed

    Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2004-05-28

    In the earlier parts of this series of reviews [1,2], the most relevant flowing stream techniques (namely, segmented flow analysis, continuous flow analysis, flow injection (FI) analysis, sequential injection (SI) analysis, multicommuted flow injection analysis and multisyringe flow injection analysis) applied to the determination of several core inorganic parameters for water quality assessment, such as nutrients and anionic species including nitrogen, sulfur and halogen compounds, were described. In the present paper, flow techniques are presented as powerful analytical tools for the environmental monitoring of metal ions (alkaline and alkaline-earth metals, and elemental and harmful transition metals) as well as to perform both multielemental and speciation analysis in water samples. The potentials of flow techniques for automated sample treatment involving on-line analyte separation and/or pre-concentration are also discussed in the body of the text, and demonstrated for each individual ion with a variety of strategies successfully applied to trace analysis. In this context, the coupling of flow methodologies with atomic spectrometric techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICPMS) or hydride-generation (HG)/cold-vapor (CV) approaches, launching the so-called hyphenated techniques, is specially worth mentioning. PMID:18969420

  20. Co-composting solid biowastes with alkaline materials to enhance carbon stabilization and revegetation potential.

    PubMed

    Chowdhury, Saikat; Bolan, Nanthi S; Seshadri, Balaji; Kunhikrishnan, Anitha; Wijesekara, Hasintha; Xu, Yilu; Yang, Jianjun; Kim, Geon-Ha; Sparks, Donald; Rumpel, Cornelia

    2016-04-01

    Co-composting biowastes such as manures and biosolids can be used to stabilize carbon (C) without impacting the quality of these biowastes. This study investigated the effect of co-composting biowastes with alkaline materials on C stabilization and monitored the fertilization and revegetation values of these co-composts. The stabilization of C in biowastes (poultry manure and biosolids) was examined by their composting in the presence of various alkaline amendments (lime, fluidized bed boiler ash, flue gas desulphurization gypsum, and red mud) for 6 months in a controlled environment. The effects of co-composting on the biowastes' properties were assessed for different physical C fractions, microbial biomass C, priming effect, potentially mineralizable nitrogen, bioavailable phosphorus, and revegetation of an urban landfill soil. Co-composting biowastes with alkaline materials increased C stabilization, attributed to interaction with alkaline materials, thereby protecting it from microbial decomposition. The co-composted biowastes also increased the fertility of the landfill soil, thereby enhancing its revegetation potential. Stabilization of biowastes using alkaline materials through co-composting maintains their fertilization value in terms of improving plant growth. The co-composted biowastes also contribute to long-term soil C sequestration and reduction of bioavailability of heavy metals. PMID:26381784

  1. Carbonate melts in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Gygi, F.; Caracas, R.; Cohen, R. E.

    2010-12-01

    We perform a molecular dynamics study of the properties of the carbonated silicate melts at realistic thermodynamic conditions of the Earth’s mantle. We employ the Qbox package based on a highly efficient plane wave and pseudopotentials implementation of density-functional theory. We work on three distinct compositions: Mg2SiO4, 16Mg2SiO4+CO2 and 16Mg2SiO4+MgCO3 and study the effect of the carbonization on the melt properties as well as the difference in effects between the CO2 molecule and the CO32- anionic group. We focus on the Earth-relevant isotherm at 3000K. At ambient pressure the silicon is in tetrahedral coordination as SiO4 with no polymerization between the tetrahedra. The C atoms are the most mobile in the system followed by O. The diffusion of the CO2 molecule takes place through intermediate short-lived CO32- states. In agreement with previous studies on pure magnesium silicate melts the polymerization of the tetrahedra is enhanced by pressure; the onset of the five-fold coordination of the silicon atoms occurs after 40 GPa. The thermal dilatation of the CO2-bearing fluid is 17kbars/1000K at ambient pressure and 3000K. The density differences due to the addition of CO2 and of MgCO3 to the Mg2SiO4 melts are small at ambient pressures and 3000K. Most significantly, we find that independent linear CO2 molecules at low pressures change to CO3 groups that are part of the melt structure with increasing pressure.

  2. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  3. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    PubMed

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Ca

  4. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Evans, David; Müller, Wolfgang; Oron, Shai; Renema, Willem

    2013-11-01

    Intra-test variability in Mg/Ca and other (trace) elements within large benthic foraminifera (LBF) of the family Nummulitidae have been investigated using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). These foraminifera have a longevity and size facilitating seasonal proxy retrieval and a depth distribution similar to 'surface-dwelling' planktic foraminifera. Coupled with their abundance in climatically important periods such as the Paleogene, this means that this family of foraminifera are an important but under-utilised source of palaeoclimatic information. We have calibrated the relationship between Mg/Ca and temperature in modern Operculina ammonoides and observe a ˜2% increase in Mg/Ca °C-1. O. ammonoides is the nearest living relative of the abundant Eocene genus Nummulites, enabling us to reconstruct mid-Eocene tropical sea surface temperature seasonality by applying our calibration to fossil Nummulites djokdjokartae from Java. Our results indicate a 5-6 °C annual temperature range, implying greater than modern seasonality in the mid-Eocene (Bartonian). This is consistent with seasonal surface ocean cooling facilitated by enhanced Eocene tropical cyclone-induced upper ocean mixing, as suggested by recent modelling results. Analyses of fossil N. djokdjokartae and Operculina sp. from the same stratigraphic interval demonstrate that environmental controls on proxy distribution coefficients are the same for these two genera, within error. Using previously published test-seawater alkaline earth metal distribution coefficients derived from an LBF of the same family (Raitzsch et al., 2010) and inorganic calcite, with appropriate correction systematics for secular Mg/Casw variation (Evans and Müller, 2012), we use our fossil data to produce a more accurate foraminifera-based Mg/Casw reconstruction and an estimate of seawater Sr/Ca. We demonstrate that mid-Eocene Mg/Casw was ≲2 molmol, which is in contrast to the model most

  5. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  6. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  7. Sonoluminescence for the quantitative analysis of alkali and alkaline earth chlorides

    NASA Astrophysics Data System (ADS)

    Robinson, Alex Lockwood

    2001-11-01

    The use of sonoluminescence for quantitative analysis is demonstrated with possible applications for on-line process measurement. When acoustic energy of sufficiently high intensity is applied to a liquid, microscopic bubbles are generated at weak points in the liquid. These bubbles oscillate non-linearly in the acoustic field, collapsing violently during the compressive phase in a process known as cavitation. Under the right conditions, a subset of the cavitating bubbles emits weak, broadband light, known as sonoluminescence. When certain species are present in a sonoluminescing system, such as alkali and alkaline earth metals, they emit spectral lines characteristic of their lowest energy neutral excited states. By measuring the intensity and spectral distribution of this radiation, these species may be identified and quantified over a wide range of concentrations. Data is presented from solutions of sodium, potassium, and calcium salts that have been analyzed and quantified from as low as parts per billion up to saturation concentrations. Over this wide range, spectral output is neither linear nor monotonic. Partial Least Squares analysis is used to quantify over these regions, in particular, near saturation. The presence of a second salt alters the emission of the first salt in a predictable manner, still allowing quantification. An acceptable explanation of the source of sonoluminescence remains to be found. Approximately a dozen theories, some from notable scientists, have been proposed to explain the phenomenon, but the actual mechanism remains elusive and highly debated. Experimental results presented here will argue against some of the more commonly presented explanations. The results suggest that while excitation likely originates from hydrodynamic compression, emission may result from isotropic lasing of the species. While most of the proof-of-concept data was obtained in a batch reactor cell, there are certain advantages to using a flow cell. Besides

  8. Characterization of some groups of gram-negative nonfermentative bacteria by the carbon source alkalinization technique.

    PubMed Central

    Martin, R; Riley, P S; Hollis, D G; Weaver, R E; Krichevsky, M I

    1981-01-01

    A total of 541 gram-negative nonfermentative bacterial strains comprising 26 species and unclassified groups were characterized by routine diagnostic and carbon substrate alkalinization techniques. These microorganisms were tested for the ability to cause alkalinization of a basal medium on a total of 217 substrates. We found that 58 carbon substrates had some discriminatory potential. We also performed 30 routine diagnostic tests. The results of these studies were evaluated by numerical taxonomy techniques. A cluster analysis of the results by the Jaccard coefficient method identified 30 clusters at the 45% level. We identified 39 tests that separated most of the groups. Groups of similar organisms or organisms that were difficult to identify were analyzed, and tests that were differential were identified. Because of variability within the clusters, further studies utilizing deoxyribonucleic acid-deoxyribonucleic acid homologies should be undertaken. PMID:7021587

  9. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  10. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  11. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    PubMed

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules. PMID:24967575

  12. Extraction of alkaline earth and actinide cations by mixtures of Di(2-ethylhexyl)alkylenediphosphonic acids and neutral synergists.

    SciTech Connect

    McAlister, D. R.; Chiarizia, R.; Dietz, M. L.; Herlinger, A. W.; Zalupski, P. R.; Chemistry; Loyola Univ.

    2002-09-18

    The synergistic extraction of alkaline earth (Ca{sup 2+}, Sr{sup 2+}, Ba{sup 2+} and Ra{sup 2+}) and actinide (Am{sup 3+}, UO{sub 2}{sup 2+} and Th{sup 4+}) cations from aqueous nitric acid solutions by mixtures of P,P'-di(2-ethylhexyl) methylene-(H{sub 2}DEH[MDP]), ethylene-(H{sub 2}DEH[EDP]), and butylene-(H{sub 2}DEH[BuDP]) diphosphonic acids and neutral extractants in o-xylene has been investigated. The cis-syn-cis and cis-anti-cis stereoisomers of dicyclohexano-18-crown-6 (DCH18C6), the unsubstituted 21-crown-7 (21C7) and dicyclohexano-21-crown-7 (DCH21C7) were used as neutral synergists of the crown ether type. For Am(III) synergistic effects were also investigated using neutral organophosphorus esters, such as, tri-n-butylphosphate (TBP), diamyl amylphosphonate (DA[AP]) and tri-n-octylphosphine oxide (TOPO) as co-extractants. In all systems investigated, no synergistic extraction enhancement was observed for actinide ions. For the alkaline earth cations, synergistic effects were only observed when mixtures of H{sub 2}DEH[EDP] or H{sub 2}DEH-[BuDP] with DCH18C6 were used to extract Sr{sup 2+}, Ba{sup 2+} and Ra{sup 2+}. No synergistic effects were observed for the extraction of alkaline earth cations by H{sub 2}DEH[MDP] or for the extraction of Ca{sup 2+} by any of the diphosphonic acids studied. The synergistic effects obtained with DCH18C6 were significantly higher for the cis-syn-cis than for the cis-anti-cis stereoisomer.

  13. Luminescence properties of Eu-activated alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}

    SciTech Connect

    Wang, Jing; Huang, Yanlin; Wang, Xigang; Qin, Lin; Seo, Hyo Jin

    2014-07-01

    Highlights: • A novel yellow-emitting alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was first developed. • Under excitation with UV or near UV light the silicate presents broad emission band centered at 580 nm. - Abstract: Yellow-emitting phosphors of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was prepared by wet chemistry sol–gel method. X-ray powder diffraction and SEM measurements were applied to characterize the structure and morphology, respectively. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve (lifetimes), CIE coordinates and the internal quantum efficiencies. The excitation spectra can match well with the emission light of near UV-LED chips (360–400 nm). Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} presents a symmetric emission band from 4f{sup 6}5d{sup 1} ⟶ 4f{sup 7}({sup 8}S{sub 7/2}) transitions of Eu{sup 2+} ions on doping below 3.0 mol%. On increasing Eu-doping levels, the sample contains two kinds of emission centers, i.e., Eu{sup 2+} and Eu{sup 3+} ions, which present the characteristic broad band (5d ⟶ 4f) and narrower (4f ⟶ 4f) luminescence lines, respectively. The energy transfer, the luminescence thermal stability (activation energy ΔE for thermal quenching) and luminescence mechanism of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} phosphors were discussed by analyzing the relationship between the luminescence characteristics and the crystal structure.

  14. Comparing Soil Organic Carbon Dynamics in Perennial Grasses and Shrubs in a Saline-Alkaline Arid Region, Northwestern China

    PubMed Central

    Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Background Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. Methodology/Principal Findings A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr−1 for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m−2) than in the shrubs (1.12 Kg C m−2) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Conclusions/Significance Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition. PMID:22900067

  15. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  16. Tris(pyrazolyl)methanides of the alkaline earth metals: influence of the substitution pattern on stability and degradation.

    PubMed

    Müller, Christoph; Koch, Alexander; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2015-01-20

    Trispyrazolylmethanides commonly act as strong tridentate bases toward metal ions. This expected coordination behavior has been observed for tris(3,4,5-trimethylpyrazolyl)methane (1a), which yields the alkaline-earth-metal bis[tris(3,4,5-trimethylpyrazolyl)methanides] of magnesium (1b), calcium (1c), strontium (1d), and barium (1e) via deprotonation of 1a with dibutylmagnesium and [Ae{N(SiMe3)2}2] (Ae = Mg, Ca, Sr, and Ba, respectively). Barium complex 1e degrades during recrystallization that was attempted from aromatic hydrocarbons and ethers. In these scorpionate complexes, the metal ions are embedded in distorted octahedral coordination spheres. Contrarily, tris(3-thienylpyrazolyl)methane (2a) exhibits a strikingly different reactivity. Dibutylmagnesium is unable to deprotonate 2a, whereas [Ae{N(SiMe3)2}2] (Ae = Ca, Sr, and Ba) smoothly metalates 2a. However, the primary alkaline-earth-metal bis[tris(3-thienylpyrazolyl)methanides] of Ca (2c), Sr (2d), and Ba (2e) represent intermediates and degrade under the formation of the alkaline-earth-metal bis(3-thienylpyrazolates) of calcium (3c), strontium (3d), and barium (3e) and the elimination of tetrakis(3-thienylpyrazolyl)ethene (4). To isolate crystalline compounds, 3-thienylpyrazole has been metalated, and the corresponding derivatives [(HPz(Tp))4Mg(Pz(Tp))2] (3b), dinuclear [(tmeda)Ca(Pz(Tp))2]2 (3c), mononuclear [(pmdeta)Sr(Pz(Tp))2] (3d), and [(hmteta)Ba(Pz(Tp))2] (3e) have been structurally characterized. Regardless of the applied stoichiometry, magnesiation of thienylpyrazole 3a with dibutylmagnesium yields [(HPz(Tp))4Mg(Pz(Tp))2] (3b), which is stabilized in the solid state by intramolecular N-H···N···H-N hydrogen bridges. The degradation of [Ae{C(Pz(R))3}2] (R = Ph and Tp) has been studied by quantum chemical methods, the results of which propose an intermediate complex of the nature [{(Pz(R))2C}2Ca{Pz(R)}2]; thereafter, the singlet carbenes ([:C(Pz(R))2]) dimerize in the vicinity of the alkaline

  17. First-principles study of structural properties of alkaline earth metals methanides A2C(A = Be,Mg)

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2013-06-01

    The structural properties of alkaline earth binary carbides A2C(A = Be,Mg) are evaluated using first-principles periodic linear combination of atomie orbitals method based on density functional theory implemented in the CRYSTAL06 code. The total energy is computed for the two binary carbides considering the anti-Fluorite structure. The computed total energy is coupled with the Murnaghan equation of states to report the equilibrium lattice constant and bulk modulus of the compounds. The cohesive energy and density are also reported for the two compounds.

  18. CONSTRUCTION OF NATURAL NEUTRALIZATION FACILITIES FOR ALKALINE TUNNEL SEEPAGE USING ATMOSPHERIC CARBON DIOXIDE

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshinobu; Igarashi, Toshihumi; Matsumoto, Takayuki; Okawa, Ryo

    Neutralization with liquefied carbon dioxide for alkaline tunnel seepage after construction is one of the issues to be solved by considering the costs of gas and neutralization units and management in the long run. One promising method is to neutralize it by natural processes using atmospheric carbon dioxide. In this study, the hydrological survey and dissolution experiments of atmospheric carbon dioxide in the laboratory and in situ conditions were conducted. Based on the results, natural neutralization facilities using atmospheric carbon dioxide were constructed. The pH of the effluent from the facilities was reduced by 0.13 to 0.18, indicating that the double film theory was effective in predicting the reduction of pH.

  19. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  20. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S.; Santos, Antonio M. dos

    2013-02-15

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO{sub 4}{center_dot}H{sub 2}O (1) and BaCu{sub 2}Ge{sub 3}O{sub 9}{center_dot}H{sub 2}O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2{sub 1}/c with a=5.1320(2) Angstrom-Sign , b=16.1637(5) Angstrom-Sign , c=5.4818(2) Angstrom-Sign , {beta}=102.609(2) Degree-Sign , V=443.76(3) Angstrom-Sign {sup 3} and Z=4. This copper germanate contains layers of composition [CuGeO{sub 4}]{sub {infinity}}{sup 2-} comprising CuO{sub 4} square planes and GeO{sub 4} tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Angstrom-Sign , b=10.8606(9) Angstrom-Sign , c=13.5409(8) Angstrom-Sign , V=817.56(9) Angstrom-Sign {sup 3} and Z=4. This structure contains GeO{sub 6} and CuO{sub 6} octahedra as well as GeO{sub 4} tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the {chi}T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO{sub 4}{center_dot}H{sub 2}O and BaCu{sub 2}Ge{sub 3}O{sub 9}{center

  1. Validating carbonation parameters of alkaline solid wastes via integrated thermal analyses: Principles and applications.

    PubMed

    Pan, Shu-Yuan; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-04-15

    Accelerated carbonation of alkaline solid wastes is an attractive method for CO2 capture and utilization. However, the evaluation criteria of CaCO3 content in solid wastes and the way to interpret thermal analysis profiles were found to be quite different among the literature. In this investigation, an integrated thermal analyses for determining carbonation parameters in basic oxygen furnace slag (BOFS) were proposed based on thermogravimetric (TG), derivative thermogravimetric (DTG), and differential scanning calorimetry (DSC) analyses. A modified method of TG-DTG interpretation was proposed by considering the consecutive weight loss of sample with 200-900°C because the decomposition of various hydrated compounds caused variances in estimates by using conventional methods of TG interpretation. Different quantities of reference CaCO3 standards, carbonated BOFS samples and synthetic CaCO3/BOFS mixtures were prepared for evaluating the data quality of the modified TG-DTG interpretation, in terms of precision and accuracy. The quantitative results of the modified TG-DTG method were also validated by DSC analysis. In addition, to confirm the TG-DTG results, the evolved gas analysis was performed by mass spectrometer and Fourier transform infrared spectroscopy for detection of the gaseous compounds released during heating. Furthermore, the decomposition kinetics and thermodynamics of CaCO3 in BOFS was evaluated using Arrhenius equation and Kissinger equation. The proposed integrated thermal analyses for determining CaCO3 content in alkaline wastes was precise and accurate, thereby enabling to effectively assess the CO2 capture capacity of alkaline wastes for mineral carbonation. PMID:26785217

  2. The deep carbon cycle and melting in Earth's interior

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Hirschmann, Marc M.

    2010-09-01

    Carbon geochemistry of mantle-derived samples suggests that the fluxes and reservoir sizes associated with deep cycle are in the order of 10 12-13 g C/yr and 10 22-23 g C, respectively. This deep cycle is responsible for the billion year-scale evolution of the terrestrial carbon reservoirs. The petrology of deep storage modulates the long-term evolution and distribution of terrestrial carbon. Unlike water, which in most of the Earth's mantle is held in nominally anhydrous silicates, carbon is stored in accessory phases. The accessory phase of interest, with increasing depth, typically changes from fluids/melts → calcite/dolomite → magnesite → diamond/Fe-rich alloy/Fe-metal carbide, assuming that the mass balance and oxidation state are buffered solely by silicates. If, however, carbon is sufficiently abundant, it may reside as carbonate even in the deep mantle. If Earth's deep mantle is Fe-metal saturated, carbon storage in metal alloy and as metal carbide cannot be avoided for depleted and enriched domains, respectively. Carbon ingassing to the interior is aided by modern subduction of the carbonated oceanic lithosphere, whereas outgassing from the mantle is controlled by decompression melting of carbonated mantle. Carbonated melting at > 300 km depth or redox melting of diamond-bearing or metal-bearing mantle at somewhat shallower depth generates carbonatitic and carbonated silicate melts and are the chief agents for liberating carbon from the solid Earth to the exosphere. Petrology allows net ingassing of carbon into the mantle in the modern Earth, but in the hotter subduction zones that prevailed during the Hadean, Archean, and Paleoproterozoic, carbonate likely was released at shallow depths and may have returned to the exosphere. Inefficient ingassing, along with efficient outgassing, may have kept the ancient mantle carbon-poor. The influence of carbon on deep Earth dynamics is through inducing melting and mobilization of structurally bound mineral

  3. Alkaline earth metal ions mediated self-assembly in the presence of 1,10-phenanthroline, nitrate and tetrafluoroborate anions

    NASA Astrophysics Data System (ADS)

    Dimitrov, Georgi D.; Neykov, Mihail V.

    2007-10-01

    1,10-Phenanthroline (phen) was reacted with various combinations of two and in one of the cases with three alkaline earth metal cations taken in equimolar ratio. In all the competitive reactions it was obtained only one product free of any impurities, which is in accordance with the theory of self-assembly processes. The compound [Ca(phen) 2(H 2O) 2(NO 3)]NO 3 was synthesized in all the reactions where Ca 2+ was involved. In contrast, none of the reactions led to the preparation of a strontium complex. Two of the reactions, in which participated Be 2+, resulted in the compound (phen) 3(H +) 2(NO -3) 2. The second group of competitive reactions was carried out with 1,10-phenanthroline and a given alkaline earth metal cation in the presence of the anions NO 3- and BF 4-. These led to the compounds Mg(phen) 4(BF 4) 2(H 2O) 3, [Ca(phen) 2(H 2O) 2(NO 3)]BF 4, Sr(phen) 4(OH)(BF 4)(H 2O) and Ba(phen) 3.5(BF 4) 2(H 2O). All the newly synthesized substances were characterized by elemental analysis, IR- and FAB-mass-spectra.

  4. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  5. The carbon cycle on early Earth--and on Mars?

    PubMed

    Grady, Monica M; Wright, Ian

    2006-10-29

    One of the goals of the present Martian exploration is to search for evidence of extinct (or even extant) life. This could be redefined as a search for carbon. The carbon cycle (or, more properly, cycles) on Earth is a complex interaction among three reservoirs: the atmosphere; the hydrosphere; and the lithosphere. Superimposed on this is the biosphere, and its presence influences the fixing and release of carbon in these reservoirs over different time-scales. The overall carbon balance is kept at equilibrium on the surface by a combination of tectonic processes (which bury carbon), volcanism (which releases it) and biology (which mediates it). In contrast to Earth, Mars presently has no active tectonic system; neither does it possess a significant biosphere. However, these observations might not necessarily have held in the past. By looking at how Earth's carbon cycles have changed with time, as both the Earth's tectonic structure and a more sophisticated biology have evolved, and also by constructing a carbon cycle for Mars based on the carbon chemistry of Martian meteorites, we investigate whether or not there is evidence for a Martian biosphere. PMID:17008211

  6. Basalt as a solid source of calcium and alkalinity for the sequestration of carbon dioxide in building materials

    NASA Astrophysics Data System (ADS)

    Johnson, N. C.; Westfield, I.; Lu, P.; Bourcier, W. L.; Kendall, T.; Constantz, B. R.

    2010-12-01

    Motivated by the idea of converting waste carbon dioxide into usable building products, Calera Corporation has developed a multi-step process that sequesters CO2 as carbonate minerals in cementitious materials. Process inputs include dissolved divalent cations and alkalinity, both of which can be extracted from basalt. In one mode of the Calera process, the electrochemical production of alkalinity generates large volumes of hydrochloric acid as a by-product, which has been shown to effectively leach divalent cations from basalt while being neutralized by the basalt dissolution reaction. Using a 10:1 1M HCl solution to rock ratio, 3500 ppm Ca was extracted while the initial solution was neutralized to a pH of 2.60 in two weeks at a temperature of 80oC in an anoxic batch reactor. In this scenario, mineral carbonation occurs via three steps: electrochemical production of alkalinity, CO2 absorption by the alkaline stream, then precipitation by mixing the basalt-derived divalent cation stream and the CO2-containing alkaline stream. In a second scenario, alkalinity is extracted from basalt using an alkalinity capacitor, a weak acid. This solution may contain a proton source, such as ammonium chloride, or a hydroxyl acceptor, such as boric acid, but the main design constraint is that the pKa of the capacitor be high enough to deprontonate carbonic acid. The weak acid solution is mixed with basalt in an anoxic batch reactor and the dissolving rock consumes protons from the weak acid, generating the conjugate base. The solution rich in conjugate base then absorbs CO2 and the carbonate-rich solution is mixed with a calcium-rich stream to precipitate carbonate minerals. We have extracted up to 1100 mmol alkalinity per kg rock using an alkalinity capacitor, versus no more than 50 mmol alkalinity per kg rock using DI water as a solvent. Again, carbon sequestration occurs via three steps: alkalinity extraction from basalt, CO2 absorption, and finally carbonate precipitation

  7. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. PMID:24735991

  8. Iron-carbonate interaction at Earth's core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.

    2015-12-01

    Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.

  9. Palladium and palladium-tin supported on multi wall carbon nanotubes or carbon for alkaline direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Martins da Silva, Júlio César; Antonio de Sá, Osvaldo; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Coelho dos Santos, Mauro

    2015-02-01

    Pd and PdSn (Pd:Sn atomic ratios of 90:10), supported on Multi Wall Carbon Nanotubes (MWCNT) or Carbon (C), are prepared by an electron beam irradiation reduction method. The obtained materials are characterized by X-Ray diffraction (XRD), Energy dispersive X-ray analysis (EDX), Transmission electron Microscopy (TEM) and Cyclic Voltammetry (CV). The activity for ethanol electro-oxidation is tested in alkaline medium, at room temperature, using Cyclic Voltammetry and Chronoamperometry (CA) and in a single alkaline direct ethanol fuel cell (ADEFC), in the temperature range of 60-90 °C. CV analysis finds that Pd/MWCNT and PdSn/MWCNT presents onset potentials changing to negative values and high current values, compared to Pd/C and PdSn/C electrocatalysts. ATR-FTIR analysis, performed during the CV, identifies acetate and acetaldehyde as principal products formed during the ethanol electro-oxidation, with low conversion to CO2. In single fuel cell tests, at 85 °C, using 2.0 mol L-1 ethanol in 2.0 mol L-1 KOH solutions, the electrocatalysts supported on MWCNT, also, show higher power densities, compared to the materials supported on carbon: PdSn/MWCNT, presents the best result (36 mW cm-2). The results show that the use of MWCNT, instead of carbon, as support, plus the addition of small amounts of Sn to Pd, improves the electrocatalytic activity for Ethanol Oxidation Reaction (EOR).

  10. Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Yang, Duangguang; Chen, Hongbiao; Gao, Yong; Li, Huaming

    2015-04-01

    A novel electrocatalyst for the oxygen reduction reaction (ORR) is fabricated by directly annealing oxidized carbon nanotubes and tripyrrolyl[1,3,5]triazine in nitrogen. The structural and chemical properties of the resultant N-doped carbon nanotubes (NCNTs) are systematically investigated. The electrocatalytic activity of the NCNTs towards ORR in O2-saturated 0.1 M KOH electrolyte is evaluated using rotating disk electrode voltammetry. The results demonstrate that the as-prepared NCNT-900 (annealed at 900 °C) exhibits excellent electrochemical performance towards ORR in alkaline medium with an onset potential of -0.038 V (vs Ag/AgCl), a high kinetic current density of 31.26 mA cm-2 at -0.25 V, a dominant four-electron transfer mechanism (n = 3.88 at -0.25 V), and excellent methanol tolerance and durability. The results obtained are significant for the development of N-doped carbon-based electrocatalysts for alkaline fuel cells.

  11. The anaerobic corrosion of carbon steel in alkaline media - Phase 2 results

    NASA Astrophysics Data System (ADS)

    Smart, N. R.; Rance, A. P.; Fennell, P. A. H.; Kursten, B.

    2013-07-01

    In the Belgian Supercontainer concept a carbon steel overpack will surround high-level waste and spent fuel containers and be encased in a cementitious buffer material. A programme of research was carried out to investigate and measure the rate of anaerobic corrosion of carbon steel in an artificial alkaline porewater that simulates the aqueous phase in the cementitious buffer material. The corrosion rates were measured by monitoring hydrogen evolution using a manometric gas cell technique and by applying electrochemical methods. Phase 2 of the programme has repeated and extended previous Phase 1 measurements of the effects of radiation, temperature and chloride concentration of the anaerobic corrosion rate. This paper provides an update on the results from Phase 2 of the programme. The results confirm previous conclusions that the long-term corrosion rate of carbon steel in alkaline simulated porewater is determined by the formation of a thin barrier layer and a thicker outer layer composed of magnetite. Anaerobic corrosion of steel in cement requires an external supply of water.

  12. Variation in Isotopic Biosignatures From Carbonate Rich, Microbial Mats in Saline, Alkaline Lakes on the Cariboo Plateau, B.C.

    NASA Astrophysics Data System (ADS)

    Brady, A.; Slater, G.; Druschel, G.; Lim, D.

    2009-05-01

    Cyanobacteria dominated, carbonate rich microbial mats found in saline, alkaline lakes on the Cariboo Plateau, B.C. represent potential analogues of the evaporative systems that might have occurred on early Earth or Mars. These evaporative lakes generally have pH values > 10, salinities of up to 33 psu and alkalinities of > 15, 000 mg CaCO3/L but differ in other geochemical parameters. The ability to understand natural variations in microbial activity and biosignatures in such modern analogues is central to our understanding of the capabilities and limits of life, the interpretation of the geologic record and potentially one day to the interpretation of astrobiological data. Phospholipid fatty acid (PLFA) profiling, voltammetry, and stable isotope analysis of organic and inorganic carbon pools highlighted the spatial and seasonal variability that exists in modern evaporative microbial mat dominated lakes. Variations in microbial PLFA distribution demonstrated that Cariboo Plateau microbial mat community composition varied seasonally and spatially. Voltammetry results showed that photosynthetic oxygen production occurred in the upper 5 mm of mats resulting in supersaturation of oxygen in surface waters. Depletion of oxygen generally occurred just below 5 mm and sulfide production began at 10 - 15 mm from the mat surface. Isotope analysis (13C) of Cariboo microbial mats showed inorganic (dissolved inorganic carbon) to organic (bulk cell) isotopic discriminations of 23-25 ‰, indicating non-CO2 limited photosynthesis. These results are in contrast to high organic content analogue mats previously reported that show evidence of CO2 limitation. Further, the Cariboo mats demonstrated significant intra- and inter-mat variations in carbonate δ13C values with respect to dissolved inorganic carbon (DIC) ranging from enrichment to 13C-depleted carbonate. In Deer Lake, isotopic enrichment of surface water DIC by 2-3 ‰ above atmospheric equilibrium indicated microbial

  13. Carbon monoxide and the burning earth

    SciTech Connect

    Newell, R.E.; Reichle, H.G. Jr.; Seiler, W.

    1989-10-01

    Carbon monoxide is one of many gases whose presence in the atmosphere is blamed largely on industrial activity in the Northern Hemisphere. Data collected by the authors show that the gas is also abundant in the Southern Hemisphere, where it comes mainly from the burning of tropical rain forests and savannas. The high levels of carbon monoxide confirm other evidence that the rain forests are being diminished rapidly, which may affect the climates of these regions as well as globally. Increases in carbon monoxide could also encourage the accumulation of pollutant gases such as ozone and methane. The first is highly toxic to plants and the second would add to the greenhouse effect.

  14. Carbon dioxide within Venus and the earth

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.

    1981-01-01

    The maximum inventories of CO2 and H2O in the terrestrial and Venus mantles are calculated on the basis of shock wave data for magnesite and dunite to be approximately 1,000 times the observed atmospheric inventories. The CO2 fugacity determined for the buffered reaction MgCO3 plus SiO2 going to MgSiO3 plus CO2 yields values which increase from 0.0001 to 1.0 times the lithostatic pressure, going from 35 to 800 km depths in the earth. The major uncertainties in the fugacity calculations arise from lack of knowledge of effective activities. The calculated fugacity of CO2 and water brought to the surface from hypothetical mantle reservoirs on earth and Venus indicate that, in the case of the earth, the cool and dry atmosphere is strongly depleted in both CO2 and H2O compared to the low velocity zone. In contrast to the earth, on Venus, the 750 K surface temperature and 90 bar CO2 surface pressure are in equilibrium and probably in communication with an assumed upper mantle CO2 reservoir.

  15. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  16. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  17. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data

    NASA Astrophysics Data System (ADS)

    Dickson, A. G.

    1981-06-01

    The total (or titration) alkalinity of a natural water sample can be regarded as a measure of the proton deficit of the solution relative to an arbitrarily defined zero level of protons. The problem of unambiguously incorporating any particular acid-base system into the definition of alkalinity is thus the one of deciding which form to specify as the zero level of protons, and it is proposed that it be defined so that acids with a dissociation constant K > 10-4·5 (at 25°C and zero ionic strength) are considered as proton donors, whilst those bases formed from weak acids with K ⪕ 10-4·5 are cosidered proton acceptors. A non-linear least squares procedure is suggested in order to estimate the total alkalinity (AT) and total inorganic carbon (CT) of a seawater sample from potentiometric titration data. The approach offers a significant conceptual improvement over the currently used refined Gran functions. In addition, an estimate of the statistical uncertainty of the estimated values of AT and CT is available. As it unnecessary to titrate beyond the alkalinity equivalence point, it may also be possible to speed up the titrations.

  18. Carbon and nitrogen in the deep Earth

    NASA Technical Reports Server (NTRS)

    Mattey, D. P.; Carr, L. P.; Carr, R. H.; Wright, I. P.; Pillinger, C. T.

    1985-01-01

    High sensitivity mass spectrometric techniques were utilized to study the C-N isotope systematics in basic igneous rocks and mantle materials in an attempt to ultimately constrain the primordial isotopic compositions of these elements and their subsequent fate during the early history of the Earth. Preliminary results obtained for a selection of submarine basaltic glasses and diamonds are summarized concentrating on: (1) the problem of whether isotopes are significantly fractionated during igneous processes; and on (2) the effects of crustal recycling.

  19. Synergy among transition element, nitrogen, and carbon for oxygen reduction reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhou Peng; Liu, Zi Xuan; Zhu, Kun Ning; Li, Zhuo; Liu, Bin Hong

    2012-12-01

    A series of M-doped polypyrrole (PPy)-modified BP2000 catalysts (M = Mn, Fe, Co, Ni, and Cu) are synthesized using the hydrothermal method. The synergy among a transition element, nitrogen, and carbon for oxygen reduction reaction (ORR) in alkaline medium is discussed based on the physical characterization and electrochemical analyses of the Co-doped PPy-modified BP2000. PPy is found to adhere carbon black particles together to form a porous 3D network during the PPy modification on BP2000. PPy reconfiguration occurs during the hydrothermal treatment process. The individual interactions between BP and PPy, BP and Co, and Co and PPy exhibit insignificant effects on the enhancement of ORR. The cooperative interaction among Co, N, and C plays a very important role in the enhancement of ORR. The doping effect of transition-metal salt on ORR enhancement depends on the nature of the transition element and the corresponding anion.

  20. Process for the recycling of alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    Ferella, Francesco; De Michelis, Ida; Vegliò, Francesco

    In this paper a recycling process for the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries is proposed. Laboratory tests are performed to obtain a purified pregnant solution from which metallic zinc (purity 99.6%) can be recovered by electrolysis; manganese is recovered as a mixture of oxides by roasting of solid residue coming from the leaching stage. Nearly 99% of zinc and 20% of manganese are extracted after 3 h, at 80 °C with 10% w/v pulp density and 1.5 M sulphuric acid concentration. The leach liquor is purified by a selective precipitation of iron, whereas metallic impurities, such as copper, nickel and cadmium are removed by cementation with zinc powder. The solid residue of leaching is roasted for 30 min at 900 °C, removing graphite completely and obtaining a mixture of Mn 3O 4 and Mn 2O 3 with 70% grade of Mn. After that a technical-economic assessment is carried out for a recycling plant with a feed capacity of 5000 t y -1 of only alkaline and zinc-carbon batteries. This analysis shows the economic feasibility of that plant, supposing a battery price surcharge of 0.5 € kg -1, with a return on investment of 34.5%, gross margin of 35.8% and around 3 years payback time.

  1. First-principles Study on the Vibration Modes and Electronic Structure of Alkali and Alkaline-earth Amides and Alanates

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio

    2009-03-01

    Light alkaline and alkaline-earth metal hydrides such as amides M(NH2)n and alanates M(AlH4)n (M=K, Na, Li, Ca, and Mg) have attracted a growing interest as reversible hydrogen storage materials recently because of their innately high hydrogen contents. [1, 2] We study the electronic structure of the amides and alanates with different cations, focusing on the role of cation states from first-principles calculations based on the all-electron FLAPW method. Calculated breathing stretch vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing stretch vibration frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation, which may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)^-. We elucidate the microscopic mechanism of correlations between the breathing stretch vibration frequencies of N-H and structural parameters by analyzing the calculated electronic structure from a view point of the molecular-orbitals. A similar tendency in the alanates is also discussed. [1] P. Chen, Z. Xiong, J. Luo, J. Lin and K.L. Tan, Nature 420, 302 (2002). [2] B. Bogdanovi and M. Schwickardi, J. Alloys Compd. 253-254, 1 (1997).

  2. New host for carbon in the deep Earth.

    PubMed

    Boulard, Eglantine; Gloter, Alexandre; Corgne, Alexandre; Antonangeli, Daniele; Auzende, Anne-Line; Perrillat, Jean-Philippe; Guyot, François; Fiquet, Guillaume

    2011-03-29

    The global geochemical carbon cycle involves exchanges between the Earth's interior and the surface. Carbon is recycled into the mantle via subduction mainly as carbonates and is released to the atmosphere via volcanism mostly as CO(2). The stability of carbonates versus decarbonation and melting is therefore of great interest for understanding the global carbon cycle. For all these reasons, the thermodynamic properties and phase diagrams of these minerals are needed up to core mantle boundary conditions. However, the nature of C-bearing minerals at these conditions remains unclear. Here we show the existence of a new Mg-Fe carbon-bearing compound at depths greater than 1,800 km. Its structure, based on three-membered rings of corner-sharing (CO(4))(4-) tetrahedra, is in close agreement with predictions by first principles quantum calculations [Oganov AR, et al. (2008) Novel high-pressure structures of MgCO(3), CaCO(3) and CO(2) and their role in Earth's lower mantle. Earth Planet Sci Lett 273:38-47]. This high-pressure polymorph of carbonates concentrates a large amount of Fe((III)) as a result of intracrystalline reaction between Fe((II)) and (CO(3))(2-) groups schematically written as 4FeO + CO(2) → 2Fe(2)O(3) + C. This results in an assemblage of the new high-pressure phase, magnetite and nanodiamonds. PMID:21402927

  3. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.

    PubMed

    Bonnes, Lars; Hazzard, Kaden R A; Manmana, Salvatore R; Rey, Ana Maria; Wessel, Stefan

    2012-11-16

    Ultracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime of one-dimensional chains, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N. Furthermore, we estimate the temperature scale required to probe correlations associated with low-temperature SU(N) magnetism. Our findings are encouraging for the exploration of exotic large-N magnetic states in ongoing experiments. PMID:23215502

  4. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials

    SciTech Connect

    Parker, David S; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  5. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  6. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  7. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  8. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  9. Frontier Orbital Engineering of Metal-Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides.

    PubMed

    Hendon, Christopher H; Walsh, Aron; Dincă, Mircea

    2016-08-01

    The development of conductive metal-organic frameworks is challenging owing to poor electronic communication between metal clusters and the organic ligands that bridge them. One route to overcoming this bottleneck is to extend the inorganic dimensionality, while using the organic components to provide chemical functionality. Using density functional theory methods, we demonstrate how the properties of the alkaline-earth oxides SrO and BaO are transformed upon formation of porous solids with organic oxygen sources (acetate and trifluoroacetate). The electron affinity is significantly enhanced in the hybrid materials, while the ionization potential can be tuned over a large range with the polarity of the organic moiety. Furthermore, because of their high-vacuum fraction, these materials have dielectric properties suitable for low-κ applications. PMID:27267149

  10. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGESBeta

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  11. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  12. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Cinthia, A. Jemmy; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Iyakutti, K.

    2015-04-01

    The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.

  13. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  14. Earth system responses to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Steinacher, M.; Joos, F.

    2015-07-01

    Information on the relationship between cumulative fossil carbon emissions and multiple climate targets are essential to design emission mitigation and climate adaptation strategies. In this study, the transient responses in different climate variables are quantified for a large set of multi-forcing scenarios extended to year 2300 towards stabilization and in idealized experiments using the Bern3D-LPJ carbon-climate model. The model outcomes are constrained by 26 physical and biogeochemical observational data sets in a Bayesian, Monte-Carlo type framework. Cumulative fossil emissions of 1000 Gt C result in a global mean surface air temperature change of 1.88 °C (68 % confidence interval (c.i.): 1.28 to 2.69 °C), a decrease in surface ocean pH of 0.19 (0.18 to 0.22), and in steric sea level rise of 20 cm (13 to 27 cm until 2300). Linearity between cumulative emissions and transient response is high for pH and reasonably high for surface air and sea surface temperatures, but less pronounced for changes in Atlantic Meridional Overturning, Southern Ocean and tropical surface water saturation with respect to biogenic structures of calcium carbonate, and carbon stocks in soils. The slopes of the relationships change when CO2 is stabilized. The Transient Climate Response is constrained, primarily by long-term ocean heat observations, to 1.7 °C (68 % c.i.: 1.3 to 2.2 °C) and the Equilibrium Climate Sensitivity to 2.9 °C (2.0 to 4.2 °C). This is consistent with results by CMIP5 models, but inconsistent with recent studies that relied on short-term air temperature data affected by natural climate variability.

  15. Carbon segregation-induced highly metallic ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media.

    PubMed

    Jeon, Tae-Yeol; Watanabe, Masahiro; Miyatake, Kenji

    2014-11-12

    The important roles of Ni in electrocatalytic reactions such as hydrazine oxidation are limited largely by high oxidation states because of its intrinsically high oxophilicity. Here, we report the synthesis and properties of highly metallic Ni nanoparticles (NPs) on carbon black supports. We discovered that the heat treatment of as-prepared Ni NPs with an average particle size of 5.8 nm produced highly metallic Ni NPs covered with thin carbon shells, with negligible particle coarsening. The carbon shells were formed by the segregation of carbons in the Ni lattice to the surface of the Ni NPs, leaving highly metallic Ni NPs. X-ray photoelectron spectroscopic analyses revealed that the atomic ratio of metallic Ni increased from 19.2 to 71.7% as a result of the heat treatment. The NPs exhibited higher electrocatalytic activities toward the hydrazine oxidation reaction in alkaline solution, as compared to those of the as-prepared Ni NPs and commercial Ni powders. PMID:25356922

  16. Synthesis of a new family of ionophores based on aluminum-dipyrrin complexes (ALDIPYs) and their strong recognition of alkaline earth ions.

    PubMed

    Saikawa, Makoto; Daicho, Manami; Nakamura, Takashi; Uchida, Junji; Yamamura, Masaki; Nabeshima, Tatsuya

    2016-03-14

    Mononuclear and dinuclear aluminum-dipyrrin complexes (ALDIPYs) were synthesized as a new family of ionophores. They exhibited colorimetric and fluorometric responses to alkaline earth ions in an aqueous mixed solvent. The strong recognition was achieved via multipoint interactions with the oxygen atoms appropriately incorporated into the ligand framework. PMID:26935409

  17. Analysis of the Local Structure around Eu and Mn Ions in Alkaline-Earth Silicate Phosphors for White Light Illumination

    SciTech Connect

    Okamoto, Kaoru; Yoshino, Masahiko; Shigeiwa, Motoyuki; Mikami, Masayoshi; Akai, Toshio; Kijima, Naoto; Honma, Tetsuo; Nomura, Masaharu

    2007-02-02

    M2SiO4-based phosphors (M: alkaline-earth metal) that emit red to blue light are expected to offer high color rendering to white light-emitting diodes (LEDs) in combination with blue or near-UV excitation sources. It is very important for the complete control of the emission color to understand the crystal field around the active elements (rare-earth and transition metals). XAFS spectroscopy is applied to a (Ba,Ca)2SiO4:Eu,Mn phosphor at Eu L3- and Ba, Ca, Eu, Mn K-edges to elucidate the local environments of Eu and Mn. Eu L3- and Mn K-edge XANES spectra showed that Eu and Mn are both divalent, like Ba and Ca. K-edge EXAFS spectra indicated that the local structures of Eu and Mn are similar to those of Ba and Ca, respectively. However, the curve-fitting analysis showed that the first coordination shell of Eu has two Eu-O bonds that are both shorter than the Ba-O bond. FEFF calculations were also performed based on a BaCaSiO4 model constructed from the crystal structure of KNaSO4. They suggested that Eu substitutes both of Ba and Ca sites with some structural modification while Mn is clearly at the octahedral Ca site that is the smallest of the substitution sites.

  18. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  19. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  20. Defective Multilayer Carbon Nanotubes Increase Alkaline Phosphatase Activity and Bone-Like Nodules in Osteoblast Cultures.

    PubMed

    Zancanela, Daniela Cervelle; Simaã, Ana Maria Sper; Matsubara, Elaine Yoshiko; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-02-01

    Carbon nanotubes (CNT) is one of the most studied biomaterials, and issues about its cytotoxicity remain. The objective of our study was to investigate the in vitro influence of defective CNT on culture growth and on the formation of mineralized matrix nodules by primary osteoblastic cells grown in plastic or titanium (Ti) surfaces. Cellular viability, alkaline phosphatase activity and formation of mineral nodules were evaluated, besides the CNT characterization tests. The CNT studies showed better cell viability for osteoblasts incubated at stationary phase of culture in the presence of Ti (about 70%), but for the other phases, the cells suffered a significant reduction in viability. A peak of maximum alkaline phosphatase activity in the intermediate stage of growth (14 days of culture), which is characteristic for osteoblasts, was not affected, regardless of the presence of Ti or combination of CNT and Ti. Mineralized matrix nodules grew much more when the cells were incubated with CNT in the last 2 phases than when incubated in the first week, mainly when the cultures were grown on Ti discs. This study provides information for the application of CNT associated or not with Ti in processes of mineralization biostimulation. PMID:27433601

  1. Iron carbonates in the Earth's lower mantle: reality or imagination?

    NASA Astrophysics Data System (ADS)

    Cerantola, V.; McCammon, C. A.; Merlini, M.; Bykova, E.; Kupenko, I.; Ismailova, L.; Chumakov, A. I.; Kantor, I.; Dubrovinsky, L. S.; Prescher, C.

    2015-12-01

    Carbonates play a fundamental role in the recycling of carbon inside our planet due to their presence in oceanic slabs that sink through the Earth's interior. Through this process, iron carbonates are potential stable carbon-bearing minerals in the deep mantle in part due to spin crossover of ferrous iron. Our goal is to identify which minerals may be the dominant carriers of carbon into the deep mantle at the relevant conditions of fO2, P and T. All experiments were performed using synthetic FeCO3 and MgFeCO3 single crystals in laser heated diamond anvil cells up to 100 GPa and 3000 K in order to simulate the conditions prevailing in the Earth's lower mantle. Transformation and decomposition products of the original carbonates were characterized at different synchrotron facilities by means of single-crystal XRD, synchrotron Mössbauer source spectroscopy and XANES techniques. At deep lower mantle conditions, we observed the transformation of FeCO3 to two new HP-carbonate structures, monoclinic Fe22+Fe23+C4O13 and trigonal Fe43+(CO4)3, both characterized by the presence of CO4 tetrahedra with different degrees of polymerization. At shallower depths in the lower mantle where temperatures are lower following the geotherm, Fe-carbonates decompose to different Fe-oxides instead of new HP-carbonates. However, at slab temperatures several hundred degrees lower than the surrounding mantle, carbonates could be stabilized until reaching conditions that trigger their transformation to HP-structures. We postulate that Fe-rich carbonates could exist in regions down to the core-mantle boundary in the proximity of subducting slabs, i.e., a "cold" environment with relatively high fO2.

  2. Closing the carbon cycle in the EC EARTH earth system model

    NASA Astrophysics Data System (ADS)

    Gröger, Matthias; Döscher, Ralf; Meier, Markus; Svensson, Gunilla

    2015-04-01

    A closed carbon cycle, i.e. the exchange of carbon fluxes between the terrestrial and marine carbon reservoirs (living biomass, soil carbon, sediments etc) via the atmosphere is essential for state of the art earth system models and it will become more and more important in the framework of the Coupled Model Intercomparison Project (CMIP). It is also a prerequisite for simulating the atmospheric pCO2 in a fully prognostic mode and thus, for the realistic simulation of the important feedback of the carbon cycle to the predicted future climate change. The main challenges of this work are two fold: It requires close cooperation between physical oceanographers, meteorologists and biogeochemists. Moreover, especially the marine carbon cycle has very long internal time scales which demand for long spinup phases. The work presented here is the result of the joined efforts of the Meteorological Institute University of Stockholm, the Rossby Center for Climatic Research and the oceanographic department of the Swedish Meteorological and Hydrological Institute (SMHI), and the University of Lund. We here introduce our basic strategy for the implementation of the marine biogeochemistry model PISCES into EC Earth and first results for the marine carbon cycle model PISCES are presented.

  3. Efficiency of non-optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomass

    NASA Astrophysics Data System (ADS)

    Kacprzak, A.; Kobyłecki, R.; Włodarczyk, R.; Bis, Z.

    2016-07-01

    The direct carbon fuel cells (DCFCs) belong to new generation of energy conversion devices that are characterized by much higher efficiencies and lower emission of pollutants than conventional coal-fired power plants. In this paper the DCFC with molten hydroxide electrolyte is considered as the most promising type of the direct carbon fuel cells. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) is used as electrolyte and the biochar of apple tree origin carbonized at 873 K is applied as fuel. The performance of a lab-scale DCFC with molten alkaline electrolyte is investigated and theoretical, practical, voltage, and fuel utilization efficiencies of the cell are calculated and discussed. The practical efficiency is assessed on the basis of fuel HHV and LHV and the values are estimated at 40% and 41%, respectively. The average voltage efficiency is calculated as roughly 59% (at 0.65 V) and it is in a relatively good agreement with the values obtained by other researchers. The calculated efficiency of fuel utilization exceeds 95% thus indicating a high degree of carbon conversion into the electric power.

  4. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  5. Evaluation studies on carbon supported catalysts for oxygen reduction in alkaline medium

    NASA Technical Reports Server (NTRS)

    Srinivasan, Vakula S.; Singer, Joseph

    1986-01-01

    This paper describes tests designed to predict the performance of fuel cell electrodes, as applied to an alkaline oxygen-fuel cell having specially fabricated porous-carbon electrodes with various amounts of dispersed platinum or gold as active catalysts. The tests are based on information obtained from the techniques of cyclic voltammetry and polarization. The parameters obtained from cyclic voltammetry were of limited use in predicting fuel cell performance of the cathode. On the other hand, half-cell polarization measurements offered close simulation of the oxygen electrode, although a predictor of the electrode life is still lacking. The very low polarization of the Au-10 percent Pt catalytic electrode suggests that single-phase catalysts should be considered.

  6. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries

    NASA Astrophysics Data System (ADS)

    De Michelis, I.; Ferella, F.; Karakaya, E.; Beolchini, F.; Vegliò, F.

    This paper concerns the recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. The metals were dissolved by a reductive-acid leaching with sulphuric acid in the presence of oxalic acid as reductant. Leaching tests were realised according to a full factorial design, then simple regression equations for Mn, Zn and Fe extraction were determined from the experimental data as a function of pulp density, sulphuric acid concentration, temperature and oxalic acid concentration. The main effects and interactions were investigated by the analysis of variance (ANOVA). This analysis evidenced the best operating conditions of the reductive acid leaching: 70% of manganese and 100% of zinc were extracted after 5 h, at 80 °C with 20% of pulp density, 1.8 M sulphuric acid concentration and 59.4 g L -1 of oxalic acid. Both manganese and zinc extraction yields higher than 96% were obtained by using two sequential leaching steps.

  7. Alkaline-Earth-Metal-Induced Liberation of Rare Allotropes of Elemental Silicon and Germanium from N-Heterocyclic Metallylenes.

    PubMed

    Blom, Burgert; Said, Amro; Szilvási, Tibor; Menezes, Prashanth W; Tan, Gengwen; Baumgartner, Judith; Driess, Matthias

    2015-09-01

    The synthesis and striking reactivity of the unprecedented N-heterocyclic silylene and germylene ("metallylene") alkaline-earth metal (Ae) complexes of the type [(η(5)-C5Me5)2Ae←:E(N(t)BuCH)2] (3, 4, and 7-9; Ae = Ca, E = Ge 3; Ae = Sr, E = Ge 4; Ae = Sr, E = Si 7; Ae = Ba, E = Si 8; Ae = Ba, E = Ge 9) are reported. All complexes have been characterized by spectroscopic means, and their bonding situations investigated by density functional theory (DFT) methods. Single-crystal X-ray diffraction analyses of examples revealed relatively long Si-Ae and Ge-Ae distances, respectively, indicative of weak E:→Ae (E = Si, Ge) dative bonds, further supported by the calculated Wiberg bond indices , which are rather low in all cases (∼0.5). Unexpectedly, the complexes undergo facile transformation to 1,4-diazabuta-1,3-diene Ae metal complexes of the type [(η(5)-C5Me5)2Ae(κ(2)-{N(t)Bu═CHCH═N(t)Bu})] (Ae = Sr 10, Ae = Ba 11) or in the case of calcium to the dinuclear complex [(η(5)-C5Me5)2Ca←:N((t)Bu)═CHCH═((t)Bu)N:→Ca(η(5)-C5Me5)2] (12) under concomitant liberation of elemental silicon and germanium. The formation of elemental silicon and germanium is proven by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy. Notably, the decomposition of the Si(II)→Ba complex 8 produces allo-silicon, a rare allotropic form of elemental silicon. Similarly, the analogous Ge(II)→Ba complex 9, upon decomposition, forms tetragonal germanium, a dense and rare allotrope of elemental germanium. The energetics of this unprecedented alkaline-earth-metal-induced liberation of elemental silicon and germanium was additionally studied by DFT methods, revealing that the transformations are pronouncedly exergonic and considerably larger for the N-heterocyclic germylene complexes than those of the corresponding silicon analogues. PMID:26305163

  8. Natural Methane and Carbon Dioxide Hydrates in the Earth System

    NASA Astrophysics Data System (ADS)

    Research Team; Milkereit, B.

    2004-05-01

    Both CH4 and CO2 are abundant volatiles in the earth's crust. Methane hydrates occur in permafrost regions and continental slopes of oceans. It is currently estimated that the energy stored in CH4 hydrate reserves totals more than twice the global reserves of all conventional oil, gas, and coal deposits combined. This means that methane hydrate could prove to be a very important source of energy in the future. Pressure versus temperature phase diagrams for methane and carbon dioxide define characteristic stability fields for gas, fluid and hydrates states. Sequestration of carbon dioxide in the earths crust and production of methane hydrate reservoirs are critically dependent on knowledge of the in situ elastic moduli of natural hydrates. The physical properties of simple methane and carbon dioxide hydrates are similar [1]. Our compilation of experimental data confirms high compressional wave velocities and elastic moduli for CH4 and CO2 hydrates and low compressional wave velocities for the fluid and gas phases. As methane and carbon dioxide hydrates are stable over similar pressure-temperature ranges, the two types of hydrates form in similar settings in the earth's crust. For example, temperature and pressure conditions in deepwater marine environments require both CO2 and CH4 to be in hydrate phase. However, not much is known about the origin, distribution and total volume of natural carbon dioxide hydrates stored in the earth's crust. For a number of tectonic/geological settings, CO2-rich fluids from deep crustal reservoirs must be considered: rifted margins, volcanic arcs, deepwater vents [2], mud volcanoes and mud diapirs [3]. Both methane and carbon dioxide hydrates work to cement sea floors in similar ways. Slope failure, a phenomenon usually taken as a hallmark of the presence of methane hydrate, could also be attributed to the existence of carbon dioxide hydrates. Perhaps most critically, many of the estimations of the amounts of methane hydrates are

  9. Use of pore-water composition to reconstruct past dissolved inorganic carbon concentration and alkalinity in Pacific bottom water

    NASA Astrophysics Data System (ADS)

    Sauvage, J. F.; Spivack, A. J.; D'Hondt, S. L.; Integrated Ocean Drilling Program Expedition 329 shipboard scientific party

    2011-12-01

    The carbonate system is a crucial component in controlling the pH of the world's oceans and the distribution of CO2 within the ocean, as well as between the ocean and atmosphere. Consequently, dissolved inorganic carbon (DIC) and alkalinity reconstructions bear lots of promise for improving understanding of the ocean's role in the global carbon cycle and climate. We propose and test a method to quantify in situ concentrations of deep-sea carbonate-system components (DIC, alkalinity, CO32-, Ca2+, and minor component concentrations) in pore fluid of deep-sea sediment cores. These concentrations can in turn be used to reconstruct deep-sea carbonate-system chemistry of the geologic past. Alkalinity, DIC and Ca2+ concentrations measured on research vessels differ from in situ values because temperature and pressure changes during core recovery, storage and extraction induce calcium carbonate precipitation and in this way alter the original composition. To reconstruct in situ values, we developed a method that takes advantage of the mathematically over-determined state of the system if three components are measured, given that CaCO3 is saturated and the dissolved carbonate system is at equilibrium in situ. As a result, based on the measured alkalinity, DIC and Ca2+ concentrations, in situ CO2aq, HCO3-, CO32-, and minor species concentrations are calculated by applying an iteration process. This approach allows us to calculate the amount of CaCO3 precipitated during sediment recovery from the seafloor, and hence in situ carbonate system components. We apply our model to pore-water data from two SPG sites rich in calcium carbonate and drilled by Integrated Ocean Drilling Program Expedition 329 (Sites 1367 and 1368). We compared two sample types for this study, (i) samples squeezed and processed within minutes of recovery (rapidly processed) and (ii) samples processed in the following hours/days, and as consequence prone to some substantial alteration (slowly processed

  10. A New Carbonate Chemistry in the Earth's Lower Mantle

    NASA Astrophysics Data System (ADS)

    Boulard, E.; Gloter, A.; Corgne, A.; Antonangeli, D.; Auzende, A.; Perrillat, J.; Guyot, F. J.; Fiquet, G.

    2010-12-01

    The global geochemical carbon cycle involves exchange between the Earth’s mantle and the surface. Carbon (C) is recycled into the mantle via subduction and released to the atmosphere via volcanic outgassing. Carbonates are the main C-bearing minerals that are transported deep in the Earth’s mantle via subduction of the oceanic lithosphere [1]. The way C is recycled and its contribution to the lower mantle reservoir is however largely unknown [ e.g 2, 3]. In this respect, it is important to assess if carbonates can be preserved in the deep mantle, or if decarbonatation, melting or reduction play a role in the deep carbon cycle. To clarify the fate of carbonates in the deep mantle, we carried out high-pressure and high-temperature experiments up to 105 GPa and 2850 K. Natural Fe-Mg carbonates or oxide mixtures of (Mg,Fe)O + CO2 were loaded into laser heated diamond anvil cells. In situ characterizations were done by X-ray Diffraction (XRD) using synchrotron radiation at the high-pressure beamline ID27 of the European Synchrotron Radiation Facility. A focused ion beam technique was then used to prepare the recovered samples for electron energy loss spectroscopy in a dedicated scanning transmission electron microscope (EELS-STEM) and scanning transmission X-ray microscopy (STXM). In situ XRD clearly shows the transformation of the initial carbonate phase into a new Mg-Fe high pressure carbonate phase at lower mantle conditions. We also provide direct evidence for recombination of CO2 with (Mg,Fe)O to form this new carbonate structure. In addition, subsequent EELS-STEM and STXM spectroscopies carried out on recovered samples yields C K-edge and stoechiometry characteristic to this new carbonate structure. This new high pressure phase concentrates a large amount of Fe(III), as a result of redox reactions within the siderite-rich carbonate. The oxidation of iron is balanced by partial reduction of carbon into CO groups and/or diamond. These reactions may provide an

  11. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries

    SciTech Connect

    Belardi, G.; Lavecchia, R.; Medici, F.; Piga, L.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We separated Zn from Mn in zinc-carbon and alkaline batteries after removal of Hg. Black-Right-Pointing-Pointer Almost total removal of Hg is achieved at low temperature in air. Black-Right-Pointing-Pointer Nitrogen atmosphere is needed to reduce zinc and to permit its volatilization. Black-Right-Pointing-Pointer A high grade Zn concentrate was obtained with a high recovery at 1000-1200 Degree-Sign C. Black-Right-Pointing-Pointer The grade of Mn in the residue was enhanced with complete recovery. - Abstract: The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357 Degree-Sign C and 906 Degree-Sign C the boiling point of mercury and zinc and 1564 Degree-Sign C the melting point of Mn{sub 2}O{sub 3}. Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400 Degree-Sign C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000 Degree-Sign C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at

  12. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  13. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  14. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGESBeta

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  15. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  16. Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Zhong, Ren-Sheng; Qin, Yuan-Hang; Niu, Dong-Fang; Tian, Jing-Wei; Zhang, Xin-Sheng; Zhou, Xin-Gui; Sun, Shi-Gang; Yuan, Wei-Kang

    2013-03-01

    Carbon nanofibers (CNFs) with different content of surface functional groups which are carboxyl groups (CNF-OX), carbonyl groups (CNF-CO) and hydroxyl groups (CNF-OH) and nitrogen-containing groups (CNF-ON) are synthesized, and their electrocatalytic activities toward oxygen reduction reaction (ORR) in alkaline solution are investigated. The result of X-ray photoelectron spectroscopy (XPS) characterization indicates that a higher concentration of carboxyl groups, carbonyl groups and hydroxyl groups are imported onto the CNF-OX, CNF-CO and CNF-OH, respectively. Cyclic voltammetry shows that both the oxygen- and nitrogen-containing groups can improve the electrocatalytic activity of CNFs for ORR. The CNF-ON/GC electrode, which has nitrogen-containing groups, exhibits the highest current density of ORR. Rotating disk electrode (RDE) characterization shows that the oxygen reduction on CNF-ON/GC electrode proceeds almost entirely through the four-electron reduction pathway, the CNF-OX/GC, CNF-CO/GC and CNF-OH/GC electrodes proceed a two-electron reduction pathway at low potentials (-0.2 V to -0.6 V) followed by a gradual four-electron reduction pathway at more negative potentials, while the untreated carbon nanofiber (CNF-P/GC) electrode proceeds predominantly by a two-electron reduction pathway within the whole range of potential studied.

  17. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  18. Structures and stabilities of alkaline earth metal peroxides XO2 (X=Ca, Be, Mg) studied by a genetic algorithm

    SciTech Connect

    Zhao, Xin; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-09-17

    The structures and stabilities of alkaline earth metal peroxides XO2 (X = Ca, Be, Mg) were studied using an adaptive genetic algorithm (GA) for global structure optimization in combination with first-principles calculations. From the adaptive GA search, we obtained an orthorhombic structure for CaO2 with 12 atoms in the unit cell, which is energetically more favorable than the previously proposed structures. Reaction energy of the decomposition CaO2 → CaO + 1/2O2 determined by density functional theory (DFT) calculation shows that this orthorhombic calcium peroxide structure is thermodynamically stable. The simulated X-ray diffraction (XRD) pattern using our predicted structure is in excellent agreement with experimental data. We also show that crystal phase BeO2 is unlikely to exist under normal conditions. MgO2 has a cubic pyrite structure, but it is not stable against decomposition: MgO2 → MgO + 1/2O2.

  19. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions [1]. The vibrational FT-IR (in KBr and ATR techniques) and 1H and 13C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg → Ba were compared with series of univalent metal Li → Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  20. Thermoelectric properties of pnictogen-substituted skutterudites with alkaline-earth fillers using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bang, Semi; Wee, Daehyun; Li, An; Fornari, Marco; Kozinsky, Boris

    2016-05-01

    First-principles calculations have been performed to investigate electronic band structures, vibrational characters, and related transport properties of pnictogen-substituted skutterudites filled with alkaline-earth elements ( MxCo4A6B6 , where M = Ca, Sr, or Ba, A = Ge or Sn, B = Se or Te, and x = 0.5 or 1). Electronic transport properties related to thermoelectricity, including the Seebeck coefficient and the electrical conductivity, are computed by using the Boltzmann transport formalism within the constant-relaxation-time approximation. The results are compared against the corresponding properties of the unfilled pnictogen-substituted ternary skutterudites ( CoA1.5B1.5 ) to identify the effects of filling to estimate the potential for thermoelectric applications. The changes in the ionic character of the interatomic bonding between the Group 14 (A) and Group 16 (B) elements, which was suspected to be a major scattering source in unfilled pnictogen-substituted ternary skutterudites, are probed by analyzing the projected density of states, the charge densities, and the Born effective charges, in an attempt to identify a potential path for improvement of the thermoelectric performance. Our computational results suggest that the analyzed performance of the filled pnictogen-substituted skutterudites should exhibit no significant improvement over that of the corresponding unfilled pnictogen-substituted ternary skutterudites, unless significant reduction in thermal conductivity is achieved by the rattling motion of the filler atoms.

  1. Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na).

    PubMed

    Banerjee, Paramita; Nandi, Prasanta K

    2016-05-14

    The ground state structures and NLO properties of a number of alkaline earth metal complexes end-capped with NA2 groups (A = H, Li, Na) are calculated by employing the CAM-B3LYP, wB97XD and B2PLYP functionals along with MP2 and CCSD(T) for 6-311++G(d,p), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-pc-2 and Hypol basis sets. The complexes are found to be significantly stable. The magnitude of second hyperpolarizability enhances appreciably with increase in the number of magnesium and calcium atoms in the chain, which has been indicated by the power law dependence γ = a + bn(c) with c values ranging from 2.4-4.3 for Mg and 2.4-3.7 for Ca complexes, respectively. The largest second-hyperpolarizability (10(9) au) is obtained for the complex Ca7(NNa2)2 at the CAM-B3LYP level. The two state model has been used to explain the variation of hyperpolarizabilities. PMID:27088138

  2. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  3. Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses

    NASA Astrophysics Data System (ADS)

    Wan, Ronghua; Song, Zhiguo; Li, Yongjin; Zhou, Yuting; Liu, Qun; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi

    2015-02-01

    Stability of near-infrared (NIR) emission form Bi doped 42.5SiO2-12.5B2O3-25Al2O3-20RO (SBAR, R = Ca, Sr, Ba) glasses under treatment between annealing and softening temperature were studied. Results show that the thermal stability of Bi-NIR-emitting centers in SBAR glasses generally decreases with the increase of the radius of modifier cations but is greatly higher that in similar alkali glasses. Comparative experiments indicate these phenomena can be understood by the tendency that the smaller and higher charged alkaline earth ions as higher field strength modifier cations will increase the concentration of negative charge on non-bridging oxygens and also help to stabilize the non-bridging oxygens, which can restrain the thermally activated diffusion and valence change of Bi-activated centers, respectively. The results can provide an improved understanding for the NIR-emitting thermal stability of Bi doped glasses and a scientific reference for composition design of Bi-doped optical fiber.

  4. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  5. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites.

    PubMed

    Gaburjakova, Jana; Gaburjakova, Marta

    2016-06-01

    A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8mM to 53mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function. PMID:26849106

  6. New host for carbon in the deep Earth

    PubMed Central

    Boulard, Eglantine; Gloter, Alexandre; Corgne, Alexandre; Antonangeli, Daniele; Auzende, Anne-Line; Perrillat, Jean-Philippe; Guyot, François; Fiquet, Guillaume

    2011-01-01

    The global geochemical carbon cycle involves exchanges between the Earth’s interior and the surface. Carbon is recycled into the mantle via subduction mainly as carbonates and is released to the atmosphere via volcanism mostly as CO2. The stability of carbonates versus decarbonation and melting is therefore of great interest for understanding the global carbon cycle. For all these reasons, the thermodynamic properties and phase diagrams of these minerals are needed up to core mantle boundary conditions. However, the nature of C-bearing minerals at these conditions remains unclear. Here we show the existence of a new Mg-Fe carbon-bearing compound at depths greater than 1,800 km. Its structure, based on three-membered rings of corner-sharing (CO4)4- tetrahedra, is in close agreement with predictions by first principles quantum calculations [Oganov AR, et al. (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47]. This high-pressure polymorph of carbonates concentrates a large amount of Fe(III) as a result of intracrystalline reaction between Fe(II) and (CO3)2- groups schematically written as 4FeO + CO2 → 2Fe2O3 + C. This results in an assemblage of the new high-pressure phase, magnetite and nanodiamonds. PMID:21402927

  7. Nitrogen doped carbon nanotubes with encapsulated ferric carbide as excellent electrocatalyst for oxygen reduction reaction in acid and alkaline media

    NASA Astrophysics Data System (ADS)

    Zhong, Guoyu; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2015-07-01

    Nitrogen doped carbon nanotubes (NCNTs) with encapsulated Fe3C nanoparticles (Fe3C@NCNTs) are synthesized by a simple direct pyrolysis of melamine and ferric chloride. The characterization results reveal that Fe3C is mainly encapsulated in the interior of NCNTs and N species is mainly distributed on the outside surface of NCNTs. Iron and iron carbide catalyze the growth of NCNTs and are wrapped by carbon to form Fe3C@NCNTs. The as-prepared Fe3C@NCNTs catalyst exhibits superior oxygen reduction reaction (ORR) activity, excellent methanol tolerance and long-term stability in both acid and alkaline media. It is proven that the doped N is the main active site for ORR and the inner Fe3C with outside carbon form the synergetic active site to enhance ORR activity. The ORR mechanism of direct four electron transfer pathway is proved in acid and alkaline media.

  8. Cometary origin of carbon, nitrogen, and water on the earth

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1992-01-01

    In this paper, two assumptions on the origin of the earth are substantiated: (1) that the earth accreted from fine hot degassed dust particles containing no volatiles; and (2) that, after the accretion was finished, all the volatiles of the biosphere, including the atmosphere and the oceans, were brought to the earth by cometary bombardment. A temperature of more than 1000 K is deduced at the time when the dust that was going to form the earth was separated from the gas phase. This implies grains of anhydrous silicates and of reduced iron, without either water, carbon, or any labile elements, which remained in gas phase; thus, the minor bodies could not produce atmosphere or oceans. The second assumption is based on the evidence that cometary nuclei are formed in the outer space, by accumulation of frosty particles containing large amounts of ice and volatile molecules. It is shown that the icy bodies which hit the earth are more than enough to explain the whole biosphere.

  9. Modelling the carbon cycle though Neoproterozoic Earth system changes

    NASA Astrophysics Data System (ADS)

    Bjerrum, C. J.; Canfield, D. E.

    2011-12-01

    The Neoproterozoic-Cambrian records major changes in geochemical proxies as a result of a profound reorganization of the Earth system. Extensive glaciations and the first oxygenation of the deep ocean with a shift from sulfidic/ferruginous conditions to more oxic conditions was accompanied by the radiation of the first animals. The reorganization was also recorded in enigmatic large-amplitude fluctuations in the isotopic composition of marine carbonate carbon (δ13CIC ), were only some are associated with major known glaciations. The carbon isotope events seem to grow in amplitude through the Neoproterozoic culminating in the Shuram anomaly - the largest in Earth history. The δ13CIC events are also accompanied by changes in the isotope composition of marine organic carbon (δ13COC), where the co-variation of δ13CIC and δ13COC seems to evolve from markedly positive relationship over a subdued δ13COC variation and an almost inverse pattern. There is limited understanding as to why or how the structure of these isotope events evolved over time and how these events may tie to the reorganization of the Earth system. We use our published quantitative model of the Shuram anomaly to explore carbon cycle dynamics during the Neoproterozoic. By changing in pre-event atmosphere-ocean chemistry we explore which factors contribute to the observed patterns of the large Neoproterozoic carbon isotope events. In particular, decreasing atmospheric CO2 and a slight increase of oxygen together with an increasing CO source from rising DOC concentrations results in progressively larger event amplitudes with changing co-variation between δ13CIC and δ13COC , culminating with the structure observed for the Shurum-Wonaka anomaly in the Ediacaran. In our model, the carbon isotope excursions were driven by methane from sediment-hosted clathrate hydrate deposits. Being a powerful greenhouse gas, methane increased temperature and melted icecaps. These combined to produce a negative 18O

  10. Complexation of Donor-Acceptor Substituted Aza-Crowns with Alkali and Alkaline Earth Metal Cations. Charge Transfer and Recoordination in Excited State.

    PubMed

    Volchkov, Valery V; Gostev, Fedor E; Shelaev, Ivan V; Nadtochenko, Viktor A; Dmitrieva, Svetlana N; Gromov, Sergey P; Alfimov, Mikhail V; Melnikov, Mikhail Ya

    2016-03-01

    Complexation between two aza-15-crown-5 ethers bearing electron donor and acceptor fragments and alkali and alkaline earth perchlorates has been studied using absorption, steady-state fluorescence and femtosecond transient absorption spectroscopy. The spectral-luminescent parameters, the stability and dissociation constants of the complexes were calculated. The intramolecular charge transfer reaction takes place both in the excited state of the crowns and their complexes 1:1; the latter is subjected to photorecoordination resulting in a weakening or a complete disruption of coordination bond between nitrogen atom and metal cation, disposed within a cavity of the crown. The compounds investigated can be viewed as novel optical molecular sensors for alkali and alkaline-earth metal cations. The photoejection of a metal cation into the bulk was not observed. PMID:26670689

  11. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  12. Carbon monoxide in the earth's atmosphere - Increasing trend

    NASA Technical Reports Server (NTRS)

    Khalil, M. A. K.; Rasmussen, R. A.

    1984-01-01

    The results of an analysis of more than 60,000 atmospheric measurements of carbon monoxide taken over 3-1/2 years at Cape Meares, Oregon (45 deg N, 125 deg W), indicate that the background concentration of this gas is increasing. The rate of increase, although uncertain, is about 6 percent per year on average. Human activities are the likely cause of a substantial portion of this observed increase; however, because of the short atmospheric lifetime of carbon monoxide and the relatively few years of observations, fluctuations of sources and sinks related to the natural variability of climate may have affected the observed trend. Increased carbon monoxide may deplete tropospheric hydroxyl radicals, slowing down the removal of dozens of man-made and anthropogenic trace gases and thus indirectly affecting the earth's climate and possibly the stratospheric ozone layer.

  13. Carbon trading, climate change, environmental sustainability and saving planet Earth

    NASA Astrophysics Data System (ADS)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  14. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. PMID:25865133

  15. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  16. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  17. Diamond crystallization in a CO2-rich alkaline carbonate melt with a nitrogen additive

    NASA Astrophysics Data System (ADS)

    Khokhryakov, Alexander F.; Palyanov, Yuri N.; Kupriyanov, Igor N.; Nechaev, Denis V.

    2016-09-01

    Diamond crystallization was experimentally studied in a CO2-bearing alkaline carbonate melt with an increased content of nitrogen at pressure of 6.3 GPa and temperature of 1500 °C. The growth rate, morphology, internal structure of overgrown layers, and defect-impurity composition of newly formed diamond were investigated. The type of growth patterns on faces, internal structure, and nitrogen content were found to be controlled by both the crystallographic orientation of the growth surfaces and the structure of the original faces of diamond seed crystals. An overgrown layer has a uniform structure on the {100} plane faces of synthetic diamond and a fibrillar (fibrous) structure on the faceted surfaces of a natural diamond cube. The {111} faces have a polycentric vicinal relief with numerous twin intergrowths and micro twin lamellae. The stable form of diamond growth under experimental conditions is a curved-face hexoctahedron with small cube faces. The nitrogen impurity concentration in overgrown layers varies depending on the growth direction and surface type, from 100 to 1100 ppm.

  18. Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts

    SciTech Connect

    Araki, N.; Matsuura, M.; Makino, A.; Hirata, T.; Kato, Y.

    1988-11-01

    The purpose of this study is to develop measuring methods for the thermal diffusivity, the specific heat capacity, and the density of molten salts, as well as to measure these properties of mixtures of alkaline carbonate salts. The thermal diffusivity is measured by the stepwise heating method. The sample salt is poured into a thin container, and as a result, a three-layered cell is formed. The thermal diffusivity is obtained from the ratio of temperature rises at different times measured at the rear surface of the cell when the front surface is heated by the stepwise energy from an iodine lamp. The specific heat capacity is measured using an adiabatic scanning calorimeter. The density is measured by Archimedes' principle. Thermal conductivity is determined from the above properties. Measured samples are Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ (42.7-57.3, 50.0-50.0, and 62.0-38.0 mol%).

  19. Multidimensional (0D to 3D) Alkaline-Earth Metal Diphosphonates: Synthesis, Structural Diversity, and Luminescence Properties.

    PubMed

    Senthil Raja, Duraisamy; Lin, Pin-Chun; Liu, Wei-Ren; Zhan, Jun-Xiang; Fu, Xin-Yi; Lin, Chia-Her

    2015-05-01

    A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state (31)P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[Ln(x)Mg(1-x)(hedpH2)2(hedpH(2-x))]·3H2O (1Ln), (H2NMe2)2[Ln(x)Ca(1-x)(hedpH2)(hedpH(2-x))] (2Ln), (H2NMe2)2[Ln(x)Sr(3-x)(hedpH2)3(hedpH(2-x))(H2O)2] (3Ln), and [Ln(x)Ba(3-x)(hedpH2)2(hedpH(2-x))]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu(3+) (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb(3+). Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%). PMID:25871285

  20. Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    NASA Astrophysics Data System (ADS)

    Shirokova, L. S.; Mavromatis, V.; Bundeleva, I.; Pokrovsky, O. S.; Bénézeth, P.; Pearce, C.; Gérard, E.; Balor, S.; Oelkers, E. H.

    2011-07-01

    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (Δ26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from -1.4 to -0.7 ‰. This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonates.

  1. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  2. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Belardi, G; Lavecchia, R; Medici, F; Piga, L

    2012-10-01

    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process. PMID:22677015

  3. Ab initio study of permanent electric dipole moment and radiative lifetimes of alkaline-earth-metal--Li molecules

    SciTech Connect

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-12-15

    We calculate permanent electric dipole moments (PDMs), as well as spontaneous and black body lifetimes, of alkaline-earth-metal-Li (AEM-Li) ultracold polar molecules to study anisotropic long-range dipole-dipole interactions in a single quantum state. We obtain potential energy curves for the {sup 2} {Sigma} ground state of MgLi, CaLi, SrLi, and BaLi molecules at the coupled cluster singles and doubles with partial triples [CCSD(T)] level of electron correlation. Calculated spectroscopic constants for the isotopes: {sup 24}Mg{sup 7}Li, {sup 40}Ca{sup 7}Li, {sup 88}Sr{sup 7}Li, and {sup 138}Ba{sup 7}Li, show good agreement with available theoretical and experimental results. We obtain PDM curves using finite field perturbation theory at the CCSD(T) level. We find that AEM-Li molecules have moderate values of PDM at the equilibrium bond distance (MgLi: 0.90 D, CaLi: 1.15 D, SrLi: 0.33 D, and BaLi: -0.42 D) and hence might be suitable candidates for the proposed study in a single quantum state. Radiative lifetime calculations of the {nu} = 0 state ({sup 24}Mg{sup 6}Li: 22 s, {sup 40}Ca{sup 6}Li: 39 s, {sup 88}Sr{sup 6}Li: 380 s, and {sup 138}Ba{sup 6}Li: 988 s) are found to be longer than the typical time scale associated with ultracold experiments with these molecules. The uncertainty in the lifetime calculations are estimated to be less than 10%.

  4. Sensitized red luminescence from Ce{sup 3+}, Mn{sup 2+}-doped glaserite-type alkaline-earth silicates

    SciTech Connect

    Yonesaki, Yoshinori; Takei, Takahiro; Kumada, Nobuhiro; Kinomura, Nobukazu

    2010-06-15

    Bright red luminescence is observed from Ce, Mn-doped glaserite-type alkaline-earth silicates with M{sub 2}BaMgSi{sub 2}O{sub 8} (M: Ba, Sr, Ca) chemical composition. Under UV excitation, Ce-doped M{sub 2}BaMgSi{sub 2}O{sub 8} exhibits strong near-UV emission with asymmetric peak shape. UV-excited Mn-doped M{sub 2}BaMgSi{sub 2}O{sub 8} compounds show visible red emission only when Ce{sup 3+} ions are doped together. These results indicate that Mn{sup 2+}-derived red emission is caused by an efficient energy transfer from Ce{sup 3+} to Mn{sup 2+}. The red emission becomes intense with an increase in Ba-amount. This trend originates from the relaxation of the selection rule for 3d-3d transition in Mn{sup 2+} ions, which is caused by the structural deformation due to Ba{sup 2+} occupation for layer-pockets. - Graphical abstract: Glaserite-type red emitting phosphor, M{sub 2}BaMgSi{sub 2}O{sub 8}: Ce{sup 3+}, Mn{sup 2+} (M: Ba, Sr, Ca), was prepared by solid state reaction. Under UV excitation, Mn{sup 2+}-derived red emission is observed from the compounds only when Ce{sup 3+} ions are codoped, indicating that the red emission is caused by an energy transfer from Ce{sup 3+} to Mn{sup 2+}.

  5. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  6. Photoelectron Experiments and Studies of X-Ray Absorption Near Edge Structure in Alkaline-Earth and Rare - Fluorides.

    NASA Astrophysics Data System (ADS)

    Gao, Yuan

    Alkaline-earth fluorides and rare-earth trifluorides possess technological importance for applications in multi -layer electronic device structures and opto-electronic devices. Interfaces between thin films of YbF _3 and Si(111) substrates were studied by photoelectron spectroscopy and x-ray absorption spectroscopy using synchrotron radiation. Results of YbF_3 /Si(111) were compared with those of TmF _3/Si(111). While electrons in the Si valence band are prevented from occupying the empty 4f levels in TmF_3 at the interface by the on -site Coulomb repulsion energy, the charge transfer from Si to YbF_3 is possible because the totally filled 4f states in Yb still lie below the Si valence band maximum. The theory of x-ray absorption near edge structure (XANES) is incomplete except for a few particularly simple special cases. A Bragg reflection model was developed to qualitatively explain the oscillations in XANES, in terms of the scattering of the photoelectron wave between families of lattice planes as set out by the Bragg condition for backscattering. The model was found to represent the data for systems with nearly free electron like conduction bands reasonably well. High resolution CaF_2 fluorine K edge XANES was used as a prototype to understand XANES in more depth on systems with strong core hole effects. Unlike previous work which involved multiple scattering cluster calculations that include only short range order effects, both the long range order and the symmetry breaking core holes are included in a new bandstructure approach in which the core hole is treated with a supercell technique. A first principles calculation with the use of pseudopotentials successfully reproduced all the main features of the first 15 eV of the fluorine K edge in CaF_2 which had not been explained with the cluster calculations. A comparison of the theoretical and experimental fluorine K edges in CaF_2 and BaF _2 was used to identify the structure related features. The possibility

  7. The effect of ultrasound on the catalytic activity of alkaline carbons: preparation of N-alkyl imidazoles

    NASA Astrophysics Data System (ADS)

    Durán-Valle, C. J.; Ferrera-Escudero, S.; Calvino-Casilda, V.; Díaz-Terán, J.; Martín-Aranda, R. M.

    2004-11-01

    N-Alkyl imidazoles have been prepared by sonochemical irradiation of imidazole and 1-bromobutane using alkaline promoted carbons. Under the experimental conditions, N-alkyl imidazoles can be prepared with a high activity and selectivity. It is observed that imidazole conversion increases in parallel with increasing basicity of the catalyst. For comparison, the alkylation of imidazole has also been performed in a batch reactor system under thermal activation.

  8. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth.

    PubMed

    Horita, Juske; Polyakov, Veniamin B

    2015-01-01

    The carbon budget and dynamics of the Earth's interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ(13)C ≈ -5 ± 3‰ with a very broad distribution to lower values (∼-40‰). The processes that have produced the wide δ(13)C distributions to the observed low δ(13)C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe-C phases (Fe carbides and C dissolved in Fe-Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in (13)C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe-C phases can readily produce diamond with the observed low δ(13)C values. The sharp contrast in the δ(13)C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5-3 Ga. Our model also predicts that the core contains C with low δ(13)C values and that an average δ(13)C value of the bulk Earth could be much lower than ∼-5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ(13)C values of the deep Earth have implications, not only for its accretion-differentiation history but also for carbon isotope biosignatures for early life on the Earth. PMID:25512520

  9. Grain boundary mobility of carbon in Earth's mantle: A possible carbon flux from the core

    PubMed Central

    Hayden, Leslie A.; Watson, E. Bruce

    2008-01-01

    The importance of carbon in Earth's mantle greatly exceeds its modest abundance of ≈1,000–4,000 ppm. Carbon is a constituent of key terrestrial volatiles (CO, CO2, CH4), it forms diamonds, and it may also contribute to the bulk electrical properties of the silicate Earth. In contrast to that of the mantle, the carbon content of Earth's metallic core may be quite high (≈5 wt %), raising the possibility that the core has supplied carbon to the mantle over geologic time. The plausibility of this process depends in part upon the mobility of carbon atoms in the solid mantle. Grain boundaries of mantle minerals could represent fast pathways for transport as well as localized sites for enrichment and storage of carbon. Here, we report the results of an experimental study of grain-boundary diffusion of carbon through polycrystalline periclase (MgO) and olivine ([Mg,Fe]2SiO4) that were obtained by determining the extent of solid solution formation between a graphite source and a metal sink (Ni or Fe) separated by the polycrystalline materials. Experimental materials were annealed at 1,373–1,773 K and 1.5–2.5 GPa pressure. Calculated diffusivities, which range up to 10−11 m2·s−1, are fast enough to allow transport over geologically significant length scales (≈10 km) over the age of the Earth. Mobility and enrichment of carbon on grain boundaries may also explain the high electrical conductivity of upper mantle rocks, and could result in the formation of C-H-O volatiles through interactions of core-derived C with recycled H2O in subduction zones. PMID:18559860

  10. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  11. Carbon in the Galaxy: Studies from Earth and Space

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C. (Editor); Chang, Sherwood (Editor); Defrees, Doug J. (Editor)

    1990-01-01

    Presented here is the text of the invited papers presented during a meeting entitled, Carbon in the Galaxy: Studies from Earth and Space, that was held at NASA Ames Research Center on November 5 and 6, 1987. For completeness, abstracts from all of the poster papers and the text of a paper summarizing what was learned during the course of the meeting are also included. The underlying premise for the meeting was that there is much to be gained by bringing together scientists from very different disciplines, all of whom study carbon in different ways for different reasons. The interchanges took place during the meeting and the contents of the enclosed papers validate that premise.

  12. The North American Carbon Program Google Earth Collection

    NASA Astrophysics Data System (ADS)

    Morrell, A. L.; Griffith, P. C.; Wilcox, L. E.

    2008-12-01

    The central objective of the North American Carbon Program (NACP), a core element of the US Climate Change Science Program, is to quantify the sources and sinks of carbon dioxide, carbon monoxide, and methane in North America and adjacent ocean regions. The NACP consists of a wide range of investigators at universities and federal research centers. Although many of these investigators have worked together in the past, many have had few prior interactions and may not know of similar work within knowledge domains, much less across the diversity of environments and scientific approaches in the Program. Coordinating interactions and sharing data are major challenges in conducting NACP. The Google Earth Collection on the NACP website (www.nacarbon.org) provides a geographical view of the research products contributed by each core and affiliated NACP project. Other relevant data sources (e.g. AERONET) can also be browsed in spatial context with NACP contributions. Each contribution links to project-oriented metadata, or "project profiles", that provide a greater understanding of the scientific and social context of each dataset and are an important means of communicating within the NACP and to the larger carbon cycle science community. Project profiles store information such as a project's title, leaders, participants, an abstract, keywords, funding agencies, associated intensive field campaigns, expected data products, data needs, publications, and URLs to associated data centers, datasets, and metadata. Data products are research contributions that include biometric inventories, flux tower estimates, remote sensing land cover products, tools, services, and model inputs / outputs. Project leaders have been asked to identify these contributions to the site level whenever possible, either through simple latitude/longitude pair, or by uploading a KML, KMZ, or shape file. After post-processing, research contributions are added to the NACP Google Earth Collection to

  13. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  14. High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development.

    PubMed

    Min, Ki-Ha; Son, Ryeo Gang; Ki, Mi-Ran; Choi, Yoo Seong; Pack, Seung Pil

    2016-01-01

    Carbonic anhydrase (CA) is a biocatalyst for CO2 sequestration because of its distinctive ability to accelerate CO2 hydration. High production and efficient immobilization of alkaline-active CAs are required, because one potential application of CA is its use in the alkaline solvent-based CO2 absorption/desorption process. Here, we designed and applied an α-type CA from Hahella chejuensis (HCA), which was reported as highly active in alkaline conditions, but was mostly expressed as insoluble forms. We found that the signal peptide-removed form of HCA [HCA(SP-)] was successfully expressed in the soluble form [∼70mg of purified HCA(SP-) per L of culture]. HCA(SP-) also displayed high pH stability in alkaline conditions, with maximal activity at pH 10; at this pH, ∼90% activity was maintained for 2h. Then, we prepared HCA(SP-)-encapsulated silica particles [HCA(SP-)@silica] via a spermine-mediated bio-inspired silicification method. HCA(SP-)@silica exhibited high-loading and highly stable CA activity. In addition, HCA(SP-)@silica retained more than 90% of the CA activity even after 10 cycles of use in mild conditions, and ∼80% in pH 10 conditions. These results will be useful for the development of practical CO2 sequestration processes employing CA. PMID:26206748

  15. Climatological variations of total alkalinity and total dissolved inorganic carbon in the Mediterranean Sea surface waters

    NASA Astrophysics Data System (ADS)

    Gemayel, E.; Hassoun, A. E. R.; Benallal, M. A.; Goyet, C.; Rivaro, P.; Abboud-Abi Saab, M.; Krasakopoulou, E.; Touratier, F.; Ziveri, P.

    2015-12-01

    A compilation of data from several cruises between 1998 and 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total dissolved inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross-validation results and revealed that second- and third-order polynomials fit the AT and CT data respectively. The AT surface fit yielded a root mean square error (RMSE) of ± 10.6 μmol kg-1, and salinity and temperature contribute to 96 % of the variability. Furthermore, we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ± 14.3 μmol kg-1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The identified empirical equations were applied on the 0.25° climatologies of temperature and salinity, available from the World Ocean Atlas 2013. The 7-year averages (2005-2012) showed that AT and CT have similar patterns with an increasing eastward gradient. The variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summer-winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations.

  16. Climatological variations of total alkalinity and total inorganic carbon in the Mediterranean Sea surface waters

    NASA Astrophysics Data System (ADS)

    Gemayel, E.; Hassoun, A. E. R.; Benallal, M. A.; Goyet, C.; Rivaro, P.; Abboud-Abi Saab, M.; Krasakopoulou, E.; Touratier, F.; Ziveri, P.

    2015-08-01

    A compilation of several cruises data from 1998 to 2013 was used to derive polynomial fits that estimate total alkalinity (AT) and total inorganic carbon (CT) from measurements of salinity and temperature in the Mediterranean Sea surface waters. The optimal equations were chosen based on the 10-fold cross validation results and revealed that a second and third order polynomials fit the AT and CT data respectively. The AT surface fit showed an improved root mean square error (RMSE) of ±10.6 μmol kg-1. Furthermore we present the first annual mean CT parameterization for the Mediterranean Sea surface waters with a RMSE of ±14.3 μmol kg-1. Excluding the marginal seas of the Adriatic and the Aegean, these equations can be used to estimate AT and CT in case of the lack of measurements. The seven years averages (2005-2012) mapped using the quarter degree climatologies of the World Ocean Atlas 2013 showed that in surface waters AT and CT have similar patterns with an increasing eastward gradient. The surface variability is influenced by the inflow of cold Atlantic waters through the Strait of Gibraltar and by the oligotrophic and thermohaline gradient that characterize the Mediterranean Sea. The summer-winter seasonality was also mapped and showed different patterns for AT and CT. During the winter, the AT and CT concentrations were higher in the western than in the eastern basin, primarily due to the deepening of the mixed layer and upwelling of dense waters. The opposite was observed in the summer where the eastern basin was marked by higher AT and CT concentrations than in winter. The strong evaporation that takes place in this season along with the ultra-oligotrophy of the eastern basin determines the increase of both AT and CT concentrations.

  17. Carbon-bearing iron phases and the carbon isotope composition of the deep Earth

    PubMed Central

    Horita, Juske; Polyakov, Veniamin B.

    2015-01-01

    The carbon budget and dynamics of the Earth’s interior, including the core, are currently very poorly understood. Diamond-bearing, mantle-derived rocks show a very well defined peak at δ13C ≈ −5 ± 3‰ with a very broad distribution to lower values (∼−40‰). The processes that have produced the wide δ13C distributions to the observed low δ13C values in the deep Earth have been extensively debated, but few viable models have been proposed. Here, we present a model for understanding carbon isotope distributions within the deep Earth, involving Fe−C phases (Fe carbides and C dissolved in Fe−Ni metal). Our theoretical calculations show that Fe and Si carbides can be significantly depleted in 13C relative to other C-bearing materials even at mantle temperatures. Thus, the redox freezing and melting cycles of lithosphere via subduction upwelling in the deep Earth that involve the Fe−C phases can readily produce diamond with the observed low δ13C values. The sharp contrast in the δ13C distributions of peridotitic and eclogitic diamonds may reflect differences in their carbon cycles, controlled by the evolution of geodynamical processes around 2.5–3 Ga. Our model also predicts that the core contains C with low δ13C values and that an average δ13C value of the bulk Earth could be much lower than ∼−5‰, consistent with those of chondrites and other planetary body. The heterogeneous and depleted δ13C values of the deep Earth have implications, not only for its accretion−differentiation history but also for carbon isotope biosignatures for early life on the Earth. PMID:25512520

  18. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix. PMID:24124804

  19. CarbonSat: ESA's Earth Explorer 8 Candidate Mission

    NASA Astrophysics Data System (ADS)

    Meijer, Y. J.; Ingmann, P.; Löscher, A.

    2012-04-01

    The CarbonSat candidate mission is part of ESA's Earth Explorer Programme. In 2010, two candidate opportunity missions had been selected for feasibility and preliminary definition studies. The missions, called FLEX and CarbonSat, are now in competition to become ESA's eighth Earth Explorer, both addressing key climate and environmental change issues. In this presentation we will provide a mission overview of CarbonSat with a focus on science. CarbonSat's primary mission objective is the quantification and monitoring of CO2 and CH4 sources and sinks from the local to the regional scale for i) a better understanding of the processes that control carbon cycle dynamics and ii) an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.) in the context of international treaties. A second priority objective is the monitoring/derivation of CO2 and CH4 fluxes on regional to global scale. These objectives will be achieved by a unique combination of frequent, high spatial resolution (2 x 2 km2) observations of XCO2 and XCH4 coupled to inverse modelling schemes. The required random error of a single measurement at ground-pixel resolution is of the order of between 1 and 3 ppm for XCO2 and between 9 and 17 ppb for XCH4. High spatial resolution is essential in order to maximize the probability for clear-sky observations and to identify flux hot spots. Ideally, CarbonSat shall have a wide swath allowing a 6-day global repeat cycle. The CarbonSat observations will enable CO2 emissions from coal-fired power plants, localized industrial complexes, cities, and other large emitters to be objectively assessed at a global scale. Similarly, the monitoring of natural gas pipelines and compressor station leakage will become feasible. The detection and quantification of the substantial geological greenhouse gas emission sources such as seeps, volcanoes and mud volcanoes will be achieved for the first time. CarbonSat's Greenhouse Gas instrument will

  20. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  1. Electrolytic recycling of a carbonate salt in a process with a dissolution of spent nuclear fuel in a strong alkaline carbonate media

    SciTech Connect

    Kwang-Wook Kim; In-Tae Kim; Seong-Min Kim; Yeon-Hwa Kim; Eil-Hee Lee; Kwang-Yong Jee

    2007-07-01

    A removal of only uranium from spent nuclear fuel with the concepts of a high proliferation-resistance and a minimal generation of waste is helpful for a spent fuel management in view of a volume reduction of the high level radioactive waste generated from the spent fuel treatment. That can be accomplished by a process using a selective oxidative dissolution of the spent fuel in a carbonate solution of high alkalinity. In this work, an electrolytic method for a de-carbonation and a recovery of CO{sub 2} for recycling the used carbonate solution contaminated with some impurity metal ions generated in such a process with a concept of zero-release of waste solution was studied. A carbonate solution generated from such a system was confirmed to be completely recycled within the system, while the impurity ions being separated from the carbonate solution. (authors)

  2. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. PMID:26303652

  3. Electronic structure, optical properties and bonding in alkaline earth halo-fluoride scintillators: BaClF, BaBrF and BaIF

    SciTech Connect

    Yedukondalu, N.; Babu, K. Ramesh; Bheemalingam, Ch.; Singh, David J; Vaitheeswaran, G.; Kanchana, V.

    2011-01-01

    We report first-principles studies of the structural, electronic, and optical properties of the alkaline-earth halofluorides, BaXF (X = Cl, Br, and I), including pressure dependence of structural properties. The band structures show clear separation of the halogen p derived valence bands into higher binding energy F and lower binding energy X derived manifolds reflecting the very high electronegativity of F relative to the other halogens. Implications of this for bonding and other properties are discussed. We find an anisotropic behavior of the structural parameters especially of BaIF under pressure. The optical properties on the other hand are almost isotropic, in spite of the anisotropic crystal structures.

  4. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  5. Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali - alkaline earth borate glass

    NASA Astrophysics Data System (ADS)

    Deshpande, A. M.; Deshpande, V. K.

    2009-07-01

    Mixed alkali — alkaline earth borate glasses, with the addition of silica and alumina, have been studied for their density, Tg and CTE with a view of exploring the applicability of these glasses in glass to metal sealing applications. It has been observed that silica addition results in an increase in density and Tg while the alumina addition decreases the density and Tg. The variation in CTE exhibits minima with the addition of both, silica and alumina. An attempt is made here to explain the observed variations in the properties on the basis of different mass of the additives, number of non bridging oxygens (NBOs) and other changes in the glass network.

  6. Carbon Dioxide Cycling and the Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early Sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  7. Carbon Dioxide Cycling And The Climate of Ancient Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Sleep, Norman H.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The continental cycle of silicate weathering and metamorphism dynamically buffers atmospheric CO2 and climate. Feedback is provided by the strong temperature dependence of silicate weathering. Here we argue that hydrothermal alteration of oceanic basalts also dynamically buffers CO2. The oceanic cycle links with the mantle via subduction and the midocean ridges. Feedback is provided by the dependence of carbonatization on dissolved carbonates in seawater. Unlike the continental cycle, the oceanic cycle has no thermostat. Currently the continental cycle is more important, but earlier in Earth's history, especially if heat flow were higher than it is now, more vigorous plate tectonics would have made the oceanic cycle dominant. We find that CO2 greenhouses thick enough to defeat the faint early sun are implausible and that, if no other greenhouse gases are invoked, very cold climates are expected for much of the Proterozoic and the Archean. We echo current fashion and favor biogenic methane as the chief supplement to CO2. Fast weathering and probable subduction of abundant impact ejecta would have reduced CO2 levels still further in the Hadean. Despite its name, the Hadean would have been the coldest era in the history of the Earth.

  8. Accretion and differentiation of carbon in the early Earth.

    PubMed

    Tingle, T N

    1998-05-15

    The abundance of C in carbonaceous and ordinary chondrites decreases exponentially with increasing shock pressure as inferred from the petrologic shock classification of Scott et al. [Scott, E.R.D., Keil, K., Stoffler, D., 1992. Shock metamorphism of carbonaceous chondrites. Geochim. Cosmochim. Acta 56, 4281-4293] and Stoffler et al. [Stoffler, D., Keil, K., Scott, E.R.D., 1991. Shock metamorphism of ordinary chondrites. Geochim. Cosmochim. Acta 55, 3845-3867]. This confirms the experimental results of Tyburczy et al. [Tyburczy, J.A., Frisch, B., Ahrens, T.J., 1986. Shock-induced volatile loss from a carbonaceous chondrite: implications for planetary accretion. Earth Planet. Sci. Lett. 80, 201-207] on shock-induced devolatization of the Murchison meteorite showing that carbonaceous chondrites appear to be completely devolatilized at impact velocities greater than 2 km s-1. Both of these results suggest that C incorporation would have been most efficient in the early stages of accretion, and that the primordial C content of the Earth was between 10(24) and 10(25) g C (1-10% efficiency of incorporation). This estimate agrees well with the value of 3-7 x 10(24) g C based on the atmospheric abundance of 36Ar and the chondritic C/36Ar (Marty and Jambon, 1987). Several observations suggest that C likely was incorporated into the Earth's core during accretion. (1) Graphite and carbides are commonly present in iron meteorites, and those iron meteorites with Widmanstatten patterns reflecting the slowest cooling rates (mostly Group I and IIIb) contain the highest C abundances. The C abundance-cooling rate correlation is consistent with dissolution of C into Fe-Ni liquids that segregated to form the cores of the iron meteorite parent bodies. (2) The carbon isotopic composition of graphite in iron meteorites exhibits a uniform value of -5% [Deines, P., Wickman, F.E. 1973. The isotopic composition of 'graphitic' carbon from iron meteorites and some remarks on the troilitic

  9. Regularities of catalytic oxidation of carbon by nitrous oxide

    SciTech Connect

    Babenko, V.S.; Buyanov, R.A.

    1995-07-01

    The main regularities of the catalytic oxidation of various carbon materials by nitrous oxide are studied. The compounds of a series of alkaline and alkaline-earth metals are found to be effective catalysts for this process, which decrease the temperature of the beginning of carbon oxidation by {approximately} 150 - 200{degrees}C. The activity of alkaline metals is enhanced with increasing metal atomic mass. The rate of the carbon oxidation depends on the nature of a carbon material.

  10. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  11. Upper ocean carbon cycling inferred from direct pH observations made by profiling floats and estimated alkalinity

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.; Sakamoto, C.; Riser, S.

    2015-12-01

    The annual cycle of dissolved inorganic carbon (DIC) is a key tracer of net community production and carbon export in the upper ocean. In particular, the DIC concentration is much less sensitive to air-sea gas exchange, when compared to oxygen, another key tracer of upper ocean metabolism. However, the annual DIC cycle is observed with a seasonal resolution at only a few time-series stations in the open ocean. Here, we consider the annual carbon cycle that has been observed using profiling floats equipped with pH sensors. Deep-Sea DuraFET pH sensors have been deployed on profiling floats for over three years and they can provide temporal and spatial resolution of 5 to 10 days and 5 to 10 m in the upper ocean over multi-year periods. In addition to pH, a second carbon system parameter is required to compute DIC. Total alkalinity can be derived from the float observations of temperature, salinity and oxygen using equations in these variables that are fitted to shipboard observations of alkalinity obtained in the global repeat hydrography programs (e.g., Juranek et al., GRL, doi:10.1029/2011GL048580, 2011), as the relationships should be stable in time in the open ocean. Profiling floats with pH have been deployed from Hawaii Ocean Time-series (HOT) cruises since late 2012 and an array of floats with pH have been deployed since early 2014 in the Southern Ocean as part of the SOCCOM program. The SOCCOM array should grow to nearly 200 floats over the next 5 years. The sensor data was quality controlled and adjusted by comparing observations at 1500 m depth to the deep climatology of pH (derived from DIC and alkalinity) computed with the GLODAP data set. After adjustment, the surface DIC concentrations were calculated from pH and alkalinity. This yields a data set that is used to examine annual net community production in the oligotrophic North Pacific and in the South Pacific near 150 West from 40 South to 65 South.

  12. Aquatic insects in Montezuma Well, Arizona, USA: A travertine spring mound with high alkalinity and dissolved carbon dioxide

    SciTech Connect

    Blinn, D.W.; Sanderson, M.W. )

    1989-01-31

    An annotated list of aquatic insects from the high carbonate system of Montezuma Well, Arizona, USA, is presented for collections taken during 1976-1986. Fifty-seven taxa in 16 families are reported, including new distribution records for Arizona (Anacaena signaticollis, Laccobius ellipticus, and Crenitulus sp. (nr. debilis)) and the USA (Enochrus sharpi). Larval stages for Trichoptera, Lepidoptera, Megaloptera, Neuroptera, Chironomidae, and Anisoptera were absent even though the habitat lacks fish, and water temperature, dissolved oxygen, available food, and substrata appear adequate in Montezuma Well. The potential importance of alkalinity in restricting these insect groups is discussed.

  13. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    NASA Astrophysics Data System (ADS)

    Law, R. M.; Ziehn, T.; Matear, R. J.; Lenton, A.; Chamberlain, M. A.; Stevens, L. E.; Wang, Y. P.; Srbinovsky, J.; Bi, D.; Yan, H.; Vohralik, P. F.

    2015-09-01

    Earth System Models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1 that combines existing ocean and land carbon models into the physical climate model to simulate exchanges of carbon between the land, atmosphere and ocean. The land carbon model can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model simulates the evolution of nitrate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. From two multi-centennial simulations of the pre-industrial period with different land carbon model configurations, we evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. For the land carbon cycle, leaf area index is simulated reasonably, and seasonal carbon exchange is well represented. Interannual variations of land carbon exchange are relatively large, driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations and very good agreement with existing Coupled Model Intercomparison Project (CMIP5) models. While our model over estimates surface nitrate values, the primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  14. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Yi; Lin, Jia-Shiun; Pan, Wen-Han; Shih, Chao-Ming; Liu, Ying-Ling; Lue, Shingjiang Jessie

    2016-01-01

    This study investigates the application of a polyvinyl alcohol (PVA)/functionalized carbon nano-tubes (m-CNTs) composite in alkaline direct ethanol fuel cells (ADEFC). The m-CNTs are functionalized with PVA using the ozone mediation method, and the PVA composite containing the modified CNTs is prepared. Adding m-CNT into the PVA matrix enhances the alkaline uptake and the ionic conductivity of the KOH-doped electrolyte. Meanwhile, the m-CNT-containing membrane exhibited a lower swelling ratio and suppressed ethanol permeability compared to the pristine PVA film. The optimal condition for the ADEFC is determined to be under operation at an anode feed of 3 M ethanol in a 5 M KOH solution (at a flow rate of 5 cm3 min-1) with a cathode feed of moisturized oxygen (with a flow rate of 100 cm3 min-1) and the KOH-doped PVA/m-CNT electrolyte. We achieved a peak power density value of 65 mW cm-2 at 60 °C, which is the highest among the ADEFC literature data and several times higher than the proton-exchange direct ethanol fuel cells using sulfonated membrane electrolytes. Therefore, the KOH-doped PVA/m-CNT electrolyte is a suitable solid electrolyte for ADEFCs and has potential for commercialization in alkaline fuel cell applications.

  15. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  16. Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1975-01-01

    A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.

  17. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  18. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    PubMed

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application. PMID:26266695

  19. Proton conductors based on alkaline-earth substituted La(28-x)W(4+x)O(54+3x/2).

    PubMed

    Zayas-Rey, M J; dos Santos-Gómez, L; Cabeza, A; Marrero-López, D; Losilla, E R

    2014-05-01

    Lanthanum tungstates, "La6WO12", are mixed ion proton-electronic conductors with very interesting properties for technological applications and better phase stability compared to alkaline earth perovskites. A new series of compounds La(27.04-x)M(x)W(4.96)O(55.44-x/2□8.56+x/2) (M = Ca(2+), Sr(2+) and Ba(2+)) are investigated with the aim of increasing the concentration of oxygen vacancies and studying their effects on the structure and transport properties. The materials have been studied by high-resolution laboratory X-ray powder diffraction and scanning electron microscopy combined with energy dispersive spectroscopy (EDS). High temperature X-ray powder diffraction and thermal analysis in wet and dry N2 gas did not show any evidence of phase transition up to 800 °C. The total conductivity was studied by impedance spectroscopy under dry and wet atmospheres and as a function of the oxygen partial pressure. The electronic contribution to the conductivity was determined by the Hebb-Wagner polarization method. The generation of extrinsic vacancies in the lattice with alkaline earth doping leads to a decrease of the ionic conductivity for high doping level, suggesting a proton trapping mechanism. PMID:24622854

  20. Formation of M2+(O2)(C3H8) species in alkaline-earth-exchanged Y zeolite during propane selective oxidation.

    PubMed

    Xu, Jiang; Mojet, Barbara L; van Ommen, Jan G; Lefferts, Leon

    2005-10-01

    The adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations. It is demonstrated that O2 and propane can simultaneously attach to one active center (M2+) to form a M2+(O2)(C3H8) species, which is proposed to be the precursor in thermal propane selective oxidation. Selectivity to acetone in the propane oxidation reaction decreases with increasing temperature and cation size due to the formation of 2-propanol and carboxylate ions. An extended reaction scheme for the selective oxidation of propane over alkaline earth exchanged Y zeolites is proposed. PMID:16853364

  1. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  2. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  3. Coordination and ion-ion interactions of chromium centers in alkaline earth zinc borate glasses probed by electron paramagnetic resonance and optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardana Rao, T.; Linga Raju, Ch

    2013-05-01

    Electron paramagnetic resonance (EPR), optical absorption and FT-IR studies have been carried out on chromium ions incorporated in alkaline earth zinc borate glasses. The EPR spectra exhibit two resonance signals with effective g values at g ≈ 1.99 and ≈1.97. The resonance signal at g ≈ 1.99 is attributed to the contribution from both the exchange coupled Cr3+-Cr3+ ion pairs and the isolated Cr3+ ions and the resonance signal at g ≈ 1.97 is due to Cr5+ ions. The paramagnetic susceptibility (χ) was calculated from the EPR data at various (123-303 K) temperatures and the Curie temperature (θp) was calculated from the 1/χ-T graph. The optical absorption spectra exhibit three bands at ˜360 nm, ˜440 nm and a broad band at ˜615 nm characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal-field splitting parameter Dq and the Racah parameters (B and C) have been evaluated. From the ultraviolet edges, the optical band gap energies (Eopt) and Urbach energy (ΔE) are calculated. The theoretical optical basicity (Λth) of these glasses has also been evaluated. Chromium ions doped alkaline earth zinc borate glasses show BO3 and BO4 structural units in the FT-IR studies.

  4. The Place of Bend-Fault Carbonation in Earth's Longterm Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2014-05-01

    It is well known that mid-ocean ridges are a key site for chemical interactions between oceanic crust and the hydrosphere, and that these interactions modulate the chemistry of the oceans. This field is relatively mature. However, it is becoming increasingly evident that the oceanic lithosphere may also strongly interact with the hydrosphere during plate subduction, as it bends — by bend-faulting (cf. Ranero et al., 2003) — when it enters a trench. I review recent seismic evidence that suggests that bend-faulting is associated with ~10% serpentinization in a layer extending at least 10km below the Moho, and potentially more for old subducting lithosphere. The age-depth-dependence of the width of the double-Wadati-Benioff-zone implies that significant serpentinization occurs at lithospheric temperatures of ~300C where net reaction rates are likely to be highest. If this serpentine forms with a 1% carbonate fraction, then bend-fault serpentinization will consume an atmosphere's worth of CO2 every 40,000 years (e.g. of order ~1-2 Tmol/year), and it seems likely that the carbonate storage in serpentinized subducting lithosphere exceeds that in overlying oceanic crust and sediments. (Note that at least 1% carbonation occurs during mid-ocean-ridge serpentinization processes, but the actual fraction of bend-fault carbonation is currently unconstrained by in-situ measurements within partially serpentinized bend-fault mantle.) The rate of mantle ingassing associated with this poorly-understood geological process appears to be similar in magnitude to the rate of carbon outgassing from the mantle at mid-ocean ridges. The implications for Earth's long-term carbon cycle are potentially significant. For example, the initiation of new subduction may be associated with the creation of a significant carbonate sink — a feedback not included within Geologic models for Phanerozoic carbon+climate evolution. It also suggests there may be a direct link between the concentration of

  5. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  6. Effect of different carbon sources on decolourisation of an industrial textile dye under alkaline-saline conditions.

    PubMed

    Ottoni, Cristiane; Lima, Luis; Santos, Cledir; Lima, Nelson

    2014-01-01

    White-rot fungal strains of Trametes versicolor and Phanerochaete chrysosporium were selected to study the decolourisation of the textile dye, Reactive Black 5, under alkaline-saline conditions. Free and immobilised T. versicolor cells showed 100 % decolourisation in the growth medium supplemented with 15 g l(-1) NaCl, pH 9.5 at 30 °C in liquid batch culture. Continuous culture experiments were performed in a fixed-bed reactor using free and immobilised T. versicolor cells and allowed 85-100 % dye decolourisation. The immobilisation conditions for the biomass and the additional supply of carbon sources improved the decolourisation performance during a long-term trial of 40 days. Lignin peroxidase, laccase and glyoxal oxidase activities were detected during the experiments. The laccase activity varied depending on carbon source utilized and glycerol-enhanced laccase activity compared to sucrose during extended growth. PMID:23982200

  7. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    PubMed

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs. PMID:23562448

  8. Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: (x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x = 1-2.

    PubMed

    Zurawski, Alexander; Rybak, J-Christoph; Meyer, Larissa V; Matthes, Philipp R; Stepanenko, Vladimir; Dannenbauer, Nicole; Würthner, Frank; Müller-Buschbaum, Klaus

    2012-04-14

    The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were

  9. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGESBeta

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; Dai, Sheng; Liu, Rui; Hou, Xisen; Dai, Sheng

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  10. Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths

    SciTech Connect

    Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.

    2000-05-01

    Modeling the global ocean-atmosphere carbon dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing these initial conditions from an extensive global database of ocean carbon dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.

  11. The CarbonSat Earth Explorer 8 candidate mission: Error analysis for carbon dioxide and methane

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Bovensmann, Heinrich; Reuter, Maximilian; Gerilowski, Konstantin; Meijer, Yasjka; Sierk, Bernd; Caron, Jerome; Loescher, Armin; Ingmann, Paul; Burrows, John P.

    2015-04-01

    CarbonSat is one of two candidate missions for ESA's Earth Explorer 8 (EE8) satellite to be launched around 2022. The main goal of CarbonSat is to advance our knowledge on the natural and man-made sources and sinks of the two most important anthropogenic greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) on various temporal and spatial scales (e.g., regional, city and point source scale), as well as related climate feedbacks. CarbonSat will be the first satellite mission optimised to detect emission hot spots of CO2 (e.g., cities, industrialised areas, power plants) and CH4 (e.g., oil and gas fields) and to quantify their emissions. Furthermore, CarbonSat will deliver a number of important by-products such as Vegetation Chlorophyll Fluorescence (VCF, also called Solar Induced Fluorescence (SIF)) at 755 nm. These applications require appropriate retrieval algorithms which are currently being optimized and used for error analysis. The status of this error analysis will be presented based on the latest version of the CO2 and CH4 retrieval algorithm and taking the current instrument specification into account. An overview will be presented focusing on nadir observations over land. Focus will be on specific issues such as errors of the CO2 and CH4 products due to residual polarization related errors and errors related to inhomogeneous ground scenes.

  12. Carbon substituting for oxygen in silicates: A novel mechanism for carbon incorporation in the deep Earth

    NASA Astrophysics Data System (ADS)

    Armentrout, M. M.; Tavakoli, A.; Ionescu, E.; Mera, G.; Riedel, R.; Navrotsky, A.

    2013-12-01

    Traditionally, carbon in the deep Earth has been thought of in terms of either carbonate at high oxygen fugacities or graphite or diamond under more reducing conditions. However, material science studies of amorphous Si-O-C polymer derived ceramics have demonstrated that carbon can be accommodated as an anion substituting for oxygen in mixed silica tetrahedra. Furthermore these structures are energetically favorable relative to a mixture of crystalline silica, silicon carbide, and graphite by ten or more kJ/g.atom. Thermodynamic stability suggests that these nano-structured composites are a potentially important storage mechanism for carbon under moderately reducing conditions. Here we expand the scope of the previous work by examining the compositional effect of geologically relevant cations (calcium and magnesium) on the thermodynamic stability, nanostructure, and ability to accommodate carbon of these composites. Silicon oxy-carbides doped with magnesium, magnesium and calcium or undoped resisted crystallization at 1100 C under inert atmosphere. 29Si NMR of the samples shows a similar distribution of silicon between end-member and mixed sites (Table 1). Results are presented from studies utilizing NMR, high temperature solution calorimetry, and microprobe. Table 1. Percentages of Si species in each material as determined by 29Si NMR.

  13. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    NASA Technical Reports Server (NTRS)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  14. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  15. The addition effects of alkaline earth ions in the chemical synthesis of ɛ-Fe2O3 nanocrystals that exhibit a huge coercive field

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-ichi; Sakurai, Shunsuke; Jin, Jian; Hashimoto, Kazuhito

    2005-05-01

    An iron oxide/silica composite material, which was prepared by combining reverse-micelle and sol-gel techniques, exhibited a huge coercive field Hc of 20kOe (1.6×105Am-1) in our previous work. The key of this synthetic procedure was the added Ba2+ ions that created a single phase of ɛ-Fe2O3. In the present work, the addition effect of Ca2+ ions to this procedure was investigated. Consequently, rod-shape ɛ-Fe2O3 nanocrystals (40-120nm ×15-20nm) were obtained and a Hc value of 20kOe was observed. Thermodynamical analysis that considered the surface energy of nanoparticle suggested that a single ɛ-Fe2O3 phase was generated by retarding the crystal growth of Fe2O3 particles under the presence of alkaline earth ions.

  16. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  17. Magic-wave-induced {sup 1}S{sub 0}-{sup 3}P{sub 0} transition in even isotopes of alkaline-earth-metal-like atoms

    SciTech Connect

    Ovsiannikov, Vitaly D.; Pal'chikov, Vitaly G.; Taichenachev, Alexey V.; Yudin, Valeriy I.; Katori, Hidetoshi; Takamoto, Masao

    2007-02-15

    The circular polarized laser beam of the 'magic' wavelength may be used for mixing the {sup 3}P{sub 1} state into the long-living metastable state {sup 3}P{sub 0}, thus enabling the strictly forbidden {sup 1}S{sub 0}-{sup 3}P{sub 0} 'clock' transition in even isotopes of alkaline-earth-metal-like atoms, without a change of the transition frequency. In odd isotopes the laser beam may adjust to an optimum value the linewidth of the clock transition, originally enabled by the hyperfine mixing. We present a detailed analysis of various factors influencing resolution and uncertainty for an optical frequency standard based on atoms exposed simultaneously to the lattice standing wave and an additional 'state-mixing' wave, including estimations of the 'magic' wavelengths, Rabi frequencies for the clock and state-mixing transitions, ac Stark shifts for the ground and metastable states of divalent atoms.

  18. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    NASA Astrophysics Data System (ADS)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  19. 5d-4f emission of Eu2+ and electron-vibrational interaction in several alkaline earth sulfides doped with Eu2+ and Er3+

    NASA Astrophysics Data System (ADS)

    Kumar, G. A.; Liu, D.-X.; Tian, Y.; Brik, M. G.; Sardar, D. K.

    2015-12-01

    Several alkaline earth sulfides doped with Eu2+ and Er3+ ions have been synthesized and shown to be potential phosphors for applications in the visible spectral range. The excitation and emission spectra corresponding to the 4f-5d interconfigurational transitions of Eu2+ were analyzed with an aim of extraction of the main parameters of the electron-vibrational interaction. The values of the Huang-Rhys factor, effective phonon energies, and zero-phonon line positions were systematically compared for all studied materials; physical trends were discussed. As a test for the validity of the obtained parameters, the Eu2+ 5d-4f emission bands were modeled to yield good agreement with the experimental spectra.

  20. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  1. Carbon dioxide capture process with regenerable sorbents

    DOEpatents

    Pennline, Henry W.; Hoffman, James S.

    2002-05-14

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  2. Rare-earth catalysts for carbon-carbon linkages of olefins: Cyclic oligomerization of ethylene

    SciTech Connect

    Keim, W.; Meltzow, W.; Chen, Z. ); Huang, Z. ); Shen, Z. )

    1992-10-01

    A novel cyclo-oligomerization of ethene to alkylcyclopropanes, alkylcyclopentanes, and alkylcyclohexanes using a Ziegler-Natta type catalyst consisting of rare earth salts such as YCl{sub 3}, LaCl{sub 3}, CeCl{sub 3}, PrCl{sub 3} NdCl{sub 3}, SmCl{sub 3}, GdCl{sub 3}, HoCl{sub 3} ErCl{sub 3}, YbCl{sub 3}, LuCl{sub 3} combined with EtAlCl{sub 2} is described. The addition of carbon monoxide or isonitriles is essential. The C{sub 6}-oligomers consist of n-propylcyclopropane and methylcyclopentane. The C{sub 8}-oligomers include n-pentylcyclopropane, n-propylcyclopentane, 1,1-methylethylcyclopentane, and ethylcyclohexane. The C{sub 10}-oligomers embrace n-heptylcyclopropane, n-pentylcyclopentane, 1-1-methylbutylcyclopentane, 1,1-ethylpropylcyclopentane, and n-butylcyclohexane. When the reaction is carried out with rare earth salts and Et{sub 2}-AlCl or Et{sub 3}Al, only open-chain oligomers are obtained. There is no significant influence observed on product selectivity using other rare earth salts. Only the activity is affected. To understand the products formed a metallacycloalkane mechanism is proposed.

  3. Characterization of the products attained from a thermal treatment of a mix of zinc-carbon and alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Lin, Chitsan; Wang, Jian-Wen; Huang, Kuo-Lin; Tsai, Cheng-Hsien; Wang, Chih-Ta

    2016-01-01

    This study applies a thermal separation process (TSP) to recover Fe, Mn, and Zn from hazardous spent zinc-carbon and alkaline batteries. In the TSP, the batteries were heated together with a reducing additive and the metals in batteries, according to their boiling points and densities, were found to move into three major output materials: slag, ingot (mainly Fe and Mn), and particulate (particularly Zn). The slag well encapsulated the heavy metals of interest and can be recycled for road pavement or building materials. The ingot had high levels of Fe (522,000 mg/kg) and Mn (253,000 mg/kg) and can serve as an additive for stainless steel-making processes. The particulate phase had a Zn level of 694,000 mg/kg which is high enough to be directly sold for refinement. Overall, the TSP effectively recovered valuable metals from the hazardous batteries. PMID:26582065

  4. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  5. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    ERIC Educational Resources Information Center

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  6. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  7. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  8. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  9. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  10. Crystallization behavior and kinetics of calcium carbonate in highly alkaline and supersaturated system

    NASA Astrophysics Data System (ADS)

    Zhu, Ganyu; Li, Huiquan; Li, Shaopeng; Hou, Xinjuan; Xu, Dehua; Lin, Rongyi; Tang, Qing

    2015-10-01

    In causticization process of Na2CO3-Ca(OH)2, which is a liquid-solid system with high alkalinity and supersaturation, agglomeration and morphology instability of CaCO3 crystal have greatly limited its application. To deeply investigate the internal relations between crystallization process and condition control in this system, crystallization kinetics was conducted in a continuously operated crystallizer. The kinetic equations of growth rate, nucleation rate and agglomeration kernel were correlated in terms of power law kinetic expressions based on the agglomeration population balance equation. Magma density and mean residence time exert a considerable effect on crystal growth, nucleation, and agglomeration. Crystal growth and nucleation are surface-integration-limited and size-limited, respectively. Agglomeration increases with increasing mean residence time, but the increase in magma density break down the agglomerates by frequent and energetic collisions. Through the study, crystallization behavior of CaCO3 in causticization system was revealed, and the particle size and morphology were efficiently predicted and controlled. These results can provide a basis for understanding the design of the reactor.

  11. Structural Stability and Mobility of Carbonate Minerals and Melts in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Liu, J.; Caracas, R.; Fan, D.; Zhang, D.; Mao, W. L.

    2015-12-01

    Knowledge of potential carbon carriers such as the mantle carbonate minerals and melts is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Although rhombohedral carbonates (e.g., calcite, magnesite, and siderite) have been proposed as a major carbon carrier in the Earth's crust and upper mantle, several distinct scenarios have been proposed for these carbonates at deep-mantle conditions including chemical dissociation and various structural transitions. Recently, carbonate melts have been reported to be highly mobile at high pressure and temperature (P-T) conditions, which may have significant impact on magmatic processes in Earth's upper mantle. However, the high P-T behaviors of carbonate minerals and melts are still not well understood, in terms of their structural stability and mobility in the Earth's lower mantle. Combining in-situ synchrotron X-ray diffraction (XRD), transmission X-ray microscopy (TXM), and Raman spectroscopy experiments in a laser-heated diamond anvil cell with complementary theoretical calculations, we investigate the phase stability of carbonates, the equation of state (EoS) of carbonatic glasses, as well as the distribution of carbonate melts in a silicate matrix up to lower-mantle conditions.

  12. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages.

    PubMed

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe

    2014-02-01

    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages. PMID:24495247

  13. Effect of alkaline earth oxides on the formation of surface microphases that protect strontium titanate from reduction

    SciTech Connect

    Aksenova, L.A.; Kostikov, Yu.P.; Leonov, A.I.; Rotenberg, B.A.; Strykanov, V.S.

    1986-08-20

    The authors studied the effect of addition of strontium oxide, barium oxide, and calcium oxide on the formation of surface microphases and the reduction of strontium titanate. The materials were strontium carbonate, barium carbonate, and calcium carbonate (analytical grade) and titanium dioxide (pure grade). X-ray diffraction analysis was carried out on a DRON-2.0 diffractometer (CuK/sub ..cap alpha../, Ni filter). The surface layers were studies in an electron spectrometer by ESCA (exciting irradiation Al/sub K..cap alpha../; bond energy in standard gold sample Au/sub 4/f/sub 1/2/ = 84.1 eV; depth of layer 8 nm). Samplers were prepared according to the usual ceramic technology. It was found that protection from reduction of strontium titanate that is doped with calcium, strontium, or barium oxide is related to the formation of surface microphases that are close to M/sub 2/TiO/sub 4/ in composition and do not undergo reduction when calcined in a medium at low partial pressure of oxygen.

  14. Control of carbonate alkalinity on Mg incorporation in calcite: Insights on the occurrence of high Mg calcites in diagenetic environments

    NASA Astrophysics Data System (ADS)

    Purgstaller, Bettina; Mavromatis, Vasileios; Dietzel, Martin

    2015-04-01

    High Mg calcites (HMC), with up to 25 mol % of Mg, are common features in early diagenetic environments and are frequently associated with bio-induced anaerobic oxidation of methane (AOM). Such archives hold valuable information about the biogeochemical processes occurring in sedimentary environments in the geological past. Despite the frequency AOM-induced HMC observed in marine diagenetic settings and their potential role in dolomitization, only a minor number of experimental studies has been devoted on deciphering their formation conditions. Thus, in order to improve our understanding on the formation mechanism of HMC induced by elevated carbonate ion concentrations, we precipitated HMC by computer controlled titration of a (Mg,Ca)Cl2 solution at different Mg/Ca ratios into a NaHCO3 solution under precisely defined physicochemical conditions (T = 25.00 ±0.03°C; pH = 8.3 ±0.1). The formation of carbonates was monitored at a high temporal resolution using in situ Raman spectroscopy as well as by continuous sampling and analyzing of precipitates and reactive solutions. We identified two distinct mechanisms of HMC formation. In solutions with molar Mg/Ca ratios ≤ 1/8 calcium carbonate was precipitated as crystalline phases directly from homogeneous solution. In contrast, higher Mg/Ca ratios induced the formation of Mg-rich ACC (up to 10 mol % of Mg), which was subsequently transformed to HMC with up 20 mol % of Mg. Our experimental results highlight that the finally formed HMC has a higher Mg content than the ACC precursor phase. Considering experimental data for Mg containing ACC transformation to crystalline calcium carbonate from literature, the continuous enrichment of Mg in the precipitate throughout transformation of amorphous to crystalline CaCO3 most likely occurs due to the high carbonate alkalinity (DIC about 0.1 M) of our reactive solutions. The Mg incorporation into calcite lattice seems to be favored by intensive supply of carbonate ions as

  15. CO2-related explosive alkaline magmatism in Gusev crater, Mars: Implications for oxygen fugacity and carbon inventory in the Noachian Martian mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Usui, T.; McSween, H. Y.; Clark, B. C.

    2010-12-01

    The Mars Exploration Rover Spirit has encountered volcanic and volcaniclastic rocks having diverse alkaline compositions in the Noachian-age (~3.8-4.5 Ga) Gusev crater. Among them, we focus on Wishstone Class tephrites which have pyroclastic textures and are unusually enriched in incompatible elements (e.g. >5 wt% P2O5) with low silica contents. The high-phosphorous tephrite signature is not attributable to secondary aqueous alteration but represents an igneous rock composition. Moreover, these high-P2O5 whole-rock compositions cannot readily be explained by fractionation of other magmas in Gusev. We show that the high-P2O5 whole-rock compositions plot above solubility curves of merrillite (Ca-phosphate) in a diagram of P2O5 versus aluminosity, suggesting that mechanical admixture of merrillite is required. A source supplying merrillite cannot be a common silicate magma; instead, it could be a carbonatitic. Considering the pyroclastic textures of Wishstone Class and their geologic context, we propose that the Wishstone Class represents an alkaline-rich igneous rock suite that has mechanically mixed xenocrystic merrillites, probably during explosive volcanic eruption; the merrillites crystallized from carbonatitic melt produced by melting of a carbon-bearing Martian mantle. It has been debated whether CO2 was the effective greenhouse gas in the early Mars. To maintain persistent liquid water on the Martian surface, several bars pressure of CO2 is required, which is approximately three orders of magnitude higher than that on present-day Mars. In contrast, other greenhouse gases (e.g. methane) have been proposed, because no large carbonate deposits or significant atmospheric loss that accounts for the early CO2-rich atmosphere have been observed. Moreover, a recent thermodynamic calculation suggests that, under the redox state of the Martian meteorite source mantle (IW to IW+1), transport of CO2 to the Martian atmosphere has been quite limited and may not be

  16. Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere.

    PubMed

    Kasting, J F; Ackerman, T P

    1986-12-12

    The possible consequences of very high carbon dioxide concentrations in the earth's early atmosphere have been investigated with a radiative-convective climate model. The early atmosphere would apparently have been stable against the onset of a runaway greenhouse (that is, the complete evaporation of the oceans) for carbon dioxide pressures up to at least 100 bars. A 10- to 20-bar carbon dioxide atmosphere, such as may have existed during the first several hundred million years of the earth's history, would have had a surface temperature of approximately 85 degrees to 110 degrees C. The early stratosphere should have been dry, thereby precluding the possibility of an oxygenic prebiotic atmosphere caused by photodissociation of water vapor followed by escape of hydrogen to space. Earth's present atmosphere also appears to be stable against a carbon dioxide-induced runaway greenhouse. PMID:11539665

  17. Heterometallic Alkaline Earth-Lanthanide Ba(II)-La(III) Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of Al(3+) and MnO4(.).

    PubMed

    Ding, Bin; Liu, Shi Xin; Cheng, Yue; Guo, Chao; Wu, Xiang Xia; Guo, Jian Hua; Liu, Yuan Yuan; Li, Yan

    2016-05-01

    In this work a rigid asymmetrical tricarboxylate ligand p-terphenyl-3,4″,5-tricarboxylic acid (H3L) has been employed, and a unique heterometallic alkaline earth-lanthanide microporous luminescent metal-organic framework (MOF) {[Ba3La0.5(μ3-L)2.5(H2O)3(DMF)]·(3DMF)}n (1·3DMF) (DMF = dimethylformamide) has been isolated under solvothermal conditions. Single-crystal X-ray structural analysis demonstrates that 2D inorganic Ba-O-La connectivity can be observed in 1, which are further bridged via rigid terphenyl backbones of L(3-), forming a unique I(2)O(1)-type microporous luminescent framework. A 1D microporous channel with dimensionality of 9.151(3) Å × 10.098(1) Å can be observed along the crystallographic a axis. PXRD patterns have been investigated indicating pure phases of 1. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive sensing for Al(3+) over other cations with high quenching efficiency Ksv value of 1.445 × 10(4) L·mol(-1) and low detection limit (1.11 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive sensing for MnO4(-) over other anions with quenching efficiency Ksv = 7.73 × 10(3) L·mol(-1) and low detection limit (0.28 μM (S/N = 3)). It is noted that, when different concentrations of MnO4(-) solutions (0.5 to 100 μM) were dropped into the suspension of 1, the bright blue luminescence of the suspension observed under UV light can gradually change into pink color, indicating visually luminescent sensing, which makes the detection process of MnO4(-) more convenient in practical. The result also reveals that 1 represents the first example of bifunctional heterometallic alkaline earth-lanthanide MOF-based luminescent probes for selectively detecting Al(3+) and MnO4(-) in the water solutions. PMID:27088966

  18. Coordination chemistry of the alkaline earth metal ions with Zwitterionic forms of the Schift bases. X-Ray studies and other spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Tajmir-Riahi, H. A.; Lotfipoor, M.

    The non-ionized forms of tetradentate Schiff bases NN'-ethylenebis(salicylideneimine), H 2L and NN'-propane-1,3-diylbis(salicylideneimine), H 2L' react with hydrated alkaline earth halide and nitrate to give complexes of the type: M(H 2L)Cl 2· nH 2O [M = Mg(II), Ca(II), Sr(II); n = 0-4], M(H 2L) 2Cl 2 [M = Ca(II), Sr(II), M(H 2L) nBr 2 [M = Ca(II), Sr(II); n = 2, 3 and Mg 2(H 2L) 3Br 4], M(H 2L) nI 2 [M = Mg(II), Ca(II), Sr(II), Ba(II); n = 2, 3)], M(H 2L) n(NO 3) 2 and M(H 2L') n(NO 1) 2[M = Mg(II), Ca(II); n = 1, 2)]. Because of distinct spectral similarities with structurally known Ca(H 2L')(NO 3) 2 compound, the Schiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups, which carry the protons transferred from phenolic groups on complexation. Halide and nitrate are coordinated to the central metal ion except in 2:1 nitrato complexes where the presence of both ionic and coordinated nitrate groups are evident and also in 3:1 halide complexes where the presence of non-coordinated halide cannot be excluded. X-Ray powder photographs showed no marked similarities between Ca(H 2L')(NO 3) 2 and Mg(H 2L')(NO 3) 2 while there are some isomorphic features between the same types of halide complexes. Infrared spectra and other structural information revealed the polymeric nature of the complexes. Therefore the coordination numbers exhibited by the alkaline earth metal cations would be 4, 6 or 8 in these series of Schiff base complexes.

  19. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area. PMID:23890977

  20. Carbon nanotubes/heteroatom-doped carbon core-sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells.

    PubMed

    Sa, Young Jin; Park, Chiyoung; Jeong, Hu Young; Park, Seok-Hee; Lee, Zonghoon; Kim, Kyoung Taek; Park, Gu-Gon; Joo, Sang Hoon

    2014-04-14

    A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom-doped carbon (CNT/HDC) core-sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom-containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom-containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom-doped nanocarbon catalysts in terms of half-wave potential and kinetic current density. The four-electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long-term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites. PMID:24554521

  1. Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium.

    PubMed

    Sharifi, Tiva; Gracia-Espino, Eduardo; Jia, Xueen; Sandström, Robin; Wågberg, Thomas

    2015-12-30

    We report efficient electrolysis of both water-splitting half reactions in the same medium by a bifunctional 3D electrode comprising Co3O4 nanospheres nucleated on the surface of nitrogen-doped carbon nanotubes (NCNTs) that in turn are grown on conductive carbon paper (CP). The resulting electrode exhibits high stability and large electrochemical activity for both oxygen and hydrogen evolution reactions (OER and HER). We obtain a current density of 10 mA/cm(2) in 0.1 M KOH solution at overpotentials of only 0.47 and 0.38 V for OER and HER, respectively. Additionally, the experimental observations are understood and supported by analyzing the Co3O4:NCNT and NCNT:CP interfaces by ab initio calculations. Both the experimental and the theoretical studies indicate that firm and well-established interfaces along the electrode play a crucial role on the stability and electrochemical activity for both OER and HER. PMID:26629887

  2. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  3. Down-to-earth studies of carbon clusters

    NASA Technical Reports Server (NTRS)

    Smalley, R. E.

    1990-01-01

    Recent advances in supersonic beam experiments with laser-vaporization sources of clusters have provided some interesting new insights into the nature of the small clusters of carbon, and the processes through which carbon condenses. One cluster in particular, C(sub 60), appears to play a central role. It is argued that this cluster takes the shape of a soccerball: a hollow sphere composed of a shell of 60 carbon atoms connected by a lattice of hexagonal and pentagonal rings, in a pattern of overall icosahedral symmetry. Although C(sub 60) appears to be uniquely stable due to its perfect symmetry, all other even-numbered carbon clusters in the 32 to 100+ atom size range seem to favor similar closed spheroidal forms. These species are interpreted as relatively unreactive side products in condensation reactions of carbon vapor involving spiraling graphitic sheets. The prevalence of C(sub 60) in laser-vaporized carbon vapors and sooting flames suggests that it may be formed readily whenever carbon condenses. Such ready formation and extraordinary stability may have substantial astrophysical implications.

  4. Novel As-doped, As and N-codoped carbon nanotubes as highly active and durable electrocatalysts for O2 reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Liu, Ziwu; Li, Meng; Wang, Fang; Wang, Quan-De

    2016-02-01

    To develop more efficient metal-free cathode electrocatalysts for fuel cells, novel arsenic (As)-doped, As and N-codoped carbon nanotubes are synthesized by chemical vapor deposition in this work. The as-prepared As-containing carbon nanotubes exhibit significantly enhanced activity and long-term durability for the oxygen reduction reaction (ORR) in alkaline medium, indicating that the doping of As or codoping As with other heteroatoms into carbon matrix could improve the ORR activity of carbon materials due to the changes in electronic and physical properties of carbon nanotubes evidenced by density functional theory calculations. Moreover, As-containing carbon nanotubes also display much better methanol tolerance, showing a good potential application for future fuel cells.

  5. The oxygen and carbon dioxide balance in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1975-01-01

    The oxygen-carbon dioxide cycle is described in detail, and steps which are sensitive to perturbation or instability are identified. About half of the carbon dioxide consumption each year in photosynthesis occurs in the oceans. Phytoplankton, which are the primary producers, have been shown to assimilate insecticides and herbicides. The impact of such materials on phytoplankton photosynthesis, both direct and as the indirect result of detrimental effects higher up in the food chain, cannot be assessed. Net oxygen production is very small in comparison with the total production and occurs almost exclusively in a few ocean areas with anoxic bottom conditions and in peat-forming marshes which are sensitive to anthropogenic disturbances. The carbon dioxide content of the atmosphere is increasing at a relatively rapid rate as the result of fossil fuel combustion. Increases in photosynthesis as the result of the hothouse effect may in turn reduce the carbon dioxide content of the atmosphere, leading to global cooling.

  6. Compositions of magmas and carbonate silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy

    NASA Astrophysics Data System (ADS)

    Solovova, I. P.; Girnis, A. V.; Kogarko, L. N.; Kononkova, N. N.; Stoppa, F.; Rosatelli, G.

    2005-11-01

    This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate-carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate-silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.

  7. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca. PMID:15978989

  8. Activation of X-H and X-D bonds (X = O, N, C) by alkaline-earth metal monoxide cations: experiment and theory.

    PubMed

    Bozović, Andrea; Bohme, Diethard K

    2009-07-28

    Experimental investigations are reported for reactions of MO (+) (M = Ca, Sr, and Ba) with elemental hydrides water, ammonia and methane proceeding in the gas phase at 295 +/- 3 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. Measurements were taken with an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer and a novel electrospray ion source/ion selection quadrupole/selected-ion flow tube/triple quadrupole (ESI/qQ/SIFT/QqQ) mass spectrometer. All three alkaline-earth metal oxide ions exclusively abstract a H-atom from the three hydrides with rate coefficients > 1 x 10(-11) cm(3) molecule(-1) s(-1). Formation of metal hydroxide ion was followed by sequential addition of water or ammonia, but not methane. Density functional calculations have provided potential energy surfaces for the X-H bond activations leading to H-atom abstraction as well as those for O-atom transfer and H(2)O elimination (with ammonia and methane). A comparison of experimental and theoretical isotope effects points toward a mechanism involving the direct atom transfer from XH and XD to O in MO (+)via a three-centered transition structure. PMID:19588017

  9. Structural and luminescent properties of Eu2+ and Nd3+-doped mixed alkaline earth aluminates prepared by the sol-gel method.

    PubMed

    Čelan Korošin, Nataša; Bukovec, Nataša; Bukovec, Peter

    2015-01-01

    Alkaline earth aluminates with the overall nominal compositions Mg0.5Sr0.5Al2O4 (MSA), Ca0.5Mg0.5Al2O4 (CMA) and Ca0.5Sr0.5Al2O4 (CSA) doped with 0.5 mol% of Eu2+ and 0.25 mol% of Nd3+ ions were obtained by a modified aqueous sol-gel method and annealed in a reducing atmosphere at 900, 1000, 1100 and 1300 °C. The sample structures were investigated by XRD. Solid solubility was only confirmed for the CSA samples. UV-excited luminescence was observed in the blue region (λ = 440 nm) in the samples of CMA containing the monoclinic CaAl2O4 phase and in the green region (λ = 512 nm) in the samples of MSA containing hexagonal or monoclinic phases of SrAl2O4. The CSA samples, besides the blue region, exhibited an extended shoulder in the green region, which proved the existence of some pure strontium phases. Co-doped Nd3+ ions did not affect the wavelength of the emitted light, but the persistent luminescence at room temperature was greatly extended with respect to the aluminates doped with Eu2+ ions only. PMID:26085411

  10. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    PubMed

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents. PMID:20726653

  11. The low temperature radiolysis of cis-syn-cis-dicyclohexano-18-crown-6 complexes with alkaline earth metal nitrates: An evidence for energy transfer to the macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Zakurdaeva, O. A.; Nesterov, S. V.; Shmakova, N. A.; Sokolova, N. A.; Feldman, V. I.

    2015-10-01

    Formation of paramagnetic intermediates in macrocyclic complexes of cis-syn-cis-dicyclohexano-18-crown-6 (DCH18C6) with alkaline earth metal nitrates under X-rays irradiation was studied by EPR spectroscopy. NO32- dianions appear to be predominant intermediate species in the samples irradiated at 77 K at low doses (up to 40 kGy). This result was interpreted as an evidence for energy transfer within the complex from crown ether to nitrate anion. Increase in the absorbed dose from 40 kGy to 284 kGy results in built-up of a new EPR signal assigned to macrocyclic -CH2-ĊH-O- radicals produced from crown ether moieties. Thermal annealing of the irradiated macrocyclic complexes at 273 К led to fast decay of NO32- . This process was accompanied by a formation of -CH2-ĊH-O- radicals in secondary reactions. The nature of the metal cations coordinated in the macrocycle cavity had no appreciable effect on the composition of radical products and their post-radiation transformations.

  12. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    SciTech Connect

    Gopakumar, Geetha Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  13. Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yan, Xingxu; Liu, Kexi; Wang, Xiangqing; Wang, Tuo; Luo, Jun; Zhu, Jing

    2015-04-01

    To achieve iron-nitrogen-carbon (Fe-N-C) nanofibers with excellent electrocatalysis for replacing high-cost Pt-based catalysts in the cathodes of fuel cells and metal-air batteries, we have investigated and evaluated the effects of polyacrylonitrile (PAN) concentration and the proportion of iron to PAN, along with voltage and flow rate during the electrospinning process, and thus proposed three criteria to optimize these parameters for ideal nanofiber catalysts. The best half-wave potential of an optimized catalysts is 0.82 V versus reversible hydrogen electrode in an alkaline medium, which reaches the best range of the non-precious-metal catalysts reported and is very close to that of commercial Pt/C catalysts. Furthermore, the electron-transfer number of our catalysts is superior to that of the Pt/C, indicating the catalysts undergo a four-electron process. The durability of the optimized Fe-N-C nanofibers is also better than that of the Pt/C, which is attributed to the homogeneous distribution of the active sites in our catalysts.

  14. Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium.

    PubMed

    Yan, Xingxu; Liu, Kexi; Wang, Xiangqing; Wang, Tuo; Luo, Jun; Zhu, Jing

    2015-04-24

    To achieve iron-nitrogen-carbon (Fe-N-C) nanofibers with excellent electrocatalysis for replacing high-cost Pt-based catalysts in the cathodes of fuel cells and metal-air batteries, we have investigated and evaluated the effects of polyacrylonitrile (PAN) concentration and the proportion of iron to PAN, along with voltage and flow rate during the electrospinning process, and thus proposed three criteria to optimize these parameters for ideal nanofiber catalysts. The best half-wave potential of an optimized catalysts is 0.82 V versus reversible hydrogen electrode in an alkaline medium, which reaches the best range of the non-precious-metal catalysts reported and is very close to that of commercial Pt/C catalysts. Furthermore, the electron-transfer number of our catalysts is superior to that of the Pt/C, indicating the catalysts undergo a four-electron process. The durability of the optimized Fe-N-C nanofibers is also better than that of the Pt/C, which is attributed to the homogeneous distribution of the active sites in our catalysts. PMID:25815586

  15. Amperometric Nitric Oxide Sensors with Enhanced Selectivity Over Carbon Monoxide via Platinum Oxide Formation Under Alkaline Conditions

    PubMed Central

    Meyerhoff, Mark E.

    2013-01-01

    An improved planar amperometric nitric oxide (NO) sensor with enhanced selectivity over carbon monoxide (CO), a volatile interfering species for NO sensors that has been largely overlooked until recently, is described. Formation of an oxide film on the inner platinum working electrode via anodic polarization using an inner alkaline electrolyte solution provides the basis for improved selectivity. Cyclic voltammetry reveals that formation of oxidized Pt film inhibits adsorption of CO to the electrode surface, which is a necessary initial step in the electrocatalytic oxidation of CO on Pt. Previous NO gas sensors that employ internal electrolyte solutions have been assembled using acidic internal solutions, that inhibit the formation of a dense platinum oxide film on the working electrode surface. It is demonstrated herein that increasing the internal electrolyte pH promotes oxidized platinum film formation, resulting in improved selectivity over CO. Selectivity coefficients (log KNO,j) for sensors assembled with internal solutions at various pH values range from −0.08 at pH 2.0 to −2.06 at pH 11.7 with average NO sensitivities of 1.24 nA/μM and LOD of <1 nM. PMID:24067100

  16. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  17. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  18. Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusive complexes, with a focus on carbonatites

    NASA Astrophysics Data System (ADS)

    Nadeau, Serge L.; Epstein, Samuel; Stolper, Edward

    1999-06-01

    We report H and C contents and δD and δ 13C values of apatites from 15 alkaline intrusive complexes ranging in age from 110 Ma to 2.6 Ga. Sampling focused on carbonatites, but included silicate rocks as well. Heating at temperatures up to 1500°C is needed to extract fully H 2O and CO 2 from these apatites. Apatites from carbonatite-rich intrusive complexes contain 0.2-1.1 wt% H 2O and 0.05-0.70 wt% CO 2; apatites from two silicate-rich alkaline complexes with little or no carbonatite are generally poorer in both volatile components (0.1-0.2% H 2O and 0.01-0.11% CO 2). D/H ratios in apatites from these rocks are bimodally distributed: group I (δD = -51 to -74‰) and group II (δD = -88 to -104‰). We suggest that the δD values of group I apatites represent primitive, mantle-derived values and that the group II apatites crystallized from degassed magmas, resulting in lower H 2O contents and δD values. Although many factors influence the extent of degassing, the depth of emplacement could represent a major control. In contrast to H 2O contents and δD values, CO 2 contents and δ 13C values of gas released at high temperatures from multiple aliquots of these apatite samples are variable. This suggests the presence of more than one C-bearing component in these apatites, one of which is proposed to be dissolved carbonate; the other, with δ 13C ˜<-25‰, could be associated with hydrocarbons. Group I apatites have δD values similar to those of primitive, mantle-derived basaltic magmas and overlap with (but cover a narrower range than) mantle-derived mica, amphibole, and whole rocks. δ 13C values also overlap typical upper mantle. These results suggest that igneous apatites can retain their primary δD and δ 13C values.

  19. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    PubMed

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). PMID:27101476

  20. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    PubMed

    Zhang, Yanzhuo; Li, Jun; Chen, Guanghui; Bian, Wei; Lu, Yun; Li, Wenjing; Zheng, Zhaoming; Cheng, Xiaojie

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° <0, ΔS° > 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye. PMID:27003089

  1. Hydrazines and carbohydrazides produced from oxidized carbon in earth's primitive environment

    NASA Technical Reports Server (NTRS)

    Folsome, C. E.; Brittain, A.; Smith, A.; Chang, S.

    1981-01-01

    Whether abiological organic compounds can be formed from the interactions of energy sources with nitrogen, oxidized carbon and water is held to be of importance in geochemical models of the primordial earth atmosphere. It is reported that experiments using quenched spark discharges through molecular nitrogen on aqueous suspensions of CaCO3 and other reactants to simulate the hydrosphere/atmosphere interface yield hydrazine and carbohydrazine in significant but low yields. Such reactions in primitive aquatic environments may have supplied a pathway for chemical evolution and the origin of life, on a primitive earth in which fully oxidized states of carbon were available for the primary synthesis of organic matter.

  2. Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect

    NASA Astrophysics Data System (ADS)

    Sippo, James Z.; Maher, Damien T.; Tait, Douglas R.; Holloway, Ceylena; Santos, Isaac R.

    2016-05-01

    Mangrove forests are hot spots in the global carbon cycle, yet the fate for a majority of mangrove net primary production remains unaccounted for. The relative proportions of alkalinity and dissolved CO2 [CO2*] within the dissolved inorganic carbon (DIC) exported from mangroves is unknown, and therefore, the effect of mangrove DIC exports on coastal acidification remains unconstrained. Here we measured dissolved inorganic carbon parameters over complete tidal and diel cycles in six pristine mangrove tidal creeks covering a 26° latitudinal gradient in Australia and calculated the exchange of DIC, alkalinity, and [CO2*] between mangroves and the coastal ocean. We found a mean DIC export of 59 mmol m-2 d-1 across the six systems, ranging from import of 97 mmol m-2 d-1 to an export of 85 mmol m-2 d-1. If the Australian transect is representative of global mangroves, upscaling our estimates would result in global DIC exports of 3.6 ± 1.1 Tmol C yr-1, which accounts for approximately one third of the previously unaccounted for mangrove carbon sink. Alkalinity exchange ranged between an import of 1.2 mmol m-2 d-1 and an export of 117 mmol m-2 d-1 with an estimated global export of 4.2 ± 1.3 Tmol yr-1. A net import of free CO2 was estimated (-11.4 ± 14.8 mmol m-2 d-1) and was equivalent to approximately one third of the air-water CO2 flux (33.1 ± 6.3 mmol m-2 d-1). Overall, the effect of DIC and alkalinity exports created a measurable localized increase in coastal ocean pH. Therefore, mangroves may partially counteract coastal acidification in adjacent tropical waters.

  3. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    PubMed

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure. PMID:27482724

  4. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  5. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    PubMed

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  6. Follow the Carbon: Laboratory Studies of 13C-Labeled Early Earth Haze Analogs

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Day, D. A.; Mojzsis, S. J.; Jimenez, J. L.; Tolbert, M. A.

    2013-12-01

    While the Sun was still young and faint before the rise of molecular oxygen 2.4 Ga, early Earth might have been kept warm by an atmosphere containing the greenhouse gases methane and carbon dioxide in abundances greater than what is found on Earth today. It has been suggested that an atmosphere containing approximately 1000 ppmv methane and carbon dioxide could provided the needed greenhouse warming for liquid water to exist at the surface. Laboratory and modeling studies suggest that an atmosphere containing methane and carbon dioxide could lead to the formation of significant amounts of organic haze due to photochemical reactions initiated by Lyman-α (121.6 nm) excitation. Chemical mechanisms proposed to explain the chemistry rely on methane as the source of carbon in these hazes and treat carbon dioxide as a source of oxygen only. In the present work, we use isotopically labelled precursor gases to examine the source of carbon in photochemical haze formed in a CH4/CO2/N2 atmosphere. We generate haze analogs in the laboratory by far-UV irradiation of analog atmospheres containing permutations of 1,000 ppmv unlabeled and 13C-labeled methane and carbon. Products in the particle phase were analyzed by both unit mass resolution and high-resolution (m/Δm=5,000) aerosol mass spectrometry. Results indicate that carbon from carbon dioxide accounts for 20% (×5%) of the total carbon contained in the hazes. These results have implications for the geochemical interpretations of inclusions found in Archaean rocks on Earth, and for the astrobiological potential of other planetary atmospheres.

  7. Facile and Sensitive Fluorescence Sensing of Alkaline Phosphatase Activity with Photoluminescent Carbon Dots Based on Inner Filter Effect.

    PubMed

    Li, Guoliang; Fu, Huili; Chen, Xuejie; Gong, Peiwei; Chen, Guang; Xia, Lian; Wang, Hua; You, Jinmao; Wu, Yongning

    2016-03-01

    A simple and sensitive fluorescent assay for detecting alkaline phosphatase (ALP) based on the inner filter effect (IFE) has been proven, which is conceptually different from the previously reported ALP fluorescent assays. In this sensing platform, N-doped carbon dots (CDs) with a high quantum yield of 49% were prepared by one-pot synthesis and were directly used as a fluorophore in IFE. p-Nitrophenylphosphate (PNPP) was employed to act as an ALP substrate, and its enzyme catalytic product (p-nitrophenol (PNP)) was capable of functioning as a powerful absorber in IFE to influence the excitation of fluorophore (CDs). When in the presence of ALP, PNPP was transformed into PNP and induced the absorption band transition from 310 to 405 nm, which resulted in the complementary overlap between the absorption of PNP and the excitation of CDs. Because of the competitive absorption, the excitation of CDs was significantly weakened, resulting in the quenching of CDs. The present IFE-based sensing strategy showed a good linear relationship from 0.01 to 25 U/L (R(2) = 0.996) and provided an exciting detection limit of 0.001 U/L (signal-to-noise ratio of 3). The proposed sensing approach was successfully applied to ALP sensing in serum samples, ALP inhibitor investigation and phosphatase cell imaging. The presented IFE-based CDs fluorescence sensing strategy gives new insight on the development of the facile and sensitive optical probe for enzyme activity assay because the surface modification or the linking between the receptor and the fluorophore is no longer required. PMID:26820049

  8. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  9. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.

    PubMed

    Bryce, David L; Bultz, Elijah B

    2007-01-01

    A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204

  10. Characterization of Surface and Bulk Nitrates of γ-Al2O3-Supported Alkaline Earth Oxides using Density Functional Theory

    SciTech Connect

    Mei, Donghai; Ge, Qingfeng; Kwak, Ja Hun; Kim, Do Heui; Verrier, Christelle M.; Szanyi, Janos; Peden, Charles HF

    2009-05-14

    “Surface" and "bulk" nitrates formed on a series of alkaline earth oxides (AEOs), AE(NO3)2, were investigated using first-principles density functional theory calculations. The formation of these surface and bulk nitrates was modeled by the adsorption of NO2+NO3 pairs on gamma-Al2O3-supported monomeric AEOs (MgO, CaO, SrO, and BaO) and on the extended AEO(001) surfaces, respectively. The calculated vibrational frequencies of the surface and bulk nitrates based on our proposed models are in good agreement with experimental measurements of AEO/gamma-Al2O3 materials after prolonged NO2 exposure. This indicates that experimentally observed "surface" nitrates are most likely formed with isolated two dimensional (including monomeric) AEO clusters on the gamma-Al2O3 substrate, while the "bulk" nitrates are formed on exposed (including (001)) surfaces (and likely in the bulk as well) of large three dimensional AEO particles supported on the gamma-Al2O3 substrate. Also in line with the experiments, our calculations show that the low and high frequency components of the vibrations for both surface and bulk nitrates are systematically red shifted with the increasing basicity and cationic size of the AEOs. The adsorption strengths of NO2+NO3 pairs are nearly the same for the series of alumina-supported monomeric AEOs, while the adsorption strengths of NO2+NO3 pairs on the AEO surfaces increase in the order of MgO < CaO < SrO ~ BaO. Compared to the NO2+NO3 pair that only interacts with monomeric AEOs, the stability of NO2+NO3 pairs that interact with both the monomeric AEO and the gamma-Al2O3 substrate is enhanced by about 0.5 eV. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations. PMID:24401025

  12. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    PubMed

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology. PMID:26891039

  13. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  14. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    SciTech Connect

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  15. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  16. [Ce3⁺/Tb3⁺ Doped Alkaline-Earth Borate Glasses Employed in Enhanced Solar Cells].

    PubMed

    Yang, Peng; Zhao, Xin; Wang, Zhi-qiang; Lin, Hai

    2015-12-01

    Ce³⁺ and Tb³⁺ doped alkaline earth borate (LKZBSB) glasses and the photoluminescence properties of glass system have been fabricated and investigated, and the observed violet and green fluorescences are originated from Ce³⁺ and Tb³⁺ emit- ting centers, respectively. Four emission bands peaked at 487, 543, 586 and 621 nm are attributed to the emission transitions ⁵D₄-->⁷F₆, ⁵D₄-->⁷F₅, ⁵D₄-->⁷F₄ and ⁵D₄-->⁷F₃ of Tb³⁺, respectively, and consists of a broad emission band peaking at 389 nm attributed to 5d--4ƒ electric dipole allowed transition of Ce³⁺. With the introduction of Ce³⁺, the effective excitation wavelength range of Tb³⁺ in LKZBSB glasses are remarkably expanded, and the enhanced factor of green fluorescence of Tb³⁺ in Ce³⁺/Tb³⁺ co-doped LKZBSB glasses is up to 73 times in medium-wavelength ultraviolet (UVB) excitation region, compared with that in Tb³⁺ single-doped case. The results show that the conversion from ultraviolet (UV) radiation to visible light is efficient in Ce³⁺/ Tb³⁺ doped LKZBSB glasses, demonstrating that the glasses have potential values in developing enhanced solar cell as a conver- sion layer. PMID:26964196

  17. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; McCaffrey, John G.

    2016-01-01

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ṡ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ṡ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm-1). All of the M ṡ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  18. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4 s 2) and Sr(5 s 2) atoms

    NASA Astrophysics Data System (ADS)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-01

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular ( l = | m| = n-1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n-1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau-Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li( nlm) atom with given principal n, orbital l = n-1, and magnetic m quantum numbers at thermal collisions with the Ca(4 s 2) and Sr(5 s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l ( l ≪ n).

  19. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling.

    PubMed

    Rohrbach, Arno; Schmidt, Max W

    2011-04-14

    Very low seismic velocity anomalies in the Earth's mantle may reflect small amounts of melt present in the peridotite matrix, and the onset of melting in the Earth's upper mantle is likely to be triggered by the presence of small amounts of carbonate. Such carbonates stem from subducted oceanic lithosphere in part buried to depths below the 660-kilometre discontinuity and remixed into the mantle. Here we demonstrate that carbonate-induced melting may occur in deeply subducted lithosphere at near-adiabatic temperatures in the Earth's transition zone and lower mantle. We show experimentally that these carbonatite melts are unstable when infiltrating ambient mantle and are reduced to immobile diamond when recycled at depths greater than ∼250 kilometres, where mantle redox conditions are determined by the presence of an (Fe,Ni) metal phase. This 'redox freezing' process leads to diamond-enriched mantle domains in which the Fe(0), resulting from Fe(2+) disproportionation in perovskites and garnet, is consumed but the Fe(3+) preserved. When such carbon-enriched mantle heterogeneities become part of the upwelling mantle, diamond will inevitably react with the Fe(3+) leading to true carbonatite redox melting at ∼660 and ∼250 kilometres depth to form deep-seated melts in the Earth's mantle. PMID:21441908

  20. Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions.

    PubMed

    Ferrero, Guillermo A; Preuss, Kathrin; Marinovic, Adam; Jorge, Ana Belen; Mansor, Noramalina; Brett, Dan J L; Fuertes, Antonio B; Sevilla, Marta; Titirici, Maria-Magdalena

    2016-06-28

    High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst. PMID:27214056

  1. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  2. Electrocatalysis of carbon black- or poly(diallyldimethylammonium chloride)-functionalized activated carbon nanotubes-supported Pd-Tb towards methanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Yi; Li, An; Yang, Yunshang; Tang, Qinghu; Cao, Hongbin; Qi, Tao; Li, Changming

    2014-07-01

    The Pd-Tb/C catalysts with different Pd/Tb ratios were synthesized by a simple simultaneous reduction reaction with sodium borohydride in aqueous solution. The structure and morphology of those catalysts had been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrocatalytic performance of those catalysts for methanol oxidation in alkaline media was investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and CO stripping experiments. It is found that the 20%Pd-1%Tb/C catalyst has a higher catalytic activity than the 20%Pd/C catalyst, but the effect of Tb cannot be explained by a bi-functional mechanism. According to the X-Ray photoelectron spectroscopy (XPS) analyses, it is suggested that the higher content of metallic Pd caused by the addition of Tb contributes to the better catalytic activity of 20%Pd-1%Tb/C. Based on the good electrocatalytic performance of 20%Pd-1%Tb/C, the 20%Pd-1%Tb catalyst supported on poly(diallyldimethylammonium chloride) (PDDA)-functionalized activated carbon nanotubes was prepared, and it exhibits a better catalytic activity. The improvement mainly results from the further increase of metallic Pd due to the presence of PDDA.

  3. Can Earth System Models Explain the observed 20th Century Global Carbon Sink?

    NASA Astrophysics Data System (ADS)

    Stouffer, R. J.; Shevliakova, E.; Malyshev, S.; Krasting, J. P.; Pacala, S.; Dunne, J. P.; John, J. G.

    2012-12-01

    Various authors have estimated the net global land carbon flux as a residual from the global budget of atmospheric, oceanic and fossil fuel carbon fluxes. Recently, Tans (2009) used this method to estimate the globally averaged net land carbon inventory changes method from 1850 to near present day. Using ocean model estimates of the oceanic carbon fluxes, he showed the land being a net source of carbon until around 1940, but after that becoming a net sink, with an uncertainty dominated by the net oceanic carbon flux trajectory (~15%; Sabine et al 2004). Recently Ballantyne et al (2012) produced updated estimates of the net carbon fluxes changes from 1960 until present day. They show that the net carbon flux uptake, land plus ocean, increases from around 2 PgC/yr in 1960 to about 5 PgC/yr in 2010. We compare these observationally based estimates with results from the GFDL Earth System Models (ESMs). We show that both GFDL ESMs store too much carbon in the atmosphere, about a 10 to 20 ppm error by 2005. The models have slightly higher mean values than the Tans (2009) oceanic carbon storage changes but fall within the Sabine et al. (2004) uncertainty estimate. While the general shape of the net land carbon changes in Tans (2009) is well simulated by the ESMs, the ESM sign change in land flux occurs about 15-25years later. By 2010, the models simulate the oceanic carbon uptake as ~2.7 PgC/yr, and the land uptake as ~1 PgC/yr for a total of ~4PgC/yr. The land uptake value varies with ensemble member giving evidence for the role of variability in understanding the past carbon changes. This analysis gives us confidence in the models estimates of the climate-carbon feedbacks. The model results will then be analyzed to determine the various causes of those changes.

  4. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-03-01

    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba

  5. Climate-induced tree mortality: earth system consequences for carbon, energy, and water exchanges

    NASA Astrophysics Data System (ADS)

    Adams, H. D.; Macalady, A.; Breshears, D. D.; Allen, C. D.; Luce, C.; Royer, P. D.; Huxman, T. E.

    2010-12-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and atmosphere that could present hazards to current earth system function. Terrestrial ecosystems, and in particular forests, exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets. Widespread, rapid, drought- and infestation-triggered tree mortality is now emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. We demonstrate the link between climate-sensitive tree mortality and risks of altered earth system function though carbon, water, and energy exchange. Tree mortality causes a loss of carbon stocks from an ecosystem and a reduction sequestration capacity. Recent research has shown that the 2000s pinyon pine die-off in the southwest US caused the loss of 4.6 Tg of aboveground carbon stocks from the region in 5 years, far exceeding carbon loss from other disturbances. Widespread tree mortality in British Columbia resulted in the loss of 270 Tg of carbon, shifting affected forestland from a carbon sink to a source, and influenced Canadian forest policy on carbon stocks. Tree mortality, as an immediate loss of live tree cover, directly alters albedo, near-ground solar radiation, and the relative contributions of evaporation and transpiration to total evapotranspiration. Near-ground solar radiation, an important ecosystem trait affecting soil heating and water availability, increased regionally following the pinyon pine die-off. Conversely, forest canopy loss with tree mortality, is expected to increase regional albedo, especially for forests which experience winter snow cover, potentially offsetting the climate forcing of terrestrial carbon releases to the atmosphere. Initial hydrological response to die-off is likely a reduction in evapotranspiration, which can increase

  6. The active outer shell of Earth: What remains to be explored in carbon and life interactions?

    NASA Astrophysics Data System (ADS)

    Boetius, Antje

    2016-04-01

    Recent advances in methods and technologies have allowed us to explore the interaction between life and abiotic resources from nano to megascales in space and time, and this has set new challenges to the geosciences. This lecture aims at discussing key biological factors in the question of the dynamics of carbon reservoirs and fluxes on Earth, and the challenges to the geosciences to incorporate and further this knowledge. Humans themselves as one such biological factor have considerably changed the dynamics of carbon and other elements, with repercussions to most other life forms on Earth. Which other life forms shape carbon fluxes and reservoirs, and what do we know about their key traits in catalyzing geochemical reactions, their past and their future? I will use case studies from my own research field - geobiology of the oceans and the cryosphere - and from other geoscience areas to highlight the considerable non-linearity introduced by life to element fluxes and the environment; and discuss advances but also gaps in knowledge and research approaches concerning assessing and predicting carbon transformations in the active outer shell of Earth.

  7. Carbonate Fluxes to the Eastern Equatorial Pacific during the Eocene: using the GENIE Earth System Model to investigate carbonate accumulation event mechanisms and dynamics revealed by the Pacific Equatorial Age Transect (PEAT)

    NASA Astrophysics Data System (ADS)

    Pälike, H.; Lyle, M. W.; Ridgwell, A. J.; Edgar, K. M.; Science Party, I.; Iodp Expeditions 320/321 Science Party

    2010-12-01

    The Pacific Equatorial Age Transect (PEAT) recovered sediments and data from a set of Sites that form a palaeo-depth transect for most of Cenozoic time. We are using the data from IODP Expedition 320 and ODP Leg 199 sites to refine the dynamics of the carbonate compensation depth (CCD) during the Eocene. We are able to use the PEAT depth transect approach to determine the intensity of carbonate fluxes at the seafloor for the previously identified carbonate accumulation events (CAEs) of Lyle et al (ODP Leg 199 SR, 2005). Using the reconstructed depths for the drilled sites we are able to determine the amplitude of the CCD fluctuations to be about 500m in depth, and carbonate accumulation rates fluctuate between near zero and ~1.5 g/cm2/kyr. Each event lasts for a time period of around 1 Myr, with sharp transitions into and out of these cycles of enhanced carbonate accumulation. To investigate the potential mechanisms for these events we use an Earth System Model of Intermediate complexity (GENIE), as previously employed to study the carbon cycle during the PETM (Panchuk et al., Geology 2008). Using estimated values for ocean water Ca and Mg concentrations, we ran ensemble simulations for different pCO2 concentrations, different Alkalinity and different CaCO3:POC scenarios. We find that different CaCO3:POC ratios are able to explain many of the observed dissolution/preservation events, and are able to use these to constrain other parameters in the Earth System.

  8. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  9. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    PubMed

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  10. The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Konstantinov, A. I.; Perminova, I. V.

    2009-11-01

    Preparations of humic acids (HAs) were isolated from a gray forest soil by sequential alkaline extraction. From a sample of 500 g, HA preparations of 2.24, 0.23, and 0.20 g were obtained from the first, second, and third alkaline extracts, respectively. The structure of the preparations was determined by 13C NMR spectroscopy. At each next extraction step, the portion of aliphatic fragments in the HA preparations increased and the content of aromatic structures decreased. The conclusion was drawn that a single extraction is sufficient for obtaining a representative HA sample.

  11. ESA Earth Explorer 8 Candidate Mission CarbonSat: Error Budget for Atmospheric Carbon Dioxide and Methane Retrievals

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Bovensmann, H.; Reuter, M.; Krings, T.; Heymann, J.; Schneising, O.; Burrows, J. P.; Boesch, H.; Meijer, Y.; Sierk, B.; Loscher, A.; Caron, J.; Ingmann, P.

    2015-06-01

    CarbonSat is one of two candidate missions for ESA’s Earth Explorer 8 (EE8) satellite; one of them will be selected for implementation in November 2015 for a targeted launch date around 2023. The main goal of CarbonSat is to advance our knowledge of the sources and sinks, both natural and man-made, of the two most important anthropogenic greenhouse gases; carbon dioxide (CO2) and methane (CH4) from the global via the sub-continental to the local scale. CarbonSat will be the first satellite mission to image local scale emission hot spots of CO2 (e.g., cities, volcanoes, industrial areas) and CH4 (e.g., fossil fuel production, landfills, seeps) and to quantify their emissions and discriminate them from surrounding biospheric fluxes. The primary geophysical data products of CarbonSat are atmospheric colum-naveraged dry air mole fractions of CO2 and CH4 , i.e., XCO2 (in ppm) and XCH4 (in ppb), respectively. In addition, CarbonSat will deliver a number of secondary data products, which will also be of good quality, such as vegetation chlorophyll Sun-Induced Fluorescence (SIF) as retrieved from clear solar Fraunhofer lines located at 755 nm; SIF will be retrieved simultaneously with the primary products. Here we present an updated error budget using the latest retrieval algorithm and instrument/mission specification focusing on nadir observations over land.

  12. On the abundances of carbon dioxide isotopologues in the atmospheres of mars and earth

    NASA Astrophysics Data System (ADS)

    Shved, G. M.

    2016-03-01

    The isotopic composition of carbon dioxide in the Martian atmosphere from the measurements of Mars Science Laboratory have been used to estimate the relative abundances of CO2 isotopologues in the Martian atmosphere. Concurrently, this study has revealed long-standing errors in the amounts of some of low-abundance CO2 isotopologues in the Earth's atmosphere in the databases of spectroscopic parameters of gases (HITRAN, etc.).

  13. Synthesis and energy transfer within carbon-based fluorescent rare earth nanoparticles and nanocomposites (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yust, Brian G.; Chipara, Mircea; Saenz, Aaron

    2016-03-01

    Recently, there has been a great deal of interest in fluorescent and upconverting rare earth-based nanoparticles for biomedical imaging and photodynamic therapy applications. While many of the widely explored upconverting contrast agents are comprised of fluoride or oxide crystal structures, very little work has been done to investigate the up- and downconversion emission in rare earth-doped carbon nanocomposites. Of particular interest, graphene-UCNP nanocomposites and sesquicarbide nanoparticles may offer a wide range of new applications when coupled with the extraordinary optical properties of rare earth-doped systems, such as potential use as nano-transducers. Carbon-based nanocomposites and sesquicarbides doped with rare earth elements were synthesized using the microwave and solvothermal methods with additional brief high temperature heat treatments. They were then characterized by XRD, visible and NIR excitation and emission spectroscopy, as well as Raman spectrsocopy. Tuning of the emission manifold ratios was explored through different compositions and size. Also, energy transfer between the emitting ions and the electronic states of the host structure was explored. Finally, cytotoxicity was tested, and cellular uptake of these nanomaterials was performed with confocal microscopy.

  14. Assessment of DNA damage of Lewis lung carcinoma cells irradiated by carbon ions and X-rays using alkaline comet assay

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhou, Li-Bin; Jin, Xiao-Dong; He, Jing; Dai, Zhong-Ying; Zhou, Guang-Ming; Gao, Qing-Xiang; Li, Sha; Li, Qiang

    2008-01-01

    DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of “Tail DNA (%)” (TD) and “Olive tail moment” (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radiosensitivity.

  15. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  16. Storage and recycling of water and carbon dioxide in the earth

    NASA Technical Reports Server (NTRS)

    Wood, Bernard J.

    1994-01-01

    The stabilities and properties of water- and carbon-bearing phases in the earth have been determined from phase equilibrium measurements, combined with new data on the equations of state of water, carbon dioxide, carbonates and hydrates. The data have then been used to predict the fate of calcite and hydrous phases in subducting oceanic lithosphere. From the compositions of MORB's one can estimate concentrations of water and carbon of around 200 ppm and 80 ppm respectively in the upper mantle. Lower mantle estimates are very uncertain, but 1900 ppm water and 2000 ppm C are plausible concentrations. Measurements of the density of supercritical water to 3 GPa demonstrate that this phase is less compressible than anticipated from the equations of state of Haar et al. or Saul and Wagner and is closer to predictions based on molecular dynamics simulations. Conversely, fugacity measurements on carbon dioxide to 7 GPa show that this fluid is more compressible than predicted from the MRK equation of state. The results imply that hydrates are relatively more stable and carbonates less stable at pressures greater than 5 GPa than would be predicted from simple extrapolation of the low pressure data. Nevertheless, carbonates remain extremely refractory phases within both the upper and lower mantle.

  17. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  18. By-products of the serpentinization process on the Oman ophiolite : chemical and isotopic composition of carbonate deposits in alkaline springs, and associated secondary phases

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Martinez, I.; Deville, E.; Beaumont, V.; Pillot, D.; Prinzhofer, A.; Vacquand, C.; Chaduteau, C.; Agrinier, P.; Guyot, F. J.

    2014-12-01

    The isotopic compositions (d13C, d18O) of natural carbonates produced by the alteration of basic and ultrabasic rocks on the Oman ophiolite have been measured in order to better understand their formation mechanisms. Fossil carbonates developed on altered peridotitic samples, mostly found in fractures, and contemporary carbonates were studied. The samples bear a large range of d13C. Those collected in veins are magnesian (magnesite, dolomite) and have a carbon signature reflecting mixing of processes and important fractionation (-11‰ to 8‰). Their association with talc and lizardite suggests they are by-products of a serpentinization process, that must have occurred as a carbon-rich fluid was circulating at depth. On the other hand, the carbonates are mostly calcic when formed in alkaline springs, most of which are located in the vicinity of lithological discontinuities such as the peridotite-gabbro contact (Moho). Aragonite forms a few meters below the surface of the ponds in Mg-poor water, and is systematically associated with brucite (Mg(OH)2). This suggests most of the Mg dissolved at depth has reprecipitated during the fluid's ascension through fractures or faults as carbonates and serpentine. Further up, on the surface waters of the ponds (depleted in Mg and D.I.C.), thin calcite films precipitate and reach extremely negative d13C values (-28‰), which could reflect either a biological carbon source, or kinetic fractionation from pumping atmospheric CO2. Their formation represent an efficient and natural process for carbon dioxide mineral sequestration. The d18O signature from all samples confirm the minerals crystallized from a low-temperature fluid. The hyperalkaline conditions (pH between 11 and 12) allowing for these fast precipitation kinetics are generated by the serpentinization process occurring at depth, as indicated by the measured associated H2-rich gas flows (over 50%) seeping out to the surface.

  19. The Carbon Cycle and the Earth Systems--Studying the Carbon Cycle in Multidisciplinary Environmental Context.

    ERIC Educational Resources Information Center

    Gudovitch, Yossi; Orion, Nir

    This paper describes a method that attempts to confront the challenges of developing an environmentally-based earth sciences program. The research scheme includes five stages: (1) predevelopment study; (2) curriculum development; (3) implementation; (4) formative evaluation; and (5) curriculum modification. The research results indicate that the…

  20. Carbon redox and climate control through earth history: A speculative reconstruction

    NASA Astrophysics Data System (ADS)

    Worsley, Thomas R.; Damian Nance, R.

    1989-12-01

    Maintenance of the temperatures required for oceans at the Earth's surface since the beginning of the geologic record almost 4 Ga ago has been accomplished in the face of the Sun's increasing luminosity as a function of its evolution as a main sequence star by a progressive drawdown of the Earth's atmospheric "greenhouse" gases (chiefly CO 2). Atmospheric CO 2 has decreased roughly a hundred fold in the past 3 Ga with a halving time of about 0.4 Ga. As a by-product of a portion of this drawdown, O 2 has increased about a thousand fold in the same interval with a doubling time of about 0.25 Ga. O 2 reached saturation at today's level some 0.25 Ga ago. This drawdown of greenhouse gases has been implemented in large part (about 80% today) by the carbonate-silicate cycle in which increases in surface temperatures are buffered by increased rates of acid rainout of atmospheric CO 2 and its reaction with crustal silicates to form carbonate (C carb). Decreases in surface temperatures curtail this process and allow buildup of atmospheric CO 2 from volcanic sources. Photosynthesis and the burial of organic carbon (C org) accounts for some 20% of today's CO 2 drawdown. For the early Earth, the negative feedback mechanism of the carbonate-silicate buffer alone is likely to have lowered surface temperatures despite a brightening Sun as CO 2 degassing rates declined and land areas grew. However, evidence of an icecap at c. 2.7 Ga and the increasing frequency of continental glaciation thereafter suggest that post-Archean Earth has remained cool despite stabilization of CO 2 degassing rates and continental growth: an unlikely consequence of purely negative feedback. Maintenance of constant and perhaps even slightly declining surface temperatures since the Archean may therefore involve the redox cycle of crustal carbon and apparently mandates a continuous, organism-mediated increase in the burial ratio of reduced carbon (C org) to oxidized carbon (C carb) with time via more

  1. A POSSIBLE CARBON-RICH INTERIOR IN SUPER-EARTH 55 Cancri e

    SciTech Connect

    Madhusudhan, Nikku; Lee, Kanani K. M.; Mousis, Olivier

    2012-11-10

    Terrestrial planets in the solar system, such as the Earth, are oxygen-rich, with silicates and iron being the most common minerals in their interiors. However, the true chemical diversity of rocky planets orbiting other stars is yet unknown. Mass and radius measurements are used to constrain the interior compositions of super-Earths (exoplanets with masses of 1-10 M{sub Circled-Plus }), and are typically interpreted with planetary interior models that assume Earth-centric oxygen-rich compositions. Using such models, the super-Earth 55 Cancri e (mass 8 M{sub Circled-Plus }, radius 2 R{sub Circled-Plus }) has been suggested to bear an interior composition consisting of Fe, silicates, and an envelope ({approx}> 10% by mass) of supercritical water. We report that the mass and radius of 55 Cancri e can also be explained by a carbon-rich solid interior made of Fe, C, SiC, and/or silicates and without a volatile envelope. While the data allow Fe mass fractions of up to 40%, a wide range of C, SiC, and/or silicate mass fractions are possible. A carbon-rich 55 Cancri e is also plausible if its protoplanetary disk bore the same composition as its host star, which has been reported to be carbon-rich. However, more precise estimates of the stellar elemental abundances and observations of the planetary atmosphere are required to further constrain its interior composition. The possibility of a C-rich interior in 55 Cancri e opens a new regime of geochemistry and geophysics in extraterrestrial rocky planets, compared to terrestrial planets in the solar system.

  2. Thermal expansion of Fe3C at high pressure and carbon in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Gao, L.; Chen, B.; Wang, Y.; Li, J.

    2008-12-01

    Carbon is one of the major candidates for the principal light element in the Earth's core. Wood [1993] proposed that Fe3C, rather than iron-nickel alloy, is the dominant phase in the Earth's solid inner core. Testing the model of Fe3C-rich inner core requires knowledge on the thermal equation-of-state (EoS) of Fe3C under core conditions. To date, EoS data of Fe3C are only available at high pressure and 0 or 300 K [Scott et al., 2001, Li et al., 2002, Vocadlo et al., 2002] or at high temperature and 1 bar [Wood et al., 2004]. Wood et al. [2004] found that the thermal expansion coefficient is significantly affected by the ferromagnetic to paramagnetic transition above the Curie temperature. In this study, we have determined the thermal expansion coefficient of Fe3C up to 20 GPa and 1273 K, using a T-cup device and synchrotron x-ray diffraction techniques at beamline 13-ID of the Advanced Photon Source. Our results place constraints on the abundance of carbon the Earth's inner core. This work is supported by NSF EAR 06-09639. References: Gao et al. (2008), Geophys. Res. Lett., doi:10.1029/2008GL034817. Li, J. et al. (2002), Phys. Chem. Miner., 29(3), 166-169. Scott, H. P. et al. (2001), Geophys. Res. Lett., 28, 1875-1878 Vocadlo, L., et al. (2002), Earth Planet. Sci. Lett., 203(1), 567-575. 347. Wood, B. J. (1993), Earth Planet. Sci. Lett., 117(3-4), 593-607. Wood, I. G. et al. (2004), J. Appl. Crystallogr., 37, 82-90.

  3. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-01

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting. PMID:23282365

  4. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  5. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2014-11-01

    Carbon isotopes in the ocean are frequently used as paleo climate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized dataset, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly less computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example a too sluggish ventilation of the deep Pacific Ocean.

  6. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  7. Dielectric properties of water and their impact on the Earth's deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri; Galli, Giulia

    2013-03-01

    Knowledge of the dielectric constant of water as a function of pressure (P) and temperature (T) plays a critical role in understanding the chemistry of aqueous systems, and in particular of fluids in the Earth's mantle. By using ab initio molecular dynamics, we computed the dielectric constant of water at T = 1000 and 2000 K, between 1 and 12 GPa, under conditions of the Earth's upper mantle. By comparing our results with available experimental data and empirical models, we discuss how the changes in the molecular dipole moments and hydrogen-bond network upon compression affect the dielectric constant of the liquid. Based on the calculated dielectric constants, the solubility products of carbonate minerals were predicted. At P ~ 10 GPa and T = 1000 K, we found that MgCO3 (magnesite) is slightly soluble in water at the millimolal level, which suggests that water in the Earth's mantle has the capacity to store and transport significant quantities of oxidized carbon. Supported by Sloan/DCO (#2011-10-01) and DOE-CMSN (DE-SC0005180).

  8. Chemical Interaction of Mg-CARBONATE and the Earth's Lower Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Spivak, Anna; Solopova, Natalia; Litvin, Yuriy; Dubrovinsky, Leonid

    2013-04-01

    Diamonds of lower mantle origin are rare but important guests at Earth surface currying crucial information about deep interiors. Apart minerals expected to be similar in Earth lower mantle (particularly Mg-Fe-Al silicates and MgO-FeO oxides) ultra-deep diamonds contain primary inclusions of carbonates indicating that they are presented in the Earth lower mantle. Carbonates of magnesium, calcium, iron and sodium are stable at wide pressure-temperature conditions close to the geotherm. We studied interaction of Mg-carbonates with ferropericlase, perovskite employing laser-heated diamond anvil cell (DAC) at pressures up to 60 GPa and temperatures over 3000 K. Melting of Mg-carbonate is determined as congruent under PT-conditions of the lower mantle. The MgCO3 melts are stable in an expanded high-pressure high-temperature field. We observed formation of diamond at 18 and 40 GPa as a result of decomposition of MgCO3 melt at temperatures above 3500 K on the high-temperature boundary of the field. Melting reactions of the MgCO3-(Mg,Fe)O system were studied in the 30-63 GPa range at high temperatures up to 3600 K. It was found that decomposition boundary of MgCO3-(Mg,Fe)O melt is close to the pure MgCO3 decomposition one within ± 150 K (accuracy of DAC experiment). Preliminary data shows that perovskite -(Mg,Fe)(Si,Al)O3reacts with MgCO3 at PT-conditions of 24GPa/2000K and 60GPa/2500K, that is close to the boundary of congruent MgCO3 melting. The reaction is accompanied with formation of diamond and MgO. The experimental data on melting phase relations MgCO3, MgCO3 - (Mg,Fe)O and MgCO3-(Mg,Fe)(Si,Al)O3 systems combined with diamond crystallization are applied to the problem of ultra-deep diamond formation in carbonate-bearing parental media of the Earth's lower mantle. This work was funded by the Ministry of education and science of Russian Federation, project 8317, 16.740.11.0621, grants RFBR 12-05-33044 and 11-05-000401.

  9. Syntheses, Vibrational Spectroscopy, and Crystal Structure Determination from X-Ray Powder Diffraction Data of Alkaline Earth Dicyanamides M[N(CN) 2] 2 with M=Mg, Ca, Sr, and Ba

    NASA Astrophysics Data System (ADS)

    Jürgens, Barbara; Irran, Elisabeth; Schnick, Wolfgang

    2001-03-01

    The alkaline earth dicyanamides Mg[N(CN)2]2, Ca[N(CN)2]2, Sr[N(CN)2]2, and Ba[N(CN)2]2 were synthesized by ion exchange using Na[N(CN)2] and the respective nitrates or bromides as starting materials. The crystal structures were determined from X-ray powder diffractometry: Mg[N(CN)2]2, Pnnm, Z=2, a=617.14(3), b=716.97(3), and c=740.35(5) pm; Ca[N(CN)2]2 and Sr[N(CN)2]2, C2/c, Z=4; Ca[N(CN)2]2, a=1244.55(3), b=607.97(1), and c=789.81(1) pm, β=98.864(2)°; Sr[N(CN)2]2, a=1279.63(2), b=624.756(8), and c=817.56(1) pm, β=99.787(1)°; Ba[N(CN)2]2, Pnma, Z=4, a=1368.68(7), b=429.07(7), and c=1226.26(2) pm. The dicyanamides consist of the respective alkaline earth cations and bent planar [N(CN)2]- ions. The structural features were correlated with vibrational spectroscopic data. The thermal behavior was studied by thermoanalytical experiments.

  10. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO2, and MgO-HfO2 interface

    SciTech Connect

    Liu, Xiang-yang; Uberuaga, Blas P; Sickafus, Kurt E

    2008-01-01

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO{sub 2}) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO{sub 2} interfaces.

  11. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3.

    PubMed

    Chen, Bin; Li, Zeyu; Zhang, Dongzhou; Liu, Jiachao; Hu, Michael Y; Zhao, Jiyong; Bi, Wenli; Alp, E Ercan; Xiao, Yuming; Chow, Paul; Li, Jie

    2014-12-16

    Earth's inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (vS) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere. PMID:25453077

  12. High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Wu, Yanzhuo; Zang, Jianbing; Dong, Liang; Zhang, Yan; Wang, Yanhui

    2016-02-01

    A bifunctional noble metal-free catalyst with a cobalt-embedded nitrogen doped graphitized carbon shell covering a nanodiamond (ND) core (Co-N-C/ND) is synthesized. The resulting Co-N-C/ND exhibits excellent catalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The average electron transfer number of ORR on the Co-N-C/ND is 3.82 between -0.4 and -0.7 V (vs. Hg/HgO), indicating a near four-electron transfer mechanism for ORR. Moreover, the catalytic activity of the Co-N-C/ND for ORR is comparable to the 20 wt% Pt reference catalyst supported on carbon black. The OER onset potential on the Co-N-C/ND is 0.43 V (vs. Hg/HgO) and the current density at 0.7 V is 3.19 mA cm-2, demonstrating excellent catalytic activity for OER. In comparison to the Co-N-C derived from carbon black, the Co-N-C/ND exhibits better durability. The superior electrocatalytic performance of the Co-N-C/ND could be attributed to the synergistic effect of the Co-N moieties in the carbon shell and the high stability could be ascribed to the ND core.

  13. C and O stable isotopic signatures of fast-growing dripstones on alkaline substrates: reflection of growth mechanism, carbonate sources and environmental conditions.

    PubMed

    Zavadlav, Saša; Mazej, Darja; Zavašnik, Janez; Rečnik, Aleksander; Dominguez-Víllar, David; Cukrov, Neven; Lojen, Sonja

    2012-06-01

    Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments--Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave)--were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ(13)C (average-28.2‰) and δ(18)O (average-18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO(2) in a highly alkaline solution and consequent disequilibrium precipitation of CaCO(3). The main source of carbon is atmospheric or biogenic CO(2) in the poorly ventilated karstic cave, which is reflected in even lower δ(13)C values. Statistical analysis of δ(13)C and δ(18)O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate. PMID:22316094

  14. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  15. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  16. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process. PMID:26752149

  17. The Mauna Loa carbon dioxide record: lessons for long-term Earth observations

    USGS Publications Warehouse

    Sundquist, Eric T.; Keeling, Ralph F.

    2009-01-01

    The Mauna Loa carbon dioxide record is an iconic symbol of the human capacity to alter the planet. Yet this record would not have been possible without the remarkable work of one man, Charles David Keeling. We describe three emergent themes that characterized his work: (1) his desire to study and understand the processes that control atmospheric CO2 and the global carbon cycle, (2) his campaign to identify and minimize systematic measurement error, and (3) his tenacious efforts to maintain continuous funding despite changing government priorities and institutions. In many ways, the story of the Mauna Loa record demonstrates that distinctions between research and “routine” measurements are not very useful in long-term monitoring of Earth properties and processes.

  18. Carbon-dioxide-rich silicate melt in the Earth's upper mantle.

    PubMed

    Dasgupta, Rajdeep; Mallik, Ananya; Tsuno, Kyusei; Withers, Anthony C; Hirth, Greg; Hirschmann, Marc M

    2013-01-10

    The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO(2) beneath ridges commences at ∼180 km. Accounting for the effect of 50-200 p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO(2) becomes as deep as ∼220-300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250-200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former. PMID:23302861

  19. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    PubMed

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells. PMID:26384899

  20. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth

    NASA Astrophysics Data System (ADS)

    Marty, Bernard

    2012-01-01

    elements and of noble gases is also chondritic, with two notable exceptions. Nitrogen is depleted by one order of magnitude relative to water, carbon and most noble gases, which is consistent with either N retention in a mantle phase during magma generation, or trapping of N in the core. Xenon is also depleted by one order of magnitude, and enriched in heavy isotopes relative to chondritic or solar Xe (the so-called "xenon paradox"). This depletion and isotope fractionation might have taken place due to preferential ionization of xenon by UV light from the early Sun, either before Earth's formation on parent material, or during irradiation of the ancient atmosphere. The second possibility is consistent with a recent report of chondritic-like Xe in Archean sedimentary rocks that suggests that this process was still ongoing during the Archean eon (Pujol et al., 2011). If the depletion of Xe in the atmosphere was a long-term process that took place after the Earth-building events, then the amounts of atmospheric 129Xe and 131-136Xe, produced by the short-lived radioactivities of 129I (T 1/2 = 16 Ma) and 244Pu (T 1/2 = 82 Ma), respectively, need to be corrected for subsequent loss. Doing so, the I-Pu-Xe age of the Earth becomes ≤ 50 Ma after start of solar system formation, instead of ~ 120 Ma as computed with the present-day atmospheric Xe inventory.

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Impacts of observation-driven trait variation on carbon fluxes in an earth system projection

    NASA Astrophysics Data System (ADS)

    Verheijen, Lieneke; van Bodegom, Peter; Aerts, Rien; Brovkin, Victor

    2014-05-01

    Climate projections are still highly uncertain and differences in predicted terrestrial global carbon budgets by earth system models (ESMs) are large, both with respect to the size and direction of change. Part of these uncertainties in the land carbon dynamics are caused by differences in the modeled functional responses of vegetation in reaction to climatic drivers. In reality, changes in vegetation responses to the environment are driven by processes like species plasticity, acclimation, (genotypic) adaptation, species turnover and shifts in species abundances. These processes can cause shifts within community mean trait values, which in turn are will affect carbon fluxes to and from the system. Because most current dynamic global vegetation models (DGVMs, the terrestrial part of ESMs) are not species based, these processes are not or poorly modeled. The recent availability of a large trait database (TRY-database), including both field measurements and experimental data, enables parameterization of the models with observational trait data. Many community mean trait values correlate with local environmental conditions. Such trait-climate relationships can be used to model variation in traits in DGVMs and allow for spatial and temporal variation in functional vegetation responses. The aim of this study was to identify the impacts of observation-driven trait variation on modeled carbon fluxes in climate projections. We determined and incorporated relationships between observational trait and climate data for each plant functional type (PFT) in the DGVM JSBACH. Within each grid cell, traits were varied every year, based on the local climatic conditions in the model. We also included CO2 acclimation of traits based on FACE-experiments, as projections concern elevated CO2 concentrations. Impacts on global carbon budgets were large; in the simulation with variable traits the high latitudes (temperate, boreal and arctic areas) were stronger carbon sinks and the tropical

  6. Carbon Solubility in Core Melts in Shallow Magma Ocean Environment and its bearing on Distribution of Carbon between Deep Earth Reservoirs

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Walker, D.

    2007-12-01

    Carbon affects the melting phase relations of mantle rocks [1] and core metal [2], influences the physical properties of molten silicates and metals, and also has significant effect on partitioning of other key elements between various deep Earth phases. But the carbon budget of Earth's deep mantle and core is poorly constrained due to lack of knowledge of behavior of carbon during core formation. In order to determine the storage capacity of dissolved carbon in metallic core melts and to put constraints on partitioning of carbon between silicate mantle and metallic core, we have determined the solubility of carbon in molten core metal at P- T conditions relevant for a shallow magma ocean.Experiments are performed at 2 GPa and to 2500 °C using a piston cylinder apparatus. Pure Fe-rod or a mixture of Fe-5.2%Ni loaded into graphite capsules were used as starting materials. Al coated run products are analyzed by EMP. Carbon concentration of 5.8 ± 0.4 wt.% at 2000 °C, 6.5 ± 0.9 wt.% at 2250 °C, and 7.5 ± 1.2 wt.% at 2500 °C are measured in quenched iron melt saturated with graphite. The trend of C solubility versus temperature for Fe-5.2 wt.% Ni melt, within analytical uncertainties, is similar to that of pure Fe.We have compared our solubility data and an estimate of the current carbon content of the mantle with the carbon content of core melts and residual mantle silicates respectively, derived from equilibrium batch or fractional segregation of core liquids, to constrain the partition coefficient of carbon between silicate and metallic melts in a magma ocean, DC. Translation of the limits of DC, derived from our solubility data, on calculation of carbon content of the residual silicate shows that the observed mantle concentration of carbon is too low to be matched by the process of shallow magma ocean fractionation of carbon between metal and silicate in a chondritic protoearth. If carbon solubility in liquid Fe does not change strongly as a function of

  7. Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite - And in comparison with selected rare earth carbonates

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei; Belotti, Fernanda Maria

    2013-11-01

    Raman spectroscopy complimented with infrared spectroscopy has been used to study the rare earth based mineral huanghoite with possible formula given as BaCe(CO3)2F and compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of huanghoite displays three bands are at 1072, 1084 and 1091 cm-1 attributed to the CO32- symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of CO32- symmetric stretching vibration varies with mineral composition. Infrared spectroscopy of huanghoite show bands at 1319, 1382, 1422 and 1470 cm-1. No Raman bands of huanghoite were observed in these positions. Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm-1 assigned to the ν3 (CO3)2- antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands for huanghoite are observed at 687, 704, 718 and 730 cm-1and assigned to the (CO3)2- ν2 bending modes. Raman bands are observed for huanghoite at around 627 cm-1 and are assigned to the (CO3)2- ν4 bending modes. Raman bands are observed for the carbonate ν4 in phase bending modes at 722 cm-1 for bastnasite, 736 and 684 cm-1 for parisite, 714 cm-1 for northupite. Raman bands for huanghoite observed at 3259, 3484 and 3589 cm-1 are attributed to water stretching bands. Multiple bands are observed in the OH stretching region for bastnasite and parisite indicating the presence of water and OH units in their mineral structure. Vibrational spectroscopy enables new information on the structure of huanghoite to be assessed.

  8. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  9. Method for thermal cracking of hydrocarbons in an apparatus of an alloy having alkali or alkaline earth metals in the alloy to minimize coke deposition

    SciTech Connect

    Watanabe, Y.; Morimura, T.; Toyoda, Y.

    1984-06-12

    In the thermal cracking of or heating of hydrocarbons, for example naphtha, a carbonization reaction incidentally takes place due to the fact that Ni, Fe and Co contained in, for example, the conduits of the thermal cracking apparatus have a catalytically carbonizing action. The aim of the present invention is to effectively suppress carbon deposition promoted by these elements, to provide for the incorporation of an inhibitor element, e.g. Li, Na, Ba, Be, Ca, Mg or their oxides, into the heat-resistant alloy, and to form on the surface of this alloy a carbon deposition suppressing layer which comprises an inhibitor element.

  10. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  11. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E; Song, Xia; Yuan, Fengming; Goswami, Santonu

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  12. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-01

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts. PMID:27282839

  13. Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    PubMed

    Ippolito, N M; Belardi, G; Medici, F; Piga, L

    2016-05-01

    The aim of the study is the recovery by thermal treatment of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, on the basis of the different phase change temperatures of the two metal-bearing phases. ASR (Automotive Shredder Residue), containing 68% of carbon, was added to the mixture to act as a reductant to metallic Zn of the zinc-bearing phases. The mixture was subsequently heated in different atmospheres (air, CO2 and N2) and at different temperatures (900°C, 1000°C and 1200°C) and stoichiometric excess of ASR (300%, 600% and 900%). Characterization of the mixture and of the residues of thermal treatment was carried out by chemical analysis, TGA/DTA, SEM and XRD. The results show that recovery of 99% of zinc (grade 97%) is achieved at 1000°C in N2 with a stoichiometric excess of car-fluff of 900%. This product could be suitable for production of new batteries after refining by hydrometallurgical way. Recovery of Mn around 98% in the residue of the treatment is achieved at any temperature and atmosphere tested with a grade of 57% at 900% excess of car-fluff. This residue is enriched in manganese oxide and could be used in the production of iron-manganese alloys. PMID:26777778

  14. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.

    PubMed

    Tang, Cong; Qian, Zhaosheng; Huang, Yuanyuan; Xu, Jiamin; Ao, Hang; Zhao, Meizhi; Zhou, Jin; Chen, Jianrong; Feng, Hui

    2016-09-15

    A convenient, reliable and highly sensitive assay for alkaline phosphatase (ALP) activity in the real-time manner is developed based on β-cyclodextrin-modified carbon quantum dots (β-CD-CQDs) nanoprobe through specific host-guest recognition. Carbon quantum dots were first functionalized with 3-aminophenyl boronic acid to produce boronic acid-functionalized CQDs, and then further modified with hydropropyl β-cyclodextrins (β-CD) through B-O bonds to form β-CD-CQDs nanoprobe. p-Nitrophenol phosphate disodium salt is used as the substrate of ALP, and can hydrolyze to p-nitrophenol under the catalysis of ALP. The resulting p-nitrophenol can enter the cavity of β-CD moiety in the nanoprobe due to their specific host-guest recognition, where photoinduced electron transfer process between p-nitrophenol and CQDs takes place to efficiently quench the fluorescence of the probe. The correlation between quenched fluorescence and ALP level can be used to establish quantitative evaluation of ALP activity in a broad range from 3.4 to 100.0U/L with the detection limit of 0.9U/L. This assay shows a high sensitivity to ALP even in the presence of a very high concentration of glucose. This study demonstrates a good electron donor/acceptor pair, which can be used to design general detection strategy through PET process, and also broadens the application of host-guest recognition for enzymes detection in clinical practice. PMID:27132001

  15. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition. PMID:23711470

  16. Exploring Research Contributions of the North American Carbon Program using Google Earth and Google Map

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; Wilcox, L. E.; Morrell, A.

    2009-12-01

    The central objective of the North American Carbon Program (NACP), a core element of the US Global Change Research Program, is to quantify the sources and sinks of carbon dioxide, carbon monoxide, and methane in North America and adjacent ocean regions. The NACP consists of a wide range of investigators at universities and federal research centers. Although many of these investigators have worked together in the past, many have had few prior interactions and may not know of similar work within knowledge domains, much less across the diversity of environments and scientific approaches in the Program. Coordinating interactions and sharing data are major challenges in conducting NACP. The Google Earth and Google Map Collections on the NACP website (www.nacarbon.org) provide a geographical view of the research products contributed by each core and affiliated NACP project. Other relevant data sources (e.g. AERONET, LVIS) can also be browsed in spatial context with NACP contributions. Each contribution links to project-oriented metadata, or “project profiles”, that provide a greater understanding of the scientific and social context of each dataset and are an important means of communicating within the NACP and to the larger carbon cycle science community. Project profiles store information such as a project's title, leaders, participants, an abstract, keywords, funding agencies, associated intensive campaigns, expected data products, data needs, publications, and URLs to associated data centers, datasets, and metadata. Data products are research contributions that include biometric inventories, flux tower estimates, remote sensing land cover products, tools, services, and model inputs / outputs. Project leaders have been asked to identify these contributions to the site level whenever possible, either through simple latitude/longitude pair, or by uploading a KML, KMZ, or shape file. Project leaders may select custom icons to graphically categorize their

  17. Photochemical reactions of water and carbon monoxide in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Chang, S.

    1983-01-01

    The gas-phase photolysis of H2O at 1849 A in the presence of CO yields mainly CO2 and H2 and a variety of organic compounds, including C1-C3 hydrocarbons, alcohols, aldehydes, acetone, and acetic acid. The overall quantum yield for conversion of CO to organic compounds varies between 0.23 and 0.03 as a function of the CO abundance. These results indicate that even if primitive earth's atmosphere initially contained no molecular hydrogen and contained carbon only in the form of CO or a mixture of CO and CO2, the prebiotic environment would have become enriched with a variety of organic compounds produced by photochemical processes.

  18. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  19. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere.

    PubMed

    Kasting, J F

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters. PMID:11537523

  20. Elastic softening in Fe7C3 with implications for Earth's deep carbon reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, Jiachao; Li, Jie; Ikuta, Daijo

    2016-03-01

    Iron carbide Fe7C3 has recently emerged as a potential host of reduced carbon in Earth's mantle and a candidate component of the inner core, but the equation of state of Fe7C3 is still uncertain, partly because the nature of pressure-induced magnetic transitions in Fe7C3 and their elastic effects remain controversial. Here we report the compression curve of hexagonal Fe7C3 in neon medium with dense pressure sampling and in comparison with pure iron in the same loading. The results revealed elastic softening between 7 GPa and 20 GPa, which can be attributed to noncollinear alignment of spin moments in a state between the ferromagnetic and paramagnetic phases, as expected for Invar-type alloys. The volume reduction associated with the softening would enhance the stability of Fe7C3 in the deeper part of the upper mantle and transition zone. As a result of subsequent spin crossover at higher pressures, Fe7C3 at inner core conditions likely occurs as the nonmagnetic phase, which remains a candidate for the major component of the Earth's central sphere.

  1. Enhanced alkalinity and dissolved inorganic carbon release in intertidal sands from the Oosterschelde (The Netherlands) induced by a natural macrofaunal community

    NASA Astrophysics Data System (ADS)

    Brenner, Heiko; Montserrat, Francesc; Meysman, Filip

    2014-05-01

    The influence of bioturbation and bioirrigation in intertidal sandflat sediments from the Oosterschelde (The Netherlands) on the rates and sources of benthic alkalinity (TA) and dissolved inorganic carbon (DIC) generation was examined using measurements of sediment-water fluxes of bromide, oxygen, nutrients, TA and DIC. Sediments from the Oosterschelde typically contain the deep-burrowing polychaete Arenicola marina, the sub-surface bioturbator Macoma balthica and the surface bioturbator Cerastoderma edule. Measurements were carried out in six tanks (106 cm x 87 cm x 20 cm). The sediment was collected in November 2012. Measurements were started in June 2013. Each tank was sampled twice for benthic fluxes over the course of one month. Prior measurements three tanks were defaunated by covering the sediment surface with a black plastic sheet. Benthic flux measurements were carried out in closed plastic chambers (diameter 66 cm). These chambers typically contained about 10 cm sediment and 20 cm overlying water. The tank was completely covered with opaque a black plastic sheet during measurements. The incubation time ranged from 6 to 8 hours. Here we present preliminary results from both experimental runs. High benthic fluxes of TA (10 - 70 mmol m-2 d-1) and DIC (35 - 150 mmol m-2 d-1) were observed in all tanks. Whereas benthic TA and DIC fluxes were significantly higher in faunated tanks, total oxygen uptake (TOU: 30 - 75 mmol m-2 d-1) did not show any meaningful trend between the two treatments. Therefore, the apparent community respiratory quotient (CRQ = DIC/TOU) varied between 0.9 and 3.3, with significant higher values in faunated tanks, suggesting enhanced flushing of DIC produced in deeper layers and released by bioirrigation. This DIC was either produced by anaerobic respiration or carbonate dissolution. To unravel the contribution of carbonate dissolution and anaerobic respiration on the observed TA and DIC fluxes, we further present estimations for relevant

  2. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  3. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  4. Distribution, abundance and carbon isotopic composition of gaseous hydrocarbons in Big Soda Lake, Nevada: An alkaline, meromictic lake

    USGS Publications Warehouse

    Oremland, R.S.; Des Marais, D.J.

    1983-01-01

    Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.

  5. Carbon Offsets in California: What Role for Earth Scientists in the Policy Process? (Invited)

    NASA Astrophysics Data System (ADS)

    Cullenward, D.; Strong, A. L.

    2013-12-01

    This talk addresses the policy structure in California for developing and approving carbon offset protocols, which rely on findings from the environmental and earth sciences communities. In addition to providing an overview of the legal requirements of carbon offsets, we describe a series of case studies of how scientists can engage with policymakers. Based on those experiences, we suggest ways for the earth sciences community to become more involved in climate policy development. California's climate law, known as AB 32, requires that major sectors of the state's economy reduce their emissions to 1990 levels by 2020. As part of AB 32, the California Air Resources Board created a cap-and-trade market to ensure compliance with the statutory target. Under this system, regulated companies have to acquire tradable emissions permits (called 'compliance instruments') for the greenhouse gas emissions they release. The State allocates a certain number of allowances to regulated entities through a mixture of auctions and free transfers, with the total number equal to the overall emissions target; these allowances, along with approved offsets credits, are the compliance instruments that regulated entities are required to obtain by law. One of the key policy design issues in California's cap-and-trade market concerns the use of carbon offsets. Under AB 32, the Air Resources Board can issue offset credits to project developers who reduce emissions outside of the capped sectors (electricity, industry, and transportation)--or even outside of California--pursuant to approved offset protocols. Project developers then sell the credits to regulated companies in California. Essentially, offsets allow regulated entities in California to earn credit for emissions reductions that take place outside the scope of AB 32. Many regulated entities and economists are in favor of offsets because they view them as a source of low-cost compliance instruments. On the other hand, critics argue that

  6. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  7. Preparation of fibrous titania oxynitride - carbon catalyst and oxygen reduction reaction analysis in both acidic and alkaline media

    NASA Astrophysics Data System (ADS)

    Kinumoto, Taro; Sou, Yoshinori; Ono, Kohei; Matsuoka, Miki; Arai, Yasuhiko; Tsumura, Tomoki; Toyoda, Masahiro

    2015-01-01

    A fibrous catalyst of titania oxynitride and carbon is prepared and its catalytic behavior in the oxygen reduction reaction (ORR) are investigated in both HClO4 and KOH aqueous solutions. TiO2 particles are successfully deposited on activated carbon fibers by a liquid phase deposition technique using (NH4)2TiF6 and H3BO3. The catalyst obtained after subsequent ammonia nitridation at 1273 K had a fibrous structure with TiOxNy and TiN components. Interestingly, the product demonstrates catalytic activity for the ORR in not only HClO4 but also KOH aqueous solution. The onset potential in HClO4 solution is assumed to be moderate, at 0.85 V; on the other hand, that in KOH solution is relatively high at 0.95 V. Furthermore, it is considered from the Tafel plot analysis of the KOH solution result that the ORR mechanism follows a peroxide intermediate pathway and the rate-determining step would be a one-electron-transfer reaction to oxygen molecules adsorbed on the active site.

  8. COMBUSTION SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE ALKALINE EARTH ALUMINATE Sr4Al14O25:RE(RE = Eu, Dy, Sm)

    NASA Astrophysics Data System (ADS)

    Hedaoo, V. P.; Bhatkar, V. B.; Omanwar, S. K.

    2013-08-01

    Nanoscale phosphors have superior performance characteristics than the bulk phosphors. This paper explains the synthesis and characterization like XRD, FTIR, SEM and photoluminescence properties of nanocrystalline Sr4Al14O25 doped with rare earth elements like europium, dysprosium and samarium by combustion method. XRD showed the nanoscale crystalline nature of as-prepared samples. SEM confirmed size of the particle less than 100 nm. Photoluminescent emission spectra showed strong orange red emission at 593 nm for Sr4Al14O25:Sm3+. The green emission of Eu2+ was observed at around 490 nm for Sr4Al14O25:Eu2+.

  9. Megaripples, multiple cap carbonates, and apparently conformable sections: observations that normalize some interpretations of Snowball Earth stratigraphy while complicating others

    NASA Astrophysics Data System (ADS)

    Raub, T.; Lamb, M. P.; Fischer, W. W.; Myrow, P.; Perron, T.; Kunzmann, M.; Liu, C.; Prave, A. R.

    2012-12-01

    Neoproterozoic Snowball Earth is intellectually alluring in part because its remarkable sedimentary and geochemical record challenges uniformitarian description and demands multiple working hypotheses. Apparently exceptional features in that record may represent the end-products of truly nonuniformitarian processes acting on a fundamentally different Earth than the modern world: an Earth which is oxygen-poor, lacking terrestrial macrobiota, and of uncertain (or arguably bizarre) geomagnetic and geodynamic character. But many features in this remarkable rock record might be explained by perfectly ordinary processes acting on anomalous materials, or in systems bounded by conditions that are rare, but not mysterious, on modern Earth. I will present emerging examples of both interpretive modes. Exceptional bedforms known as cap carbonate megaripples can be explained under normal wave climates by aggradation of unusually large carbonate grains anomalously widespread in a shallow shelfal setting. Bedform topography may be inherited or else migrate laterally through discrete, episodic depositional events if cementation is fast. Trace metal isotopes excurse most prominently at the very base of conformable cap carbonate sections, and in the terminal stages of deglaciation, at times when the seawater saturation state is most dynamic. In the end, basic field geology without genetic presumption, and the interpretive context it lends specific geochemical analyses, remains most likely to successfully evaluate the likelihoods of both existing and new Snowball Earth scenarios. The most fundamental unanswered question remains one of stratigraphic architecture: what is the climatic phase, the timing, and the duration for both diamictite and cap carbonate deposition? End-member solutions remain viable: diamictite and cap carbonate may both be of prolonged duration and globally diachronous, with diamictite representing syn-glacial and interstadial cycles and cap carbonate spanning

  10. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  11. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    PubMed

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging. PMID:26878217

  12. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  13. Development of a carbon dioxide pressure technique for chemical stabilization of alkaline clean coal technology (CCT) ash. Final report

    SciTech Connect

    Reddy, K.J.; Gloss, S.P.; Drever, J.I.; Tawfic, T.A.

    1995-06-01

    Clean Coal Technology (CCT) ash may contain trace elements such as arsenic (As), cadmium (Cd) and selenium (Se), some of which may become mobile and leach from a disposal facility. This study was undertaken to determine the effects of a carbon dioxide (CO{sub 2}) pressure treatment on the leachability of trace elements in CCT ash. The CO{sub 2} pressure treatment was optimized using a three by five factorial design as well as a multiple regression analysis. Low, medium and high levels of moisture, reaction time, pressure, temperature and concentration of CO{sub 2} were tested. Treated and untreated CCT ash samples were subjected to X-ray diffraction (XRD) and leachability studies. A 1:4 (solid:solution) suspension was used to monitor the pH changes after each treatment. Optimum CO{sub 2} treatment conditions rapidly precipitated calcite, and thus lowered the pH of CCT ash samples. For example, a stable pH drop from 12.47 to 7.05 for CCT-1, 12.74 to 9.34 for CCT-2 and 11.50 to 9.16 for CCT-3 was obtained. An increase in percent calcium carbonate (CaCO{sub 3}) content and percent CO{sub 2} uptake was observed in CO{sub 2} treated samples. Solubility studies suggested that Ca{sup 2+} concentration in CO{sub 2} treated CCT ash leachates appeared to be regulated by CaCO{sub 3}. Our results show that reacting moist CCT ash samples with CO{sub 2} under pressure is effective in lowering the concentrations of leachable trace elements (e.g., Cd, Pb, Cr, As and Se), which could prevent their migration from disposal environments into soils and groundwaters.

  14. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    SciTech Connect

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids

  15. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, Anthony; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure

  16. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect

    Hoffman, Forrest M; Randerson, James T.; Arora, Vivek K.; Bao, Qing; Cadule, Patricia; Ji, Duoying; Jones, Chris D.; Kawamiya, Michio; Khatiwala, Samar; Lindsay, Keith; Obata, Atsushi; Shevliakova, Elena; Six, Katharina D.; Tjiputra, Jerry F.; Volodin, Evgeny M.; Wu, Tongwen

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in

  17. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.; Arora, V. K.; Bao, Q.; Cadule, P.; Ji, D.; Jones, C. D.; Kawamiya, M.; Khatiwala, S.; Lindsay, K.; Obata, A.; Shevliakova, E.; Six, K. D.; Tjiputra, J. F.; Volodin, E. M.; Wu, T.

    2014-02-01

    The strength of feedbacks between a changing climate and future CO2 concentrations is uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations—in which atmospheric CO2levels were computed prognostically—for historical (1850-2005) and future periods (Representative Concentration Pathway (RCP) 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2levels for the multimodel ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2estimates of 600±14 ppm at 2060 and 947±35 ppm at 2100, which were 21 ppm and 32 ppm below the multimodel mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2from Mauna Loa, our analysis suggests that

  18. Development of a system emulating the global carbon cycle in Earth system models

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K

  19. Carbon and nitrogen isotope fractionation during possible organic aerosol formation in Titan and the early Earth

    NASA Astrophysics Data System (ADS)

    Imanaka, H.

    2012-12-01

    Abiotic formation of complex organic macromolecule aerosols is important not only for the potential for prebiotic chemical evolution, but also in the global elemental cycle. The direct clues of the habitable environment and biosphere on the early Earth are mostly obtained from geological records, such as isotope signatures and biomarkers in the ancient organic sediments. The recent Cassini-Huygens mission revealed the generation of complex organic aerosols in Titan's upper atmosphere, and similar processes could have lead to the formation of organic aerosols in the early Earth atmosphere. Understanding the formation reaction network and accompanying isotope fractionation processes of the organic aerosols is necessary to constrain the active organic environment on the early Earth from the available geological evidence. We have investigated the abiotic formation of organic aerosols in simulated atmospheres of Titan and the early, with particular focus on carbon and nitrogen isotope fractionation. Laboratory aerosol analogues, termed tholins, are generated with cold plasma irradiation of reduced gas mixtures, such as N2/CH4 and N2/H2/CO. Stable isotopic ratios of 15N/14N and 13C/12C for the generated tholins are measured with an elemental analysis-isotope ratio mass spectrometer (EA-IR-MS). Our preliminary data for tholins generated from an equivalent N2/CH4 (=90/10) gas mixture at various pressures suggests the 15N isotopic fractionation up to δ15N = -20~25 permil during tholin formation, while 13C isotopic fractionation seems almost negligible. This negative δ15N is even lighter than those observed in kerogens in the Archean sediments (Beaumont and Robert, 1999; Pinti et al., 2001), and the organic haze could have contributed to the source of 15N-depleted kerogens. Furthermore, the δ15N vary with deposition pressure. Previous works demonstrated that the resulted two types of tholin are very different in chemical structure and optical properties (Imanaka et al

  20. Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    McArthur, M. A.; Jorge, L.; Coulombe, S.; Omanovic, S.

    2014-11-01

    Renewable alternative energy sources are required to decrease or eliminate the use of environmentally unfriendly fossil fuels. Hydrogen produced by electrolysis has been identified as one such renewable energy carrier. In the current work, Ni nanoparticle (NP)-decorated multiwall carbon nanotube (MWCNT) electrocatalyst cathodes are prepared by a simple two-step procedure. MWCNTs are grown on stainless steel meshes by thermal-chemical vapour deposition (t-CVD) and then decorated with Ni NPs by pulsed laser ablation (PLA). The morphological and electrochemical properties of the produced Ni NP/MWCNT cathodes were characterized through electron microscopy and linear Tafel polarization (LTP)/electrochemical impedance spectroscopy (EIS), respectively. SEM and TEM imaging revealed that the Ni NPs deposited by PLA are on the order of 4 nm in diameter with a narrow size distribution. The LTP measurements showed that the electrocatalytic activity of the Ni NP/MWCNT cathodes towards the hydrogen evolution reaction (HER) is dependent on PLA time and shows a maximum at tPLA = 40 min. EIS measurements revealed that the HER response is characterized by a two time constants process representing HER kinetics and adsorption of hydrogen.

  1. Method for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  2. Apparatus for extracting and sequestering carbon dioxide

    DOEpatents

    Rau, Gregory H.; Caldeira, Kenneth G.

    2010-02-02

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  3. Method for Extracting and Sequestering Carbon Dioxide

    SciTech Connect

    Rau, Gregory H.; Caldeira, Kenneth G.

    2005-05-10

    A method and apparatus to extract and sequester carbon dioxide (CO2) from a stream or volume of gas wherein said method and apparatus hydrates CO2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO2 from a gaseous environment.

  4. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  5. A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca(2+) /CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress.

    PubMed

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Qin, Zhiwei; Yang, Kejun; Chen, Chao; Yu, Qingyue; Zhu, Yanming

    2016-06-01

    Although research has extensively illustrated the molecular basis of plant responses to salt and high-pH stresses, knowledge on carbonate alkaline stress is poor and the specific responsive mechanism remains elusive. We have previously characterized a Glycine soja Ca(2+) /CAM-dependent kinase GsCBRLK that could increase salt tolerance. Here, we characterize a methionine sulfoxide reductase (MSR) B protein GsMSRB5a as a GsCBRLK interactor by using Y2H and BiFc assays. Further analyses showed that the N-terminal variable domain of GsCBRLK contributed to the GsMSRB5a interaction. Y2H assays also revealed the interaction specificity of GsCBRLK with the wild soybean MSRB subfamily proteins, and determined that the BoxI/BoxII-containing regions within GsMSRBs were responsible for their interaction. Furthermore, we also illustrated that the N-terminal basic regions in GsMSRBs functioned as transit peptides, which targeted themselves into chloroplasts and thereby prevented their interaction with GsCBRLK. Nevertheless, deletion of these regions allowed them to localize on the plasma membrane (PM) and interact with GsCBRLK. In addition, we also showed that GsMSRB5a and GsCBRLK displayed overlapping tissue expression specificity and coincident expression patterns under carbonate alkaline stress. Phenotypic experiments demonstrated that GsMSRB5a and GsCBRLK overexpression in Arabidopsis enhanced carbonate alkaline stress tolerance. Further investigations elucidated that GsMSRB5a and GsCBRLK inhibited reactive oxygen species (ROS) accumulation by modifying the expression of ROS signaling, biosynthesis and scavenging genes. Summarily, our results demonstrated that GsCBRLK and GsMSRB5a interacted with each other, and activated ROS signaling under carbonate alkaline stress. PMID:27121031

  6. Quantifying and Reducing Climate-Carbon Cycle Feedback Uncertainties: Analysis of CMIP5 Earth System Model Feedbacks

    NASA Astrophysics Data System (ADS)

    Hoffman, F. M.; Randerson, J. T.

    2011-12-01

    Increasing atmospheric carbon dioxide (CO2) concentrations, resulting from anthropogenic perturbation of the global carbon cycle, are altering the Earth's climate. Climate change is expected to induce feedbacks on future CO2 concentrations and on the climate system itself. These feedbacks are highly uncertain, potentially large, and difficult to predict using Earth System Models (ESMs). In order to reduce the range of uncertainty in climate predictions, model representation of feedbacks must be improved through comparisons with contemporary observations. In this study, we quantify the terrestrial and ocean carbon storage sensitivity to climate and atmospheric CO2 concentration of ESMs participating in the Climate Model Intercomparison Project Phase 5 (CMIP5) following the methodology of Friedlingstein et al. (2006). In order to evaluate the models' abilities to capture the 21st century carbon cycle and to offer possible constraints on the modeled feedback strengths, comparisons with contemporary observations will be made over three different time scales: seasonal to annual, interannual to decadal, and decadal to centennial. A conceptual framework for evaluating climate-carbon cycle feedbacks in global models--employing best-available observational data--will be presented, along with results from application of this framework to CMIP5 model output. Included in the analysis will be prototype model evaluation benchmarks of the carbon cycle being designed for the International Land Model Benchmarking (ILAMB) Project.

  7. Generation of methane in the Earth's mantle: In situ high pressure–temperature measurements of carbonate reduction

    PubMed Central

    Scott, Henry P.; Hemley, Russell J.; Mao, Ho-kwang; Herschbach, Dudley R.; Fried, Laurence E.; Howard, W. Michael; Bastea, Sorin

    2004-01-01

    We present in situ observations of hydrocarbon formation via carbonate reduction at upper mantle pressures and temperatures. Methane was formed from FeO, CaCO3-calcite, and water at pressures between 5 and 11 GPa and temperatures ranging from 500°C to 1,500°C. The results are shown to be consistent with multiphase thermodynamic calculations based on the statistical mechanics of soft particle mixtures. The study demonstrates the existence of abiogenic pathways for the formation of hydrocarbons in the Earth's interior and suggests that the hydrocarbon budget of the bulk Earth may be larger than conventionally assumed. PMID:15381767

  8. Generation of Methane in the Earth's Mantle: In situ High P-T Measurements of Carbonate Reduction

    SciTech Connect

    Scott, H P; Hemley, R J; Mao, H; Herschbach, D R; Fried, L E; Howard, W M; Bastea, S

    2004-09-10

    We present in situ observations of hydrocarbon formation via carbonate reduction at upper mantle pressures and temperatures. Methane was formed from FeO, CaCO{sub 3}-calcite and water at pressures between 5 and 11 GPa and temperatures ranging from 500 to 1500 C. The results are shown to be consistent with thermodynamic calculations of the relevant chemical reactions based on the thermochemical models and ab initio theory. The study demonstrates the existence of abiogenic pathways for the formation of hydrocarbons in the Earth's interior and suggests that the hydrocarbon budget of the bulk Earth may be larger than conventionally assumed.

  9. Carbon isotope fractionation between Fe-carbide and diamond; a light C isotope reservoir in the deep Earth and Core?

    NASA Astrophysics Data System (ADS)

    Mikhail, S.; Jones, A. P.; Hunt, S. A.; Guillermier, C.; Dobson, D. P.; Tomlinson, E.; Dan, H.; Milledge, H.; Franchi, I.; Wood, I.; Beard, A.; Verchovsky, S.

    2010-12-01

    The largest accessible reservoir for terrestrial carbon is the mantle; however the core may yield even more. Carbon is commonly proposed as the light element (or one of) to make up the observed density deficit in the earth’s metallic core (NAKAJIMA et al., 2009). The potential isotopic effects of carbon incorporation into the core have not yet been investigated. In-situ ion probe (nanoSIMS) mapping and imaging of carbon isotope variations across rare sub-mm-scale Fe-rich carbide inclusions in mantle diamond (from Jagersfontein, South Africa) show the carbide to be significantly depleted in 13C relative to their diamond host. Distinctive textures suggest metallic liquid precipitates similar in geometry to (giant) nitrogen platelets, controlled by the octahedral symmetry of diamond, which we interpret as syngenic formation. The difference in δ13C values between the two natural phases for diamond-Fe carbide, gives an isotopic fractionation factor (ΔC) which agrees well with HPHT multi-anvil experiments (5-9 GPa and >1400°C). Our measured ΔC between Fe-carbide and diamond may only have local significance, but the measured isotopic values represent characterization of the highest PT carbide known (i.e. > minimum depth of the diamond stability field ≈ 150 km). The direction and magnitude of ΔC agrees with observations of the ΔC between cohenite-graphite in iron meteorites (DEINES and WICKMAN, 1975) and both agree with HPHT experiments, thus suggesting that carbon in the deep Earth, and particularly in the core, may be similarly fractionated (i.e. depleted in the 13C). Since metallic liquid drained from the silicate mantle to form the core during the early Earth, we can use our values as a proxy to constrain evolution of deep carbon reservoirs such as the core and bulk silicate Earth. For example, we can test the suggestion of Grady et al (2004) that the upper mantle value of δ13C ≈ -5 ‰ may not be representative of the bulk Earth, since solar system

  10. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  11. The carbon reduction research of teaching staff commuting aided by Google Earth: taking Guangzhou University as an example

    NASA Astrophysics Data System (ADS)

    Xie, Hongyu; Wang, Xixiang; Zhao, Meichan; Zhao, Huaqing; Lin, Zhien

    2008-10-01

    In this paper, taking Guangzhou University as an example, carbon reduction of teaching staff commuting was researched. Firstly, considering carbon emission of teaching staff commuting is come from the fuel consumption of vehicle used to trip, the routes, schedule, vehicle type, fuel type and fuel consumption per 100 km of service express bus, public bus and private car were investigated from relevant department and web questionnaire in office automation system. Secondly, the routes of service express bus, public bus and private car were drawn in Google earth browser to measure distance. Thirdly, combined the bus schedule, school calendar, curriculum timetable of teacher and fuel consumption per 100 km of all kinds of vehicle, the fuel consumption of service express bus, public bus and private car were computed. Fourthly, carbon emission was calculated according to net calorific factor and calorie carbon emission factors of fuel. Finally, the measures of carbon reduction were discussed. The research results show that teaching staff commuting emitted 455.433 tons carbon in 2005-2006 academic year. And reducing usage rate of private car and adding new service express bus line are efficient measure of carbon reduction. Former measure can reduce 33.6891 tons carbon and about 7.4% of original emission. The latter can reduce 7.6317 tons and about 1.68% of original emission.

  12. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-01

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field. PMID:27494550

  13. Water removal studies on high power hydrogen-oxygen fuel cells with alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Kordesch, K.; Oliveira, J. C. T.; Gruber, Ch.; Winkler, G.

    1989-08-01

    Research in verification of bipolar fuel cell design, containing mass-produceable all-carbon electrodes which can be used in alkaline or acidic cells with liquid or immobilized (matrix) electrolytes, is described. Spin-offs from the research related to the Hermes manned spaceplane could be useful for applications on Earth. Peak-power plants, electric vehicles and storage devices used in combination with renewable energy sources could all benefit from the research. A subsequent investigation of water transpiration properties of carbon electrodes is described.

  14. Highly porous nickel@carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Dongming; Guo, Fen; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-06-01

    Highly porous nickel@carbon sponge electrode with low cost is synthesized via a facile sponge carbonization method coupled with a direct electrodeposition of Ni. The obtained electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The catalytic performances of urea electro-oxidation in alkaline medium are investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The Ni@carbon sponge electrode exhibits three-dimensional open network structures with a large surface area. Remarkably, the Ni@carbon sponge electrode shows much higher electrocatalytic activity and lower onset oxidation potential towards urea electro-oxidation compared to a Ni/Ti flat electrode synthesized by the same procedure. The Ni@carbon sponge electrode achieves an onset oxidation potential of 0.24 V (vs. Ag/AgCl) and a peak current density of 290 mA cm-2 in 5 mol L-1 NaOH and 0.10 mol L-1 urea solutions accompanied with a desirable stability. The impressive electrocatalytic activity is largely attributed to the high intrinsic electronic conductivity, superior porous network structures and rich surface Ni active species, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation in alkaline medium, indicating promising applications in fuel cells.

  15. Correlation-induced metal-insulator transitions in d0 magnetic superlattices based on alkaline-earth monoxides: Insights from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Lin; Dong, Shengjie; Zhou, Baozeng; Zhao, Hui; Wu, Ping

    2015-06-01

    Using first-principles density functional theory calculations, we have investigated the electronic structure and magnetic properties of four superlattices (MO)1/(MX)1 (001) (M=Ca and Sr; X=N and C). Our results show that compared with standard GGA approach, the GGA plus effective Ueff scheme can correct electronic structure and magnetic properties in some extent. With enhancing electronic correlation, for (CaO)1/(CaN)1, (SrO)1/(SrN)1, and (SrO)1/(SrC)1, the bands across Fermi level are divided into two parts and the shape of isotropic spherical spin atmosphere becomes anisotropic dumbbell-like with specific orientation, accompanying metal-insulator transitions. For (CaO)1/(CaC)1, the states just smearing with the Fermi level shift to lower energy region below Fermi level, indicating the transformation from a nearly half metal to an actual half metal occurs. The different behavior of (CaO)1/(CaC)1 compared with three other compounds may be caused by the larger ionization energy of calcium than that of strontium and the smaller electronegativity of carbon than that of nitrogen.

  16. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  18. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    NASA Astrophysics Data System (ADS)

    Schwinger, Jörg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph

    2016-08-01

    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990-1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr-1 depending on model version, grid resolution, and atmospheric forcing data set.

  19. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrode